DIMENSION, MULTIPLICITY, HOLonomic MODULES, AND AN ANALOGUE OF THE INEQUALITY OF BERNSTEIN FOR RINGS OF DIFFERENTIAL OPERATORS IN PRIME CHARACTERISTIC

V. V. BAVULA

Dedicated to Joseph Bernstein on the occasion of his 60th birthday

Abstract. Let \(K \) be an arbitrary field of characteristic \(p > 0 \) and \(\mathcal{D}(P_n) \) the ring of differential operators on a polynomial algebra \(P_n \) in \(n \) variables. A long anticipated analogue of the inequality of Bernstein is proved for the ring \(\mathcal{D}(P_n) \). In fact, three different proofs are given of this inequality (two of which are essentially characteristic free): the first one is based on the concept of the \emph{filter dimension}, the second, on the concept of a set of \emph{holonomic subalgebras with multiplicity}, and the third works only for finitely presented modules and follows from a description of these modules (obtained in the paper). On the way, analogues of the concepts of (Gelfand-Kirillov) \emph{dimension}, \emph{multiplicity}, \emph{holonomic modules} are found in prime characteristic (giving answers to old questions of how to find such analogs). The idea is very simple to find characteristic free generalizations (and proofs) which in characteristic zero give known results, and in prime characteristic, generalizations. An analogue of Quillen’s \emph{Lemma} is proved for simple finitely presented \(\mathcal{D}(P_n) \)-modules. Moreover, for each such module \(L \), \(\text{End}_{\mathcal{D}(P_n)}(L) \) is a finite separable field extension of \(K \) and \(\dim_K(\text{End}_{\mathcal{D}(P_n)}(L)) \) is equal to the multiplicity \(e(L) \) of \(L \). In contrast to the characteristic zero case where the Gelfand-Kirillov dimension of a nonzero finitely generated \(\mathcal{D}(P_n) \)-module \(M \) can be any natural number from the interval \([n,2n]\), in the prime characteristic, the (new) dimension \(\dim(M) \) can be any real number from the interval \([n,2n]\). It is proved that every holonomic module has finite length, but in contrast to the characteristic zero case it is not true that neither a nonzero finitely generated module of dimension \(n \) is holonomic nor that a holonomic module is finitely presented. Some of the surprising results are: (i) each simple finitely presented \(\mathcal{D}(P_n) \)-module \(M \) is holonomic having the multiplicity which is a \emph{natural number} (in characteristic zero rather the opposite is true, i.e. \(\text{GK}(M) = 2n - 1 \), as a rule), (ii) the dimension \(\text{Dim}(M) \) of a nonzero finitely presented \(\mathcal{D}(P_n) \)-module \(M \) can be any \emph{natural number} from the interval \([n,2n]\), (iii) the multiplicity \(e(M) \) \emph{exists} for each finitely presented \(\mathcal{D}(P_n) \)-module \(M \) and \(e(M) \in \mathbb{Q} \), the multiplicity \(e(M) \) is a \emph{natural number} if \(\text{Dim}(M) = n \), and can be an \emph{arbitrarily small} rational number if \(\text{Dim}(M) > n \).

Received by the editors February 27, 2008.

2000 Mathematics Subject Classification. Primary 13N10, 16S32, 16P90, 16D30, 16W70.

©2009 American Mathematical Society
1. Introduction

Throughout the paper, K is a field, $P_n = K[x_1, \ldots, x_n]$ a polynomial algebra in n variables over the field K, a module means a left module, $\otimes = \otimes_K$, and GK stands for the Gelfand-Kirillov dimension.

In characteristic zero, the ring $\mathcal{D}(P_n)$ of differential operators on P_n (so-called, the Weyl algebra) has pleasant properties: it is a simple finitely generated Noetherian domain of Gelfand-Kirillov dimension $\text{GK}(\mathcal{D}(P_n)) = 2n$ equipped with a standard filtration such that the associated graded algebra $\text{gr} \mathcal{D}(P_n)$ is an affine commutative algebra. None of these properties, except simplicity, holds for the ring $\mathcal{D}(P_n)$ in prime characteristic. Moreover, in prime characteristic, the ring $\mathcal{D}(P_n)$ has many nilpotent elements and zero divisors. This has a serious implication that the standard approach of studying $\mathcal{D}(P_n)$-modules via reduction to modules over affine commutative algebras is simply not available.

Key ingredients of the theory of (algebraic) \mathcal{D}-modules in characteristic zero are the Gelfand-Kirillov dimension, multiplicity, Hilbert polynomial, the inequality of Bernstein, and holonomic modules. In prime characteristic, straightforward generalizations of these either do not exist or give ‘wrong’ answers (as in the case of the Gelfand-Kirillov dimension: $\text{GK}(\mathcal{D}(P_n)) = n$ in prime characteristic rather than $2n$ as it ‘should’ be and it is in characteristic zero).

In the 1970s and 80s, for rings of differential operators in prime characteristic, natural questions were posed (see, for example, questions 1–4 in [20]) [some of them are still open] that can be summarized as to find generalizations of the mentioned concepts and results (that results in ‘good theory’ expectation of which was/is high; see the remark of Björk in [20]). One of the questions in the paper of P. Smith [20] is to give a definition of holonomic module in prime characteristic. In characteristic zero, holonomic modules have remarkable homological properties based on Mebkhout and Narvaez-Macarro [16] which gives a definition of a holonomic module. Another approach (based on the Cartier Lemma) was taken by Bogvad [8] who defined the so-called filtration holonomic modules. This one is closer to the original idea of holonomicity in characteristic zero. Note that the two mentioned concepts of holonomicity in prime characteristic appeared before analogues of the Gelfand-Kirillov dimension and the inequality of Bernstein were found. In prime characteristic, \mathcal{D}-modules were studied by Haastert [10], Alvarez-Montaner, Blickle and Lyubeznik [11]; and they were used to study local cohomology by Huneke and Sharp [11] and Lyubeznik [13]. \mathcal{D}-modules were applied to the theory of tight closure by K. Smith [18] and to the ring of invariants by K. Smith and van den Bergh [19].

In the present paper, analogues of the Gelfand-Kirillov dimension, multiplicity, the inequality of Bernstein, and holonomic modules are found in prime characteristic based on a simple idea for finding characteristic free generalizations (and proofs) which in characteristic zero give known concepts (and proofs) and in prime characteristic, generalizations.

Filtrations of standard type and the dimension Dim. A part of the success story in studying various finitely generated (Noetherian) algebras is the class of finite dimensional filtrations that are equivalent to standard filtrations (a standard filtration is determined in the obvious way by a finite set of algebra generators). In general, for an algebra which is not finitely generated (like $\mathcal{D}(P_n)$ in prime characteristic) there is no obvious choice of finite dimensional filtrations, but for the
algebra $D(P_n)$ there is an obvious choice—filtrations that ‘correspond’ to standard filtrations in characteristic zero. In the present paper they are called filtrations of standard type and an analogue of the Bernstein filtration is called the canonical filtration $F = \{F_i\}_{i \geq 0}$ on $D(P_n)$ and $\dim_K(F_i) = \frac{(i+2n)}{(2n)!}2^n + \cdots , i \geq 0$. Now, a finitely generated $D(P_n)$-module $M = D(P_n)M_0$ ($\dim_K(M_0) < \infty$) is equipped with the filtration of standard type $\{M_i := F_iM_0\}$ and one can define the dimension of M: $\text{Dim}(M) := \gamma(i \mapsto \dim_K(M_i))$ where γ denotes the ‘growth’ of function. In particular, $\text{Dim}(D(P_n)) = 2n$.

An analogue of the inequality of Bernstein.

Theorem 1.1 (The inequality of Bernstein, [9]). Let K be a field of characteristic zero. Then $\text{GK}(M) \geq n$ for all nonzero finitely generated $D(P_n)$-modules M.

An analogue of this inequality exists for an arbitrary simple finitely generated algebra.

Theorem 1.2 ([9]). Let A be a simple finitely generated algebra. Then

$$\text{GK}(M) \geq \frac{\text{GK}(A)}{\text{d}(A) + \max\{\text{d}(A), 1\}}$$

for all nonzero finitely generated A-modules M where $\text{d}(A)$ is a (left) filter dimension of A.

In particular, $\text{d}(D(P_n)) = 1$ (see [4]) and $\text{GK}(D(P_n)) = 2n$ in characteristic zero, and so $\text{GK}(M) \geq \frac{2n}{1+1} = n$ (Theorem 1.1).

In Section 3 a generalization of Theorem 1.2 (Theorem 3.1) is given for a simple (not necessarily finitely generated or Noetherian) algebra equipped with a finite dimensional filtration.

Theorem 1.3. Let A be a simple algebra with a finite dimensional filtration $F = \{A_i\}$. Then

$$\text{Dim}(M) \geq \frac{\text{Dim}(A)}{\text{d}(A) + \max\{\text{d}(A), 1\}}$$

for all nonzero finitely generated A-modules M where d is the filter dimension.

Applying this result to the algebra $D(P_n)$ in prime characteristic one obtains an analogue of the inequality of Bernstein in prime characteristic.

Theorem 1.4. Let K be a field of characteristic $p > 0$. Then $\text{Dim}(M) \geq n$ for all nonzero finitely generated $D(P_n)$-modules M.

Proof. Since $\text{Dim}(D(P_n)) = 2n$ and $\text{d}(D(P_n)) = 1$ (Theorem 1.2), applying Theorem 1.3 we have $\text{Dim}(M) \geq \frac{2n}{1+1} = n$. \qed

The proof is essentially characteristic free.

In characteristic zero, the Gelfand-Kirillov dimension of a nonzero finitely generated $D(P_n)$-module can be any natural number from the interval $[n, 2n]$.

Theorem 1.5. Let K be a field of characteristic $p > 0$.

1. (Theorem 1.1) For each real number d from the interval $[n, 2n]$ there exists a cyclic $D(P_n)$-module M such that $\text{Dim}(M) = d$.

2. (Theorem 5.5) The dimension $\text{Dim}(N)$ of a nonzero finitely presented $D(P_n)$-module N is a natural number from the interval $[n, 2n]$, and all such natural numbers occur.
Holonomic modules. A function $f : \mathbb{N} \rightarrow \mathbb{N}$ has polynomial growth if there exists a polynomial $p(t) \in \mathbb{Q}[t]$ such that $f(i) \leq p(i)$ for $i \gg 0$. In characteristic zero, a nonzero finitely generated $D(P_n)$-module M is holonomic if $\text{GK}(M) = n$ iff the function $i \mapsto \dim_K(M_i)$ has polynomial growth of degree n (i.e. $\dim_K(M_i) \leq p(i)$ for $i \gg 0$, and $\deg_e(p(t)) = n$) for some (then any) filtration of standard type $\{M_i\}$ on M.

Definition. In prime characteristic, a nonzero finitely generated $D(P_n)$-module M is holonomic iff the function $i \mapsto \dim_K(M_i)$ has polynomial growth of degree n (i.e. $\dim_K(M_i) \leq p(i)$ for $i \gg 0$, and $\deg_e(p(t)) = n$) for some (then any) filtration of standard type $\{M_i\}$ on M.

- (Proposition 9.9) In prime characteristic, there exists a cyclic nonholonomic non-Noetherian $D(P_n)$-module M with $\text{Dim}(M) = n$.
- (Theorem 9.6) In prime characteristic, each holonomic module has finite length and it does not exceed its ‘multiplicity’. Each nonzero submodule or factor module of a holonomic module is holonomic.

These two results show that even having the analogue of the Gelfand-Kirillov dimension and the analogue of the inequality of Bernstein the ‘straightforward’ generalization of holonomicity (namely, $\text{Dim}(M) = n$) is simply not correct.

Holonomic sets of subalgebras with multiplicity. For a simple algebra A (which is not necessarily finitely generated or Noetherian), existence of a holonomic set of subalgebras with multiplicity is another reason why an analogue of the inequality of Bernstein holds and why each holonomic A-module has finite length (Theorem 9.2).

- (Theorems 9.5 and 9.3. In prime characteristic, the algebra $D(P_n)$ has a holonomic set of subalgebras with multiplicity 1 (given explicitly).

Definition. In prime characteristic, a set $C = \{C_{\nu}\}_{\nu \in \mathcal{N}}$ of subalgebras of the algebra $D(P_n)$ is called a holonomic set of subalgebras with multiplicity $e > 0$ if for each nonzero $D(P_n)$-module M there exists a nonzero finite dimensional vector subspace V of M such that

$$\dim_K(C_{\nu,i}V) \geq \frac{e}{n!}i^n + \cdots, \quad i \gg 0,$$

for some $\nu \in \mathcal{N}$ where $\{C_{\nu,i} := C_{\nu} \cap F_i\}$ is the induced filtration on the algebra C_{ν} from the canonical filtration $F = \{F_i\}$ on the algebra $D(P_n)$ and the three dots mean $o(i^n)$, smaller terms.

Finitely presented $D(P_n)$-modules and multiplicity. Briefly, in prime characteristic, finitely presented $D(P_n)$-modules behave similarly as finitely generated $D(P_n)$-modules in characteristic zero (Theorem 5.10): for each finitely presented $D(P_n)$-module M, the Poincaré series of it is a rational function, though its Hilbert function is not a polynomial but an almost polynomial and its degree, coincides with the dimension $\text{Dim}(M)$ of M (and it can be any natural number from the interval $[n, 2n]$), this gives another proof of an analogue of the inequality of Bernstein for finitely presented $D(P_n)$-modules, Theorem 5.5, and the multiplicity exists for M (Theorem 5.5). The differences are: (i) in prime characteristic, finitely presented $D(P_n)$-modules have transparent structure and are described by Theorem 5.5, but in characteristic zero the category of finitely generated $D(P_n)$-modules is still a mystery, (ii) for each natural number d such that $n < d \leq 2n$, there exists a cyclic finitely presented $D(P_n)$-module M with $\text{Dim}(M) = d$ and with an arbitrarily small
multiplicity $e(M)$, Lemma 5.6 (in characteristic zero, multiplicity is a natural number), though the multiplicity of every holonomic finitely presented $\mathcal{D}(P_n)$-module is a natural number (Theorem 5.7), (iii) and what is completely unexpected is that each simple finitely presented $\mathcal{D}(P_n)$-module is holonomic (Corollary 5.8), and if, in addition, the field K is algebraically closed, then the multiplicity is always 1 (Corollary 6.8).

A classification of simple finitely presented $\mathcal{D}(P_n)$-modules and an analogue of Quillen’s Lemma. In prime characteristic (see Theorem 6.7),

- A classification of simple finitely presented $\mathcal{D}(P_n)$-modules is obtained.
- Every simple finitely presented $\mathcal{D}(P_n)$-module M is holonomic, and
- (An analogue of Quillen’s Lemma) its endomorphism algebra $\text{End}_{\mathcal{D}(P_n)}(M)$ is a finite separable field extension of K, and
- $\dim_K(\text{End}_{\mathcal{D}(P_n)}(M)) = e(M)$, the multiplicity of M, and
- if, in addition, the field K is algebraically closed, then always $e(M) = 1$.

A classification of tiny simple $\mathcal{D}(P_n)$-modules. A classification is obtained of the ‘smallest’ simple $\mathcal{D}(P_n)$-modules (see Theorems 7.1 and 6.7), they are called tiny modules. Theorem 6.7 describes the set of tiny finitely presented $\mathcal{D}(P_n)$-modules and Theorem 7.1 classifies the set of tiny nonfinitely presented $\mathcal{D}(P_n)$-modules. They turned out to be holonomic with multiplicities which are natural numbers. Briefly, they have the same properties as simple finitely presented $\mathcal{D}(P_n)$-modules.

The results of this paper have been generalized for the ring of differential operators on a smooth irreducible affine algebraic variety, [7].

\section*{2. Filter Dimension of Algebras and Modules}

The filter dimension is one of the key ingredients in the proof of an analogue of the inequality of Bernstein in prime characteristic.

Originally, the filter dimension was defined for any finitely generated algebra A and any finitely generated A-module (see the review paper [6]). In this section, the concept of filter dimension of algebras and modules will be extended to a class of not necessarily finitely generated algebras.

The concept of growth. Let \mathcal{F} be the set of all functions from the set of natural numbers $\mathbb{N} = \{0, 1, \ldots\}$ to itself. For each function $f \in \mathcal{F}$, the nonnegative real number or ∞ defined as

$$\gamma(f) := \inf \{ r \in \mathbb{R} \mid f(i) \leq i^r \text{ for } i \gg 0 \}$$

is called the degree of f. Let $f, g, p \in \mathcal{F}$, and $p(i) = p^*(i)$ for $i \gg 0$ where $p^*(t) \in \mathbb{Q}[t]$ (a polynomial algebra with coefficients from the field of rational numbers). Then

$$\gamma(f + g) \leq \max\{\gamma(f), \gamma(g)\}, \quad \gamma(fg) \leq \gamma(f) + \gamma(g),$$

$$\gamma(p) = \deg_{\mathbb{Q}}(p^*(t)), \quad \gamma(pg) = \gamma(p) + \gamma(g).$$

The equivalence relation on the class of filtrations. Let A be an algebra over an arbitrary field K. Recall that a filtration $F = \{A_i\}_{i \geq 0}$ of the algebra A is
an ascending chain of vector subspaces of A:

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_i \subseteq \cdots, \quad A = \bigcup_{i \geq 0} A_i, \quad K \subseteq A_0, \quad A_i A_j \subseteq A_{i+j}, \quad i, j \geq 0.$$

The filtration F is a \textit{finite dimensional} filtration (or a \textit{finite} filtration, for short) provided $\dim_K F_i < \infty$ for all $i \geq 0$. Filtrations $F = \{A_i\}$ and $G = \{B_i\}$ on A are called \textit{equivalent} ($F \sim G$) if there exist natural numbers a, b, c, d such that $a > 0$, $c > 0$ and

$$A_i \subseteq B_{ai+b} \quad \text{and} \quad B_i \subseteq A_{ci+d} \quad \text{for } i \gg 0.$$

The equivalent filtrations $F = \{A_i\}$ and $G = \{B_i\}$ on A are called \textit{strongly equivalent} if $a = c = 1$. A similar definition exists for filtrations on modules rather than algebras.

Clearly, this is an equivalence relation on the class of all filtrations of the algebra A. For a filtration F, \widetilde{F} denotes the equivalence class of the filtration F. If one of the inclusions above holds, say the first, we write $F \leq G$.

\textbf{The Gelfand-Kirillov dimension.} If $A = K\langle a_1, \ldots, a_s \rangle$ is a finitely generated K-algebra. The finite dimensional filtration $F = \{A_i\}$ associated with algebra generators a_1, \ldots, a_s,

$$A_0 := K \subseteq A_1 := K + \sum_{i=1}^s K a_i \subseteq \cdots \subseteq A_i := A_1^i \subseteq \cdots$$

is called the \textit{standard filtration} for the algebra A. Let $M = AM_0$ be a finitely generated A-module where M_0 is a finite dimensional generating subspace of the A-module M. The finite dimensional filtration $\{M_i := A_i M_0\}$ is called the \textit{standard filtration} for the A-module M. All standard filtrations of an algebra A (or a finitely generated A-module) are equivalent.

\textbf{Definition.} $\text{GK} (A) := \gamma(i \mapsto \dim_K (A_i))$ and $\text{GK} (M) := \gamma(i \mapsto \dim_K (M_i))$ are called the \textbf{Gelfand-Kirillov dimensions} of the algebra A and the A-module M, respectively. For an algebra A' which is not necessarily finitely generated, the Gelfand-Kirillov dimension is defined as follows:

$$\text{GK} (A') := \sup \{\text{GK} (A) \mid A \text{ is a finitely generated subalgebra of } A'\}.$$

It is easy to prove that the Gelfand-Kirillov dimension of an algebra (resp. a module) does not depend on the choice of the standard filtration of the algebra (resp. the choice of the generating subspace of the module); see [12], [15] for details. This is a direct consequence of the fact that all the standard filtrations are equivalent.

The results we are going to generalize first were proved for finitely generated algebras (and their finitely generated modules) equipped with standard filtrations. Here we extend results to arbitrary filtrations (mainly finite dimensional) on a not necessarily finitely generated algebra. The results do not depend on a filtration inside its equivalence class, but, in general, they do depend on the equivalence class. The choice of the equivalence class depends on a concrete class of algebras.

Our main motivation is an equivalence class of finite dimensional filtrations on a ring of differential operators $\mathcal{D}(A)$ in prime characteristic that in characteristic zero coincide with the class of all the standard filtrations on the algebra $\mathcal{D}(A)$.

\textbf{The return functions and the (left) filter dimension.} Let A be a filtered algebra with a filtration $F = \{A_i\}$, and let $M = AM_0$ be a finitely generated A-module with a finite dimensional generating subspace M_0. Then $M = \bigcup_{i \geq 0} M_i$ is a
filtered A-module with the filtration $\{M_i := A_i M_0\}$ which obviously does depend on the filtration F and a generating subspace M_0. When one fixes the filtration F, then distinct finite dimensional subspaces of the A-module M give equivalent filtrations on the module M.

Definition. The function $\nu_{F,M_0} : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$,

$$\nu_{F,M_0}(i) := \min\{j \in \mathbb{N} \cup \{\infty\} : A_j M_{i,\text{gen}} \supseteq M_0 \text{ for all } M_{i,\text{gen}}\}$$

is called the **return function** of the A-module M associated with the filtration $F = \{A_i\}$ of the algebra A and the generating subspace M_0 of the A-module M where $M_{i,\text{gen}}$ runs through all finite dimensional generating subspaces for the A-module M such that $M_{i,\text{gen}} \subseteq M_i$.

Suppose, in addition, that the algebra A is a simple algebra. The **return function** $\nu_F \in \mathcal{F}$ and the **left return function** $\lambda_F \in \mathcal{F}$ for the algebra A with respect to the filtration $F := \{A_i\}$ for the algebra A are defined by the rules:

$$\nu_F(i) := \min\{j \in \mathbb{N} \cup \{\infty\} : 1 \in A_j a A_j \text{ for all } 0 \neq a \in A_i\},$$

$$\lambda_F(i) := \min\{j \in \mathbb{N} \cup \{\infty\} : 1 \in A a A_j \text{ for all } 0 \neq a \in A_i\},$$

where $A_j a A_j$ is the vector subspace of the algebra A spanned over the field K by the elements $x a y$ for all $x, y \in A_j$; and $A a A_j$ is the left ideal of the algebra A generated by the set $a A_j$. Similarly, the **unit return function** $\nu^u_F \in \mathcal{F}$ and the **left unit return function** $\lambda^u_F \in \mathcal{F}$ are defined (where $U = U(A)$ is the group of units, i.e. invertible elements of A):

$$\nu^u_F(i) := \min\{j \in \mathbb{N} \cup \{\infty\} : U(A) \cap A_j a A_j \neq \emptyset \text{ for all } 0 \neq a \in A_i\},$$

$$\lambda^u_F(i) := \min\{j \in \mathbb{N} \cup \{\infty\} : U(A) \cap A a A_j \neq \emptyset \text{ for all } 0 \neq a \in A_i\}.$$

Clearly,

(1) \quad $\lambda^u_F(i) \leq \lambda_F(i) \leq \nu_F(i)$ and $\lambda^u_F(i) \leq \nu^u_F(i) \leq \nu_F(i)$ for all $i \geq 0$.

The next result shows that under a mild restriction the four return functions take only **finite** values. In general, there is no reason to believe that values of the return functions are always finite, but for central simple algebras equipped with an arbitrary finite dimensional filtration this is always the case (see the next lemma). Recall that the center of a simple algebra is a field.

Lemma 2.1. Let A be a simple algebra equipped with a finite dimensional filtration $F = \{A_i\}$ such that the center $Z(A)$ of the algebra A is an algebraic field extension of K. Then the four return functions take finite values.

Proof. In view of (1), it suffices to prove the lemma for the return function ν_F, that is, $\nu_F(i) < \infty$ for all $i \geq 0$.

The center $Z = Z(A)$ of the simple algebra A is a field that contains K. Let $\{a_j \mid j \in J\}$ be a K-basis for the K-vector space Z. Since $\dim_K(A_i) < \infty$, one can find finitely many Z-linearly independent elements, say a_1, \ldots, a_s, of A_i such that $A_i \subseteq Z a_1 + \cdots + Z a_s$. Next, one can find a finite subset, say J', of J such that $A_i \subseteq V a_1 + \cdots + V a_s$ where $V = \sum_{j \in J'} K a_j$. The field K' generated over K by the elements $a_j, j \in J'$, is a finite field extension of K (i.e. $\dim_K(K') < \infty$) since Z/K is algebraic, hence $K' \subseteq A_n$ for some $n \geq 0$. Clearly, $A_i \subseteq K' a_1 + \cdots + K' a_s$.

Let \mathbf{A} be any generating subspace for the algebra \mathbf{A}, say $x_1^j, \ldots, x_m^j, y_1^j, \ldots, y_n^j$, $m = m(j)$, such that for all $1 \leq l \leq s$,
\[
\sum_{k=1}^{m} x_k^j a_l y_k^j = \delta_{j,l}, \quad \text{the Kronecker delta.}
\]

Let us fix a natural number, say $d = d_i$, such that \mathbf{A}_d contains all the elements x_k^j, y_k^j, and the field K'. We claim that $\nu_F(i) \leq 2d$. Let $0 \neq a \in \mathbf{A}_i$. Then $a = \lambda_1 a_1 + \cdots + \lambda_s a_s$ for some $\lambda_i \in K'$. There exists $\lambda_j \neq 0$. Then $\sum_{k=1}^{m} \lambda_j^{-1} x_k^j a_l y_k^j = 1$ and $\lambda_j^{-1} x_k^j, y_k^j \in \mathbf{A}_{2d}$. This proves the claim and the lemma.

Remark. If the field K is uncountable, then automatically the center $Z(\mathbf{A})$ of a simple finitely generated algebra \mathbf{A} is algebraic over K (since \mathbf{A} has a countable K-basis and the rational function field $K(x)$ has uncountable basis over K since elements $\frac{1}{x^\lambda}$, $\lambda \in K$, are K-linearly independent).

