Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

A diagrammatic approach to categorification of quantum groups I


Authors: Mikhail Khovanov and Aaron D. Lauda
Journal: Represent. Theory 13 (2009), 309-347
MSC (2000): Primary 81R50, 16S99
DOI: https://doi.org/10.1090/S1088-4165-09-00346-X
Published electronically: July 28, 2009
MathSciNet review: 2525917
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: To each graph without loops and multiple edges we assign a family of rings. Categories of projective modules over these rings categorify $ U^-_q(\mathfrak{g})$, where $ \mathfrak{g}$ is the Kac-Moody Lie algebra associated with the graph.


References [Enhancements On Off] (What's this?)

  • 1. S. Ariki.
    On the decomposition numbers of the Hecke algebra of $ G(m,1,n)$.
    J. Math. Kyoto Univ., 36(4):789-808, 1996. MR 1443748 (98h:20012)
  • 2. S. Ariki.
    Lectures on cyclotomic Hecke algebras,
    Quantum groups and Lie theory, London Math. Soc. Lecture Notes Ser., 290, Cambridge Univ. Press, Cambridge, 2001. MR 1903956 (2004a:20009)
  • 3. S. Ariki.
    Representations of quantum algebras and combinatorics of Young tableaux, volume 26 of University Lecture Series.
    AMS, Providence, RI, 2002.
  • 4. A. Beilinson, G. Lusztig, and R. MacPherson.
    A geometric setting for the quantum deformation of $ {\rm GL}\sb n$.
    Duke Math. J., 61(2):655-677, 1990. MR 1074310 (91m:17012)
  • 5. I. Bernstein, I. Gelfand, and S. Gelfand.
    Schubert cells, and the cohomology of the spaces $ {G}/{P}$.
    Russian Math. Surveys, 28:1-26, 1973. MR 0429933 (55:2941)
  • 6. J. Bernstein, I. B. Frenkel, and M. Khovanov.
    A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl(2)) via projective and Zuckerman functors.
    Selecta Math. (N.S.), 5(2):199-241, 1999. MR 1714141 (2000i:17009)
  • 7. S. Billey and V. Lakshmibai.
    Singular loci of Schubert varieties, volume 182 of Progress in Mathematics.
    Birkhäuser Boston, Inc., Boston, MA, 2000. MR 1782635 (2001j:14065)
  • 8. J. Brundan and A. Kleshchev.
    Hecke-Clifford superalgebras, crystals of type $ A\sb {2l}\sp {(2)}$ and modular branching rules for $ \widehat S\sb n$.
    Represent. Theory, 5:317-403 (electronic), 2001, MR 1870595 (2002j:17024)
  • 9. J. Chuang and R. Rouquier.
    Derived equivalences for symmetric groups and $ \mathfrak{sl}_2$-categorification.
    Ann. of Math., 167:245-298, 2008. MR 2373155 (2008m:20011)
  • 10. L. Crane and I. B. Frenkel.
    Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases.
    J. Math. Phys., 35(10):5136-5154, 1994. MR 1295461 (96d:57019)
  • 11. M. Demazure.
    Invariants symétriques entiers des groupes de Weyl et torsion.
    Invent. Math., 21:287-301, 1973. MR 0342522 (49:7268)
  • 12. V. Drinfeld.
    Quantum groups.
    In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 798-820, Providence, RI, 1987. Amer. Math. Soc. MR 934283 (89f:17017)
  • 13. I. B. Frenkel, M. Khovanov, and C. Stroppel.
    A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products.
    Selecta Math. (N.S.), 12(3-4):379-431, 2006. MR 2305608 (2008a:17014)
  • 14. I. Grojnowski.
    Affine $ sl_p$ controls the representation theory of the symmetric group and related Hecke algebras, 1999, math.RT/9907129.
  • 15. I. Grojnowski and G. Lusztig.
    On bases of irreducible representations of quantum $ {\rm GL}\sb n$.
    In Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), volume 139 of Contemp. Math., pages 167-174. 1992. MR 1197834 (94a:20070)
  • 16. I. Grojnowski and G. Lusztig.
    A comparison of bases of quantized enveloping algebras.
    In Linear algebraic groups and their representations (Los Angeles, CA, 1992), volume 153 of Contemp. Math., pages 11-19. 1993. MR 1247495 (94m:17012)
  • 17. I. Grojnowski and M. Vazirani.
    Strong multiplicity one theorems for affine Hecke algebras of type A.
    Transform. Groups, 6(2):143-155, 2001. MR 1835669 (2002c:20008)
  • 18. M. Jimbo.
    A $ q$-difference analogue of $ U(g)$ and the Yang-Baxter equation.
    Lett. Math. Phys., 10(1):63-69, 1985. MR 797001 (86k:17008)
  • 19. M. Kashiwara.
    Crystalizing the $ q$-analogue of universal enveloping algebras.
    Comm. Math. Phys., 133(2):249-260, 1990. MR 1090425 (92b:17018)
  • 20. M. Kashiwara.
    On crystal bases of the $ Q$-analogue of universal enveloping algebras.
    Duke Math. J., 63(2):465-516, 1991. MR 1115118 (93b:17045)
  • 21. M. Khovanov.
    Nilcoxeter algebras categorify the Weyl algebra.
    Comm. Algebra, 29(11):5033-5052, 2001. MR 1856929 (2002h:16041)
  • 22. A. Kleshchev.
    Branching rules for modular representations of symmetric groups. II.
    J. Reine Angew. Math., 459:163-212, 1995. MR 1319521 (96m:20019b)
  • 23. A. Kleshchev.
    Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux.
