Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Admissible unitary completions of locally $ \mathbb{Q}_p$-rational representations of $ \mathrm{GL}_2(F)$


Author: Vytautas Paskunas
Journal: Represent. Theory 14 (2010), 324-354
MSC (2010): Primary 22-XX; Secondary 11-XX
DOI: https://doi.org/10.1090/S1088-4165-10-00373-0
Published electronically: April 7, 2010
MathSciNet review: 2608966
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a finite extension of $ \mathbb{Q}_p$, $ p>2$. We construct admissible unitary completions of certain representations of $ \mathrm{GL}_2(F)$ on $ L$-vector spaces, where $ L$ is a finite extension of $ F$. When $ F=\mathbb{Q}_p$ using the results of Berger, Breuil and Colmez we obtain some results about lifting $ 2$-dimensional mod $ p$ representations of the absolute Galois group of $ \mathbb{Q}_p$ to crystabelline representations with given Hodge-Tate weights.


References [Enhancements On Off] (What's this?)

  • 1. L. BARTHEL AND R. LIVNé, Irreducible modular representations of $ \mathrm{GL}_2$ of a local field, Duke Math. J. 75, no. 2, 1994. MR 1290194 (95g:22030)
  • 2. L. BERGER, H. LI AND H. ZHU, Construction of some families of 2-dimensional crystalline representations, Mathematische Annalen 329 (2004), no. 2, 365-377. MR 2060368 (2005k:11104)
  • 3. L. BERGER AND C. BREUIL, Sur la réduction des représentations cristallines de dimension $ 2$ en poids moyens, preprint.
  • 4. L. BERGER AND C. BREUIL, Sur quelques représentations potentiellement cristallines de $ \mathrm{GL}_2(\mathbb{Q}_p)$, to appear in Astérisque.
  • 5. L. BERGER, Représentations modulaires de $ \mathrm{GL}_2(\mathbb{Q}_p)$ et représentations galoisiennes de dimension 2, to appear in Astérisque.
  • 6. J.-N. BERNSTEIN, (rédigé par P. DELIGNE), Le ``centre'' de Bernstein, Représentations des groupes réductifs sur un corps lacal, Herman, Paris 1984, 1-32. MR 771671 (86e:22028)
  • 7. N. BOURBAKI, Commutative Algebra, Paris, Hermann 1972. MR 0360549 (50:12997)
  • 8. C. BREUIL AND A. MéZARD, Multiplicités modulaires et représentations de $ \mathrm{GL}_2(\Zp)$ et de $ \Gal(\mathbb{Q}_pbar/\mathbb{Q}_p)$ en $ l=p$, Duke Math. J. 115, 2002, 205-310. MR 1944572 (2004i:11052)
  • 9. C. BREUIL, Sur quelques représentations modulaires et $ p$-adiques de $ \mathrm{GL}_2(\mathbb{Q}_p)$. I, Compositio 138, 165-188, 2003. MR 2018825 (2004k:11062)
  • 10. C. BREUIL, Sur quelques représentations modulaires et $ p$-adiques de $ \mathrm{GL}_2(\mathbb{Q}_p)$. II, J. Inst. Math. Jussieu 2, 1-36, 2003. MR 1955206 (2005d:11079)
  • 11. C. BREUIL AND P. SCHNEIDER, First steps towards $ p$-adic Langlands functoriality, J. Reine Angew. Math. 610, 2007, 149-180. MR 2359853 (2009f:11147)
  • 12. C. BREUIL AND V. PAŠKŪNAS, Towards a modulo $ p$ Langlands correspondence for $ \mathrm{GL}_2$, to appear in Mem. Amer. Math. Soc..
  • 13. A. BRUMER, Pseudocompact algebras, profinite groups and class formations, J. of Algebra, 4, 442-470 (1966). MR 0202790 (34:2650)
  • 14. D. BUMP, Automorphic forms and representations, Cambridge Studies in Advanced Math. 55, CUP, 1998. MR 1431508 (97k:11080)
  • 15. C. J. BUSHNELL AND P. C. KUTZKO, Smooth representations of reductive $ p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1988) 582-634. MR 1643417 (2000c:22014)
  • 16. P.COLMEZ, Série principale unitaire pour $ \mathrm{GL}_2(\mathbb{Q}_p)$ et répresentations triangulines de dimension $ 2$, preprint 2004.
  • 17. P. COLMEZ, Représentations de $ \mathrm{GL}_2(\mathbb{Q}_p)$ et $ (\varphi,\Gamma)$-modules, to appear in Astérisque.
  • 18. C.W. CURTIS AND I. REINER, Methods of representation theory. Volume I, John Wiley and Sons, 1981. MR 632548 (82i:20001)