In what follows we will assume that the four return functions do not take infinite value.

Lemma 2.2. Let \mathbf{A} be an algebra equipped with two equivalent filtrations, $\nu = \{\nu_F, \nu_G\}$ and $\mu = \{\mu_F, \mu_G\}$.

1. Let M be a finitely generated \mathbf{A}-module. Then $\gamma(\nu_F, M_0) = \gamma(\nu_G, M_0)$ for any finite dimensional generating subspaces M_0 and M_0 of the \mathbf{A}-module M.

2. If, in addition, \mathbf{A} is a simple algebra, then $\gamma(\nu_F) = \gamma(\nu_G)$, $\gamma(\mu_F) = \gamma(\mu_G)$, and $\gamma(\nu_F) = \gamma(\nu_G) = \gamma(\mu_F) = \gamma(\mu_G)$.

3. If, in addition, \mathbf{A} is a simple algebra, then $\gamma(\nu_F^0) = \gamma(\nu_G^0)$ and $\gamma(\mu_F^0) = \gamma(\mu_G^0)$.

Proof. 1. The module M has two filtrations, $\{M_i = \mathbf{A}_i M_0\}$ and $\{N_i = \mathbf{B}_i N_0\}$. Let $\nu = \nu_{F, M_0}$ and $\mu = \nu_{G, M_0}$.

First, we consider two special cases, then the general case will follow easily from these two. Suppose first that $F = G$. Choose a natural number s such that $M_0 \subseteq N_0$ and $N_0 \subseteq M_s$, then $N_i \subseteq M_{i+s}$ and $M_i \subseteq N_{i+s}$ for all $i \geq 0$. Let $N_{i,\text{gen}}$ be any generating subspace for the \mathbf{A}-module M such that $N_{i,\text{gen}} \subseteq N_i$. Since $M_0 \subseteq \mathbf{A}_{\nu(i+s)} N_{i,\text{gen}}$ for all $i \geq 0$ and $N_0 \subseteq \mathbf{A}_s M_0$, we have $N_0 \subseteq \mathbf{A}_{\nu(i+s)} + N_{i,\text{gen}}$, hence $\mu(i) \leq \nu(i + s) + s$ and finally $\gamma(\mu) \leq \gamma(\nu)$. By symmetry, the opposite inequality is true and so $\gamma(\mu) = \gamma(\nu)$.

Now, suppose that $M_0 = N_0$. Since $F \sim G$ one can choose natural numbers a, b, c, d such that $a > 0$, $c > 0$ and
\[
\mathbf{A}_i \subseteq \mathbf{B}_{ci+b} \quad \text{and} \quad \mathbf{B}_i \subseteq \mathbf{A}_{ci+d} \quad \text{for} \quad i \gg 0.
\]

Then $N_i = \mathbf{B}_i N_0 \subseteq \mathbf{A}_{ci+d} M_0 = \mathbf{M}_{ci+d}$ for all $i \geq 0$, hence $N_0 = M_0 \subseteq \mathbf{A}_{\nu(ci+d)} N_{i,\text{gen}}$ and $\mathbf{B}_{\nu(ci+d)} N_{i,\text{gen}}$; therefore, $\mu(i) \leq \nu(\nu + d) + b$ for all $i \geq 0$, hence $\gamma(\mu) \leq \gamma(\nu)$. By symmetry, we get the opposite inequality which implies $\gamma(\mu) = \gamma(\nu)$.

In the general case, $\gamma(\nu_{F, M_0}) = \gamma(\nu_{G, N_0})$.

2. The algebra \mathbf{A} is simple, equivalently, it is a simple (left) $\mathbf{A} \otimes \mathbf{A}^\circ$-module where \mathbf{A}° is the opposite algebra to \mathbf{A}. The opposite algebra has the filtration $F^0 = \{\mathbf{A}^0\}$.

The tensor product of algebras $\mathbf{A} \otimes \mathbf{A}^\circ$, the so-called enveloping algebra of \mathbf{A}, has
the filtration $F \otimes F^o = \{C_n\}$ which is the tensor product of the filtrations F and F^o, that is, $C_n = \sum \{A_i \otimes A_j^{\tau}, i + j \leq n\}$. Let $\nu_{F \otimes F^o, K}$ be the return function of the $A \otimes A^{\tau}$-module A associated with the filtration $F \otimes F^o$ and the generating subspace K. Then

$$\nu_F(i) \leq \nu_{F \otimes F^o, K}(i) \leq 2\nu_F(i)$$

for all $i \geq 0$, and so

$$\gamma(\nu_F) = \gamma(\nu_{F \otimes F^o, K}).$$

By the first statement, we have $\gamma(\nu_F) = \gamma(\nu_{F \otimes F^o, K}) = \gamma(\nu_G)$, as required. Using a similar argument as in the proof of the first statement one can prove that $\gamma(\lambda_F) = \gamma(\lambda_G)$. We leave this as an exercise.

3. Let F, G, a, b, c, d be as above. Let $U = U(A)$ be the group of units of the algebra A, and let $\lambda := \nu^u_F$ and $\mu := \nu^u_G$ (resp. $\lambda := \lambda^u_F$ and $\mu := \lambda^u_G$). We prove two cases simultaneously. Let x be a nonzero element of A_i. Then $0 \neq x \in B_{ai+b}$ and

$$\emptyset \neq U \cap B_{\mu(ai+b)}x B_{\mu(ai+b)} \subseteq U \cap A_{c\mu(ai+b)+d}x A_{c\mu(ai+b)+d},$$

$$\emptyset \neq U \cap A x B_{\mu(ai+b)} \subseteq U \cap A x A_{c\mu(ai+b)+d},$$

respectively.

In both cases, $\gamma(\lambda) \leq \gamma(c\mu(ai+b)+d) \leq \gamma(\mu)$. By symmetry, the inverse inequality is also true, and so $\gamma(\lambda) = \gamma(\mu)$.

Definition. $\text{fd}(M) = \gamma(\nu_{F,M_0})$ is the **filter dimension** of the A-module M, and $\text{fd}(A) := \text{fd}(A \otimes A^\tau + A)$ is the **filter dimension** of the algebra A. If, in addition, the algebra A is simple, then $\text{fd}(A) = \gamma(\nu_F)$. $\text{lfd}(A) := \gamma(\lambda_F)$ is called the **left filter dimension** of the algebra A, $\text{ud}(A) = \gamma(\nu^u_F)$ is called the **unit dimension** of A, and $\text{lud}(A) := \gamma(\lambda^u_F)$ is called the **left unit dimension** of the algebra A.

By the previous lemma, the definitions make sense provided an equivalence class of filtrations is fixed. We will always assume that such a class is fixed. A particular choice of an equivalence class of filtrations depends on a class of algebras we study. For finitely generated algebras such an equivalence class as a rule is the equivalence class of all standard filtrations, but for algebras that are not finitely generated there is no obvious choice of an equivalence class of filtrations.

For standard filtrations the concept of (left) filter dimension first appeared in [3].

By (1),

$$\text{lud}(A) \leq \text{lfd}(A) \leq \text{fd}(A) \quad \text{and} \quad \text{lud}(A) \leq \text{ud}(A) \leq \text{fd}(A).$$

3. Dimension of (not necessarily finitely generated or Noetherian) algebras and dimension of their finitely generated modules

Theorem 3.1 is the main result of this section, it is similar to the inequality of Bernstein but for an arbitrary simple algebra (not necessarily finitely generated) equipped with a finite dimensional filtration. In this section, let A be an algebra over an arbitrary field K with a finite dimensional filtration $F = \{A_i\}$. Let $M = AM_0$ be a finitely generated A-module with a finite dimensional generating subspace M_0. Then M has a finite dimensional filtration $\{M_i := A_i M_0\}$. Suppose that $G = \{B_i\}$ is a finite dimensional filtration on A equivalent to the filtration F and let N_0 be
another finite dimensional generating subspace for the A-module M. Then the A-module M has a second finite dimensional filtration \(\{ N_i := A_iN_0 \} \). It follows easily that \(\gamma(\dim_K A_i) = \gamma(\dim_K B_i) \) and \(\gamma(\dim_K M_i) = \gamma(\dim_K N_i) \).

Definition. The dimension $\text{Dim} A$ of the algebra A and the dimension $\text{Dim} M$ of the finitely generated A-module M are the numbers $\gamma(\dim_K A_i)$ and $\gamma(\dim_K M_i)$, respectively.

So, the dimension $\text{Dim} A$ of the algebra A is an invariant of the algebra A and the equivalence class of the filtration F. The same is true for the dimension $\text{Dim} M$ of the A-module M.

If A is a finitely generated algebra and \(\{ A_i \} \) is a standard filtration, then $\text{Dim}(A) = \text{GK}(A)$ and $\text{Dim}(M) = \text{GK}(M)$.

In this paper, $d(A)$ stands for any of the dimensions $\text{fd}(A)$, $\text{lfd}(A)$, $\text{ud}(A)$ or $\text{lud}(A)$ of an algebra A (i.e. $d = \text{fd}, \text{lfd}, \text{ud}, \text{lud}$).

The four dimensions appear naturally when one tries to find a lower bound for the holonomic number (Theorem 3.1).

The next theorem is a generalization of the inequality of Bernstein (Theorem 1.1) to the class of simple algebras. This result first appeared in [3, 5] in the case of simple finitely generated algebras with respect to the class of standard filtrations and for $d = \text{fd}, \text{lfd}$.

Theorem 3.1. Let A be a simple algebra with a finite dimensional filtration $F = \{ A_i \}$. Then

$$\text{Dim}(M) \geq \frac{\text{Dim}(A)}{d(A) + \max\{d(A), 1\}}$$

for all nonzero finitely generated A-modules M where $d = \text{fd}, \text{lfd}, \text{ud}, \text{lud}$.

Proof. In view of (3), it suffices to prove the theorem for $d = \text{lud}$. Let $\lambda = \lambda_F^A$ be the left unit return function associated with the finite dimensional filtration F of the algebra A and let $0 \neq a \in A_i$. It follows from the inclusion

$$AaA_{\lambda(i)} = AaA_{\lambda(i)}M_0 \supseteq (U(A) \cap AaA_{\lambda(i)})M_0 \neq 0$$

that the linear map

$$A_i \to \text{Hom}_K(M_{\lambda(i)}M_{\lambda(i)+i}, a \mapsto (m \mapsto am),$$

is injective, and so $\text{dim } A_i \leq \text{dim } M_{\lambda(i)} \text{ dim } M_{\lambda(i)+i}$. Using the above elementary properties of the degree (see also [15], 8.1.7), we have

$$\text{Dim}(A) = \gamma(\text{dim } A_i) \leq \gamma(\text{dim } M_{\lambda(i)}) + \gamma(\text{dim } M_{\lambda(i)+i})$$

$$\leq \gamma(\text{dim } M_i)\gamma(\lambda) + \gamma(\text{dim } M_i)\max\{\gamma(\lambda), 1\}$$

$$= \text{Dim}(M)(\text{lud } A + \max\{\text{lud } A, 1\}).$$

The inequality of Bernstein says that $\text{GK}(M) \geq n$ for any nonzero finitely generated module M over a ring of differential operators $\mathcal{D}(X)$ on a smooth irreducible affine algebraic variety X of dimension $n = \dim X$ over a field of characteristic zero. Note that $\text{GK}(\mathcal{D}(X)) = 2n$ and $\text{fd}(\mathcal{D}(X)) = \text{lfd}(\mathcal{D}(X)) = 1$, [14]. Then, by Theorem 3.1 we have a ‘short’ proof of the inequality of Bernstein:

$$\text{GK}(M) \geq \frac{2n}{1+1} = n.$$
Definition. \(h_A := \inf \{ \dim(M) \mid M \text{ is a nonzero finitely generated } A\text{-module} \} \) is called the *holonomic number* for the algebra \(A \) (with respect to the equivalence class \(\bar{F} \) of the finite dimensional filtration \(F \)).

The result above gives a *lower bound* for the holonomic number of the simple algebra \(A \):

\[
h_A \geq \frac{\GK(A)}{d(A) + \max\{d(A), 1\}}.
\]

Theorem 3.2. Let \(A \) and \(\bar{F} \) be as above. Then

\[
\dim(M) \leq \dim(A) \text{fd}(M)
\]

for any simple \(A\)-module \(M \).

Proof. Let \(\nu = \nu_{F,K,m} \) be the return function of the module \(M \) associated with the finite dimensional filtration \(F = \{A_i\} \) of the algebra \(A \) and a fixed nonzero element \(m \in M \). Let \(\pi : M \to K \) be a nonzero linear map satisfying \(\pi(m) = 1 \). Then, for any \(i \geq 0 \) and any \(0 \neq u \in M_i := A_i m \), \(1 = \pi(m) = \pi(A_{\nu(i)} u) \), and so the linear map

\[
M_i \to \text{Hom}_K(\text{\text{A}_{\nu(i)}}, K), \ u \mapsto (a \mapsto \pi(au)),
\]

is an *injective* map hence \(\dim M_i \leq \dim \text{\text{A}_{\nu(i)}} \), and finally \(\dim(M) \leq \dim(A) \text{fd}(M) \).

Corollary 3.3. Let \(A \) be a simple algebra with \(\dim(A) > 0 \). Then

\[
\text{fd}(A) \geq \frac{1}{2}.
\]

Proof. Clearly, \(\dim(A \otimes A^o) \leq \dim(A) + \dim(A^o) = 2 \dim(A) \). Applying Theorem 3.2 to the simple \(A \otimes A^o\)-module \(M = A \) we finish the proof,

\[
\dim(A) = \dim(A \otimes A^o) \leq \dim(A \otimes A^o) \text{fd}(A \otimes A^o) \leq 2 \dim(A) \text{fd}(A),
\]

hence \(\text{fd}(A) \geq \frac{1}{2} \).

Corollary 3.4. Let \(A \) be a simple algebra with \(\dim(A) > 0 \). Then

\[
\text{fd}(M) \geq \frac{1}{\text{fd}(A) + \max\{\text{fd}(A), 1\}}
\]

for all simple \(A\)-modules \(M \).

Proof. Applying Theorem 3.1 and Theorem 3.2 we have the result

\[
\text{fd}(M) \geq \frac{\dim(M)}{\dim(A)} \geq \frac{\dim(A)}{\dim(A) \text{fd}(A) + \max\{\text{fd}(A), 1\}} = \frac{1}{\text{fd}(A) + \max\{\text{fd}(A), 1\}}.
\]

In general, it is difficult to find the exact value for the filter dimension but for the ring of differential operators \(D(P_n) \) with polynomial coefficients \(P_n = K[x_1, \ldots, x_n] \) over a field \(K \) of characteristic \(p > 0 \) it is easy and one can find it directly (Theorem 4.2).
4. An analogue of the inequality of Bernstein for the ring of differential operators $\mathcal{D}(P_n)$ in prime characteristic

In this section, K is an arbitrary field of characteristic $p > 0$, $P_n := K[x_1, \ldots, x_n]$ is a polynomial algebra, and $\mathcal{D} = \mathcal{D}(P_n)$ is the ring of differential operators on P_n. In this section, the concepts of filtration of standard type and of holonomic module are introduced. It is proved that the filter dimension of the ring $\mathcal{D}(P_n)$ is 1 (Theorem 4.2) and an analogue of the inequality of Bernstein is established (Theorem 4.3) in prime characteristic. We start with recalling some facts and properties of higher derivations (Hasse-Schmidt derivations) which will be used freely in the paper.

Higher derivations. Let us recall basic facts about higher derivations. For more detail the reader is referred to [14], Section 27.

A sequence $\delta = (1 := \text{id}_A, \delta_1, \delta_2, \ldots)$ of K-linear maps from a commutative K-algebra A to itself (where id_A is the identity map on A) is called a higher derivation (or a Hasse-Schmidt derivation) over K from A to A if, for each $k \geq 0$,

$$\delta_k(xy) = \sum_{i+j=k} \delta_i(x)\delta_j(y) \quad \text{for all } x, y \in A. \quad (4)$$

Clearly, $\delta_1 \in \text{Der}_K(A)$. These conditions are equivalent to saying that the map $e : A \rightarrow A[[t]], x \mapsto \sum_{i \geq 0} \delta_i(x)t^i$, is a K-algebra homomorphism where $A[[t]]$ is a ring of power series with coefficients from A, or equivalently, that the map

$$e : A[[t]] \rightarrow A[[t]], \quad t \mapsto t, \quad x \mapsto \sum_{i \geq 0} \delta_i(x)t^i \quad (x \in A),$$

is a continuous $K[[t]]$-algebra homomorphism. Clearly, e is a continuous $K[[t]]$-algebra automorphism of $A[[t]]$, and vice versa (any continuous automorphism $e \in \text{Aut}_{K[[t]]}(A[[t]])$ of the type $e(a) = a + \sum_{i \geq 1} \delta_i(a)t^i$ yields a higher derivation (δ_i) where $a \in A$).

The set $\text{HS}_K(A)$ of all higher K-derivations from A to A is a subgroup of the group $\text{Aut}_K(A[[t]])$ of all K-algebra automorphisms of $A[[t]]$. It follows immediately that a higher derivation has a unique extension to a localization $S^{-1}A$ of the algebra A at a multiplicative subset S of A.

Let $\mathcal{D}(A)$ be the ring of differential operators on the algebra A and let $\{\mathcal{D}(A)_i\}_{i \geq 0}$ be its order filtration. Recall that $\mathcal{D}(A) = \bigcup_{i \geq 0} \mathcal{D}(A)_i \subseteq \text{End}_K(A), \mathcal{D}(A)_0 := \text{End}_A(A) \simeq A$, and

$$\mathcal{D}(A)_i := \{ f \in \text{End}_K(A) : fx - xf \in \mathcal{D}(A)_{i-1} \text{ for all } x \in A \}, \quad i \geq 1.$$

Let $\delta = (\delta_i) \in \text{HS}_K(A)$. By (4),

$$\delta_i \in \mathcal{D}(A)_i, \quad i \geq 0, \quad (5)$$

since $\delta x - x \delta = \sum_{j=0}^{i-1} \delta_{i-j}(x)\delta_j$ for all $x \in A$ and the result follows by induction on i. For each $i \geq 1$ and $x \in A$,

$$\sum_{j \geq 0} \delta_j(x^{p^j})t^j = e(x^{p^i}) = e(x)^{p^i} = \sum_{k \geq 0} \delta_k(x)^{p^i}t^{kp^i},$$

and so $\delta_{kp^i}(x^{p^j}) = \delta_k(x)^{p^i}$ for all $i, k \geq 0$ and $x \in A$; and $\delta_j(x^{p^i}) = 0$ for all j such that $p^i \nmid j$ (p^i does not divide j). In particular, $\delta_l(KA^{p^{i+1}}) = 0$ for all $i \geq 1$ and $0 < l < p^{i+1}$.

The higher derivations \((1, \frac{\partial}{\partial x}, \frac{\partial^2}{\partial x^2}, \ldots) \in HS_K(K[x])\) where \(\partial = \frac{\partial}{\partial x}\). For a prime number \(p\), let \(\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}\). For a polynomial algebra \(K[x]\) in a single variable \(x\) over \(K\), the \(K\)-algebra homomorphism \(K[x] \rightarrow K[x][[t]]\), \(f(x) \mapsto f(x + t) = \sum_{i \geq 0} \frac{\partial^i}{\partial t^i}(t) f^i\), determines the higher derivation \((1, \frac{\partial}{\partial t}, \frac{\partial^2}{\partial t^2}, \ldots) \in HS_K(K[x])\). If \(\text{char}(K) = 0\), then \(\frac{\partial^i}{\partial t^i}\) means \((j!)^{-1}\partial^j\), but if \(\text{char}(K) = p > 0\), then

\[
\frac{\partial^j}{\partial t^j}(x^i) = \binom{i}{j} x^{i-j}
\]

where \(\binom{i}{j} \in \mathbb{F}_p\) is the binomial in characteristic \(p\): \(\binom{i}{j} = 0\) if \(j > i\), and for \(j \leq i\), let \(j = \sum j_k p^{k_i}, 0 \leq j_k < p\), and \(i = \sum i_k p^{k_i}, 0 \leq i_k < p\). Then (in \(\mathbb{F}_p\))

\[
\binom{i}{j} = \prod_{k} \binom{i_k}{j_k}
\]

where \(\binom{i_k}{j_k} = 0\) if \(j_k > i_k\), and \(\binom{i_k}{j_k} \equiv \frac{i_k!}{j_k!(i_k - j_k)!} \mod p\) if \(j_k \leq i_k\). The formulas (6) and (7) are obvious when one looks at the following product:

\[
(x + t)^i = \prod_k (x^{p^{k_i}} + \frac{t^{p^k}}{i_k}) = \prod_k \sum_{l_k = 0}^{i_k} \binom{i_k}{l_k} x^{(i_k - l_k)p^{k_i}} t^{l_k p^{k_i}}
\]

where the sum runs through all \(l_0, l_1, \ldots\) that satisfy \(0 \leq l_0 \leq i_0, 0 \leq l_1 \leq i_1, \ldots\). The binomials in characteristic \(p > 0\) have a remarkable property—the translation invariance (with respect to the \(p\)-adic scale):

\[
\binom{p^{k_i} l_i}{p^{k_i} j_i} = \binom{i}{j}, \quad k \geq 0.
\]

This follows directly from (7). By (7), \(\binom{i}{j} \neq 0\) iff \(i_k \geq j_k\) for all \(k\). It follows that

\[
\binom{p^{k_i} l_i}{p^{k_i} n_i} = 0 \quad \text{for all } i \geq 0.
\]

Remark. Though \(\partial^p = 0\) but \(\frac{\partial^p}{\partial t^p} \neq 0\) since \(\frac{\partial^p}{\partial t^p}(x^p) = 1\) and \(\frac{\partial^p}{\partial t^p}\) is not a derivation as \(\frac{\partial^p}{\partial t^p}(x) x^{p-1} + x \frac{\partial^p}{\partial t^p}(x^{p-1}) = 0\) (recall that if \(\delta\) is a derivation, then so is \(\delta^p\)).

A higher derivation \(\delta = (\delta_i) \in HS_K(A)\) is called *iterative* if \(\delta_i \delta_j = (i+j)^2 \binom{i}{j}\delta_{i+j}\) for all \(i, j \geq 0\). Then a direct computation shows that

\[
\delta^p_i = 0 \quad \text{for all } i \geq 1,
\]

\[
\delta_i^p = \underbrace{\delta_i \cdots \delta_i}_{p \text{ times}} = \binom{2i}{i} \binom{p i}{2i} \cdots \binom{p_i}{(p_i - 1)i}\delta_{pi} = 0 \delta_{pi} = 0. \quad \text{For } i = 1, \text{ we have } \delta_1^p = 0. \quad \text{The higher derivation } (\frac{\partial^i}{\partial t^i}) \in HS_K(K[x]) \text{ is iterative. This fact follows directly from the definition of } (\frac{\partial^i}{\partial t^i}).
\]

Given \(\delta \in \text{Der}_K(A)\), then \(\delta^p \in \text{Der}_K(A)\) and, for any \(a \in A\), \((a\delta)^p = a^p \delta^p + (a\delta)^{p-1}(a)\delta\) (the Hochschild’s formula, [14, 25.5]). In the algebra \(D(P_n)\), for each \(i = 1, \ldots, n\), \(\delta_i^p = 0\), and therefore,

\[
(x_i \partial_i)^p = x_i \partial_i.
\]
The higher derivations \((1, \frac{\partial}{\partial t_1}, \frac{\partial^2}{\partial t_1^2}, \ldots) \in \text{HS}_K(P_n), i = 1, \ldots, n\). The \(K\)-algebra homomorphism \(P_n \to P_n[[t]]\),

\[
f(x_1, \ldots, x_n) \mapsto f(x_1, \ldots, x_{i-1}, x_i + t, x_{i+1}, \ldots, x_n) = \sum_{i \geq 0} \frac{\partial^k}{k!} (f)^{t^k},
\]
gives the higher derivation \((1, \frac{\partial}{\partial t_1}, \frac{\partial^2}{\partial t_1^2}, \ldots) \in \text{HS}_K(P_n)\). If \(\text{char}(K) = 0\), then \(\frac{\partial^k}{k!}\) means \((k!)^{-1}\frac{\partial^k}{\partial t^k}\), but if \(\text{char}(K) = p > 0\), then repeating the proof of (10), we see that

\[
\frac{\partial^k}{k!} (x_j^l) = \delta_{ij} \left(\frac{l}{k} \right) x_j^{l-k}
\]
for all \(l \geq k \geq 1\) and \(1 \leq i, j \leq n\) where \(\delta_{ij}\) is the Kronecker delta; and \(\frac{\partial^k}{k!} (x_j^l) = 0\) if \(k > l\).

For an ideal \(I\) of the polynomial algebra \(P_n, I[[t]]\) is an ideal of the algebra \(P_n[[t]]\), and the factor algebra \(P_n[[t]]/I[[t]] \simeq P_n/I[[t]]\). The set \(\text{HS}_K(P_n, I) := \{ e \in \text{HS}_K(P_n) | e(I[[t]]) = [I[[t]]] \}\) is a subgroup of the group \(\text{HS}_K(P_n)\). Note that

\[
e(I[[t]]) = I[[t]] \iff e(I[[t]]) \subseteq I[[t]]
\]
The implication \((\Rightarrow)\) is obvious. The reverse implication follows immediately from the fact that, for any \(K\)-algebra \(A\) and any higher derivation \(\delta = (1, \delta_1, \ldots) \in \text{HS}_K(A)\), the inverse automorphism to the automorphism \(e(a):= \sum \delta_i(a)t^i\) has the form

\[
e^{-1}(a) = a + \delta_1(a)t + \cdots + \delta_k(a)t^k + \cdots
\]
where \(\delta_i = \sum \pm \delta_{ij}\) is a finite sum where \(\delta_{ij}\) is a product of certain \(\delta_{k}\)-th. Note that \(e(I) \subseteq I[[t]]\) iff \(\delta_i(I) \subseteq I\) for all \(i \geq 1\) where \(e(p) = \sum \delta_i(p)t^i\). Then the inclusion \(e(I) \subseteq I[[t]]\) implies the inclusions \(e^{-1}(I) \subseteq e^{-1}(I[[t]]) \subseteq I[[t]]\). Therefore, \(e^{-1}(I[[t]]) \subseteq I[[t]]\), and so \(e(I[[t]]) = I[[t]]\). Therefore, \(\text{HS}_K(P_n, I) := \{ e \in \text{HS}_K(P_n) | e(I[[t]]) \subseteq I[[t]] \}\). Then it follows that the set \(\text{hs}_K(P_n, I) := \{ e \in \text{HS}_K(P_n) | e(P_n) \subseteq P_n + I[[t]] \}\) is a normal subgroup of \(\text{HS}_K(P_n, I)\). The kernel of the canonical homomorphism of groups

\[
\text{HS}_K(P_n, I) \to \text{HS}_K(P_n/I), \quad e \mapsto (p + I \mapsto e(p) + I[[t]]),
\]
is equal to \(\text{hs}_K(P_n, I)\), so the map in the proposition is a group monomorphism.