    J. London Math. Soc. (2), 54(1):25-38, 1996. MR 1395065 (96m:20019c)
  • 24. A. Kleshchev.
    On decomposition numbers and branching coefficients for symmetric and special linear groups.
    Proc. London Math. Soc. (3), 75(3):497-558, 1997. MR 1466660 (98g:20026)
  • 25. A. Kleshchev.
    Linear and projective representations of symmetric groups, volume 163 of Cambridge Tracts in Mathematics.
    Cambridge U. Press, 2005. MR 2165457 (2007b:20022)
  • 26. B. Kostant and S. Kumar.
    The nil Hecke ring and cohomology of $ G/P$ for a Kac-Moody group $ G$.
    Adv. in Math., 62(3):187-237, 1986. MR 866159 (88b:17025b)
  • 27. A. Lascoux, B. Leclerc, and J.-Y. Thibon.
    Hecke algebras at roots of unity and crystal bases of quantum affine algebras.
    Comm. Math. Phys., 181(1):205-263, 1996. MR 1410572 (97k:17019)
  • 28. A. D. Lauda.
    A categorification of quantum sl(2), 2008, arXiv:0803.3652.
  • 29. A. D. Lauda.
    Categorified quantum sl(2) and equivariant cohomology of iterated flag variaties, 2008, arXiv:0803.3848.
  • 30. B. Leclerc.
    Dual canonical bases, quantum shuffles and $ q$-characters.
    Math. Z. 246(4):691-732 (2004), no. 4. MR 2045836 (2005c:17019)
  • 31. G. Lusztig.
    Canonical bases arising from quantized enveloping algebras.
    J. Amer. Math. Soc., 3(2):447-498, 1990. MR 1035415 (90m:17023)
  • 32. G. Lusztig.
    Canonical bases arising from quantized enveloping algebras. II.
    Progr. Theoret. Phys. Suppl., 102:175-201 (1991), 1990.
    Common trends in mathematics and quantum field theories (Kyoto, 1990). MR 1182165 (93g:17019)
  • 33. G. Lusztig.
    Quivers, perverse sheaves, and quantized enveloping algebras.
    J. Amer. Math. Soc., 4(2):365-421, 1991. MR 1088333 (91m:17018)
  • 34. G. Lusztig.
    Introduction to quantum groups, volume 110 of Progress in Mathematics.
    Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098 (94m:17016)
  • 35. G. Lusztig.
    Tight monomials in quantized enveloping algebras.
    In Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), volume 7 of Israel Math. Conf. Proc., pages 117-132. Bar-Ilan Univ., 1993. MR 1261904 (95i:17016)
  • 36. L. Manivel.
    Symmetric functions, Schubert polynomials and degeneracy loci, volume 6 of SMF/AMS Texts and Monographs.
    AMS, Providence, RI, 2001.
  • 37. A. Mathas.
    Iwahori-Hecke algebras and Schur algebras of the symmetric group, volume 15 of University Lecture Series.
    AMS, Providence, RI, 1999. MR 1711316 (2001g:20006)
  • 38. C. Năstăsescu and F. Van Oystaeyen.
    Methods of graded rings, volume 1836 of Lecture Notes in Mathematics.
    Springer-Verlag, Berlin, 2004. MR 2046303 (2005d:16075)
  • 39. A. Postnikov.
    Enumeration in algebra and geometry.
    Ph.D. thesis, MIT, 1997 available at http://citeseer.ist.psu.edu/postnikov97enumeration.html.
  • 40. M. Reineke.
    Monomials in canonical bases of quantum groups and quadratic forms.
    J. Pure Appl. Algebra, 157(2-3):301-309, 2001. MR 1812057 (2002e:17022)
  • 41. C. Ringel.
    Hall algebras and quantum groups.
    Invent. Math., 101(3):583-591, 1990. MR 1062796 (91i:16024)
  • 42. R. Rouquier.
    Higher representation theory.
    Talk at IAS, March 2008.
  • 43. R. Rouquier.
    Higher representations of Kac-Moody algebras.
    Work in progress.
  • 44. J. Sussan.
    Category O and sl(k) link invariants, 2007, math.QA/0701045.
  • 45. M. Vazirani.
    Irreducible modules over the affine Hecke algebra: a strong multiplicity one result.
    Ph.D. thesis, UC Berkeley, 1999, math.RT/0107052.
  • 46. M. Vazirani.
    Parameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs.
    Transform. Groups, 7(3):267-303, 2002. MR 1923974 (2003g:20009)
  • 47. A. Zelevinsky.
    Induced representations of reductive p-adic groups. II. On irreducible representations of $ {\rm GL}(n)$.
    Ann. Sci. École Norm. Sup. (4), 13(2):165-210, 1980. MR 584084 (83g:22012)
  • 48. H. Zheng.
    A geometric categorification of tensor products of $ {U}_q(sl_2)$-modules, 2007, arXiv:0705.2630.
  • 49. H. Zheng.
    Categorification of integrable representations of quantum groups, 2008, arXiv:0803.3668.

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 81R50, 16S99

Retrieve articles in all journals with MSC (2000): 81R50, 16S99


Additional Information

Mikhail Khovanov
Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
Address at time of publication: Department of Mathematics, Columbia University, New York, New York 10027
Email: khovanov@math.columbia.edu

Aaron D. Lauda
Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
Email: lauda@math.columbia.edu

DOI: https://doi.org/10.1090/S1088-4165-09-00346-X
Keywords: Categorification, quantum groups, Grothendieck ring, canonical basis
Received by editor(s): August 7, 2008
Published electronically: July 28, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society