Unitary representations of rational Cherednik algebras

Authors:
Pavel Etingof and Emanuel Stoica; with an appendix by Stephen Griffeth

Journal:
Represent. Theory **13** (2009), 349-370

MSC (2000):
Primary 16S99

DOI:
https://doi.org/10.1090/S1088-4165-09-00356-2

Published electronically:
August 18, 2009

MathSciNet review:
2534594

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study unitarity of lowest weight irreducible representations of rational Cherednik algebras. We prove several general results, and use them to determine which lowest weight representations are unitary in a number of cases.

In particular, in type A, we give a full description of the unitarity locus (justified in Subsection 5.1 and the appendix written by S. Griffeth), and resolve a question by Cherednik on the unitarity of the irreducible subrepresentation of the polynomial representation. Also, as a by-product, we establish Kasatani's conjecture in full generality (the previous proof by Enomoto assumes that the parameter is not a half-integer).

**[BE]**Roman Bezrukavnikov, Pavel Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, arXiv:0803.3639.**[BEG]**Yu. Berest, P. Etingof, V. Ginzburg, Finite dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 19 (2003), 1053-1088. MR**1961261 (2004h:16027)****[CEE]**D. Calaque, B. Enriquez, P. Etingof,*Universal KZB equations I: the elliptic case*, arXiv:math/0702670.**[Ch1]**I. Cherednik, Towards harmonic analysis for DAHA: integral formulas for canonical traces, talk, www-math.mit.edu/˜etingof/hadaha.pdf.**[Ch2]**I. Cherednik, Non-semisimple Macdonald polynomials, arXiv:0709.1742.**[Ch3]**I. Cherednik, Double affine Hecke algebras. London Mathematical Society Lecture Note Series, 319. Cambridge University Press, Cambridge, 2005. MR**2133033 (2007e:32012)****[Chm]**Chmutova, Tatyana, Representations of the rational Cherednik algebras of dihedral type. J. Algebra 297 (2006), no. 2, 542-565. MR**2209274 (2006m:16038)****[DJ1]**R. Dipper and G. D. James, Representations of Hecke algebras of the general linear groups, Proc. London Math. Soc. 52 (1986), 20-52. MR**812444 (88b:20065)****[DJ2]**Richard Dipper, Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 57-82. MR**872250 (88m:20084)****[DJO]**C.F. Dunkl, M.F.E. de Jeu and E.M. Opdam, Singular polynomials for finite reflection groups, Trans. Amer. Math. Soc. 346 (1994), 237-256. MR**1273532 (96b:33012)****[Du]**C. Dunkl, Singular polynomials and modules for the symmetric groups, math/0501494, Int. Math. Res. Not. 2005, v. 39, 2409-2436. MR**2181357 (2006j:33012)****[Du2]**C. Dunkl, Integral kernels with reflection group invariance, Can. J. Math. 43 (1991), 1213-1227. MR**1145585 (93g:33012)****[EG]**P. Etingof, V. Ginzburg,*Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism*, Invent. Math., vol. 147, (2002), no. 2, 243-348. MR**1881922 (2003b:16021)****[E1]**P. Etingof, Calogero-Moser Systems and Representation Theory, Zurich lectures in advanced mathematics European Mathematical Society, 2007. MR**2296754****[En]**N. Enomoto, Composition factors of polynomial representation of DAHA and crystallized decomposition numbers, math.RT/0604369.**[FJMM]**B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. MR**1962014 (2004g:05149)****[Gri1]**S. Griffeth,*Towards a combinatorial representation theory for the rational Cherednik algebra of type .*, to appear in Proceedings of the Edinburgh Mathematical Society. arXiv:math/0612733**[Gri2]**S. Griffeth,*Orthogonal functions generalizing Jack polynomials*, arXiv:0707.0251**[GGOR]**V. Ginzburg, N. Guay, E. Opdam, R. Rouquier, On the category for rational Cherednik algebras. Invent. Math. 154 (2003), no. 3, 617-651. MR**2018786 (2005f:20010)****[Ka]**M. Kasatani, Subrepresentations in the polynomial representation of the double affine Hecke algebra of type at , Int. Math. Res. Notices, 2005, no. 28, 1717-1742. MR**2172339 (2007c:20012)****[Op]**E. M. Opdam, Some applications of hypergeometric shift operators. Invent. Math. 98 (1989), no. 1, 1-18. MR**1010152 (91h:33024)****[Su]**T. Suzuki, Cylindrical Combinatorics and Representations of Cherednik Algebras of type A, arXiv:math/0610029.

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
16S99

Retrieve articles in all journals with MSC (2000): 16S99

Additional Information

**Pavel Etingof**

Affiliation:
Department of Mathematics, Room 2-176, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Email:
etingof@math.mit.edu

**Emanuel Stoica**

Affiliation:
Department of Mathematics, Room 2-089, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Email:
immanuel@math.mit.edu

**Stephen Griffeth**

Affiliation:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, Minnesota 55455

Email:
griffeth@math.umn.edu

DOI:
https://doi.org/10.1090/S1088-4165-09-00356-2

Received by editor(s):
May 5, 2009

Received by editor(s) in revised form:
June 12, 2009

Published electronically:
August 18, 2009

Article copyright:
© Copyright 2009
American Mathematical Society