Proposition 4.1. The map

\(\text{HS}_K(P_n, I)/\text{hs}_K(P_n, I) \to \text{HS}_K(P_n/I), \quad e \cdot \text{hs}_K(P_n, I) \mapsto (p + I \mapsto e(p) + I[[t]]),\)
is an isomorphism of groups.

Proof. It remains to show that the map is surjective. Given \(\overline{e} \in \text{HS}_K(P_n/I)\). For each \(i = 1, \ldots, n\), \(\overline{e}(x_i + I) = x_i + I + \sum_{j \geq 1} (p_{ij} + I)t^j\) for some \(p_{ij} \in P_n\). The automorphism \(\overline{e}\) can be extended to an element \(e \in \text{HS}_K(P_n)\) setting \(e(x_i) = x_i + \sum_{j \geq 1} p_{ij}t^j\) such that the element \(\overline{e}\) is the image of the element \(e\) under the homomorphism (13). This proves the surjectivity. \(\Box\)

Suppose, for a moment, that \(\text{char}(K) = 0\). Then the ring of differential operators \(D(P_n)\) is the so-called **Weyl algebra** \(A_n = K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle\) and has the standard filtration \(\{A_{n,i} = \bigoplus_{|\alpha|+|\beta| \leq i} Kx^\alpha \partial^\beta \}_{i \geq 0}\) associated with the set of canonical generators \(x_j, \partial_j := \frac{\partial}{\partial x_j}\), where \(\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{N}^n\),
The polynomial algebra P_n as the left A_n-module has the standard filtration $\{ P_{n,i} := A_{n,i}K = \bigoplus_{|\alpha| \leq i} Kx^\alpha \}$. For each $i \geq 0$,

$$\dim A_{n,i} = \left(i + 2n \right) = \frac{(i + 2n)(i + 2n - 1) \cdots (i + 1)}{(2n)!}$$

and $\dim P_{n,i} = \left(\frac{i + n}{n} \right)$.

so $\text{GK} (A_n) = 2n$ and $\text{GK} (P_n) = n$. The associated graded algebra

$$\text{gr}(A_n) := \bigoplus_{i \geq 0} A_{n,i}/A_{n,i-1} = K[\overline{x}_1, \ldots, \overline{x}_n, \overline{y}_1, \ldots, \overline{y}_n]$$

is isomorphic, as a graded algebra, to a polynomial algebra in $2n$ variables with the usual grading.

If $\text{char} (K) = p > 0$, then the ring of differential operators $D := D(P_n)$ on P_n is an algebra generated by x_1, \ldots, x_n and commuting higher derivations $\frac{\partial^k}{\partial x_i}$, $i = 1, \ldots, n$ and $k \geq 1$ that satisfy the following defining relations:

$$\left[x_i, x_j \right] = \left(\frac{\partial^k}{k!}, \frac{\partial^l}{l!} \right) = 0, \quad \frac{\partial^k}{k!} \frac{\partial^l}{l!} = \left(\frac{k + l}{k} \right) \left[\frac{\partial^{k+l}}{(k+l)!}, \frac{\partial^k}{k!} \frac{\partial^l}{l!} \right] = \delta_{ij} \frac{\partial^{k-1}}{(k-1)!}$$

for all $i, j = 1, \ldots, n$ and $k, l \geq 1$ where δ_{ij} is the Kronecker delta and $\frac{\partial^p}{p!} := 1$. We will also use the following notation: $\frac{\partial^k}{k!} := \frac{\partial^k}{k!}$.

The involution \ast. The K-linear map $* : D \rightarrow D$, $x_i \mapsto x_i$, $\partial^{|\beta|} \mapsto (-1)^{|\beta|} \partial^{|\beta|}$, $i = 1, \ldots, n$, $j \geq 1$, is an involution of the algebra D ($a^{**} = a$ and $(ab)^* = b^* a^*$).

So, the algebra D is a symmetric object, its ‘left’ and ‘right’ properties are the ‘same’. In particular, the categories of left and right D-modules are ‘identical’.

The $D(P_n)$-module P_n. The polynomial algebra P_n is a (left) $\text{End}_K(P_n)$-module, $D(P_n)$ is a subalgebra of $\text{End}_K(P_n)$, so P_n is a (left) $D(P_n)$-module. The $D(P_n)$-module P_n is canonically isomorphic to the factor module

$$D(P_n)/ \sum_{0 \neq \beta \in \mathbb{N}^n} D(P_n) \frac{\partial^\beta}{\beta!} \cdot$$

The algebra D is not finitely generated and not a (left or right) Noetherian. It follows from the relations that $F = \{ F_i := \bigoplus_{|\alpha|+|\beta| \leq i} Kx^\alpha \frac{\partial^\beta}{\beta!} \}$ is a finite dimensional filtration for the algebra D where $\frac{\partial^\beta}{\beta!} := \frac{\partial_{\alpha_1}^{\beta_1}}{\alpha_1!} \cdots \frac{\partial_{\alpha_n}^{\beta_n}}{\alpha_n!}$.

Definition. The filtration $F = \{ F_i \}$ is called the canonical filtration on $D(P_n)$. If $M = DM_0$ ($\dim_K (M_0) < \infty$) is a finitely generated D-module, then the finite dimensional filtration $\{ M_i := F_i M_0 \}_{i \geq 0}$ is called the canonical filtration of M.

In characteristic zero, this filtration coincides with the standard filtration $\{ A_{n,i} \}$. The canonical filtration is \ast-invariant: $F^* = F$, i.e. $F_i^* = F_i$ for all $i \geq 0$.

Definition. A (finite dimensional) filtration $\{ F_i \}_{i \geq 0}$ on the algebra D which is equivalent to the canonical filtration F is called a filtration of standard type of D. If $M = DM_0$ ($\dim_K (M_0) < \infty$) is a finitely generated D-module, then the finite dimensional filtration $\{ F_i M_0 \}$ is called a filtration of standard type of M.
Filtrations of standard type in prime characteristic are correct generalizations of standard filtrations in zero characteristic. Each canonical filtration is a filtration of standard type.

The polynomial algebra \(P_n \) as a left \(\mathcal{D} \)-module has the filtration of standard type \(\{ F_i K = P_{n,i} \} \). Since \(\dim F_i = \dim A_{n,i} \) and \(\dim F_i K = \dim P_{n,i} \),

\[
\dim(\mathcal{D}(P_n)) = 2n \quad \text{and} \quad \dim(P_n) = \text{GK}(P_n) = n.
\]

Note that the Gelfand-Kirillov dimension \(\text{GK}(\mathcal{D}(P_n)) = n \), not \(2n \). The algebra \(\Lambda := \bigoplus_{\beta \in \mathbb{N}^n} K^{d_{\beta}} \) of scalar differential operators is a left \(\mathcal{D}(P_n) \)-module

\[
\Lambda \simeq \mathcal{D}(P_n) / \sum_{i=1}^n \mathcal{D}(P_n) x_i;
\]

\[
\text{GK}(\Lambda) = 0 \quad \text{and} \quad \dim(\Lambda) = n.
\]

These facts show that the Gelfand-Kirillov dimension behaves differently in prime characteristic than in characteristic zero. The main reason for this phenomenon is that the algebra \(\mathcal{D}(P_n) \) in prime characteristic is not finitely generated and contains many nilpotent elements. We will see later that the dimension \(\text{Dim} \) is the ‘correct’ dimension in the study of \(\mathcal{D}(P_n) \)-modules in prime characteristic.

The associated graded algebra \(\text{gr} \mathcal{D} := \bigoplus_{i \geq 0} F_i/ F_{i-1} \) \((F_{-1} := 0) \) is a commutative algebra which is not a finitely generated algebra, the nil-radical \(n \) of the algebra \(\text{gr} \mathcal{D} \) is equal to \(\sum_{\alpha, \beta \in \mathbb{N}^n, |\alpha| + |\beta| > 0} K^{\alpha} \frac{\partial^{\beta}}{\partial \alpha} \) and \(\text{gr}(\mathcal{D})/n \simeq K[\mathfrak{p}_1, \ldots, \mathfrak{p}_n] \) is a polynomial algebra.

Theorem 4.2. Let \(\mathcal{D}(P_n) \) be the ring of differential operators with polynomial coefficients \(P_n = K[x_1, \ldots, x_n] \) over a field \(K \) of characteristic \(p > 0 \). Then \(d(\mathcal{D}(P_n)) = 1 \) where \(d = \text{fd}, \text{lfd}, \text{ud}, \text{ld} \).

Proof. Let \(\nu = \nu_F \) be the return function of the algebra \(\mathcal{D} = \mathcal{D}(P_n) \) associated with the canonical filtration \(F = \{ F_i \} \) on \(\mathcal{D} \). Let us prove that \(\nu(i) \leq i \) for all \(i \geq 0 \). We use induction on \(i \). The case \(i = 0 \) is obvious as \(F_0 = K \). Suppose that \(i > 0 \) and the statement is true for all \(i' < i \). Let \(a \in F_i \setminus F_{i-1} \). Then \(a = \sum a_{\alpha, \beta} x^\alpha \frac{\partial^{\beta}}{\partial \alpha} \) with \(|\alpha| + |\beta| \leq i \) and \(a_{\alpha, \beta} \in K \). If there exists a coefficient \(a_{\alpha, \beta} \neq 0 \) for some \(\beta \neq 0 \), i.e. \(\beta_j \neq 0 \) for some \(j \), then applying the inner derivation \(\text{ad} x_j \) of the algebra \(\mathcal{D} \) to the element \(a \) we have a nonzero element \(x_j a - ax_j \in F_{i-1} \), then induction gives the result.

Now, we have to consider the case where \(a_{\alpha, \beta} = 0 \) for all \(\beta \neq 0 \), that is, \(a \in P_{n,i} \setminus P_{n,i-1} \). Then there exists a variable, say \(x_j \), such that \(\text{deg}_{x_j}(a) > 0 \) (the degree in \(x_j \)) and a unique integer \(k \geq 0 \) such that \(p^k \leq \text{deg}_{x_j}(a) < p^{k+1} \). Then applying the inner derivation \(\text{ad} \frac{\partial^{[p^k]}}{\partial x_j} \) of the algebra \(\mathcal{D} \) to the element \(a \) we have a nonzero element \(\frac{\partial^{[p^k]} a - a \frac{\partial^{[p^k]}}{\partial x_j} F_{i-1-p^k} \), and again induction finishes the proof of the fact that \(\nu(i) \leq i \) for all \(i \geq 0 \). It follows that \(1 \geq \text{fd}(\mathcal{D}) \geq d(\mathcal{D}) \) (see \(\text{(1)} \)).

The \(\mathcal{D} \)-module \(P_n \) has dimension \(\text{Dim}(P_n) = n \). By Theorem 3.1

\[
2n = \dim(\mathcal{D}) \leq \dim(P_n)(d(\mathcal{D}) + \max\{d(\mathcal{D}), 1\}) \leq n(d(\mathcal{D}) + \max\{d(\mathcal{D}), 1\}),
\]

and so \(d(\mathcal{D}) \geq 1 \). Then \(d(\mathcal{D}) = 1 \), as required. \(\square \)

Theorem 4.3 (An analogue of the inequality of Bernstein). Let \(M \) be a nonzero finitely generated \(\mathcal{D}(P_n) \)-module where \(K \) is a field of characteristic \(p > 0 \). Then \(\text{Dim}(M) \geq n \).
Proof. By Theorems 3.1 and 4.2
\[\text{Dim}(M) \geq \frac{\text{Dim}(D(P_n))}{1 + 1} = \frac{2n}{n} = n. \]

So, for any nonzero finitely generated \(D(P_n)\)-module \(M\): \(n \leq \text{Dim}(M) \leq 2n\). Any intermediate natural number occurs: for \(n = 1\), \(\text{Dim}(P_1) = 1\) and \(\text{Dim}(D(P_1)) = 2\). For arbitrary \(n\), \(\text{Dim}(P_n) = \text{Dim}(P_1) \otimes \cdots \otimes D(P_1)\) \((n\) times). Clearly, \(\text{Dim}(P_1^{\otimes s} \otimes D(P_1)^{(n-s)}) = s + 2(n-s) = 2n - s\). When \(s\) runs through \(0, 1, \ldots, n\), the number \(2n - s\) runs through \(n, n+1, \ldots, 2n\).

Recall that a function \(f : \mathbb{N} \to \mathbb{N}\) has polynomial growth if there exists a polynomial \(p(t) \in \mathbb{Q}\) such that \(f(i) \leq p(i)\) for \(i \gg 0\). If a function has polynomial growth, then so does any function which is equivalent to it. We say that a filtration \(\{V_i\}\) has polynomial growth if the function \(\text{dim}_K V_i\) does also.

Definition. A finitely generated \(D(P_n)\)-module \(M\) is called a holonomic module if there is a filtration of standard type on \(M\) that has polynomial growth of degree \(n\).

Since all filtrations of standard type are equivalent, a finitely generated \(D(P_n)\)-module \(M\) is holonomic if all filtrations of standard type on \(M\) have polynomial growth. It follows from the definition that the class of holonomic \(D(P_n)\)-modules is closed under sub- and factor modules, and under finite direct sums.

5. Description of finitely presented \(D(P_n)\)-modules, multiplicity and (Hilbert) almost polynomials

In this section, we show that in prime characteristic finitely presented \(D(P_n)\)-modules behave similarly as finitely generated \(D(P_n)\)-modules in characteristic zero: for each finitely presented \(D(P_n)\)-module \(M\), the Poincaré series of it is a rational function, though its Hilbert function is not a polynomial but an almost polynomial and the degree of it coincides with the dimension \(\text{Dim}(M)\) of \(M\) (and if \(M\neq 0\), then the dimension \(\text{Dim}(M)\) is a natural number from the interval \([n, 2n]\) \((n\) times). Clearly, \(\text{Dim}(P_1^{\otimes s} \otimes D(P_1)^{(n-s)}) = s + 2(n-s) = 2n - s\). When \(s\) runs through \(0, 1, \ldots, n\), the number \(2n - s\) runs through \(n, n+1, \ldots, 2n\).

Recall that a function \(f : \mathbb{N} \to \mathbb{N}\) has polynomial growth if there exists a polynomial \(p(t) \in \mathbb{Q}\) such that \(f(i) \leq p(i)\) for \(i \gg 0\). If a function has polynomial growth, then so does any function which is equivalent to it. We say that a filtration \(\{V_i\}\) has polynomial growth if the function \(\text{dim}_K V_i\) does also.

Definition. A finitely generated \(D(P_n)\)-module \(M\) is called a holonomic module if there is a filtration of standard type on \(M\) that has polynomial growth of degree \(n\).

Since all filtrations of standard type are equivalent, a finitely generated \(D(P_n)\)-module \(M\) is holonomic if all filtrations of standard type on \(M\) have polynomial growth. It follows from the definition that the class of holonomic \(D(P_n)\)-modules is closed under sub- and factor modules, and under finite direct sums.

5. Description of finitely presented \(D(P_n)\)-modules, multiplicity and (Hilbert) almost polynomials

In this section, we show that in prime characteristic finitely presented \(D(P_n)\)-modules behave similarly as finitely generated \(D(P_n)\)-modules in characteristic zero: for each finitely presented \(D(P_n)\)-module \(M\), the Poincaré series of it is a rational function, though its Hilbert function is not a polynomial but an almost polynomial and the degree of it coincides with the dimension \(\text{Dim}(M)\) of \(M\) (and if \(M\neq 0\), then the dimension \(\text{Dim}(M)\) is a natural number from the interval \([n, 2n]\) \((n\) times). Clearly, \(\text{Dim}(P_1^{\otimes s} \otimes D(P_1)^{(n-s)}) = s + 2(n-s) = 2n - s\). When \(s\) runs through \(0, 1, \ldots, n\), the number \(2n - s\) runs through \(n, n+1, \ldots, 2n\).

Recall that a function \(f : \mathbb{N} \to \mathbb{N}\) has polynomial growth if there exists a polynomial \(p(t) \in \mathbb{Q}\) such that \(f(i) \leq p(i)\) for \(i \gg 0\). If a function has polynomial growth, then so does any function which is equivalent to it. We say that a filtration \(\{V_i\}\) has polynomial growth if the function \(\text{dim}_K V_i\) does also.

Definition. A finitely generated \(D(P_n)\)-module \(M\) is called a holonomic module if there is a filtration of standard type on \(M\) that has polynomial growth of degree \(n\).

Since all filtrations of standard type are equivalent, a finitely generated \(D(P_n)\)-module \(M\) is holonomic if all filtrations of standard type on \(M\) have polynomial growth. It follows from the definition that the class of holonomic \(D(P_n)\)-modules is closed under sub- and factor modules, and under finite direct sums.
where \(i := i + k \mathbb{Z} \subseteq \mathbb{Z}/k \mathbb{Z} \). We say that the quasi-polynomial \(f \) has coefficients from a set \(S \subseteq \mathbb{Q} \) if the coefficients of all the polynomials \(p_i \) belong to \(S \).

A quasi-polynomial \(f = (p_0, \ldots, p_{k-1}) \) is called an almost polynomial if all the polynomials \(p_i \) have the same degree \(\deg(f) \) and the same leading coefficient \(\text{lc}(f) \) which are called, respectively, the degree and the leading coefficient of \(f \),

\[
e(f) := \deg(f) \cdot \text{lc}(f)
\]

is called the multiplicity of \(f \). Then \(f(i) = \frac{e(f)}{d} i^d + \cdots, \ i \gg 0 \) where \(d = \deg(f) \), and the three dots mean ‘smaller’ terms.

A function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is called a somewhat polynomial if there are two polynomials \(p, q \in \mathbb{Q}[t] \) of the same degree \(d \) such that \(p(i) \leq f(i) \leq q(i) \) for all \(i \gg 0 \). Then \(d \) is called the degree of \(f \).

Somewhat commutative algebras. A \(K \)-algebra \(R \) is called a somewhat commutative algebra if it has a finite dimensional filtration \(R = \bigcup_{i \geq 0} R_i \) such that \(1 \in R_0 \) and the associated graded algebra \(\text{gr} R \) is an affine commutative algebra (affine means finitely generated). Then the algebra \(R \) is a Noetherian finitely generated algebra. Let us choose homogeneous \(R_0 \)-algebra generators of the \(R_0 \)-algebra \(\text{gr} R := \bigoplus_{i \geq 0} R_i / R_{i-1} \), say \(y_1, \ldots, y_s \) of graded degrees \(1 \leq k_1, \ldots, k_s \), respectively, (that is \(y_i \in R_{k_i} / R_{k_i-1} \)). A filtration \(\Gamma = \{ \Gamma_i \}_{i \geq 0} \) of an \(R \)-module \(M \) is called a good filtration if the associated graded \(R \)-module \(\text{gr}_\Gamma(M) := \bigoplus_{i \geq 0} \Gamma_i / \Gamma_{i-1} \) is finitely generated. An \(R \)-module \(M \) has a good filtration iff it is finitely generated, and if \(\{ \Gamma_i \} \) and \(\{ \Omega_i \} \) are two good filtrations on \(M \), then there exists a natural number \(t \) such that \(\Gamma_i \subseteq \Omega_{i+t} \) and \(\Omega_i \subseteq \Gamma_{i+t} \) for all \(i \geq 0 \). If an \(R \)-module \(M \) is finitely generated and \(M_0 \) is a finite dimensional generating subspace of \(M \), then the standard filtration \(\{ R_i M_0 \} \) is good. The first two statements of the following lemma are well known by specialists (see their proofs in [2], Theorem 3.2 and Proposition 3.3).

Lemma 5.1. Let \(R = \bigcup_{i \geq 0} R_i \) be a somewhat commutative algebra, \(k = \text{lcm}(k_1, \ldots, k_s) \) and let \(M \) be a finitely generated \(R \)-module of Gelfand-Kirillov dimension \(d = \text{GK}(M) \) with good filtration \(\Gamma = \{ \Gamma_i \} \). Then

1. \(\dim_K(\Gamma_i) = \frac{e(M)}{d} i^d + \cdots \) is an almost polynomial of period \(k \) with coefficients from \(\frac{1}{d} \mathbb{Z} \) where \(e(M) \in \frac{1}{d} \mathbb{N} \) is called the multiplicity of \(M \). The multiplicity does not depend on the choice of the good filtration \(\Gamma \).
2. The Poincaré series of \(M \), \(P_M(\phi) := \sum_{i \geq 0} \dim_K(\Gamma_i) \phi^i \in \mathbb{Q}(\phi) \), is a rational function of the form \(\frac{f(\phi)}{\prod_{j=1}^{d+1}(1-\phi^j)} \) where \(f(\phi) \in \mathbb{Q}[\phi] \). The \(P_M(\phi) \) has the pole of order \(d+1 \) at \(\phi = 1 \), and \(e(M) = e_{P_M} := (1-\phi)^{d+1} P_M(\phi)|_{\phi=1} \) is called the multiplicity of \(P_M \).
3. If the elements \(y_1, \ldots, y_s \) are nilpotent then the two previous statements hold replacing the number \(k \) by \(\text{lcm}(k_{i+1}, \ldots, k_s) \).
4. In particular, if all non-nilpotent generators of the algebra \(\text{gr} R \) have degree \(1 \), then \(P_M(\phi) = \frac{f(\phi)}{(1-\phi)^{d+1}} \) for some polynomial \(f(\phi) \in \mathbb{Q}[\phi] \) such that \(e(M) = f(1) \in \mathbb{N} \) and \(\dim_K(\Gamma_i) = \frac{e(M)}{d} i^d + \cdots \) for \(i \gg 0 \) is a polynomial of degree \(d \) with coefficients from \(\frac{1}{d} \mathbb{Z} \).

Proof. 3. Repeat the original proof taking into account that the algebra \(R_0 \langle y_1, \ldots, y_s \rangle \) is finite dimensional.

4. This statement is obvious. \(\square \)
Corollary 5.2. Let $P, Q \in \mathbb{Q}(\phi)$ be rational functions having the pole at $\phi = 1$ of order n and m, respectively. Let $e_P > 0$ and $e_Q > 0$ be the multiplicities of P and Q, respectively. Then $n + m - 1$ and $e_P e_Q$ are the order of the pole at $\phi = 1$ and the multiplicity of the rational function $(1 - \phi)PQ$, respectively.

Proof. The first statement is trivial, then the multiplicity of the rational function $(1 - \phi)PQ$ is equal to $(1 - \phi)^{n+m-1}(1 - \phi)PQ|_{\phi = 1} = (1 - \phi)^n P(1 - \phi)^m Q|_{\phi = 1} = e_P e_Q$. \hfill \Box

Till the end of the section K is an arbitrary field of characteristic $p > 0$.

The algebras Λ_ε. For each vector $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{\pm 1\}^n$, consider the commutative subalgebra $\Lambda_\varepsilon := \Lambda_{\varepsilon_1} \otimes \cdots \otimes \Lambda_{\varepsilon_n}$ of the ring of differential operators $D(P_n) = D(P_1) \otimes \cdots \otimes D(P_1)$ where $\Lambda_{\varepsilon_i} := K[x_{\varepsilon_i}]$, if $\varepsilon_i = 1$, and $\Lambda_{\varepsilon_i} := K[\partial_{\varepsilon_i}] = K[\partial_{\varepsilon_i}^1, \partial_{\varepsilon_i}^2, \ldots]$, if $\varepsilon_i = -1$. The algebra Λ_ε is a tensor product of commutative algebras Λ_{ε_i}. Each of the tensor multiples is a naturally \mathbb{N}-graded algebra with respect to the tensor product of the \mathbb{N}-gradings:

$$
\Lambda_\varepsilon = \bigoplus_{\alpha \in \mathbb{N}^n} K l^\alpha, \quad l^\alpha \beta = \left(\begin{array}{c} \alpha + \beta \\ \beta \end{array} \right) \varepsilon
$$

for all $\alpha, \beta \in \mathbb{N}^n$, where $l^\alpha := l_{\alpha_1}^1 \otimes \cdots \otimes l_{\alpha_n}^1$, $l_{\alpha_i}^1 := x_{\varepsilon_i}^{\alpha_i}$, if $\varepsilon_i = 1$, and $l_{\alpha_i}^1 := \partial_{\varepsilon_i}^{[\alpha_i]}$, if $\varepsilon_i = -1$. Each of the tensor multiples is a naturally \mathbb{N}-graded algebra.

