Unitary representations of rational Cherednik algebras

Authors:
Pavel Etingof and Emanuel Stoica; with an appendix by Stephen Griffeth

Journal:
Represent. Theory **13** (2009), 349-370

MSC (2000):
Primary 16S99

DOI:
https://doi.org/10.1090/S1088-4165-09-00356-2

Published electronically:
August 18, 2009

MathSciNet review:
2534594

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study unitarity of lowest weight irreducible representations of rational Cherednik algebras. We prove several general results, and use them to determine which lowest weight representations are unitary in a number of cases.

In particular, in type A, we give a full description of the unitarity locus (justified in Subsection 5.1 and the appendix written by S. Griffeth), and resolve a question by Cherednik on the unitarity of the irreducible subrepresentation of the polynomial representation. Also, as a by-product, we establish Kasatani's conjecture in full generality (the previous proof by Enomoto assumes that the parameter is not a half-integer).

**[BE]**Roman Bezrukavnikov, Pavel Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, arXiv:0803.3639.**[BEG]**Yuri Berest, Pavel Etingof, and Victor Ginzburg,*Finite-dimensional representations of rational Cherednik algebras*, Int. Math. Res. Not.**19**(2003), 1053–1088. MR**1961261**, https://doi.org/10.1155/S1073792803210205**[CEE]**D. Calaque, B. Enriquez, P. Etingof,*Universal KZB equations I: the elliptic case*, arXiv:math/0702670.**[Ch1]**I. Cherednik, Towards harmonic analysis for DAHA: integral formulas for canonical traces, talk, www-math.mit.edu/˜etingof/hadaha.pdf.**[Ch2]**I. Cherednik, Non-semisimple Macdonald polynomials, arXiv:0709.1742.**[Ch3]**Ivan Cherednik,*Double affine Hecke algebras*, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR**2133033****[Chm]**Tatyana Chmutova,*Representations of the rational Cherednik algebras of dihedral type*, J. Algebra**297**(2006), no. 2, 542–565. MR**2209274**, https://doi.org/10.1016/j.jalgebra.2005.12.024**[DJ1]**Richard Dipper and Gordon James,*Representations of Hecke algebras of general linear groups*, Proc. London Math. Soc. (3)**52**(1986), no. 1, 20–52. MR**812444**, https://doi.org/10.1112/plms/s3-52.1.20**[DJ2]**Richard Dipper and Gordon James,*Blocks and idempotents of Hecke algebras of general linear groups*, Proc. London Math. Soc. (3)**54**(1987), no. 1, 57–82. MR**872250**, https://doi.org/10.1112/plms/s3-54.1.57**[DJO]**C. F. Dunkl, M. F. E. de Jeu, and E. M. Opdam,*Singular polynomials for finite reflection groups*, Trans. Amer. Math. Soc.**346**(1994), no. 1, 237–256. MR**1273532**, https://doi.org/10.1090/S0002-9947-1994-1273532-6**[Du]**Charles F. Dunkl,*Singular polynomials and modules for the symmetric groups*, Int. Math. Res. Not.**39**(2005), 2409–2436. MR**2181357**, https://doi.org/10.1155/IMRN.2005.2409**[Du2]**Charles F. Dunkl,*Integral kernels with reflection group invariance*, Canad. J. Math.**43**(1991), no. 6, 1213–1227. MR**1145585**, https://doi.org/10.4153/CJM-1991-069-8**[EG]**Pavel Etingof and Victor Ginzburg,*Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism*, Invent. Math.**147**(2002), no. 2, 243–348. MR**1881922**, https://doi.org/10.1007/s002220100171**[E1]**Pavel Etingof,*Calogero-Moser systems and representation theory*, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007. MR**2296754****[En]**N. Enomoto, Composition factors of polynomial representation of DAHA and crystallized decomposition numbers, math.RT/0604369.**[FJMM]**B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin,*Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials*, Int. Math. Res. Not.**18**(2003), 1015–1034. MR**1962014**, https://doi.org/10.1155/S1073792803209119**[Gri1]**S. Griffeth,*Towards a combinatorial representation theory for the rational Cherednik algebra of type .*, to appear in Proceedings of the Edinburgh Mathematical Society. arXiv:math/0612733**[Gri2]**S. Griffeth,*Orthogonal functions generalizing Jack polynomials*, arXiv:0707.0251**[GGOR]**Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier,*On the category 𝒪 for rational Cherednik algebras*, Invent. Math.**154**(2003), no. 3, 617–651. MR**2018786**, https://doi.org/10.1007/s00222-003-0313-8**[Ka]**Masahiro Kasatani,*Subrepresentations in the polynomial representation of the double affine Hecke algebra of type 𝐺𝐿_{𝑛} at 𝑡^{𝑘+1}𝑞^{𝑟-1}=1*, Int. Math. Res. Not.**28**(2005), 1717–1742. MR**2172339**, https://doi.org/10.1155/IMRN.2005.1717**[Op]**E. M. Opdam,*Some applications of hypergeometric shift operators*, Invent. Math.**98**(1989), no. 1, 1–18. MR**1010152**, https://doi.org/10.1007/BF01388841**[Su]**T. Suzuki, Cylindrical Combinatorics and Representations of Cherednik Algebras of type A, arXiv:math/0610029.

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2000):
16S99

Retrieve articles in all journals with MSC (2000): 16S99

Additional Information

**Pavel Etingof**

Affiliation:
Department of Mathematics, Room 2-176, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Email:
etingof@math.mit.edu

**Emanuel Stoica**

Affiliation:
Department of Mathematics, Room 2-089, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Email:
immanuel@math.mit.edu

**Stephen Griffeth**

Affiliation:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, Minnesota 55455

Email:
griffeth@math.umn.edu

DOI:
https://doi.org/10.1090/S1088-4165-09-00356-2

Received by editor(s):
May 5, 2009

Received by editor(s) in revised form:
June 12, 2009

Published electronically:
August 18, 2009

Article copyright:
© Copyright 2009
American Mathematical Society