  • 19. M. DEMAZURE AND P. GABRIEL, Groupes algébriques, Tome I, Masson and Cie, Paris, 1970. MR 0302656 (46:1800)
  • 20. M. DEMAZURE AND A. GROTHENDIECK, Schémas en Groupes I., Lect. Notes Math 151, Springer 1970. MR 0274458 (43:223a)
  • 21. F. DIAMOND, A correspondence between representations of local Galois groups and Lie-type groups, Proceedings of the LMS Durham Symposium on L-functions and Galois Representations, 2004.
  • 22. M. EMERTON, Locally analytic vectors in representations of locally $ p$-adic analytic groups, to appear in Memoirs of the AMS.
  • 23. M. EMERTON, Locally analytic representation theory of $ p$-adic reductive groups: A summary of some recent developments, $ L$-functions and Galois representations (D. Burns, K. Buzzard and J. Nekovář, eds.), London Mathematical Society Lecture Note Series, vol. 320, 2007, 407-437. MR 2392361 (2009k:22023)
  • 24. P. GABRIEL, Des catégories abéliennes, Bull. Math. Soc. France, 90, 1962, 323-448. MR 0232821 (38:1144)
  • 25. G. HENNIART, Sur l'unicité des types pour $ \mathrm{GL}_2$, appendix to [8].
  • 26. S. LANG, Algebra, Revised third edition, Springer, 2002. MR 1878556 (2003e:00003)
  • 27. M. LAZARD, Groupes analytiques $ p$-adiques, Publ. Math. IHES 26 (1965). MR 0209286 (35:188)
  • 28. S. MAC LANE, Homology, Grundlehren der mathematischen Wissenschaften 114, Springer, 1975. MR 1344215 (96d:18001)
  • 29. J. NEUKIRCH, A. SCHMIDT, K. WINGBERG, Cohomology of number fields, Springer, 2000. MR 1737196 (2000j:11168)
  • 30. V. PAŠKŪNAS, Coefficient systems and supersingular representations of $ \mathrm{GL}_2(F)$, Mémoires de la SMF, 99, 2004. MR 2128381 (2005m:22017)
  • 31. V. PAŠKŪNAS, On the restriction of representations of $ \mathrm{GL}_2(F)$ to a Borel subgroup, Compositio 143, 1533-1544, (2007). MR 2371380 (2009a:22013)
  • 32. V. PAŠKŪNAS, On some crystalline representations of $ \mathrm{GL}_2(\mathbb{Q}_p)$, Algebra Number Theory 3 (2009), no. 4, 411-421. MR 2525557
  • 33. D. PRASAD, Locally algebraic representations of $ p$-adic groups, appendix to [35].
  • 34. P. SCHNEIDER, Nonarchimedean Functional Analysis, Springer (2001). MR 1869547 (2003a:46106)
  • 35. P. SCHNEIDER AND J. TEITELBAUM, $ U(\mathfrak{g})$-finite locally analytic representations, Representation Theory 5, 111-128 (2001). MR 1835001 (2002e:22023)
  • 36. P. SCHNEIDER AND J. TEITELBAUM, Banach space representations and Iwasawa theory, Israel J. Math. 127, 359-380 (2002). MR 1900706 (2003c:22026)
  • 37. J.-P. SERRE, Linear representation of finite groups, Springer (1977). MR 0450380 (56:8675)
  • 38. O. VENJAKOB, Characteristic Elements in Noncommutative Iwasawa Theory, J. Reine Angew. Math. 583 (2005). MR 2146857 (2006d:11133)
  • 39. M.-F. VIGNéRAS, Répresentations $ l$-modulaires d'un groupe réductif $ p$-adique avec $ l\neq p$, Progress in Math., Birkhäuser, Boston, 1996. MR 1395151 (97g:22007)
  • 40. M.-F. VIGNéRAS, Admissibilite des representations $ p$-adiques et lemme de Nakayama, preprint 2007.
  • 41. M.-F. VIGNéRAS, A criterion for integral structures and coefficient systems on the tree of $ PGL(2,F)$, Pure and Applied Mathematics Quarterly, Volume 4, Number 4, 2008 (Jean-Pierre Serre special issue, part I). MR 2441702 (2009e:20059)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22-XX, 11-XX

Retrieve articles in all journals with MSC (2010): 22-XX, 11-XX


Additional Information

Vytautas Paskunas
Affiliation: Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

DOI: https://doi.org/10.1090/S1088-4165-10-00373-0
Received by editor(s): September 15, 2008
Published electronically: April 7, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society