For each $k \geq 0$, $\Lambda_\varepsilon^{[p^k]} := \bigoplus_{\alpha \in \mathbb{N}^n} K l^\alpha p^k$ is the subalgebra of Λ_ε. The translation invariance of the ε-binomials implies that the K-linear map

$$
\Lambda_\varepsilon \to \Lambda_\varepsilon^{[p^k]}, \quad l^\alpha \to l^\alpha p^k, \quad \alpha \in \mathbb{N}^n,
$$

is a K-algebra isomorphism. There exists the descending chain of subalgebras of Λ_ε:

$$
\Lambda_\varepsilon^{[p]} \supseteq \Lambda_\varepsilon^{[p^2]} \supseteq \cdots \supseteq \Lambda_\varepsilon^{[p^k]} \supseteq \cdots, \quad \bigcap_{k \geq 0} \Lambda_\varepsilon^{[p^k]} = K.
$$

For each $k \geq 0$, let $\Lambda_\varepsilon^{[p]} := \bigoplus_{\alpha < p^k} K l^\alpha$ where $p^k := (p^k, \ldots, p^k)$, and $\alpha < p^k$ means that $0 \leq \alpha_1 < p^k, \ldots, 0 \leq \alpha_n < p^k$; $\Lambda_\varepsilon^{[p]} := \bigoplus_{0 \leq \alpha < p^n} K l^\alpha$. The vector space $\Lambda_\varepsilon^{[p]}$ is an algebra iff $\varepsilon = (-1, \ldots, -1)$, and, in this case, $\Lambda_{-1,\ldots,-1}^{[p]} = \Lambda_{-1}^{[p]} \otimes \cdots \otimes \Lambda_{-1}^{[p]}$ is the tensor product of commutative finite dimensional algebras where each tensor multiple, say ith,

$$
\Lambda_{-1}^{[p]} = K \langle \partial_{\varepsilon_i}^{[1]} \rangle \otimes K \langle \partial_{\varepsilon_i}^{[p]} \rangle \otimes K \langle \partial_{\varepsilon_i}^{[p^2]} \rangle \otimes \cdots \otimes K \langle \partial_{\varepsilon_i}^{[p^{s-1}]} \rangle \simeq (K[t]/(tp))^\otimes_k
$$

is the tensor product of commutative local finite dimensional algebras since $K \langle \partial_{\varepsilon_i}^{[p^s]} \rangle \simeq K[t]/(tp)$ as $(\partial_{\varepsilon_i}^{[p^s]})^p = 0$, $s \geq 1$. Clearly,

$$
\Lambda_{\varepsilon}^{[p^s]} = K \subset \Lambda_{\varepsilon}^{[p]} \subset \cdots \subset \Lambda_{\varepsilon}^{[p^s]} \subset \cdots, \quad \Lambda_{\varepsilon} = \bigcup_{k \geq 0} \Lambda_{\varepsilon}^{[p^k]},
$$

$$
\Lambda_{\varepsilon} = \Lambda_{\varepsilon}^{[p]} \Lambda_{\varepsilon}^{[p^k]} = \Lambda_{\varepsilon}^{[p^k]} \Lambda_{\varepsilon}^{[p^k]} = \Lambda_{\varepsilon}^{[p^k]} \Lambda_{\varepsilon}^{[p^k]}, \quad k \geq 0,
$$

\hfill \Box
and \(\Lambda_{\varepsilon,[p^k]} \subseteq \Lambda_{\varepsilon,[p^{\max(k,l)}]} \) for \(\varepsilon = (-1, \ldots, -1) \) and all \(k,l \geq 0 \).

The subalgebra \(\Lambda := \Lambda_{-1} = K[\partial[1], \partial[2], \ldots] \) of the algebra \(D(K[\varepsilon]) \) is not a finitely generated algebra (since \(\Lambda = \bigcup_{k \geq 0} \Lambda_{[p^k]} \) is the union of its proper subalgebras), it is not a domain (its nil-radical \(n(\Lambda) \) is equal to \(\Lambda_+ := \bigoplus_{j \geq 1} K \partial[j] \)), it is not a Noetherian algebra as

\[
\Lambda_{[p^k],+} \otimes \Lambda [p^r] \subset \Lambda_{[p^s],+} \otimes \Lambda [p^t] \subset \cdots \subset \Lambda_{[p^k],+} \otimes \Lambda [p^k] \subset \cdots
\]

is a strictly ascending chain of ideals of the algebra \(\Lambda \) where \(\Lambda_{[p^k],+} := \bigoplus_{j=1}^{p^k-1} K \partial[j] \), and

\[
\Lambda / (\Lambda_{[p^k],+} \otimes \Lambda [p^k]) \cong \Lambda [p^k] \cong \Lambda, \quad k \geq 0.
\]

In spite of the fact that the algebra of scalar differential operators \(\Lambda_\varepsilon = \bigoplus_{\beta \in \mathbb{N}^n} \partial[\beta], \varepsilon = (-1, \ldots, -1) \), is 'zero dimensional' \((\Lambda_\varepsilon / n(\Lambda_\varepsilon) = \Lambda_\varepsilon / \Lambda_\varepsilon, = K)\), it has the rich nontrivial category of modules which in turn the ring of differential operators \(D(P_n) \) inherits as a subcategory (via inducing).

The algebra \(\Lambda_\varepsilon \) is Noetherian if \(\varepsilon = (1, \ldots, 1) \) (in this case, it is \(P_n \), a finitely generated Noetherian domain). If \(\varepsilon \neq (1, \ldots, 1) \), then the algebra \(\Lambda_\varepsilon \) is not finitely generated, not Noetherian, and not a domain.

The subalgebras \(D(P_n)[p^k] \) **and** \(\Lambda_{[p^k]} \otimes P_n \). For each \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{ \pm \}^n \),

\[
D(P_n) = \Lambda_\varepsilon \otimes \Lambda_{-\varepsilon} = \left(\bigoplus_{\alpha \in \mathbb{N}^n} K l^\alpha_{\varepsilon} \right) \otimes \left(\bigoplus_{\beta \in \mathbb{N}^n} K l^\beta_{-\varepsilon} \right) = \bigoplus_{\alpha,\beta \in \mathbb{N}^n} K l^\alpha_{\varepsilon} \otimes l^\beta_{-\varepsilon}
\]

as \(K \)-modules. For \(k \geq 0 \), the vector space \(D(P_n)[p^k] := \Lambda_{\varepsilon,[p^k]} \otimes \Lambda_{-\varepsilon,[p^k]} = \Lambda_{\varepsilon,[p^k]} \otimes \Lambda_{\varepsilon,[p^k]} \) is a subalgebra of \(D(P_n) \) canonically isomorphic to the \(K \)-algebra \(D(P_n) \) via the \(K \)-algebra isomorphism:

\[
D(P_n) \rightarrow D(P_n)[p^k], \quad l^\alpha_{\varepsilon} \otimes l^\beta_{-\varepsilon} \mapsto l^\alpha_{\varepsilon} p^k \otimes l^\beta_{-\varepsilon}, \quad \alpha, \beta \in \mathbb{N}^n.
\]

This follows directly from the translation invariance of the \(\varepsilon \)-binomials and from the defining relations \([15]\) for the \(K \)-algebra \(D(P_n) \) since the \(K \)-algebra \(D(P_n)[p^k] \) is generated by the elements \(x_1^{p^k}, \ldots, x_n^{p^k}, \partial_1^{[p^k]}, \ldots, \partial_n^{[p^k]}, i \geq 1 \), that satisfy the relations \([15]\); these relations are defining because of the decomposition \([17]\). It is obvious that \(D(P_n)[p^k] = D(P_n)[p^{k^\prime}] \) for all \(\varepsilon \) and \(\varepsilon^\prime \), but the decompositions \([17]\) are all distinct and they will be used later in constructing various modules. So, we drop the subscript \(\varepsilon \). There exists a descending chain of isomorphic subalgebras of \(D(P_n) \):

\[
D(P_n) := D(P_n)[p^0] \supset D(P_n)[p^1] \supset D(P_n)[p^2] \supset \cdots \supset D(P_n)[p^k] \supset \cdots,
\]

and \(\bigcap_{k \geq 0} D(P_n)[p^k] = K \). So, the homomorphism

\[
D(P_n) \rightarrow D(P_n)[p^k], \quad x_i \mapsto x_i^{p^k}, \quad \partial_1^{[p^k]} \mapsto \partial_1^{[p^k]},
\]

is a \(K \)-algebra isomorphism.

For each \(k \geq 0 \), the vector space \(D(P_n)_{\varepsilon,[p^k]} := \Lambda_{\varepsilon,[p^k]} \otimes \Lambda_{-\varepsilon,[p^k]} = \Lambda_{\varepsilon,[p^k]} \otimes \Lambda_{\varepsilon,[p^k]} \) has dimension \(p^{2nk} \) over \(K \). Again, it does not depend on \(\varepsilon \), so we drop the subscript \(\varepsilon \),

\[
D(P_n)[p^k] := D(P_n)_{\varepsilon,[p^k]} = \bigoplus_{\alpha < p^k, \beta < p^k} K x^\alpha \partial[\beta] = \bigoplus_{\alpha < p^k, \beta < p^k} K \partial[\beta] x^\alpha.
\]
Clearly,
\[K := \mathcal{D}(P_n)[p^0] \subset \mathcal{D}(P_n)[p] \subset \mathcal{D}(P_n)[p^2] \subset \cdots, \quad \mathcal{D}(P_n) = \bigcup_{k \geq 0} \mathcal{D}(P_n)[p^k], \]
\[\mathcal{D}(P_n) = \mathcal{D}(P_n)[p^k] \otimes \mathcal{D}(P_n)[p^{k'}] = \mathcal{D}(P_n)[p^k] \otimes \mathcal{D}(P_n)[p^{k'}], \quad k \geq 0, \]
and \(\mathcal{D}(P_n)[p^k] \otimes \mathcal{D}(P_n)[p^l] \subset \mathcal{D}(P_n)[p^{k+l}], \) for all \(k, l \geq 0. \)

The case \(k = (-1, \ldots, -1) \) **and the subalgebras** \(\Lambda[p^k] \otimes P_n. \) In this case, we write \(\Lambda := \Lambda(-1, \ldots, -1), \) \(\Lambda[p^k] := \Lambda(-1, \ldots, -1)[p^k], \) and \(\Lambda[p^k'] := \Lambda(-1, \ldots, -1)[p^k'] \). Then \(\mathcal{D}(P_n) = \Lambda \otimes P_n = P_n \otimes \Lambda \) and \(\mathcal{D}(P_n) = \bigcup_{k \geq 0} \Lambda[p^k] \otimes P_n \) is the union of subalgebras:
\[P_n := \Lambda[p^0] \otimes P_n \subset \Lambda[p] \otimes P_n \subset \Lambda[p^2] \otimes P_n \subset \cdots, \quad \Lambda[p^k] \otimes P_n = P_n \otimes \Lambda[p^k], \]
\[\mathcal{D}(P_n) = \Lambda[p^0] \otimes (\Lambda[p^1] \otimes P_n) = (\Lambda[p^1] \otimes P_n) \otimes \Lambda[p^0], \quad k \geq 0. \]

For each \(k \geq 0 \), the algebra \(\Lambda[p^k] \otimes P_n \) is a free left and right \(P_n \)-module of rank \(p^{nk} \), it is a finitely generated Noetherian algebra having the center \(Z_k := K[x_1^{p^k}, \ldots, x_n^{p^k}] \). The algebra \(\Lambda[p^k] \otimes P_n \) is a free \(Z_k \)-module of rank \(p^{nk} \) since \(\Lambda[p^k] \otimes P_n = \Lambda[p^k] \otimes (\bigoplus_{\alpha \in \mathbb{N}^n} K x^\alpha) \otimes Z_k \). On the algebra \(\Lambda[p^k] \otimes P_n \), one can consider the induced filtration from the canonical filtration \(F = \{ F_i \} \) on the algebra \(\mathcal{D}(P_n) \):
\[\mathcal{D}(P_n) = \bigoplus_{\beta} F_\beta \otimes P_n = \bigoplus_{\beta} K x^\beta \otimes P_n. \]
The associated graded algebra \(\text{gr}(\Lambda[p^k] \otimes P_n) \) is naturally isomorphic (as a graded algebra) to the tensor product of the commutative algebras \(\Lambda[p^k] \otimes P_n \) equipped with the tensor product of the induced filtrations (from the canonical filtration on \(\mathcal{D}(P_n) \)). In more detail,
\[\text{gr}(\Lambda[p^k] \otimes P_n) := \bigoplus_{i \geq 0} T_{k,i} / T_{k,i-1} \simeq \text{gr}(\Lambda[p^k]) \otimes \text{gr}(P_n) \]
\[\simeq \Lambda[p^k] \otimes P_n \quad (\text{the tensor product of algebras}) \]
since \(\text{gr}(\Lambda[p^k]) \simeq \Lambda[p^k] \) and \(\text{gr}(P_n) \simeq P_n \). In particular, \(\text{gr}(\Lambda[p^k] \otimes P_n) \) is an affine commutative algebra with the nil-radical \(\Lambda[p^k],+ \otimes P_n \) (where \(\Lambda[p^k],+ := \bigoplus_{0 \neq \beta \in \mathbb{N}^n} K \partial^{(\beta)} \)) and
\[\text{gr}(\Lambda[p^k] \otimes P_n) / (\Lambda[p^k],+ \otimes P_n) \simeq (\Lambda[p^k]/\Lambda[p^k,+]) \otimes P_n \simeq K \otimes P_n \simeq P_n. \]
The algebra \(\text{gr}(\Lambda[p^k] \otimes P_n) = \bigoplus_{i \geq 0} G_i \) is positively graded where
\[G_i = \bigoplus_{\beta < \mathbb{N}^n, |\alpha| + |\beta| = i} K x^\alpha \partial^{(\beta)}. \]
For a ring \(R \) and a natural number \(n \geq 1, M_n(R) \) is the ring of \(n \times n \) matrices with entries from \(R. \)

Lemma 5.3. Let \(K \) be a field of characteristic \(p > 0, \) and \(T_k := T_{k,n} := \Lambda[p^k] \otimes P_n, \)
\(k \geq 0. \) Then
1. The algebra \(T_k \) is a somewhat commutative algebra with respect the finite dimensional filtration \(T_k = \{ T_{k,i} \} \) having the center \(Z_k = K[x_1^{p^k}, \ldots, x_n^{p^k}] \) and \(\text{GK}(T_{k,n}) = n. \) In particular, \(T_k \) is a finitely generated Noetherian algebra, and \(T_{k,n} = T_{k,1}^{\otimes n}. \)
2. The Poincaré series of T_k, $P_T = \sum_{i \geq 0} \dim_K(T_{k,i})x^i = \frac{(1+\alpha + \alpha^2 + \ldots + \alpha^{k-1}n)}{(1-\alpha)^{n+1}}$ and the multiplicity $e(T_k) = p^{kn}$.

3. The Hilbert function of T_k is, in fact, a polynomial $\dim_K(T_{k,i}) = \frac{p^{kn}}{n!}i^n + \ldots$, $i \gg 0$.

4. Let $Z_k = K(x_1^p, \ldots, x_n^p)$ be the field of fractions of Z_k. Then $T'_k := Z_k \otimes Z_k T_k \simeq M_{p^kn}(Z_k)$, the matrix algebra.

5. The algebra T_k is a prime algebra of uniform dimension p^{kn}, and the localization $S^{-1}T_k$ of T_k at the set S of all the nonzero divisors is isomorphic to the matrix algebra $M_{p^kn}(Z_k)$.

6. The algebra T_k is preserved by the involution \ast, $T'_k = T_k$, and so the algebra T_k is self-dual.

7. The algebra T_k is faithfully flat over its center.

8. The left and right global dimension of the algebra T_k is n.

9. The left and right global dimension of the algebra T_k is n but the global dimension of the associated graded algebra $\text{gr}(T_k)$ is ∞ if $k \geq 1$.

Proof. 1. P_n is the subalgebra of T_n, so $n = \text{GK}(P_n) \leq \text{GK}(T_n)$. T_k is a finitely generated Z_k-module, so $\text{GK}(T_k) \leq \text{GK}(Z_k) = n$. Therefore, $\text{GK}(T_k) = n$.

2 and 3. These statements are obvious (see Lemma 5.1 and Corollary 5.2).

4. The Z_k-algebra $T_k = \bigoplus_{\alpha, \beta < p^k} Z_k x^\alpha \partial_\beta$ has dimension p^{2nk} over the field Z_k. Consider the T_k-module $U := T_k/(P_n \otimes \Lambda_{[p^k],+} \simeq P_n \otimes (\Lambda_{[p^k]/\Lambda_{[p^k]_+}) \simeq P_n \otimes K \simeq P_n \mathbb{T}$ where \mathbb{T} is the canonical generator of U. The T'_k-module $U' := Z_k \otimes Z_k U = \bigoplus_{\alpha < \beta < p^k} Z_k x^\alpha \partial_\beta$ is simple (use the action of ∂_β on x^α), $\dim_{Z_k}(U') = p^{nk} = \sqrt{\dim_{Z_k}(T'_k)}$, and $\text{End}_{T'_k}(U') \simeq \bigcap_{\alpha < \beta < p^k} \text{ann}(\partial_\beta) \simeq Z_k$. Therefore, $T'_k \simeq M_{p^{kn}}(Z_k)$.

5. Since $Z_k \{0\} \subseteq S$, it follows from statement 4 that $S^{-1}T_k \simeq T'_k \simeq M_{p^{kn}}(Z_k)$, which implies that T_k is a prime algebra of uniform dimension p^{kn}.

6 and 7. These statements are obvious.

8. By statement 6, the left and right Krull dimension of T_k are equal. By statement 7, $K \dim(T_k) \geq K \dim(Z_k) = n$. The algebra T_k is a finitely generated Z_k-module, hence $K \dim(T_k) \leq K \dim(Z_k) = n$, and so $K \dim(T_k) = n$.

Since the canonical generators of the commutative \mathbb{N}-graded algebra $\text{gr}(\Lambda_{[p^k]} \otimes P_n)$ that are not nilpotent all have graded degree 1 the next result follows from Lemma 5.1.

Lemma 5.4. Let M be a finitely generated $\Lambda_{[p^k]} \otimes P_n$-module of Gelfand-Kirillov dimension d equipped with a standard filtration $\{M_i := T_{k_i}M_0\}$ where M_0 is a finite dimensional generating space for M. Then $\dim_K(M_0) = \frac{\gamma(M)}{d!}d^d + \ldots$, $d > 0$, is a polynomial of degree d with coefficients from $\frac{1}{d!}\mathbb{Z}$ where $e(M) \in \mathbb{N}$ is called the multiplicity of M. The multiplicity does not depend on the choice of a good filtration Γ. The degree d can be any natural number from the interval $[0, n]$ (see Lemma 5.3).

Let $\mathcal{D} := \mathcal{D}(P_n)$ and $T_k := \Lambda_{[p^k]} \otimes P_n$. Consider free finitely generated (left) \mathcal{D}-modules \mathcal{D}^μ and \mathcal{D}^ν where $\mu, \nu \geq 1$. The set $\text{Hom}_{\mathcal{D}}(\mathcal{D}^\mu, \mathcal{D}^\nu)$ of all the \mathcal{D}-module homomorphisms from \mathcal{D}^μ to \mathcal{D}^ν can be identified with the set of all $\mu \times \nu$ matrices $M_{\mu,\nu}(\mathcal{D})$ with coefficients from \mathcal{D}. On this occasion, it is convenient to write...
homomorphisms on the right. Then \(M_{\mu,\nu}(D) = M_{\mu,\nu}(\bigcup_{k \geq 0} T_k) = \bigcup_{k \geq 0} M_{\mu,\nu}(T_k) \) is the union of matrix algebras. Let \(M \) be a finitely presented \(D \)-module, that is, \(M = \text{coker}(A) \) where \(D^\mu \xrightarrow{A} D^\nu, v \mapsto vA, \quad v = (v_1, \ldots, v_\mu), \) and \(A \in M_{\mu,\nu}(D) \). Then \(A \in M_{\mu,\nu}(T_k) \) for some \(k \), and \(M' := \text{coker}(T_k^\mu \xrightarrow{A} T_k^\nu) \) is a finitely presented \(T_k \)-module. Applying the exact functor \(D \otimes T_k \) to the exact sequence of \(T_k \)-modules \(T_k^\mu \xrightarrow{A} T_k^\nu \to M' \to 0 \) one obtains the exact sequence of \(D \)-modules \(D_k^\mu \xrightarrow{A} D_k^\nu \to D \otimes T_k M' \to 0 \). Therefore,

\[
(21) \quad M \simeq D \otimes T_k M',
\]

and so each finitely presented \(D \)-module is isomorphic to an induced module from a finitely generated \(T_k \)-module. The next result describes finitely presented \(D(P_n) \)-modules and gives as a result an analogue of the inequality of Bernstein for them.

Theorem 5.5. Let \(M \) be a nonzero finitely presented \(D(P_n) \)-module. Then \(M \simeq D \otimes T_k M' \) for a finitely generated \(T_k \)-module \(M' \). Let \(\{M'_i\} \) be a standard filtration for the \(T_k \)-module \(M' \) from Lemma 5.4 and \(\dim_K(M'_i') = e(M'_i') \), for \(i \geq 0 \) where \(d = \text{GK}(M') \). Let \(\{M_i := F_i/M'_i\} \), the filtration of standard type on the \(D(P_n) \)-module \(M \). Then

1. \(\dim_K(M_i) = \frac{e(M'_i)}{p^{n(n+d)/2}} n + d + \cdots \) is an almost polynomial of period \(p^k \) with coefficients from \(\frac{1}{p^{n(n+d)/2}} \mathbb{Z} \), and \(e(M) = \frac{e(M'_i)}{p^{n(n+d)/2}} \in \frac{1}{p^{n(n+d)/2}} \mathbb{N} \).
2. The dimension \(\text{Dim}(M) = n + d \geq n \) is equal to \(t - 1 \) where \(t \) is the order of the pole of the Poincaré series \(P_M(\phi) = \sum_{i \geq 0} \dim_K(M_i) \phi^i \) at the point \(\phi = 1 \), and the multiplicity \(e(M) = (1 - \phi)^{\text{Dim}(M)} + 1 P_M(\phi)|_{\phi = 1} \). The dimension \(\text{Dim}(M) \) of \(M \) can be any natural number from the interval \([n, 2n]\).

Proof. The subalgebra \(\Lambda^{[p^k]} \) of \(D(P_n) \) has the induced filtration \(\{\Lambda_i^{[p^k]} := \Lambda^{[p^k]} \cap F_i = \bigoplus_{p^k | \beta \leq i} K \partial \Lambda^{[p^k]} \beta \} \). Therefore,

\[
P := \sum_{i \geq 0} \dim_K(\Lambda_i^{[p^k]}) \phi^i = \frac{1}{(1 - \phi)(1 - \phi^{p^k})^n} \quad \text{and} \quad e_P := (1 - \phi)^{n+1} P|_{\phi = 1} = \frac{1}{p^{kn}}.
\]

It follows from the equality \(M = \Lambda^{[p^k]} \otimes M' \) that \(M_i = \sum_{i \leq j \leq i} \Lambda_i^{[p^k]} \otimes M'_j \). Therefore, \(R := \sum_{i \geq 0} \dim_K(M_i) \phi^i = (1 - \phi) P Q \) where \(Q := \sum_{i \geq 0} \dim_K(M'_i) \phi^i \). By Corollary 5.2, \(e(M) = e_R = e_P e_Q = \frac{1}{p^{kn}} e(M') \) and \(\text{Dim}(M) = n + d \geq n \), so \(\dim_K(M_i) = \frac{e(M'_i)}{p^{n(n+d)/2}} n + d + \cdots \), by Lemma 5.1. The rest is obvious (Lemma 5.1). \(\square \)

Lemma 5.6. For each \(s = 0, 1, \ldots, n - 1 \), \(D(P_n) = D(P_1) \otimes D(P_1) \otimes \cdots \otimes D(P_1) \otimes (n-s-1) \).

For each \(k \in \mathbb{N} \), consider the cyclic finitely presented \(D(P_n) \)-module \(M(k,s) := M(k) \otimes D(P_1) \otimes \cdots \otimes D(P_1) \otimes (n-s-1) \) where \(M(k) := D(P_k) \otimes_{T_k} T_k/\Lambda^{[p^k]} \), is the \(D(P_k) \)-module. Then \(\text{Dim}(M(k,s)) = n + s + 1 \) and \(e(M(k,s)) = \frac{1}{p} \). So, the multiplicity of a nonholonomic finitely presented \(D(P_n) \)-module can be arbitrarily small (for each possible dimension \(n + 1, \ldots, 2n \)).

Remark. By contrast, the multiplicity of each holonomic finitely presented \(D(P_n) \)-module is a natural number (Theorem 5.7).
Proof. The \(T_k\)-module \(N := T_k / T_k \Lambda[p^k]_+ = P_1 \mathcal{T} \simeq P_1 \mathcal{P}_1\) has the standard filtration \(\{N_i := T_k / T = \bigoplus_{j=0}^i Kx_i \big| \mathcal{T}\}\). Therefore, \(\dim_K(N_i) = i + 1, \) so \(\text{GK}(N) = 1\) and \(e(N) = 1\). By Theorem 5.5, \(\text{Dim}(M(k)) = 2\) and \(e(M(k)) = \frac{1}{p^x}.\) The \(D(P_1) \otimes D(P_1)^{\otimes (n-s-1)}\) module \(D(P_1) \otimes D(P_1)^{\otimes (n-s-1)}\) has dimension \(2s + n - s - 1 = n + s - 1\) and multiplicity 1. Using Corollary 5.2, we have \(\text{Dim}(M) = 2n + s - 1 = n + 1 + s\) and \(e(M) = \frac{1}{p^x} \cdot 1 = \frac{1}{p^x}.\)

Corollary 5.7. Each short exact sequence \(0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0\) of finitely presented \(D(P_n)\)-modules is obtained from a short exact sequence \(0 \rightarrow N' \rightarrow M' \rightarrow L' \rightarrow 0\) of finitely presented \(T_k\)-modules for some \(k \geq 0\) by tensoring on \(D(P_n) \otimes T_k.\)

Proof. Let \(D := D(P_n).\) The \(D\)-modules \(N, M,\) and \(L\) are finitely presented, so one can fix a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & D^{m_1} & \rightarrow & D^{m_1+m_2} & \rightarrow & D^{m_2} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & N & \rightarrow & M & \rightarrow & L & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & & 0 & & 0 & & 0 & & \\
\end{array}
\]

with exact rows and columns. One can find a (large) \(k\) such that all the matrices that correspond to the (six) maps between \(D^s\)'s have coefficients from the algebra \(T_k.\) The diagram above is obtained from the following commutative diagram (with exact rows and columns) of \(T_k\)-modules (with the same matrices = maps)

\[
\begin{array}{ccccccccc}
0 & \rightarrow & T_k^{m_1} & \rightarrow & T_k^{m_1+m_2} & \rightarrow & T_k^{m_2} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & N' & \rightarrow & M' & \rightarrow & L' & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & & 0 & & 0 & & 0 & & \\
\end{array}
\]

by tensoring on \(D \otimes T_k.\)

Corollary 5.8. Each simple finitely presented \(D(P_n)\)-module is holonomic.

