D-modules on the affine flag variety and representations of affine Kac-Moody algebras

Authors:
Edward Frenkel and Dennis Gaitsgory

Journal:
Represent. Theory **13** (2009), 470-608

MSC (2010):
Primary 17B67; Secondary 13N10

Published electronically:
November 2, 2009

MathSciNet review:
2558786

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper studies the connection between the category of modules over the affine Kac-Moody Lie algebra at the critical level, and the category of D-modules on the affine flag scheme , where is the Iwahori subgroup. We prove a localization-type result, which establishes an equivalence between certain subcategories on both sides. We also establish an equivalence between a certain subcategory of Kac-Moody modules, and the category of quasi-coherent sheaves on the scheme of Miura opers for the Langlands dual group, thereby proving a conjecture of the authors in 2006.

**[AB]**S. Arkhipov, R. Bezrukavnikov,*Perverse sheaves on affine flags and Langlands duality*, Israel J. of Math.**170**(2009), 135-185.**[ABBGM]**S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirković,*Modules over the small quantum group and semi-infinite flag manifold*, Transform. Groups**10**(2005), no. 3-4, 279–362. MR**2183116**, 10.1007/s00031-005-0401-5**[ABG]**Sergey Arkhipov, Roman Bezrukavnikov, and Victor Ginzburg,*Quantum groups, the loop Grassmannian, and the Springer resolution*, J. Amer. Math. Soc.**17**(2004), no. 3, 595–678. MR**2053952**, 10.1090/S0894-0347-04-00454-0**[BB]**Alexandre Beilinson and Joseph Bernstein,*Localisation de 𝑔-modules*, C. R. Acad. Sci. Paris Sér. I Math.**292**(1981), no. 1, 15–18 (French, with English summary). MR**610137****[BD]**A. Beilinson and V. Drinfeld,*Quantization of Hitchin's integrable system and Hecke eigensheaves*, available at http://www.math.uchicago.edu/arinkin/langlands/**[BV]**Alexander Beilinson and Vadim Vologodsky,*A DG guide to Voevodsky’s motives*, Geom. Funct. Anal.**17**(2008), no. 6, 1709–1787. MR**2399083**, 10.1007/s00039-007-0644-5**[Bez]**Roman Bezrukavnikov,*Noncommutative counterparts of the Springer resolution*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1119–1144. MR**2275638****[CHA]**Alexander Beilinson and Vladimir Drinfeld,*Chiral algebras*, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR**2058353****[Dr]**Vladimir Drinfeld,*DG quotients of DG categories*, J. Algebra**272**(2004), no. 2, 643–691. MR**2028075**, 10.1016/j.jalgebra.2003.05.001**[FF]**Boris Feigin and Edward Frenkel,*Affine Kac-Moody algebras at the critical level and Gel′fand-Dikiĭ algebras*, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197–215. MR**1187549****[FG1]**Edward Frenkel and Dennis Gaitsgory,*𝐷-modules on the affine Grassmannian and representations of affine Kac-Moody algebras*, Duke Math. J.**125**(2004), no. 2, 279–327. MR**2096675**, 10.1215/S0012-7094-04-12524-2**[FG2]**Edward Frenkel and Dennis Gaitsgory,*Local geometric Langlands correspondence and affine Kac-Moody algebras*, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69–260. MR**2263193**, 10.1007/978-0-8176-4532-8_3**[FG3]**Edward Frenkel and Dennis Gaitsgory,*Fusion and convolution: applications to affine Kac-Moody algebras at the critical level*, Pure Appl. Math. Q.**2**(2006), no. 4, Special Issue: In honor of Robert D. MacPherson., 1255–1312. MR**2282421**, 10.4310/PAMQ.2006.v2.n4.a14**[FG4]**E. Frenkel and D. Gaitsgory,*Localization of -modules on the affine Grassmannian*, math.RT/0512562, to appear in Annals of Math.**[FG5]**Edward Frenkel and Dennis Gaitsgory,*Geometric realizations of Wakimoto modules at the critical level*, Duke Math. J.**143**(2008), no. 1, 117–203. MR**2414746**, 10.1215/00127094-2008-017**[Ga]**D. Gaitsgory,*Construction of central elements in the affine Hecke algebra via nearby cycles*, Invent. Math.**144**(2001), no. 2, 253–280. MR**1826370**, 10.1007/s002220100122**[Ga]**Dennis Gaitsgory,*Appendix: braiding compatibilities*, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 91–100. MR**2074590****[Ga1]**D. Gaitsgory,*The notion of category over an algebraic stack*, math.AG/0507192.**[Kr]**Henning Krause,*The stable derived category of a Noetherian scheme*, Compos. Math.**141**(2005), no. 5, 1128–1162. MR**2157133**, 10.1112/S0010437X05001375**[Lu]**J. Lurie,*Derived Algebraic Geometry II: Non-commutative algebra*, available at J. Lurie's homepage.**[MV]**I. Mirković and K. Vilonen,*Geometric Langlands duality and representations of algebraic groups over commutative rings*, Ann. of Math. (2)**166**(2007), no. 1, 95–143. MR**2342692**, 10.4007/annals.2007.166.95

Retrieve articles in *Representation Theory of the American Mathematical Society*
with MSC (2010):
17B67,
13N10

Retrieve articles in all journals with MSC (2010): 17B67, 13N10

Additional Information

**Edward Frenkel**

Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720

Email:
frenkel@math.berkeley.edu

**Dennis Gaitsgory**

Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Email:
gaitsgde@math.harvard.edu

DOI:
https://doi.org/10.1090/S1088-4165-09-00360-4

Received by editor(s):
December 6, 2007

Received by editor(s) in revised form:
July 6, 2009

Published electronically:
November 2, 2009

Additional Notes:
The first author was supported by DARPA and AFOSR through the grant FA9550-07-1-0543.

The second author was supported by NSF grant 0600903.

Article copyright:
© Copyright 2009
Edward Frenkel and Dennis Gaitsgory