Proof. Let \(M\) be a simple finitely presented \(D(P_n)\)-module. By Theorem 5.5, \(M \simeq D(P_n) \otimes T_k M'\) for a finitely generated \(T_k\)-module \(M'\) which must be simple. The algebra \(T_k\) is a somewhat commutative algebra which is a finitely generated module over its center \(Z\) which is an affine algebra. Therefore, by Quillen’s Lemma ([14], 9.7.3), every element of \(\text{End}_{T_k}(M')\) is algebraic, this implies that each simple \(T_k\)-module is finite dimensional over the field \(K,\) so \(d = \text{GK}(M') = 0.\) By Theorem 5.5, \(M\) is a holonomic \(D(P_n)\)-module.

Theorem 5.9. Let \(M\) be a nonzero finitely presented \(D(P_n)\)-module. The following statements are equivalent.

1. \(M\) is a holonomic \(D(P_n)\)-module.
2. \(\text{Dim}(M) = n.\)
3. \(\text{Dim}(M) < n + 1.\)
Proof. The implications $1 \Rightarrow 2 \Rightarrow 3$ are obvious, and the implication $3 \Rightarrow 1$ follows from Theorem 5.5. □

Remarks. 1. If a finitely generated $\mathcal{D}(P_n)$-module M is not finitely presented, then Theorem 5.9 is not true. There exists a cyclic nonholonomic $\mathcal{D}(P_n)$-module M with $\dim(M) = n$ (Proposition 5.7), and there are plenty of cyclic $\mathcal{D}(P_n)$-modules having dimension d such that $n < d < n + 1$ (Theorem 5.11).

2. In characteristic zero, the multiplicity of a holonomic $\mathcal{D}(P_n)$-module is a natural number, so it cannot be arbitrarily small. This is the reason why each holonomic $\mathcal{D}(P_n)$-module has finite length. Though the same is true in prime characteristic (Theorem 5.6), Theorem 5.3 does not give a uniform lower bound for multiplicity of holonomic finitely presented $\mathcal{D}(P_n)$-modules, so one cannot repeat the arguments of the characteristic zero case even for finitely presented modules. Note that there are plenty of holonomic modules that are not finitely presented.

Theorem 5.10. Let K be a field of characteristic $p > 0$, and let $0 \to N \to M \to L \to 0$ be a short exact sequence of finitely presented $\mathcal{D}(P_n)$-modules. Then:

1. there exist finite dimensional filtrations $\{N_i\}, \{M_i\}$, and $\{L_i\}$ on the modules N, M, and L, respectively, such that the last two are filtrations of standard type and the first one is strongly equivalent to a filtration of standard type on N and such that $\dim_K(M_i) = \dim_K(N_i) + \dim_K(L_i), i \geq 0$.

2. $\dim_K(M) = \max\{\dim(N), \dim(L)\}$.

3. Precisely one of the following statements is true:
 (a) $\dim(N) < \dim(M) = \dim(L)$ and $e(M) = e(L)$,
 (b) $\dim(L) < \dim(M) = \dim(N)$ and $e(M) = e(N)$,
 (c) $\dim(N) = \dim(M) = \dim(L)$ and $e(M) = e(N) + e(L)$.

Proof. 1. By Corollary 5.7, the short exact sequence $0 \to N \to M \to L \to 0$ is obtained from a short exact sequence of finitely generated T_k-modules $0 \to N' \to M' \to L' \to 0$ by tensoring on $\mathcal{D} \otimes T_k$. The algebra T_k is somewhat commutative with respect to the induced filtration \mathcal{T} from the canonical filtration $F = \{F_i\}$ on the algebra $\mathcal{D} = \mathcal{D}(P_n)$. Let $\{M'_{i} := T_{k,i}M_0\}$ be a standard filtration on the T_k-module M' and $\{L'_{i} := T_{k,i}L_0\}$ its image on L' which is a standard filtration on L'. It is a well-known fact that the induced filtration $\{N'_{i} := N' \cap M'_{i}\}$ is good, and each good filtration is strongly equivalent to a standard filtration. Then $\dim_K(M'_{i}) = \dim_K(N'_{i}) + \dim_K(L'_{i}), i \geq 0$. Since $\mathcal{D} = A[i^{\beta}] \otimes T_k$ and the subalgebra $A[i^{\beta}]$ of \mathcal{D} has the induced filtration $\{A_{i^{\beta}} := A[i^{\beta}] \cap F = \bigoplus_{p^{\beta}[\gamma] \leq 1} K \partial[i^{p^{\beta}[\gamma]}]\}$, it follows that $\{M_i := F_iM_0 = \bigoplus_{p^{\beta}[\gamma] + j \leq 1} \partial[i^{p^{\beta}[\gamma]}] \otimes M'_{i}\}$ and $\{L_i := F_iL_0 = \bigoplus_{p^{\beta}[\gamma] + j \leq 1} \partial[i^{p^{\beta}[\gamma]}] \otimes L'_{i}\}$ are filtrations of standard type on M and L, respectively, and that $\{N_i := \bigoplus_{p^{\beta}[\gamma] + j \leq 1} \partial[i^{p^{\beta}[\gamma]}] \otimes N'_{j}\}$ is a finite dimensional filtration on N that is strongly equivalent to a filtration of standard type on N, and that $\dim_K(M_i) = \dim_K(N_i) + \dim_K(L_i), i \geq 0$. This proves statement 1.

2 and 3. These statements follow from statement 1 and Theorem 5.5. □

6. Classification of simple finitely presented $\mathcal{D}(P_n)$-modules

In this section, K is an arbitrary field of characteristic $p > 0$.

In this section, a classification of simple finitely presented $\mathcal{D}(P_n)$-modules is obtained (Theorem 6.7) which looks particularly nice for algebraically closed fields.
(Corollary 6.8). It will be proved that for every simple finitely presented \(\mathcal{D}(P_n) \)-module \(M \), which is holonomic by Corollary 6.8, the endomorphism algebra \(\text{End}_{\mathcal{D}(P_n)}(M) \) is a finite separable field over \(K \), and the multiplicity \(\epsilon(M) \) is equal to \(\dim_K(\text{End}_{\mathcal{D}(P_n)}(M)) \), so it is a natural number (Theorem 6.7). Plenty of holonomic \(\mathcal{D}(P_n) \)-modules will be considered. Some of the results of this section are used as an inductive step in proving an analogue of the inequality of Bernstein in Section 9.

For an algebra \(A \), \(\hat{A} \) denotes the set of all the isoclasses of simple \(A \)-modules, and \([M]\) denotes the isoclass of a simple \(A \)-module \(M \).

Let \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{\pm 1\}^n \), and let \(s \) be the number of positive coordinates of \(\varepsilon \). The algebra \(\Lambda \) is isomorphic to the tensor product \(P_s \otimes \Lambda(t) \) of the polynomial algebra \(P_s \) and \(\Lambda(t) := \Lambda_{e}^{\otimes t} \) where \(t = n - s \).

The nil-radical \(n(\Lambda_e) \) of the algebra \(\Lambda_e \) is \(P_s \otimes \Lambda(t)_+ \) since the set \(P_s \otimes \Lambda(t)_+ \) belongs to the nil-radical of the algebra \(\Lambda_e \) and \(\Lambda_e/(P_s \otimes \Lambda(t)_+) \simeq P_s \).

Lemma 6.1.

1. Let \(\Lambda = \Lambda_{(-1,\ldots,-1)} \). Then \(K := \Lambda/\Lambda_+ \) is the only (up to isomorphism) simple \(\Lambda \)-module.

2. Let \(\Lambda(t) := \Lambda_{e}^{\otimes t} \) and \(\Lambda_e \simeq P_s \otimes \Lambda(t) \) for some \(s \geq 1 \) such that \(s + t = n \). Then the map \(\hat{P}_s \to \hat{\Lambda}_e \), \([L] \mapsto [L = L \otimes \Lambda(t)/\Lambda_+(t)] \), is a bijection.

Proof.

1. Note that \(\Lambda_+ \) is the nil-radical of the algebra \(\Lambda \) and \(\Lambda/\Lambda_+ = K \). Then \(\hat{\Lambda} = \hat{\Lambda}/\hat{\Lambda}_+ = \hat{K} \), and so \(K = \Lambda/\Lambda_+ \) is the only simple \(\Lambda \)-module (up to isomorphism).

2. Similarly, \(\Lambda_e/n(\Lambda_e) \simeq P_s \). Therefore, \(\hat{\Lambda}_e = \hat{P}_s \), and the result follows. \(\square \)

Given a ring \(A \) and its element \(a \), let \(L_a(b) = ab \) and \(R_a(b) = ba \) where \(b \in A \). Then the maps (from \(A \) to itself), \(L_a, R_a, \) and \(\text{ad} := L_a - R_a \) commute. Therefore, \(R_a^k = (L_a - \text{ad}) a^k = \sum_{j=0}^{k} \binom{k}{j} L_a^{k-j} (-\text{ad})^j a^j, \ k \geq 0 \). Applying this identity in the case where \(a = x_i \in A = \mathcal{D}(P_n) \), we see that

\[
\partial^{[\beta]} x_i^k = \sum_{j=0}^{\beta_i} \binom{k}{j} x_i^{k-j} \partial^{[\beta-e_i]}, \ \beta \in \mathbb{N}^n, \ k \geq 0,
\]

where \(e_1 := (1,0,\ldots,0), \ldots, e_n := (0,\ldots,0,1) \). Then, for any polynomial \(f \in P_n \),

\[
[\partial^{[\beta]}, f] = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \partial^{[\beta-e_i]} + \cdots = \sum_{i=1}^{n} \partial^{[\beta-e_i]} \frac{\partial f}{\partial x_i} + \cdots,
\]

where the three dots denote an element of \(\mathcal{D}(P_n)_{[\beta]-2} \) where \(\{\mathcal{D}(P_n)_{[i]} \}_{i \geq 0} \) is the order filtration on \(\mathcal{D}(P_n) \).

For an algebra \(R \), \(R^{op} \) (or \(R^o \)) stands for the opposite algebra (\(R = R^{op} \) as vector spaces but the multiplication in \(R^{op} \) is given by the rule \(a \cdot b = ba \)).

Proposition 6.2. Let \(K \) be a field of characteristic \(p > 0 \) and \(L \) a simple \(\Lambda_e \)-module. Then

1. The induced \(\mathcal{D}(P_n) \)-module \(\mathcal{D}(P_n) \otimes_{\Lambda_e} L = \bigoplus_{\alpha \in \mathbb{N}^n} l^\alpha \otimes L \) is a holonomic \(\mathcal{D}(P_n) \)-module with \(K^p \otimes L \simeq L \) as \(K \)-modules where \(\Lambda_{-e} = \bigoplus_{\alpha \in \mathbb{N}^n} K^\alpha \).

If, in addition, the field \(K \) is perfect, then the \(\mathcal{D}(P_n) \)-module \(\mathcal{D}(P_n) \otimes_{\Lambda_e} L \) is simple.
2. Let $F = \{F_i\}$ be the canonical filtration on $D(P_n)$ and $\{F_iL\}$ be the filtration of standard type on the $D(P_n)$-module $D(P_n) \otimes_{\Lambda_e} L$. Then $\dim_K(F_iL) = \dim_K(L)\left(\begin{array}{c}i+n \\ n\end{array}\right)$ for all $i \geq 0$.

3. If, in addition, the field K is perfect, then the endomorphism algebra $\text{End}_D(P_n)(D(P_n) \otimes_{\Lambda_e} L)$ is a finite field extension over K isomorphic to K if $\varepsilon = (-1, \ldots, -1)$, and to L' if $\varepsilon \neq (-1, \ldots, -1)$ where in this case $\Lambda_{\varepsilon} \simeq P_s \otimes \Lambda(n-s)$, $s \geq 1$, $L = L' \otimes K$ (Lemma 6.1).

4. The $D(P_n)$-module $D(P_n) \otimes_{\Lambda_e} L$ is finitely presented iff $\varepsilon = (1, \ldots, 1)$.

Proof. It follows from the decomposition $D := D(P_n) = \Lambda_{-\varepsilon} \otimes \Lambda_{\varepsilon} = \bigoplus_{\alpha \in \mathbb{N}^n} \Lambda^\alpha \otimes \Lambda_{\varepsilon}$ that $M := D \otimes_{\Lambda_e} L \simeq \bigoplus_{\alpha \in \mathbb{N}^n} P^\alpha \otimes L$ and $K\Lambda^\alpha \otimes L \simeq L$ as K-modules. Then it becomes obvious that, for $i \geq 0$,

$$\dim_K(F_iL) = \dim_K((\Lambda_{-\varepsilon} \cap F_i) \otimes L) = \dim_K(L) \cdot \dim_K((\Lambda_{-\varepsilon} \cap F_i) = \dim_K(L)\left(\begin{array}{c}i+n \\ n\end{array}\right).$$

This proves statement 2 and the fact that M is a holonomic D-module.

It follows from Lemma 6.1 that the D-module M is finitely presented iff the $\Lambda_{-\varepsilon}$-module L is also, iff $\varepsilon = (1, \ldots, 1)$. This proves statement 4.

First, let us prove simplicity of M in the case when the field K is perfect. If $\varepsilon = (-1, \ldots, -1)$ then, by Lemma 6.1 $M = P_n$ with natural action of the ring D of differential operators on it, and so P_n is a simple D-module with $\text{End}_D(P_n) = \bigcap_{i \in \mathbb{N}^n} \ker\partial_i(\partial[\beta]) = K$.

It remains to consider the case when $\varepsilon \neq (-1, \ldots, -1)$. In this case (up to order), $\Lambda_{\varepsilon} = P_s \otimes \Lambda(t)$ for some $s \geq 1$, $t = n-s$. By Lemma 6.1 $L = L' \otimes K$ for some finite field $L' = P_s/m$ over K where m is a maximal ideal of the polynomial algebra P_s. Now, $D(P_n) = D(P_s) \otimes D(P_t)$, $D(P_s) = \Lambda(s) \otimes P_s$, and $D(P_t) = P_t \otimes \Lambda(t)$. The $D(P_n)$-module M is the tensor product $M_s \otimes M_t$ of the $D(P_s)$-module $M_s := D(P_s) \otimes_{P_s} L' \simeq \Lambda(s) \otimes L'$ and the $D(P_t)$-module $M_t := D(P_t) \otimes_{\Lambda(t)} \Lambda(t)/\Lambda(t)_+ = D(P_t) \otimes_{\Lambda(t)} K \simeq P_t$. Moreover, $M \simeq \Lambda(s) \otimes L' \otimes P_t$. Since M_t is a simple $D(P_t)$-module with $\text{End}_K(M_t) = K$, to prove the fact that M is a simple $D(P_n)$-module it suffices to show that M_s is a simple $D(P_s)$-module. For each $i = 1, \ldots, s$, the kernel of the K-algebra homomorphism $K[x_i] \rightarrow P_s \rightarrow L' = P_s/m$ is generated by an irreducible polynomial, say p_i. By the assumption, K is a perfect field, so the polynomials p_i and $p'_i := \frac{\partial \partial[\beta]}{\partial x_i} \neq 0$ are co-prime. Therefore, the multiplication by p'_i yields an invertible K-linear map from the field L' to itself. Let u be a nonzero element of M_s. We have to show that $D(P_s)u = M_s$. We use induction on the degree d of the element $u = \sum_{|\beta| = d} \partial[\beta] \otimes l_\beta + \sum_{|\beta'| < d} \partial[\beta'] \otimes l_{\beta'}$ where $l_\beta \in L'$ (not all are equal to zero) and $l_{\beta'} \in L'$ where $\beta, \beta' \in \mathbb{N}^s$. The first sum is called the leading term of the element u. The case $d = 0$ is obvious. So, let $d > 0$. There exists an index β in the leading term of u such that its ith coordinate is a nonzero one and $l_\beta \neq 0$. By (22), the element

$$p_iu = - \sum_{|\beta| = d} \partial[\beta - e_i] \otimes p'_i l_{\beta} + \cdots \neq 0,$$

has degree $< d$. Now, by induction, $D(P_s)p_iu = M_s$, and so $D(P_s)u = M_s$, as required. This finishes the proof of the first statement. It follows that $\bigcap_i \ker(p_i) = L'$ in M_s where $p_i : M_s \rightarrow M_s$, $v \mapsto p_i v$, which implies that $\text{ann}_{M_s}(m) = L'$, but $\text{ann}_{M_s}(m) \simeq \text{End}_D(P_s)(M_s)^{op}$ (here we write endomorphisms on the same side as
scalars, i.e. on the left). Now,
\[\text{End}_D(M)^{\text{op}} \simeq \text{ann}_M(m) \cap \text{ann}_M(\Lambda(t^+)) = (K \otimes L' \otimes P_1) \cap (\Lambda(s) \otimes L' \otimes K) \]
\[= K \otimes L' \otimes K \simeq L'. \]
This proves statement 3 in the case \(\varepsilon \neq (-1, \ldots, -1) \). The case \(\varepsilon = (-1, \ldots, -1) \) has been considered already. The proof of the proposition is complete. \(\Box \)

For any algebraic field \(L \) over \(K \), let \(L^{sep} \) be the maximal separable subfield of \(L \) over \(K \), \(L^{sep} \) is generated by all the separable subfields of \(L \) over \(K \). If the field \(K \) is not necessarily perfect, then the induced module from Proposition 6.2 is not a simple module but rather semi-simple and its endomorphism algebra is not a field but rather a direct product of matrix algebras with coefficients from separable fields (Lemmas 6.3, 6.4 and Corollary 6.5). To prove these facts, first, we consider the simpler case when \(n = 1 \). A simple \(P_1 \)-module \(L \) is, in fact, a field \(L = K[x]/(g) \) where \(P_1 = K[x] \) and \(g(x) := f(x^{p^k}) \) is an irreducible polynomial such that \(f(t) \in K[t] \) is an irreducible separable polynomial \((\frac{df}{dt}) \neq 0 \) and \(k \geq 0 \). Then \(L' := K[x^{p^k}]/(g) \simeq K[t]/(f(t)) \) is a finite separable field extension of \(K \), \([L':K] = \text{deg}_K(f(t)) \). Clearly, \(L' = L^{sep} \).

Lemma 6.3. Let \(K, L, \) and \(g \) be as above.

1. The factor algebra \(\overline{A} := \Lambda\{p^k\} \otimes P_1/(g) \) of the subalgebra \(A := T_k := \Lambda\{p^k\} \otimes P_1 \) of \(D(P_1) \) at the central element \(g \) is isomorphic to the matrix algebra \(M_{p^k}(L') \) of rank \(L : L^{sep} = p^k \) with coefficients from the field \(L^{sep} := L' := K[x^{p^k}]/(g) \).
2. \(\text{End}_{D(P_1)}(D(P_1) \otimes_{P_1} L)^{\text{op}} \simeq \overline{A} \).
3. The \(D(P_1) \)-module \(D(P_1) \otimes_{P_1} L \) is a semi-simple module isomorphic to a direct sum of \(p^k \) copies of the simple \(D(P_1) \)-module \(U := D(P_1) \otimes_A A/A(g, \Lambda\{p^k\}, +) = \Lambda[p^k] \otimes L \), and \(\text{End}_{D(P_1)}(U)^{\text{op}} \simeq L' \).
4. The map from the set of left ideals of the algebra \(\overline{A} \) to the set of \(D(P_1) \)-submodules of the induced module \(D(P_1) \otimes_{P_1} L \) given by the rule \(\nabla \mapsto D(P_1) \otimes_{A \overline{A}} \nabla \) is a bijection with inverse \(N \mapsto N \cap \overline{A} \).
5. The induced \(D(P_1) \)-module \(D(P_1) \otimes_{P_1} L \) is simple iff the polynomial \(g \) is separable over \(K \) (i.e. when \(k = 0 \)).

Remarks. 1. This lemma will be used as an inductive step in Theorem 9.3 which is a key result behind the fact that every holonomic module has finite length (Theorem 9.6).

2. The opposite algebra appears in statement 2 simply because we write endomorphisms on the same side as scalars. The isomorphism in statement 2 is in fact an identity if one identifies the opposite algebra of the endomorphism algebra with the idealizer of the corresponding left ideal that defines the cyclic module.

Proof. Let \(D = D(P_1), P = P_1 \), and \(g = f(x^{p^k}) \). Recall that \(D = \Lambda \otimes P = \Lambda[p^k] \otimes \Lambda[p^k] \otimes P = \Lambda[p^k] \otimes A \) where \(A \) is a subalgebra of \(D \), and \(K[x^{p^k}] \) is the center of the algebra \(A \). The induced \(D \)-module
\[D \otimes_{P} L \simeq D/Dg \simeq \Lambda[p^k] \otimes \overline{A} = \bigoplus_{i \geq 0} \Lambda(p^k) \otimes \overline{A}. \]
It follows from the decomposition $\mathcal{A} = \Lambda[p^k] \otimes P/(g) = \bigoplus_{0 \leq i < p^k} \partial[i]x^iL' = \bigoplus_{0 \leq i < p^k} \partial[i]L$ that the finite dimensional algebra \mathcal{A} is a simple algebra with the center L' (use $\text{ad } x$ and the fact that L is a field), and $\text{dim}_{L'}(\mathcal{A}) = p^k$. In order to prove that the algebra \mathcal{A} is isomorphic to the matrix algebra $M_{p^k}(L')$ it suffices to find a simple \mathcal{A}-module U' such that $\text{dim}_{L'}(U') = p^k$ and $\text{End}_{\mathcal{A}}(U') \simeq L'$. One can easily verify that the \mathcal{A}-module

\[(23) \quad U' := \mathcal{A}/\mathcal{A}(g, \Lambda[p^k], +) \simeq \bigoplus_{0 \leq i < p^k} P\partial[i]/(Pg \oplus \bigoplus_{1 \leq i < p^k} P\partial[i]) \simeq P/Pg \simeq L\]

satisfies the two conditions above. This proves statement 1.

One can verify (using (19), (22), and separability of $f(t)$) that the \mathcal{D}-module $\mathcal{D} \otimes_{A} U' = \Lambda[p^k] \otimes U'$ is a simple module. Now, the \mathcal{D}-module $\mathcal{D} \otimes_{P} L \simeq \Lambda[p^k] \otimes \mathcal{A} \simeq \Lambda[p^k] \otimes (U')^{p^k} \simeq (\Lambda[p^k] \otimes U')^{p^k}$ is a direct sum of p^k copies of the simple \mathcal{D}-module $\mathcal{D} \otimes_{A} U'$. All the isomorphisms are natural. This proves statement 3. Since the set of elements of $\mathcal{D} \otimes_{P} L = \Lambda[p^k] \otimes \mathcal{A}$ that are annihilated by the left ideal Ag of the algebra A is equal to \mathcal{A}, statement 2 follows. Statements 4 and 5 follow from statement 3.

For each $i = 1, \ldots, n$, let $L_i := K[x_i]/(g_i)$ be a simple $K[x_i]$-module where $g_i(x_i) = f_i(x_i^{p^k})$ is an irreducible polynomial such that $f_i(t) \in K[t]$ is an irreducible separable polynomial, $k_i \geq 0$, and $L_i' := K[x_i^{p^k}]/(g_i)$ is a finite separable field extension of K, $[L_i' : K] = \deg(x_i(f_i))$. Clearly, $L_i' = L_i^{sep}$.

Consider the $\mathcal{D}(P_n)$-module $M := \bigotimes_{i=1}^{n} M_i$ which is the tensor product of the induced $\mathcal{D}(K[x_i])$-modules $M_i := \mathcal{D}(K[x_i]) \otimes_{K[x_i]} L_i$. We keep the notation of Lemma (3) adding the subscript i in proper places when considering the module M_i. Clearly,

\[M \simeq \mathcal{D}(P_n) \otimes_{P_n} P_n/(g_1, \ldots, g_n) = \Lambda \otimes P_n/(g_1, \ldots, g_n) = \Lambda \otimes \bigotimes_{i=1}^{n} L_i\]

\[= \bigoplus_{\alpha \in \mathbb{N}^n} \partial[\alpha] \otimes \bigotimes_{i=1}^{n} L_i \simeq \mathcal{D}(P_n)/\mathcal{D}(P_n)(g_1, \ldots, g_n).
\]

\[\{M_i := F_i \cdot P_n/(g_1, \ldots, g_n)\} \text{ is the filtration of standard type on the } \mathcal{D}(P_n)\text{-module } M. \text{ Then}\]

\[\text{dim}_K(M_i) = \prod_{j=1}^{n} [L_j : K] \cdot \left(i + n \atop n \right) = p^k \prod_{j=1}^{n} \deg(f_j(t)) \cdot \left(i + n \atop n \right), \quad i \geq 0,\]

where $k := k_1 + \cdots + k_n$. So, M is a holonomic cyclic finitely presented $\mathcal{D}(P_n)$-module.

By Lemma (3) $\text{End}_{\mathcal{D}(K[x_i])}(M_i)^{op} \simeq \mathcal{A}_i \simeq M_{p^{k_i}}(L_i')$. It follows that

\[\text{End}_{\mathcal{D}(P_n)}(M)^{op} \simeq \bigotimes_{i=1}^{n} \mathcal{A}_i \simeq \bigotimes_{i=1}^{n} M_{p^{k_i}}(L_i') \simeq M_{p^k}(\bigotimes_{i=1}^{n} L_i') \]

\[\simeq M_{p^k}(\prod_{\nu=1}^{\mu} \Gamma_{\nu}) \simeq \prod_{\nu=1}^{\mu} M_{p^k}(\Gamma_{\nu}).\]

The tensor product of separable fields $\bigotimes_{i=1}^{n} L_i'$ is a semi-simple commutative algebra, it is a direct product $\prod_{\nu=1}^{\mu} \Gamma_{\nu}$ of finite separable fields Γ_{ν} over K. The algebra
Corollary 6.5. \((6.2)\) where the \(D\)-module. Then the induced \(D\)-module
which is a direct consequence of Lemma 6.3.

It follows from the equality \(\mathcal{D}(P_n) = (\bigotimes_{i=1}^n A_i) \otimes A\) where \(A := \bigotimes_{i=1}^n A_i,\ A_i := \Lambda_i[p^{k_i}] \otimes k[x_i],\) that the \(\mathcal{D}(P_n)\)-module

\[M \simeq \mathcal{D}(P_n) \otimes_A \mathcal{A} \simeq \bigoplus_{\nu=1}^\mu \mathcal{D}(P_n) \otimes_A V_\nu p^\nu \]

is a direct sum of simple \(\mathcal{D}(P_n)\)-modules \(U_\nu := \mathcal{D}(P_n) \otimes_A V_\nu,\) and each of them occurs with the same multiplicity \(p^\nu.\) Summarizing, we have the following lemma which is a direct consequence of Lemma 6.3

Lemma 6.4. Let \(K\) be an arbitrary field of characteristic \(p > 0,\) the \(\mathcal{D}(P_n)\)-module \(M = \bigotimes_{i=1}^n M_i\) be the tensor product of modules from Lemma 6.3. Then

1. The algebra \(\mathcal{A} := \bigotimes_{i=1}^n A_i \simeq \prod_{\nu=1}^\mu M_{\nu}(\Gamma_\nu)\) where \(k := k_1 + \cdots + k_n\) and \(\Gamma_\nu\) are finite separable field extensions of \(K.\)
2. \(\text{End}_{\mathcal{D}(P_n)}(M)^{op} \simeq \mathcal{A}.\)
3. The \(\mathcal{D}(P_n)\)-module \(M\) is a semi-simple holonomic cyclic finitely presented module isomorphic to the direct sum \(\bigoplus_{\nu=1}^\mu U_\nu^p p^\nu\) where \(U_\nu := \mathcal{D}(P_n) \otimes_A V_\nu\) is a simple holonomic finitely presented \(\mathcal{D}(P_n)\)-module, and \(\text{End}_{\mathcal{D}(P_n)}(U_\nu)^{op} \simeq \Gamma_\nu\) is a finite separable field extension of \(K.\)
4. On the simple \(\mathcal{D}(P_n)\)-module \(U_\nu = (\bigotimes_{i=1}^n A_i[p^{k_i}] \otimes V_\nu\) consider the filtration of standard type \(\{U_{\nu,i} := F_i \otimes V_\nu = \bigoplus_{i_1, p^{k_1} + \cdots + i_n p^{k_n} \leq i} \partial_1^{[i_1 p^{k_1}]} \cdots \partial_n^{[i_n p^{k_n}]} \otimes V_\nu\}.\) Then
 (a) the Poincaré series \(P_{U_\nu} = \frac{\dim_K(V_\nu)}{(1 - p^k)(1 - p^{k+k+\cdots+k})} = \frac{p^k[\Gamma_\nu : K]}{(1 - p^k)(1 - p^{k+k+\cdots+k})}\) where \(k := k_1 + \cdots + k_n,\)
 (b) the multiplicity \(e(U_{\nu,i}) = [\Gamma_\nu : K] = \dim_K(\text{End}_{\mathcal{D}(P_n)}(U_\nu)),\)
 (c) \(\dim_K(U_{\nu,i}) = \frac{e(U_{\nu,i})}{p^{\max(k_1, \ldots, k_n)}} p^0,\) \(i > 0,\) is an almost polynomial with period \(p^\max(k_1, \ldots, k_n).\)
5. The map from the set of left ideals of the algebra \(\mathcal{A}\) to the set of \(\mathcal{D}(P_n)\)-submodules of \(M\) given by the rule \(\mathcal{V} \mapsto \mathcal{D}(P_n) \otimes_A \mathcal{V}\) is a bijection with inverse \(N \mapsto N \cap \mathcal{A}.\)
6. The \(\mathcal{D}(P_n)\)-module \(M\) is simple if all the polynomials \(g_1, \ldots, g_n\) are separable (i.e. \(k_1 = \cdots = k_n = 0\)) and the tensor product of fields \(\bigotimes_{i=1}^n L_i' = \bigotimes_{i=1}^n L_i\) is a field.

Corollary 6.5. Let \(K\) be an arbitrary field of characteristic \(p > 0,\) \(L\) be a simple \(\Lambda_\epsilon\)-module. Then the induced \(\mathcal{D}(P_n)\)-module \(\mathcal{D}(P_n) \otimes_A L\) is a semi-simple holonomic \(\mathcal{D}(P_n)\)-module of finite length and \(\text{End}_{\mathcal{D}(P_n)}(\mathcal{D}(P_n) \otimes_A L) \simeq \prod_{\nu=1}^\mu M_{\nu}(\Gamma_\nu)\) where \(\Gamma_\nu\) are finite separable field extensions of \(K,\) \(n_\mu \geq 0,\) \(M_0(\Gamma_\nu) := \emptyset\) (see the proof).

Proof. We keep the notation of Lemma 6.2 and its proof. The case when \(\epsilon = (-1, \ldots, -1)\) has been considered already in the proof of Lemma 6.2 (in this case, \(M = P_n\) and \(\text{End}_{\mathcal{D}(P_n)}(P_n) \simeq K).\)

So, we may assume that \(\epsilon \neq (-1, \ldots, -1).\) In this case, \(\Lambda_\epsilon = P_s \otimes \Lambda(t)\) for some \(s \geq 1, t = n - s,\) and the \(\mathcal{D}(P_n)\)-module \(M = M_s \otimes M_t\) (see the proof of Lemma 6.2) where the \(\mathcal{D}(P_1)\)-module \(M_t\) is equal to \(P_t\) and the \(\mathcal{D}(P_s)\)-module \(M_s\) is an epimorphic image of a \(\mathcal{D}(P_s)\)-module \(M = \bigotimes_{i=1}^s M_i\) from Lemma 6.3. Since \(P_t\) is
a simple $\mathcal{D}(P_n)$-module with $\text{End}_{\mathcal{D}(P_n)}(P_n) = K$, every $\mathcal{D}(P_n) \otimes \mathcal{D}(P_n)$-submodule of $M \otimes M$ is equal to $\mathcal{N} \otimes \mathcal{M}$ for some $\mathcal{D}(P_n)$-submodule \mathcal{N} of M. By Lemma 6.4, $M \cong \bigoplus_{\nu=1}^{\mu} U_{\nu} \otimes \mathcal{M}$ and $\text{End}_{\mathcal{D}(P_n)}(M) \cong \prod_{\nu=1}^{\mu} M_{\nu}((\Gamma_{\nu})$ for some $\nu \geq 0$ such that $0 \leq \nu_p \leq p^k$ where $M_0(\Gamma_{\nu}) := \emptyset$. \hfill \Box

Let $\text{Max}(P_n)$ be the set of all the maximal ideals of the polynomial algebra P_n. Let $m \in \text{Max}(P_n)$, we are going to determine the structure of the induced $\mathcal{D}(P_n)$-module $\mathcal{D}(P_n) \otimes_{P_n} P_n/m$ (Lemma 6.6). This lemma is central in proving Theorem 6.7. Note the P_n/m is a finite field over K. For each $i = 1, \ldots, n$, there exists a unique monic irreducible polynomial $g_i \in K[x_i]$ such that $(g_i) = K[x_i] \cap m$, then

$g_i(x_i) = f_i(x_i^{p^k_i})$ where $f_i(t) \in K[t]$ is a monic irreducible separable polynomial for some $k_i \geq 0$. Note that $g_i, f_i,$ and k_i are uniquely determined by the ideal m. Let $k(m) = (k_1, \ldots, k_n), g(m) = (g_1, \ldots, g_n)$, and $f(m) = (f_1, \ldots, f_n)$. Let

$L_i := K[x_i]/(g_i), L_i^\prime := L_i^{sep} = K[x_i^{p^k_i}]/(g_i), \bigotimes_{i=1}^n L_i^\prime \cong \prod_{\nu=1}^{\mu} \Gamma_{\nu}$ where Γ_{ν} are finite separable fields over K, let $1 = \sum_{\nu=1}^{\mu} e_\nu$ be the corresponding sum of primitive orthogonal idempotents. Let $A(m) := \bigotimes_{i=1}^n A(m)_i$ where $A(m)_i := \Lambda_{i, [p^k_i]} \otimes K[x_i]$. Then $A(m)_i := A(m)_i / A(A(m), g_i)$,

$$A(m) := \bigotimes_{i=1}^n A(m)_i \cong M_{p^k}(\bigotimes_{i=1}^n L_i^\prime) \cong \prod_{\nu=1}^{\mu} M_{p^k}(\Gamma_{\nu}), \quad A(m) := \bigotimes_{i=1}^n A_i^{p^k_i},$$

where $k := k_1 + \cdots + k_n$.

Let us consider the map $\prod_{\nu=1}^{\mu} \Gamma_{\nu} \cong \bigotimes_{i=1}^n L_i^\prime \to P_n/m$ that is the composition of the inclusion $\bigotimes_{i=1}^n L_i^\prime \to \bigotimes_{i=1}^n L_i$ and the natural algebra epimorphism $\bigotimes_{i=1}^n L_i \to P_n/m$. Then there exists a unique ν such that the map $\Gamma_{\nu} \to P_n/m$ (for $e_\nu \to 1$) is a K-algebra monomorphism. We denote such a unique field Γ_{ν} by $\Gamma(m)$. It is obvious that

$$(24) \quad \Gamma(m) = (P_n/m)^{sep}$$

since $e_{\mu} \to 0$, if $\mu \neq \nu$, $\bigotimes_{i=1}^n L_i \to P_n/m$ is an epimorphism, and the p^jth ($j \gg 1$) power of each element of $\bigotimes_{i=1}^n L_i$ belongs to $\bigotimes_{i=1}^n L_i^\prime$. The module

$$U(m) := \mathcal{D}(P_n) \otimes A(m) V(m)$$

is a simple holonomic finitely presented $\mathcal{D}(P_n)$-module U_{ν} from Lemma 6.4 that corresponds to the field $\Gamma(m) = \Gamma_{\nu}$ where $V(m) := V_{\nu}$. \hfill \Box

Lemma 6.6. We keep the notation as above. For each maximal ideal m of the polynomial algebra P_n, the induced $\mathcal{D}(P_n)$-module $\mathcal{D}(P_n) \otimes_{P_n} P_n/m$ is isomorphic to $(P_n/m)^{sep}$ copies of the simple holonomic finitely presented $\mathcal{D}(P_n)$-module $U(m)$. In particular, the $\mathcal{D}(P_n)$-module $\mathcal{D}(P_n) \otimes_{P_n} P_n/m$ is simple iff the field P_n/m is separable.

Proof. Applying $\mathcal{D}(P_n) \otimes A(m)$ to the natural epimorphism of the $A(m)$-modules

$$\overline{A}(m) \to A(m) \otimes P_n P_n/m,$$

we have the natural epimorphism of $\mathcal{D}(P_n)$-modules

$$\mathcal{D}(P_n) \otimes A(m) \overline{A}(m) \cong \mathcal{D}(P_n) \otimes A(m) \prod_{\nu=1}^{\mu} M_{p^k}(\Gamma_{\nu})$$

$$\to \mathcal{D}(P_n) \otimes A(m) A(m) \otimes P_n P_n/m \cong \mathcal{D}(P_n) \otimes P_n P_n/m.$$
Since $\Gamma_{\mu} \to 0$, if $\Gamma_{\mu} \neq \Gamma_{\nu}$, we have the natural epimorphism of $\mathcal{D}(P_n)$-modules

$$\mathcal{D}(P_n) \otimes_{A(m)} M^{\beta}(\Gamma(m)) \simeq U(m)^{\hat{\beta}} \to \mathcal{D}(P_n) \otimes_{P_n} P_n/m.$$

Therefore, $\mathcal{D}(P_n) \otimes_{P_n} P_n/m \simeq U(m)^{s}$ for some $s \geq 1$. On the module $\mathcal{D}(P_n) \otimes_{P_n} P_n/m$ consider the filtration of standard type $\{F_i \otimes_P P_n/m = \bigoplus_{|\beta| \leq i} \partial^{[\beta]} \otimes P_n/m\}$. Then

$$\dim_K(F_i \otimes_P P_n/m) = [P_n/m : K] \left(\frac{i + n}{n!} \right) = \frac{[P_n/m : K]}{i^n + \cdots, i \gg 0}.$$

By Lemma 6.4, $\dim_K(U(m)^{\beta}_i) = \frac{s[\Gamma(m) : K]}{m^2} i^n + \cdots, i \gg 0$. Since the multiplicity does not depend on a filtration of standard type, we must have $s[\Gamma(m) : K] = [P_n/m : K]$. This finishes the proof of the lemma (see [24]). □

Let $\widetilde{\mathcal{D}(P_n)}(\text{fin. pres.})$ be the set of isoclasses of simple finitely presented $\mathcal{D}(P_n)$-modules. Theorem 6.7 classifies these modules and shows that every simple finitely presented $\mathcal{D}(P_n)$-module is holonomic.

Theorem 6.7. Let K be a field of characteristic $p > 0$. Then:

1. The map $\text{Max}(P_n) \to \widetilde{\mathcal{D}(P_n)}(\text{fin. pres.})$, $m \mapsto [U(m) := \mathcal{D}(P_n) \otimes_{A(m)} V(m)]$, is a bijection with inverse $[M] \mapsto \text{ass}_{P_n}(M)$ (the set of all associated primes for the P_n-module M). In particular, $\text{ass}_{P_n}(U(m)) = \{m\}$.

2. Each simple finitely presented $\mathcal{D}(P_n)$-module M is holonomic.

3. (An analogue of Quillen's Lemma). $\text{End}_{\mathcal{D}(P_n)}(U(m)) \simeq (P_n/m)^{\text{sep}}$.

4. On the simple $\mathcal{D}(P_n)$-module $U(m) = \Lambda(m) \otimes V(m)$ consider the filtration of standard type $\{U(m)_i := F_i \otimes V(m) = \bigoplus_{i_1, \ldots, i_n \geq 0} \partial^{[i_1 \beta_{1,1}]} \cdots \partial^{[i_n \beta_{n,k_n}]}\}$.

 - (a) the Poincaré series $P_{U(m)} = \frac{\prod_{i=1}^{n+1} (1 - \alpha_i^{\beta_{i,k_i}})}{(1 - \alpha_1^{\beta_{1,k_1}})}$, $k := k_1 + \cdots + k_n$,
 - (b) the multiplicity $e(U(m)) = [(P_n/m)^{\text{sep}} : K] = \dim_K(\text{End}_{\mathcal{D}(P_n)}(U(m)))$ is a natural number,
 - (c) $\dim_K(U(m)_i) = \frac{[P_n/m^{\text{sep}} : K]}{p^{\max\{k_1, \ldots, k_n\}}} i^n + \cdots, i \gg 0$, is an almost polynomial with period $p^{\max\{k_1, \ldots, k_n\}}$.

Remark. $\dim_K(U(m)_i)$ is not a polynomial (for $i \gg 0$) iff $\max\{k_1, \ldots, k_n\} > 1$.

Proof. 1. Let M be a simple finitely presented $\mathcal{D}(P_n)$-module. By Corollary 5.8 and its proof, $M \simeq \mathcal{D}(P_n) \otimes_{T_k} M'$ is a holonomic $\mathcal{D}(P_n)$-module where M' is a simple finite dimensional T_k-module. Then M' is a finite dimensional P_n-module as $P_n \subseteq T_k$. Then the P_n-module M' contains a simple P_n-module isomorphic to P_n/m where m is a maximal ideal of the algebra P_n. Then M is an epimorphic image of the $\mathcal{D}(P_n)$-module $N := \mathcal{D}(P_n) \otimes_{P_n} P_n/m$, so $M \simeq U(m)$, by Lemma 6.6. Note that $N = \bigcup_{i \geq 3} \text{ann}(m^i)$, and so $\{m\} = \text{ass}_{P_n}(N) = \text{ass}_{P_n}(U(m)^{s}) = \text{ass}_{P_n}(U(m))$. Therefore, the map $m \mapsto U(m)$ is a bijection with inverse $M \mapsto \text{ass}_{P_n}(M)$. Statements 2–4 follow from statement 1 and Lemma 6.3. □

Corollary 6.8. Let K be an algebraically closed field of characteristic $p > 0$. Then

1. The map $\text{Max}(P_n) = K^{\times} \to \widetilde{\mathcal{D}(P_n)}(\text{fin. pres.})$, $m \mapsto [U(m) := \mathcal{D}(P_n) \otimes_{P_n} P_n/m]$, is a bijection with inverse $[M] \mapsto \text{ass}_{P_n}(M)$. In particular, $\text{ass}_{P_n}(U(m)) = \{m\}$.

2. $\text{End}_{\mathcal{D}(P_n)}(U(m)) \simeq K$.

3. On the simple $D(P_n)$-module $U(m) = \Lambda \otimes P_n/m = \Lambda^n$ consider the filtration of standard type $\{U(m)_i : F_iT = \bigoplus_{|\beta| \leq i} K\partial^{(\beta)}T\}$. Then
 (a) the Poincaré series $P_{U(m)} = \frac{1}{(1-\alpha)^{m+n+1}}$,
 (b) the multiplicity $e(U(m)) = 1$,
 (c) $\dim_K(U(m)_i) = \binom{i+n}{n}$ is a polynomial.

7. Classification of tiny simple (nonfinitely presented)
 $D(P_n)$-modules

In this section, K is an arbitrary field of characteristic $p > 0$.

In this section, we complete a classification of the ‘smallest’ simple $D(P_n)$-modules (see Theorems 6.4 and 6.7), they are called tiny modules. Theorem 6.7 describes the set of tiny finitely presented $D(P_n)$-modules and Theorem 7.1 classifies the set of tiny nonfinitely presented $D(P_n)$-modules. They turned out to be holonomic with multiplicities which are natural numbers. Briefly, they have the same properties as simple finitely presented $D(P_n)$-modules.

Let $\varepsilon \in \{\pm 1\}^n$. A Λ_{ε}-module M is called a locally finite if $\dim_K(\Lambda_{\varepsilon}m) < \infty$ for each element $m \in M$. We denote by $\mathcal{L}_{\varepsilon}$ the category of all $D(P_n)$-modules that are locally finite as Λ_{ε}-modules. The category $\mathcal{L}_{\varepsilon}$ is a full subcategory of the category $D(P_n)$-modules (it is closed under taking sub-/factor modules and direct sums but not under infinite direct products).

Definition. A simple $D(P_n)$-module from $\mathcal{L}_{\varepsilon}$ is called a tiny module. The name is inspired by Theorem 6.4 (which roughly speaking says that ‘typically’ $\dim_K(\Lambda_{\varepsilon}m) = \infty$).

Our aim is to describe the set $\overline{D(P_n)}(\mathcal{L}_{\varepsilon})$ of all the isoclasses of simple $D(P_n)$-modules that are locally finite over Λ_{ε} (Theorem 7.1 and Corollary 7.2).

For each $m \in \text{Max}(\Lambda_{\varepsilon})$, the $D(P_n)$-module $D(P_n) \otimes_{\Lambda_{\varepsilon}} \Lambda_{\varepsilon}/m = \Lambda_{-\varepsilon} \otimes \Lambda_{\varepsilon}/m = \bigoplus_{\alpha \in \mathbb{Z}^n} \Lambda_{\varepsilon}^{1+\alpha} \otimes \Lambda_{\varepsilon}/m$ is a holonomic $D(P_n)$-module as the filtration of standard type $\{F_i1 \otimes \Lambda_{\varepsilon}/m = \bigoplus_{|\alpha| \leq i} \Lambda_{\varepsilon}^{1+\alpha} \otimes \Lambda_{\varepsilon}/m\}$ on it has polynomial growth $\dim_K(F_i1 \otimes \Lambda_{\varepsilon}/m) = \binom{i+n}{n}$, $i \geq 0$.

For each $j \geq 1$, $\text{ass}_{\Lambda_{\varepsilon}}(D(P_n) \otimes_{\Lambda_{\varepsilon}} \Lambda_{\varepsilon}/m^j) = \{m\}$ and $D(P_n) \otimes_{\Lambda_{\varepsilon}} \Lambda_{\varepsilon}/m^j \in \mathcal{L}_{\varepsilon}$. If $\varepsilon \neq (1, \ldots, 1)$ then, for each $j \geq 2$, the cyclic $D(P_n)$-module $D(P_n) \otimes_{\Lambda_{\varepsilon}} \Lambda_{\varepsilon}/m^j$ is not Noetherian as $\dim_K(m/m^2) = \infty$. It follows that each module $M \in \mathcal{L}_{\varepsilon}$ is an epimorphic image of a direct sum of induced modules of the type $D(P_n) \otimes_{\Lambda_{\varepsilon}} \Lambda_{\varepsilon}/m^j$, and that

$$M = \bigoplus_{m \in \text{Max}(\Lambda_{\varepsilon})} M^m,$$

is a direct sum of uniquely determined $D(P_n)$-submodules $M^m := \bigcup_{i \geq 1} \text{ann}_M(m^i)$ with $\text{ass}_{\Lambda_{\varepsilon}}(M^m) = \{m\}$. Therefore, each simple module from the category $\mathcal{L}_{\varepsilon}$ is an epimorphic image of a module of type $D(P_n) \otimes_{\Lambda_{\varepsilon}} \Lambda_{\varepsilon}/m$.

Example. For $\varepsilon = (1, \ldots, 1)$, i.e. $\Lambda_{\varepsilon} = P_n$, we already have the description of the set $\overline{D(P_n)}(\mathcal{L}_{\varepsilon}) = \overline{D(P_n)}(\text{fin. pres.})$ (Theorem 6.7).

Theorem 7.1. Let K be a field of characteristic $p > 0$ and $\Lambda_{\varepsilon} = \Lambda(t) \otimes P_s$ where $t \geq 1$ and $s := n - t$ (i.e. $\varepsilon \neq (1, \ldots, 1)$). Then $\overline{D(P_n)} = D(P_t) \otimes D(P_s)$ and:

1. The map $\text{Max}(P_s) \to \overline{D(P_n)}(\mathcal{L}_{\varepsilon})$, $m \mapsto U(m) := P_s \otimes U(m)$, is a bijection with inverse $M \mapsto \text{ass}_{P_s}(M)$. In particular, $\text{ass}_{P_s}(U(m)) = \{m\}$.

2. The map \(\text{Max}(\Lambda_z) \rightarrow \overline{\mathcal{D}(P_n)}(\mathcal{L}_z) \), \(\Lambda(t)_+ \otimes P_s + \Lambda(t) \otimes m \mapsto \mathcal{U}(m) \), is a bijection with inverse \(M \mapsto \text{ass}_{\Lambda_z}(M) \). In particular, \(\text{ass}_{\Lambda_z}(\mathcal{U}(m)) = \{ \Lambda(t)_+ \otimes P_s + \Lambda(t) \otimes m \} \).

3. Each simple \(\mathcal{D}(P_n) \)-module from \(\overline{\mathcal{D}(P_n)}(\mathcal{L}_z) \) is a holonomic, but not finitely presented.

4. (An analogue of Quillen’s Lemma). \(\text{End}_{\mathcal{D}(P_n)}(\mathcal{U}(m)) \simeq \text{End}_{\mathcal{D}(P_t)}(P_t) \otimes \text{End}_{\mathcal{D}(P_s)}(U(m)) \simeq K \otimes (P_s/m)^{\text{sep}} \simeq (P_s/m)^{\text{sep}} \).

5. On the simple \(\mathcal{D}(P_n) \)-module \(\mathcal{U}(m) = P_t \otimes \Lambda(m) \otimes V(m) \) consider the filtration of standard type

\[
\mathcal{U}(m)_i := F_i 1 \otimes V(m) = \bigoplus_{\alpha \in \mathbb{N}^+, |\alpha| + i_1 p^{s_1} + \cdots + i_k p^{s_k} \leq i} x^\alpha \partial_{x_1}^{i_1} \cdots \partial_{x_n}^{i_n} \otimes V(m).
\]

Then:
(a) the Poincaré series \(P_{\mathcal{U}(m)}(z) = (1 - \phi) P_t P_U(m) = \frac{p^k [(P_s/m)^{\text{sep}}, K]}{(1 - \phi)^{i+1} \prod_{i=1}^{s} (1 - \phi z_i)} \)

where \(k = k_1 + \cdots + k_s \),
(b) the multiplicity \(e(\mathcal{U}(m)) = e(P_t)e(U(m)) = [(P_s/m)^{\text{sep}}, K] \) and \(e(\mathcal{U}(m)) = \dim_K(\text{End}_{\mathcal{D}(P_s)}(U(m))) \),
(c) \(\dim_K(\mathcal{U}(m)_i) = \left(\frac{[P_s/m]}{\mathcal{U}(m)} \right)^{i+\cdots,i} i^n + \cdots, i \geq 0 \), is an almost polynomial with period \(p^\max\{k_1, \ldots, k_s\} \).

Remark. \(\dim_K(\mathcal{U}(m)_i) \) is not a polynomial (for \(i \geq 0 \)) if \(\max\{k_1, \ldots, k_s\} > 1 \).

Proof. Note that the map \(\text{Max}(P_s) \rightarrow \text{Max}(\Lambda_z) \), \(m \mapsto \Lambda(t)_+ \otimes P_s + \Lambda(t) \otimes m \), is a bijection. It follows that \(P_t = \mathcal{D}(P_t) / \mathcal{D}(P_t) \Lambda(t)_+ \) is a simple (nonfinitely presented) \(\mathcal{D}(P_t) \)-module with \(\text{End}_{\mathcal{D}(P_t)}(P_t) = K \), and that any simple \(\mathcal{D}(P_n) \)-module \(M \) from \(\overline{\mathcal{D}(P_n)}(\mathcal{L}_z) \) such that \(\text{ass}_{P_s}(M) = \{ m \} \) is an epimorphic image of the \(\mathcal{D}(P_n) \)-module \(P_t \otimes (\mathcal{D}(P_s) \otimes P_s / m) \). Therefore, \(M \simeq P_t \otimes U(m) \) (Lemma 6.6). Now, the results follow from Theorem \(6.7 \). \(\square \)

Corollary 7.2. Keep the notation from Theorem 7.1. If, in addition, the field \(K \) is algebraically closed, then:

1. The map \(\text{Max}(P_s) = K^* \rightarrow \overline{\mathcal{D}(P_n)}(\mathcal{L}_z) \), \(m \mapsto \mathcal{U}(m) := P_t \otimes (\mathcal{D}(P_s) \otimes P_s / m) \), is a bijection with inverse \(M \mapsto \text{ass}_{P_s}(M) \). In particular, \(\text{ass}_{P_s}(\mathcal{U}(m)) = \{ m \} \).

2. The map \(\text{Max}(\Lambda_z) \rightarrow \overline{\mathcal{D}(P_n)}(\mathcal{L}_z) \), \(\Lambda(t)_+ \otimes P_s + \Lambda(t) \otimes m \mapsto \mathcal{U}(m) \), is a bijection with inverse \(M \mapsto \text{ass}_{\Lambda_z}(M) \). In particular, \(\text{ass}_{\Lambda_z}(\mathcal{U}(m)) = \{ \Lambda(t)_+ \otimes P_s + \Lambda(t) \otimes m \} \).

3. \(\text{End}_{\mathcal{D}(P_s)}(\mathcal{U}(m)) \simeq K \).

4. On the simple \(\mathcal{D}(P_n) \)-module \(\mathcal{U}(m) = P_t \otimes \Lambda(s) \otimes P_s / m = P_t \otimes \Lambda(s) \mathbb{T} \), consider the filtration of standard type

\[
\mathcal{U}(m)_i := F_i \mathbb{T} = \bigoplus_{\alpha \in \mathbb{N}^+, \beta \in \mathbb{N}^+, |\alpha| + |\beta| \leq i} K x^\alpha \partial_{\mathbb{T}}^{[\beta]} \mathbb{T}.
\]

Then:
(a) the Poincaré series \(P_{\mathcal{U}(m)}(z) = \frac{1}{(1 - \phi)^{i+1}} \)
(b) the multiplicity \(e(\mathcal{U}(m)) = 1 \),
(c) \(\dim_K(U(m)_i) = \left(\frac{n}{i+n} \right) \) is a polynomial.
8. Multiplicity of each finitely presented holonomic $\mathcal{D}(P_n)$-module is a natural number

In this section, K is an arbitrary field of characteristic $p > 0$.

We know already that the multiplicity of a nonholonomic finitely presented $\mathcal{D}(P_n)$-module can be arbitrarily small (Lemma 5.6). In this section, we prove that the multiplicity of a holonomic finitely presented $\mathcal{D}(P_n)$-module is a natural number (Theorem 8.7). This result is a direct consequence of a classification of simple T_k-modules (Theorem 8.5) and Theorem 5.5.

For each $k = (k_1, \ldots, k_n) \in \mathbb{N}^n$, the subalgebra of $\mathcal{D}(P_n) = \bigotimes_{i=1}^n \mathcal{D}(K[x_i])$:

$$T_k = T_{k,n} := \bigotimes_{i=1}^n (\Lambda_{i,[p^{k_i}]} \otimes K[x_i]) = \bigoplus_{\beta < p^k} \partial^{[\beta]} \otimes P_n = \bigoplus_{\beta < p^k} P_n \otimes \partial^{[\beta]}$$

is a free left and right P_n-module of rank $p^{|k|}$ where $\Lambda_{i,[p^{k_i}]} := \bigotimes_{i=1}^n \Lambda_{i,[p^{k_i}]}$, $|k| := k_1 + \cdots + k_n$, and $\beta < p^k$ means $\beta_i < p^{k_i}$ for all i. It is a finitely generated Noetherian algebra with the center $Z_k := K[x_1^{p^{k_1}}, \ldots, x_n^{p^{k_n}}]$. The algebra T_k is a free Z_k-module of rank $p^{|k|}$ since $T_k = \bigoplus_{\beta < p^k} (\bigoplus_{\alpha < p^k} Kx_\alpha) \otimes Z_k$. On the algebra T_k consider the induced filtration from the canonical filtration $F = \{F_i\}$ on the algebra $\mathcal{D}(P_n)$:

$$T_k = \{ T_{k,i} := T_k \cap F_i = \bigoplus_{\beta < p^k, |\alpha| + |\beta| \leq i} Kx_\alpha \partial^{[\beta]} = \bigoplus_{\beta < p^k, |\alpha| + |\beta| \leq i} K \partial^{[\beta]} x_\alpha \}.$$

The filtration T_k is the tensor product of the induced filtrations on each tensor multiple $\Lambda_{i,[p^{k_i}]} \otimes K[x_i]$ of the algebra T_k. The associated graded algebra $\text{gr} T_k = \bigoplus_{i \geq 0} G_{k,i}$ is naturally isomorphic (as a graded algebra) to the tensor product of the commutative algebras $\Lambda_{i,[p^{k_i}]} \otimes P_n$ where

$$G_{k,i} := \bigoplus_{\beta < p^k, |\alpha| + |\beta| = i} K \partial^{[\beta]} x_\alpha.$$

The grading on $\text{gr} T_k$ is the tensor product of natural gradings on the tensor multiples. The algebra $\text{gr} T_k$ is an affine commutative algebra with nil-radical $\Lambda_{i,[p^{k_i}]} \otimes P_n$ (where $\Lambda_{i,[p^{k_i}]} := \bigoplus_{\beta < p^k} K \partial^{[\beta]}$) which is a prime ideal since

$$\text{gr} T_k/(\Lambda_{i,[p^{k_i}]} \otimes P_n) \simeq (\Lambda_{i,[p^{k_i}]} / \Lambda_{i,[p^{k_i}]} \otimes P_n) \simeq K \otimes P_n \simeq P_n.$$

$T_0 := T_{(0,\ldots,0)} = P_n$, $T_k \subseteq T_1$ iff $k \leq 1$ (i.e. $k_1 \leq l_1, \ldots, k_n \leq l_n$). $\mathcal{D}(P_n) = \bigcup_{k \in \mathbb{N}^n} T_k$, $T_k T_l \subseteq T_{\max(k,l)}$ where $\max(k,l) := (\max(k_1,l_1), \ldots, \max(k_n,l_n))$.

Lemma 8.1.

1. The algebra T_k is a somewhat commutative algebra with respect to the finite dimensional filtration $T_k = \{ T_{k,i} \}$ of the algebra $T_k = K[x_1^{p^{k_1}}, \ldots, x_n^{p^{k_n}}]$ and $G K(T_k) = n$. In particular, T_k is a finitely generated Noetherian algebra.

2. The Poincaré series of T_k,

$$P_{T_k} = \sum_{i \geq 0} \dim_K(T_{k,i}) t^i = \prod_{i=1}^n \frac{(1 + t + t^2 + \cdots + t^{p^{k_i} - 1})}{(1 - t)^{n+1}}$$

and the multiplicity $e(T_k) = p^{|k|}$.

3. The Hilbert function is, in fact, a polynomial $\dim_K(T_{k,i}) = \frac{p^{|k|}}{n!} i^n + \cdots$, $i \gg 0$.

4. Let $Z_k = K(x_1^{k_1}, \ldots, x_n^{k_n})$ be the field of fractions of Z_k. Then $T'_k := Z_k \otimes_{Z_k} T_k \simeq M_{p[k]}(Z_k)$, the matrix algebra.

5. The algebra T_k is a prime algebra of uniform dimension $p[k]$, and the localization $S^{-1}T_k$ of T_k at the set S of all the nonzero divisors is isomorphic to the matrix algebra $M_{p[k]}(Z_k)$.

6. The algebra T_k is preserved by the involution *, $T_k^* = T_k$, and so the algebra T_k is self-dual.

7. The algebra T_k is faithfully flat over its center.

8. The left and right Krull dimension of the algebra T_k is n.

Proof. Repeat the proof of Lemma 5.3.

Recall that the algebra $T_k = T_{k,n}$ is a somewhat commutative algebra with respect to the filtration T_k.

Lemma 8.2. Let M be a finitely generated T_k-module, $k \leq 1$, and $M' = T_i \otimes_{T_k} M$ a T_1-module. Then

1. $\text{GK}(T_i M') = \text{GK}(T_k M)$.
2. $e(T_i M') = p^{i_1-k} e(T_k M)$.

Proof. Let M_0 be a finite dimensional generating subspace for the T_k-module $M = T_k \otimes_{T_k} M_0$, $M_i := T_k \otimes_{T_k} M_0$, $i \geq 0$. Then $\dim_K(M_i) = \frac{e(M)}{d} i^d + \cdots$, $i \gg 0$ where $d = \text{GK}(M)$, $M' = \bigoplus_{0 \leq \beta < p^{-k}} \partial \partial_{\beta}^K \otimes M$ where $\partial \partial_{\beta}^K := \partial_{i_1}^{p \beta_1} \cdots \partial_{i_n}^{p \beta_n}$, and

\[
\bigoplus_{0 \leq \beta < p^{-k}} \partial \partial_{\beta}^K \otimes M_{i-p \beta} \subseteq M' := T_i \otimes_{T_k} M_0 \subseteq \bigoplus_{0 \leq \beta < p^{-k}} \partial \partial_{\beta}^K \otimes M_i, \quad i \gg 0.
\]

Therefore,

\[
\frac{p^{i_1-k}e(M)}{d!} i^d + \cdots = p^{i_1-k} \dim_K(M_{i-p \beta}) \leq \dim_K(M') = \frac{e(M')}{d} i^d + \cdots \leq p^{i_1-k} \dim_K(M_i) = \frac{p^{i_1-k}e(M)}{d!} i^d + \cdots,
\]

so $\text{GK}(T_i M') = \text{GK}(T_k M)$ and $e(T_i M') = p^{i_1-k} e(T_k M)$.

Theorem 8.3. Let $M' = T_k M_0'$ be a nonzero finitely generated T_k-module, $\dim_K(M_0') < \infty$, $k = (k_1, \ldots, k_n) \in \mathbb{N}^n$, $k = \max(k_1, \ldots, k_n)$, and $M := D(P_n) \otimes_{T_k} M'$. For the filtration $\{M'_i := T_k M_0'\}$ on the T_k-module M', we know that $\dim_K(M'_i) = \frac{e(M')}{d} i^d + \cdots$ for $i \gg 0$ where $d = \text{GK}(M')$. Let $\{M_i := F_i M_0'\}$ be the filtration of standard type on the $D(P_n)$-module M. Then:

1. $\dim_K(M_i) = \frac{e(M')}{p^{(n+d)!}(n+d)!} i^{n+d} + \cdots$ is an almost polynomial of period p^k with coefficients from $\frac{1}{p^{(n+d)!}(n+d)!} \mathbb{Z}$, and $e(M) = \frac{\text{e}(M')}{p^{(n+d)!}(n+d)!} \in \frac{1}{p^{(n+d)!}} \mathbb{N}$.

2. The dimension $\text{Dim}(M) = n + d \geq n$ is equal to $t - 1$ where t is the order of the pole of the Poincaré series $P_M(\theta) = \sum_{i \geq 0} \dim_K(M_i) \theta^i$ at the point $\theta = 1$, and the multiplicity $e(M) = (1 - \theta)^{\text{Dim}(M) + 1} P_M(\theta)|_{\theta = 1}$. The dimension $\text{Dim}(M)$ of M can be any natural number from the interval $[n, 2n]$.

5.1. Theorem 8.4

Therefore,

\[P := \sum_{i \geq 0} \dim_K(A_i^{[p^k]})0^i \]

and

\[e_P := (1 - \alpha)^{n+1} P_{s=1} = \frac{1}{p^k}. \]

It follows from the equality \(M = A^{[p^k]} \otimes M' \) that \(M_i = \sum_{s+t \leq i} A_i^{[p^k]} \otimes M'_t. \) Therefore, \(R := \sum_{s+t \geq 0} \dim_K(M_i)0^i = (1 - \alpha)PQ \) where \(Q := \sum_{i \geq 0} \dim_K(M'_i)0^i. \) By Corollary 5.2, \(e(M) = e_R = e_D e_Q = \frac{p^k}{p^k} e(M') \) and \(\dim(M) = n + d \geq n, \) and so \(\dim_K(M_i) = \frac{e(M'_i)}{(n+d)(n+d+\ldots)} \) by Lemma 5.1. The rest is obvious (Lemma 5.1).

\[\square \]

Theorem 8.4 (A classification of simple \(T_k \)-modules where \(T_k = T_{k,1}. \) Let \(K \) be a field of characteristic \(p > 0 \) and \(k \geq 0. \)

1. The map \(\text{Max}(K[x]) \to \hat{T}_k, m \mapsto [T_k(m)] \) is a bijection with inverse \([M] \mapsto \text{ass}_{K[x]}(M) \) where

\[
T_k(m) := \begin{cases}
T_k \otimes_{T_k(m)} T_k(m)(m, A_i^{[p^k]}),+ & k \geq k(m), \\
T_k/T_k(m)(m, A_i^{[p^k]}),+ & k < k(m),
\end{cases}
\]

2. \(\dim_K T_k(m) := \begin{cases}
p^{k-k(m)}[K[x]/m : K] = p^{k}([K[x]/m]_{sep} : K], & k \geq k(m), \\
[K[x]/m : K] = p^{k(m)}([K[x]/m]_{sep} : K), & k < k(m),
\end{cases} \)

so

\[
\frac{\dim_K T_k(m)}{p^{k([K[x]/m]_{sep} : K)}} := \begin{cases}
1, & k \geq k(m), \\
\frac{p^{k(m)-k}}{k}, & k < k(m).
\end{cases}
\]

3. \(\text{End}_{T_k}(T_k(m)) \sim \begin{cases}
\text{End}_{T_k(m)}(T_k(m)) & k \geq k(m), \\
K[x^{p^k}]/(g), & k < k(m),
\end{cases} \)

where \(m = (g) \) and \(g = f(x^{p^k(m)}) \). \(\text{End}_{T_k}(T_k(m)) \) is a subfield of \(K[x]/m \) that contains \((K[x]/m)_{sep} \) \(\text{End}_{T_k}(T_k(m)) = (K[x]/m)_{sep} \) if \(k \geq k(m). \)

4. \(\mathcal{D}(K[x]) \otimes_{T_k} T_k(m) \sim \begin{cases}
U(m), & k \geq k(m), \\
U(m)^{p^{k(m)-k}}, & k < k(m),
\end{cases} \)

where \(U(m) \) is the simple \(\mathcal{D}(K[x]) \)-module from Lemma 6.3.

5. If \(k \leq k(m), \) then the factor algebra \(T_k/T_k(m) \simeq M_{p^k}(K[x^{p^k}]/(g)) \) where \(m = (g). \)

Proof. Let \(\mathcal{D} = \mathcal{D}(K[x]). \)

4. Let \(T_k(m) \) be as in the second part of statement 1. If \(k \geq k(m), \) then \(\mathcal{D} \otimes_{T_k} T_k(m) \simeq \mathcal{D} \otimes_{T_k} T_k \otimes_{T_k(m)} T_k(m)/T_k(m)(m, A_i^{[p^k]}),+ \simeq U(m). \)

If \(k < k(m), \) then the \(\mathcal{D} \)-module \(M := \mathcal{D} \otimes_{T_k} T_k(m) \) is an epimorphic image of the \(\mathcal{D} \)-module \(\mathcal{D} \otimes_{K[x]} K[x]/m \simeq U(m)^{s} \) for some \(s \geq 1 \) (Lemma 6.4). Therefore,
$M \simeq U(m)^t$ for some t. By Theorem 5.5

$$e(M) = p^{-k} \dim_K(T_k(m)) = p^{k(m)-k}[(K[x]/m)^{sep} : K],$$

and by Theorem 6.7 $e(U(m)^t) = t[(K[x]/m)^{sep} : K]$. Therefore, $t = p^{k(m)-k}$.

1. If $k \geq k(m)$, then the T_k-module $T_k(m)$ is simple since D_{T_k} is faithfully flat and the induced D-module $D \otimes_{T_k} T_k(m)$ is simple (by statement 4).

If $k < k(m)$, then the $K[x]$-module $T_k(m)$ is simple, so the T_k-module $T_k(m)$ is simple. Now, statement 1 follows from statement 4 and Theorem 6.7.

2 and 3. These statements are obvious.

5. It follows from the decomposition

$$(26) \quad T_k/T_k g \simeq \Lambda_{[p^k]} \otimes K[x]/(g) = \bigoplus_{0 \leq i < p^k} \partial^{[i]} K[x]/(g) = \bigoplus_{0 \leq i,j < p^k} \partial^{[i]} x^j K[x^{p^k}]/(g)$$

that the algebra $T_k/T_k g$ is a simple algebra with the center $K[x^{p^k}]/(g)$ (use ad x and the fact that the $K[x]/(g)$ is a field), and $\dim_K(T_k/T_k g) = p^k [K[x]/m : K]$. By (26), the $T_k/T_k g$-module

$$U' := T_k/T_k g, \Lambda_{[p^k], +} \simeq K[x]/m$$

is simple, $\dim_K(U') = [K[x]/m : K] = p^k [K[x^{p^k}]/(g) : K]$, and $\text{End}_{T_k/T_k g}(U') \simeq K[x^{p^k}]/(g)$. This implies that $T_k/T_k g \simeq M_{p^k}(K[x^{p^k}]/(g))$ (this also proves statement 1, the case $k < k(m)$).

Let $k = (k_1, \ldots, k_n) \in \mathbb{N}^n$. We are going to classify simple T_k-modules (Theorem 8.5). The algebra T_k is a somewhat commutative algebra which is a finitely generated module over its center. By Quillen’s Lemma, every simple T_k-module has finite dimension over K. Given a finite dimensional T_k-module M. Then $M = \bigoplus_{m \in \text{Max}(P_n)} M^m$ is the direct sum of its submodules $M^m := \bigcup_{n=1}^\infty \text{ann}_{M^m}(m^i)$.

If, in addition, the T_k-module M is simple, then $M = M^m$ for a uniquely determined maximal ideal m of P_n and M is an epimorphic image of the finite dimensional T_k-module $T_k/T_k m \simeq T_k \otimes_{P_n} P_n/m \simeq \Lambda_{[p^k]} \otimes P_n/m$, $\dim_K(T_k \otimes_{P_n} P_n) = p^{k(m)}[P_n/m : K]$.

Suppose that $k \leq k(m) := (k_1', \ldots, k_n')$ (i.e. $k_1 \leq k_1', \ldots, k_n \leq k_n'$). Let $g(m) = (g_1, \ldots, g_n)$ where $g_i(x_i) = f_i(x_i^{p^k_i})$. We keep the notation as in (24). Consider natural maps

$$\prod_{\nu=1}^n \Gamma_{\nu} \simeq \bigotimes_{i=1}^n K[x_i^{p^k_i}]/(g_i) \rightarrow \bigotimes_{i=1}^n K[x_i^{p^k_i}]/(g_i) \xrightarrow{\phi} \bigotimes_{i=1}^n K[x_i]/(g_i) \xrightarrow{\pi} P_n/m.$$

By (24), we have the inclusions of fields:

$$\text{(27)} \quad (P_n/m)^{sep} = \Gamma(m) \subseteq \Gamma(k, m) := \text{im}(\pi \circ \phi) \subseteq P_n/m.$$

Consider the factor algebra (Theorem 8.3)

$$T_k/T_k g(m) \simeq \bigotimes_{i=1}^n T_k_i/T_k g_i \simeq \bigotimes_{i=1}^n M_{p^k_i} (K[x^{p^k_i}]/(g_i)) \simeq M_{p^k}(\bigotimes_{i=1}^n K[x^{p^k_i}]/(g_i)).$$

The T_k-module $T_k/T_k m$ is, in fact, a $T_k/T_k g(m)$-module, or even, a $M_{p^k}(\Gamma(k, m))$-module (since $e_\mu \rightarrow 0$ if $\mu \neq \nu$, see (24)). Let

$$\text{(28)} \quad V(k, m) := \Gamma(k, m)^{p^k}$$
be the only simple module of the matrix algebra $M(k, m) := M_{p^n}(\Gamma(k, m))$. Then,
\[\dim_K V(k, m) = p^{[\Gamma(k, m) : K]} \],
and
\[(V) \]
\[\text{End}_{M(k, m)}(V(k, m)) \cong \Gamma(k, m). \]

It follows that $T_k/T_k \simeq V(k, m)^{p^n}$ where
\[p^n = \frac{\dim_K(T_k/T_k)}{\dim_K(V(k, m))} = \frac{p^{[\Gamma(k, m) : K]}}{p^{[\Gamma(k, m) : K]}} = \frac{[P_n/m : K]}{[\Gamma(k, m) : K]}, \]
by (27). Therefore, $V(k, m)$ is the only simple T_k-module which is annihilated by a power of the maximal ideal m (provided $k \leq k(m)$).

For $\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{N}^n$, let $\min(\alpha, \beta) = (\min(\alpha_1, \beta_1), \ldots, \min(\alpha_n, \beta_n))$ and $\max(\alpha, \beta) = (\max(\alpha_1, \beta_1), \ldots, \max(\alpha_n, \beta_n))$.

Theorem 8.5 (A classification of simple T_k-modules). Let K be a field of characteristic $p > 0$ and $k = (k_1, \ldots, k_n) \in \mathbb{N}^n$.

1. The map $\operatorname{Max}(P_n) \to \frac{T_k}{T_k}, \ m \mapsto \left[T_k(m) \right]$ is a bijection with inverse $[M] \mapsto \operatorname{ass}_{p^n}(M)$ where
\[T_k(m) := \begin{cases} T_k \otimes_{T_k(m)} V(m), & k \geq k(m), \\ V(k, m), & k \leq k(m), \\ T_k \otimes_{T_{\min(k, k(m))}} V(\min(k, k(m)), m), & \text{otherwise}, \end{cases} \]

2. $\dim_K T_k(m)$ is defined as
\[\begin{cases} p^{[P_n/m]_{\operatorname{sep}} : K], & k \geq k(m), \\ p^{[\Gamma(k, m) : K]}, & k \leq k(m), \\ p^{[\Gamma(\min(k, k(m)), m) : K]}, & \text{otherwise}, \end{cases} \]

3. $r(k, m) := \frac{\dim_K T_k(m)}{p^{[P_n/m]_{\operatorname{sep}} : K]} := \begin{cases} 1, & k \geq k(m), \\ [\Gamma(k, m) : (P_n/m)_{\operatorname{sep}}], & k \leq k(m), \\ [\Gamma(\min(k, k(m)), m) : (P_n/m)_{\operatorname{sep}}], & \text{otherwise}, \end{cases} \]

and $r(k, m) = p^s$ for some $s = s(k, m) \in \mathbb{N}$.

4. $\operatorname{End}_{T_k}(T_k(m))$ is a subfield of P_n/m that contains $(P_n/m)_{\operatorname{sep}}$.

5. $\mathcal{D}(P_n) \otimes_{T_k} (T_k(m)) \simeq \mathcal{U}(T_k(m))$.

Proof. 1. Let $m \in \operatorname{Max}(P_n)$. If $k \geq k(m)$, then the $\mathcal{D}(P_n)$-module $\mathcal{D}(P_n) \otimes_{T_k(m)} V(m) \simeq \mathcal{D}(P_n) \otimes_{T_k} (T_k(m)) V(m)$ is simple (Theorem 6.7). Therefore, $T_k \otimes_{T_k(m)} V(m)$ must be a simple T_k-module.

If $k \leq k(m)$, then $V(k, m)$ is a simple T_k-module.

In the remaining case, one can prove that any nonzero T_k-submodule of $M := T_k \otimes_{T_k} V(l, m), l := \min(k, k(m))$, has a nonzero intersection with the simple T_k-submodule $V(l, m)$ of M. Therefore, M is a simple T_k-module. The rest of statement 1 is obvious (see Theorem 6.7 and the arguments preceding Theorem 8.5).
2. If \(k \geq k(m) \), then
\[
\dim_K(T_k(m)) = p^{|k - k(m)|} \dim_K V(m) = p^{|k - k(m)|} p^{k(m)}[\Gamma(m) : K] = p^{|k|[(P_n/m)^{sep} : K]}.
\]

If \(k \leq k(m) \), then the result follows from (28). In the third case, let \(l = \min(k, k(m)) \). Then
\[
\dim_K(T_k(m)) = p^{|k - l|} \dim_K V(l, m) = p^{|k - l|} p^{l} |\Gamma(l, m) : K| = p^{|k| |\Gamma(l, m) : K|}.
\]

The rest of statement 2 is obvious.

3. Evident.

4. This follows from statements 2 and 3.

5. By Lemma 8.9, the \(D(P_n) \)-module \(N := D(P_n) \otimes_{T_k} T_k(m) \) is isomorphic to \(U(m)^r \) for some \(r \in \mathbb{N} \). By Theorem 8.3, the multiplicity of the \(D(P_n) \)-module \(N \) is equal to \(e(N) = p^{-|k|} \dim_K T_k(m) \). By Theorem 6.7, \(e(U(m)^r) = r[(P_n/m)^{sep} : K] \), hence
\[
r = \frac{\dim_K T_k(m)}{p^{|k|[(P_n/m)^{sep} : K]}} = r(k, m).
\]

Corollary 8.6. \(p^{|k|} \dim_K(M) \) for all finite dimensional \(T_k \)-modules \(M \).

Theorem 8.7. Let \(M \) be a nonzero holonomic finitely presented \(D(P_n) \)-module. Then its multiplicity is a natural number.

Proof. This follows directly from Corollary 8.6, 21, and Theorem 8.3.

9. Holonomic sets of subalgebras with multiplicity. Every holonomic \(D(P_n) \)-module has finite length

In this section, \(K \) is an arbitrary field of characteristic \(p > 0 \) if it is not stated otherwise.

In this section, the concept of a holonomic set of subalgebras with multiplicity is introduced which is a crucial one in the proof of the analogue of the inequality of Bernstein for the algebra \(D(P_n) \) (Theorem 9.3) and in the proof of the fact that each holonomic \(D(P_n) \)-module has finite length and the length does not exceed the multiplicity (Theorem 9.6). It is proved that \(n \leq \dim(L) \leq 2n \) for each nonzero finitely generated \(D(P_n) \)-module \(L \), and, for each real number \(d \in [n, 2n] \), there exists a cyclic \(D(P_n) \)-module \(M \) with \(\dim(M) = d \) (Theorem 9.11), and there exists a cyclic nonholonomic \(D(P_n) \)-module \(N \) with \(\dim(N) = n \) (Proposition 9.9).

Holonomic sets of subalgebras. Let \(A \) be an algebra over an arbitrary field \(K \) with a finite dimensional filtration \(A = \{A_i\}_{i \geq 0} \) such that \(\dim(A) = \gamma(\dim_K A_i) < \infty \). Any subalgebra \(B \) of the algebra \(A \) has the induced finite dimensional filtration \(B = \{B_i := B \cap A_i\} \) and \(\dim(B) = \gamma(\dim_K B_i) \leq \dim(A) < \infty \).

Definition. A set \(C = \{C_\nu\}_{\nu \in \mathcal{N}} \) of subalgebras of the algebra \(A \) is called a subholonomic set if there exists a real positive number \(h_C \) such that for each nonzero \(A \)-module \(M \) there exists \(\nu \in \mathcal{N} \) and a finitely generated \(C_\nu \)-submodule \(M_\nu \) of \(M \) such that \(\dim(C_\nu M_\nu) \geq h_C \) or, equivalently, there exists a nonzero finite dimensional vector subspace \(V \) of \(M \) such that \(\gamma(\dim_K(C_\nu V)) \geq h_C \) for some \(\nu \) where \(C_{\nu, i} := C_\nu \cap A_i \) is the induced filtration on the algebra \(C_\nu \).
The following simple observation yields an idea of another proof of the inequality of Bernstein for the ring of differential operators in positive characteristic, and, more importantly, it produces an analogue of multiplicity.

Definition. A set $\mathcal{C} = \{C_\nu\}_{\nu \in \mathbb{N}}$ of subalgebras of the algebra A is called a subholonomic set of degree n and with leading coefficient l where n and l are positive real numbers if for each nonzero A-module M there exists a nonzero finite dimensional K-vector subspace $V \subseteq M$ and an algebra C_ν such that $\dim_K(C_\nu, V) \geq l n + \cdots$ (where the three dots mean a function which is negligible comparing to i^n, i.e. $o(i^n)$). If n is a natural number, then $e := nl$ is called the multiplicity for \mathcal{C}. If, in addition, $n = h_A$, then the set \mathcal{C} is called a holonomic set of subalgebras with leading coefficient l (or multiplicity e) for the algebra A where $h_A := \inf \{\dim(M) : M$ is a nonzero finitely generated A-module$\}$ is the holonomic number for the algebra A with respect to the filtration A. A finitely generated A-module $M = AM_0$ ($\dim M_0 < \infty$) is called a holonomic A-module if

$$\dim(A_i M_0) = l(M) i^n + \cdots, \quad i \gg 0,$$

for some positive real number $l(M)$ where the three dots mean $o(i^n)$.

Theorem 9.2. If there exists a holonomic set $\mathcal{C} = \{C_\nu\}_{\nu \in \mathbb{N}}$ of subalgebras with the leading coefficient $l_\mathcal{C}$ for the algebra A, then every holonomic A-module has finite length. Moreover, if $\{M_i\}$ is a filtration of standard type on a holonomic A-module M, then the length of the A-module M is

$$\leq \frac{\dim(M)}{l_\mathcal{C}},$$

where $l_\mathcal{C}$ is the leading coefficients for \mathcal{C}, $\dim_K(M_i) \leq l(M) i^n + \cdots, \quad i \gg 0$, and the three dots mean $o(i^n)$.

Proof. It suffices to prove the last statement. Suppose to the contrary that there exists a holonomic A-module M of length $> \frac{\dim(M)}{l_\mathcal{C}}$, we seek a contradiction. Then one can choose a strictly ascending chain of submodules in M: $0 = M_0 \subset M_1 \subset \cdots \subset M_t \subseteq M$ with $t > \frac{\dim(M)}{l_\mathcal{C}}$. For each factor module M_j/M_{j-1}, fix a nonzero finite dimensional subspace $V_j \subseteq M_j/M_{j-1}$ such that $\dim_K(C_\nu_{(j)}, V_j) \geq l_\mathcal{C} i^n + \cdots, \quad i \gg 0$, for some $\nu(j)$. Let V_j be a finite dimensional subspace of M_j such that $\overline{V}_j = V_1 + \cdots + V_t \subseteq M_s$. Then for $i \gg 0,$

$$tl_\mathcal{C} i^n + \cdots \leq \sum_{j=1}^{t} \dim(C_\nu_{(j)}, V_j) \leq \dim \left(\sum_{j=1}^{t} C_\nu_{(j)}, V_j \right) \leq \dim M_{i+s}$$

$$\leq l(M)(i+s)^n + \cdots = l(M)i^n + \cdots,$$

so $tl_\mathcal{C} \leq l(M)$, a contradiction. \hfill \square

Definition. We say that a subalgebra of $\mathcal{D}(P_n)$ is of type $P_s \otimes \Lambda(n-s)$ (resp. of type $P_s \otimes \bigotimes_{i=1}^{n-s} \Lambda_{-1}^{\nu_i}$) if after changing, if necessary, the order of the tensor
For $\varepsilon \in \{\pm 1\}^n$, $|\varepsilon|$ denotes the number of negative coordinates (e.g., $|(-1, \ldots, -1)| = n$ and $|(1, \ldots, 1)| = 0$).

Theorem 9.3. Let K be an arbitrary field of characteristic $p > 0$. For any nonzero $D(P_n)$-module M there exists a subalgebra Λ of the type $P_n \otimes \bigotimes_{i=1}^{n-s} \Lambda[i^{ki}]$ of $D(P_n)$ for some $k_i \geq 0$ and a finite dimensional K-subspace V of M such that $\dim_K(V) \geq p^{k_1 + \cdots + k_{n-s}}$ and the natural map $\Lambda \otimes V \to \Lambda V$, $\lambda \otimes v \mapsto \lambda v$ (where $\Lambda V \subseteq M$), is an isomorphism of Λ-modules.

Proof. The polynomial algebra P_n is a commutative Noetherian domain, so any maximal (with respect to inclusion) element of the set of annihilators $\{\text{ann}_{P_n}(v) | 0 \neq v \in M\}$ is a prime ideal. Fix such a prime ideal, say $\mathfrak{p} = \text{ann}_{P_n}(v)$ for some $0 \neq v \in M$. Without loss of generality, one can assume that $M = D(P_n)v$. Then the $D(P_n)$-module M is an epimorphic image of the $D(P_n)$-module $D(P_n)/D(P_n)p \simeq D(P_n) \otimes_{P_n} P_n/p = \bigcup_{i \geq 1} \text{ann}(p^i)$. So, any element of M is annihilated by a power of the ideal of \mathfrak{p}. To prove the theorem we use induction on n.

The case $n = 1$. There are two cases: either $\mathfrak{p} = 0$ or otherwise \mathfrak{p} is a maximal ideal of the polynomial algebra $P_1 := K[x]$. If $\mathfrak{p} = 0$, then $K[x]v \simeq K[x]$ is an isomorphism of $K[x]$-modules, so it suffices to take $s = 1$ and $V = Kv$. If $\mathfrak{p} \neq 0$, then the ideal \mathfrak{p} is generated by an irreducible polynomial of $K[x]$. Then the result follows from Lemma 5.3.

Suppose that $n > 1$ and the theorem is true for all $n' < n$. Now, we use a second downward induction on the Krull dimension $d = \text{dim}_{\mathfrak{p}}(P_n/p)$ of the algebra P_n/p starting with $d = n$, i.e. $\mathfrak{p} = 0$. In this case, it suffices to take $\varepsilon = (1, \ldots, 1)$ and $V = Kv$, since $P_nv \simeq P_n$ is an isomorphism of P_n-modules.

Suppose now that $d < n$ and the result is true for all d' such that $d < d' \leq n$. The field of fractions $Q = \text{Frac}(P_n/p)$ of the domain P_n/p has transcendence degree d over the field K, and it is generated by the elements $x_i = x_i + p$, $i = 1, \ldots, n$. Up to order of the elements x_i, we can assume that the elements x_1, \ldots, x_d are algebraically independent over K, so Q is the finite field extension of its subfield $Q_d := K(x_1, \ldots, x_d)$ of rational functions. Then $P_n = P_d \otimes P_{n-d}$ where $P_d = K[x_1, \ldots, x_d]$ and $P_{n-d} = K[x_{d+1}, \ldots, x_n]$. Correspondingly, $D(P_n) = D(P_d) \otimes D(P_{n-d})$ and the localization $Q_d \otimes_{P_d} D(P_n) = Q_d \otimes D(P_d) \otimes D(P_{n-d}) \simeq D(Q_d) \otimes D(P_{n-d})$ of the algebra $D(P_n)$ at $P_d \setminus \{0\}$ contains the subalgebra $Q_d \otimes D(P_{n-d}) \simeq D_{Q_d}(Q_d[x_{d+1}, \ldots, x_n])$ which is the ring of differential operators over the field Q_d of the polynomial algebra $Q_d[x_{d+1}, \ldots, x_n]$ in $n-d$ variables over the field Q_d. By the choice of the prime ideal \mathfrak{p} and the elements x_1, \ldots, x_d, the $D(P_n)$-module M is a submodule of its localization $Q_d \otimes_{P_d} M$ (use the fact that $\mathfrak{p} \cap P_d = 0$ and $M = \bigcup_{i \geq 1} \text{ann}(p^i)$) which is a $Q_d \otimes_{P_d} D(P_d)$-module, and, by restriction, it is a $D_{Q_d}(Q_d[x_{d+1}, \ldots, x_n])$-module.

Since $n-d < n$, by induction, one can find a subalgebra $\Lambda' = P_d(Q_d) \otimes \bigotimes_{i=1}^{n-d-s} \Lambda[i^{ki}]$ for some $k_i \geq 0$ and a finite dimensional Q_d-submodule of $D_{Q_d}(Q_d[x_{d+1}, \ldots, x_n])$, say $V = Q_d \otimes V$, of $Q_d \otimes_{P_d} M$ (where V is a finite dimensional K-submodule of M) such that $\dim_{Q_d}(V) = \dim_K(V) \geq p^{k_1 + \cdots + k_{n-d-s}}$ and the natural map
$\Lambda' \otimes_{\mathcal{O}_n} V \to \Lambda' V$ is an isomorphism of Λ'-modules. Let $\Lambda = P_d \otimes P_s \otimes \mathbb{Q} \Lambda^{[p^{s+1}]}$ (the subalgebra of $D(P_n)$). Then the natural map $\Lambda \otimes V \to \Lambda V$ is an isomorphism. By induction, the proof now is complete. □

There is another proof of the inequality of Bernstein in prime characteristic.

Theorem 9.4. Let K be an arbitrary field of characteristic $p > 0$. Then $\dim(M) \geq n$ for each nonzero finitely generated $D(P_n)$-module M.

Proof. By Theorem 9.3, $\dim(M) \geq \dim(P_s \otimes \bigotimes_{i=1}^{n-s} \Lambda^{[p^{s+1}]}))$ for some s and $k_i \geq 0$.

The next theorem gives explicitly examples of sets of holonomic subalgebras with multiplicity 1 for the algebra $D(P_n)$.

Theorem 9.5. Let K be an arbitrary field of characteristic $p > 0$, $C = \{a \text{ a subalgebra of } D(P_n) \text{ of type } P_s \otimes \bigotimes_{i=1}^{n-s} \Lambda^{[p^{s+1}]} | 0 \leq s \leq n, k_i \geq 0\}$ and $C' = \{\Lambda_\varepsilon | \varepsilon \in \{\pm 1\}^n\}$. Then the sets C and C' are holonomic sets of subalgebras with multiplicity 1 for the ring of differential operators $D(P_n)$ (equipped with the canonical filtration).

Proof. $\dim(A) = n$ for all algebras A from $C \cup C'$. By Theorem 9.3, C is a holonomic set of subalgebras with multiplicity 1. Each algebra from the set C is a subalgebra of one of the algebras from the set C', and $C' \subseteq C$. Therefore, C' is a holonomic set of subalgebras with multiplicity 1 for the algebra $D(P_n)$. □

Theorem 9.6. Let K be an arbitrary field of characteristic $p > 0$. Then each holonomic $D(P_n)$-module has finite length and its length does not exceed the multiplicity (i.e. the length of $M \leq \frac{\dim(M)}{n}$, see Theorem 9.2). Each nonzero submodule or factor module of holonomic module is holonomic.

Proof. This follows from Theorems 9.2 and 9.3. □

Theorem 9.7. Each holonomic $D(P_n)$-module is cyclic.

Proof. Repeat the characteristic zero proof which uses only the facts that each holonomic module has finite length and the ring of differential operators is simple and it is not an artinian module over itself. □

An example of a cyclic nonholonomic $D(P_n)$-module M with $\dim(M) = n$. Consider the subalgebra $\Lambda = \Lambda^{[p^{s+1}]}$ in $D(P_1)$. Given an infinite sequence of natural numbers k: $0 < k_s < k_{s+1} < \cdots$. Consider the cyclic Λ-module

$$M(k) = \Lambda/\Lambda(\partial^{[j]} | j \in [1, p^{k_1} - 1] \cup [p^{k_1} + 1, p^{k_2} - 1] \cup [p^{k_2} + 1, p^{k_3} - 1] \cup \ldots) \simeq K \mathbf{T} \oplus \bigoplus_{s \geq 1} K \partial^{[p^{s+1}]},$$

where \mathbf{T} is the canonical generator for the Λ-module $M(k)$. Consider the filtration of standard type on $M(k)$ (with respect to the canonical filtration on $D(P_1)$)

$$\{M(k)\} = \Lambda, K \mathbf{T} = \bigoplus_{s \geq 0} K \partial^{[p^{s+1}]}\mathbf{T} \oplus \cdots \oplus K \partial^{[p^{n+1}]}\mathbf{T}$$

where $s = s(i)$ satisfies $p^{k_s} \leq i < p^{k_{s+1}}$, so $\dim_k(M(k)_s) = s(i) + 1$. For each $s \geq 1$, $\bigoplus_{i \geq s} K \partial^{[p^{s+1}]}\mathbf{T}$ is a submodule of $M(k)_s$. The corresponding factor module is denoted by $M(k)_{s-1} = K \mathbf{T} \oplus K \partial^{[p^{s+1}]}\mathbf{T} \oplus \cdots \oplus K \partial^{[p^{n+1}]}\mathbf{T}$. In particular, $M(0) = K$. For each $s \geq 1$, $K \partial^{[p^{s+1}]}\mathbf{T}$ is the submodule of the Λ-module $M(k)$. In particular, the Λ-module $M(k)$ is not Noetherian since it contains the infinite direct sum $\bigoplus_{s \geq 1} K \partial^{[p^{s+1}]}\mathbf{T}$ of submodules.
The next lemma shows that the growth of the module \(M(k) \) can be arbitrary slow.

Lemma 9.8. For any nondecreasing function \(f : \mathbb{N} \to \mathbb{N} \) that takes infinitely many values and \(f(0) = 1 \), there exists a module \(M(k) \) such that \(\dim_K(M(k)_i) \leq f(i) \) for all \(i \geq 0 \) (for an arbitrary nondecreasing function \(f \) with \(f(0) = 1 \) there exists a \(\Lambda \)-module \(M(k_1, \ldots, k_n) \) such that \(\dim_K(M(k_1, \ldots, k_n)_i) \leq f(i) \) for all \(i \geq 0 \)).

Proof. One can easily find an infinite sequence of natural numbers \(0 < k_1 < k_2 < \cdots \) satisfying the property that \(\# \{ j \mid p^{k_j} < f(i) \} \leq f(i) \) for all \(i \geq 0 \). \(\square \)

Proposition 9.9. There exists a cyclic nonholonomic non-Noetherian \(D(P_n) \)-module \(M \) such that \(\operatorname{Dim}(M) = n \).

Proof. Fix a \(\Lambda \)-module \(M(k) \) from Lemma 9.8, which has zero growth, i.e. \(\gamma(d_i) = 0 \) where \(d_i = \dim_K(M(k)_i). \) The \(\Lambda \)-module \(M(k) \) is not a Noetherian module, hence the induced \(D(P_1) \)-module \(D(P_1) \otimes_A M(k) = P_1 \otimes M(k) \) is a cyclic non-Noetherian \(D(P_1) \)-module. Since \(D(P_n) = D(P_{n-1}) \otimes D(P_1) \), the \(D(P_n) \)-module

\[
M(k) := P_{n-1} \otimes (D(P_1) \otimes_A M(k)) \simeq P_n \otimes M(k)
\]

is a cyclic non-Noetherian \(D(P_n) \)-module. Let \(\{M_i\} \) be the filtration of standard type associated with the generating space \(K \mathcal{T} \) for the \(D(P_n) \)-module \(M(k) \) and the canonical filtration on \(D(P_n) \).

Then

\[
\dim_K(M_i) = \left(\frac{i + n}{n} \right) + \left(\frac{i + n - p^{k_1}}{n} \right) + \cdots + \left(\frac{i + n - p^{k_{i-1}}}{n} \right) \leq d_i \left(\frac{i + n}{n} \right).
\]

It follows that \(\operatorname{Dim}(M(k)) = \gamma(\dim_K M_i) \leq \gamma(d_i (\frac{i + n}{n})) = \gamma(d_i) + n = n \).

Fix an arbitrary natural number \(\ell \), then for all \(i \gg 0 \),

\[
\dim_K M_i > \left(\frac{i + n}{n} \right) + \left(\frac{i + n - p^{k_1}}{n} \right) + \cdots + \left(\frac{i + n - p^{k_{\ell-1}}}{n} \right) \geq \frac{(l+1)(i+n-p^{k_{\ell-1}})}{n!}i^{n} + \cdots.
\]

Therefore, \(\operatorname{Dim}(M(k)) = n \) and \(M(k) \) is not a holonomic \(D(P_n) \)-module. \(\square \)

The \(D(P_n) \)-module \(M(k) \) contains the infinite direct sum \(\bigoplus_{s \geq 1} P_{n-1} \otimes (D(P_1) \otimes K \partial^{[p^{k_1}]}) \) of simple holonomic \(D(P_n) \)-modules and each of them is isomorphic to the \(D(P_n) \)-module \(P_n = D(P_n) / \sum_{0 \neq a \in \mathbb{N}} D(P_n) \partial^{[a]} \).

An example of a cyclic \(D(P_n) \)-module \(M \) with \(\operatorname{Dim}(M) = d \) for each \(d \in [n, 2n] \). Given an ascending sequence \(b \) of positive real numbers \(b_0 = 0 < b_1 < b_2 < \cdots \) with \(\lim_{i \to \infty} b_i = \infty \) and a sequence \(s \) of positive real numbers \(s_1, s_2, \ldots \).

Consider a continuous piecewise linear function \(f = f_{b,s} : \mathbb{R}_+ \to \mathbb{R}_+ := \{ r \in \mathbb{R} \mid r \geq 0 \} \) such that \(f(0) = 1 \) and on each interval \([b_{i-1}, b_i] \) it is a linear function with slope \(s_i \). Then \(b \) and \(s \) are called the sequence of breaking points and slopes for the function \(f_{b,s} \), respectively.

Let us explain an idea of the proof of Lemma 9.10 which is an essential step in proving Theorem 9.11. For any \(r \in \mathbb{R} \) such that \(0 < r < 1 \), each linear function \(ax + b \) with \(a > 0 \) grows faster than the function \(y = x^r + 1 \). The function \(y = x^r + 1 \) can be approximated by a function \(f_{b,s} \) such that both functions have the same growth \(r \) and the graph of the function \(f_{b,s} \) lies below the graph of the function \(y = x^r + 1 \). When the slopes tend to zero sufficiently fast, then the restriction of the function
f_{b,s} to the set of natural numbers has the same growth. If we alter such a restriction at any subset of natural numbers such that the values at infinitely many breaking points remain unchanged, the new function from \(\mathbb{N} \) to \(\mathbb{R}_+ \) is increasing, and its graph lies below the graph of \(f_{b,s} \), then the altered function has growth \(r \). Such an altered function will be the function that defines the growth of the \(\Lambda \)-module \(M_r \) from Lemma 9.10.

Lemma 9.10. Let \(\Lambda = K[[\partial_1^1, \partial_2^2, \ldots , \partial_d^d]] \) and \(r \in \mathbb{R} \), \(0 < r < 1 \).

1. There exists a cyclic \(\Lambda \)-module \(M_r \) such that \(\text{Dim}(M_r) = r \).
2. The \(\mathcal{D}(P_1) \)-module \(M_r := \mathcal{D}(P_1) \otimes \Lambda M_r \) has dimension \(\text{Dim}(M_r) = 1 + r \).

Proof. 1. In this proof all functions are from \(\mathbb{N} \) to \(\mathbb{R}_+ \). We are going to find an approximation of the function \(y = x^r + 1 \) by a function of the form \(f = f_{b,s} \) where \(s : s_1, p^{-k_1}, s_2, p^{-k_2}, s_3, p^{-k_3}, \ldots \), where \(0 < k_1 < k_2 < \cdots \) and \(b : b_0 = 0 < p^{k_1} < b_1 < p^{k_2} < b_2 < \cdots \). Fix a sufficiently large natural number, say \(k_1 \). Then \(s_1 \) is the slope of the linear function passing through the points \((0,1)\) and \((p^{k_1},2)\), so \(f(p^{k_1}) = 2 \). Let \(b_2 \) be the largest natural number of the form \(i_1p^{k_1} \) such that \(i_1 \in \mathbb{N} \) and \(f(b_1) < y(b_1) \). Then fix a sufficiently large natural number, say \(k_2 \), such that \(b_1 < p^{k_2} \). Then \(s_2 \) is the slope of the linear function passing through the points \((b_1, f(b_1))\) and \((p^{k_2}, f(p^{k_2})) := f(b_1) + 1 \). Let \(b_2 \) be the largest natural number of the type \(i_2p^{k_2} \) such that \(i_2 \in \mathbb{N} \) and \(p^{k_2} < b_2 \) and \(f(b_2) < y(b_2) \). We continue in a similar fashion. The graph of the function \(f \) lies below the graph of the function \(y \). ‘Sufficiently large’ in the choices above means that \(\lim_{r \to \infty} \frac{y(b_r) - f(b_r)}{f(b_r)} = 0 \) (this can be easily achieved if the sequence \(0 < k_1 < k_2 < \cdots \) grows sufficiently fast, this condition guarantees that the values of the function \(f \) at the breaking points \(b_i \) are getting ‘closer and closer’ to the values of the function \(y = x^r + 1 \). Then \(\gamma(f) = \gamma(y) = r \). For each \(n \geq 1 \), let \(I_n = \{ j p^{k_n}, 1 \leq j \leq i_n \}, I := \bigcup_{n \geq 1} I_n \cup \{0\} \), and \(I' := \mathbb{N} \setminus I \). Consider the \(\Lambda \)-module \(M_r := \Lambda/\Lambda(\partial_1^1 \mid i \in I') \) and its filtration of standard type \(\{M_r, \nu\} \) induced from the canonical filtration on the algebra \(\Lambda \). Then \(\text{dim}_K(M_{r,j}) = f(j) \) for all \(j \geq 1 \), and \(\text{dim}_K(M_{r,b_i}) = f(b_i) \) for all \(\nu \geq 1 \). Therefore, \(\text{Dim}(M) := \gamma(\text{dim}_K(M_{r,j})) = \gamma(f) = r \).

2. It follows from \(M_r = P_1 \otimes \Lambda M_r \) that \(\text{Dim}(M_r) = 1 + r \) since \(\text{dim}_K(P_1, i) = i + 1 \) is a polynomial. \(\square \)

Theorem 9.11. Let \(K \) be a field of characteristic \(p > 0 \). Then \(n \leq \text{Dim}(M) \leq 2n \) for each nonzero finitely generated \(\mathcal{D}(P_n) \)-module \(M \), and for each real number \(d \) such that \(n \leq d \leq 2n \) there exists a cyclic \(\mathcal{D}(P_n) \)-module \(M \) such that \(\text{Dim}(M) = d \).

Proof. Let \(M \) be a nonzero finitely generated \(\mathcal{D}(P_n) \)-module. Then \(\text{Dim}(M) \geq n \) by Theorem 51.4 and \(\text{Dim}(M) \leq \text{Dim}(\mathcal{D}(P_n)) = 2n \). Therefore, \(n \leq \text{Dim}(M) \leq 2n \).

Given a real number \(d \) such that \(n \leq d \leq 2n \). Then \(d = n + s + r \) for some \(s \in \mathbb{N} \) and \(0 \leq r < 1 \). If \(r = 0 \), then \(\text{Dim}(\mathcal{D}(P_s) \otimes P_{n-s}) = 2s + n - s = d \). If \(r \neq 0 \), then \(\text{Dim}(\mathcal{D}(P_s) \otimes P_{n-s-1} \otimes M_r) = 2s + n - s - 1 + 1 + r = n + s + r = d \) where the \(\mathcal{D}(P_s) \)-module \(M_r \) is from Lemma 9.10. Obviously, the \(\mathcal{D}(P_n) \)-modules \(\mathcal{D}(P_s) \otimes P_{n-s} \) and \(\mathcal{D}(P_s) \otimes P_{n-s-1} \otimes M_r \) are cyclic. \(\square \)
References

[7] V. V. Bavula, Dimension, multiplicity, holonomic modules, and an analogue of the inequality of Bernstein for rings of differential operators in prime characteristic, II.

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
E-mail address: v.bavula@sheffield.ac.uk