Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Generic Hecke algebras for monomial groups


Authors: S. I. Alhaddad and J. Matthew Douglass
Journal: Represent. Theory 14 (2010), 688-712
MSC (2010): Primary 20C08; Secondary 20F55
DOI: https://doi.org/10.1090/S1088-4165-2010-00394-5
Published electronically: November 15, 2010
MathSciNet review: 2738584
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we define a two-variable, generic Hecke algebra, $ \mathcal H$, for each complex reflection group $ G(b,1,n)$. The algebra $ \mathcal H$ specializes to the group algebra of $ G(b,1,n)$ and also to an endomorphism algebra of a representation of $ \operatorname{GL}_n(\mathbb{F}_q)$ induced from a solvable subgroup. We construct Kazhdan-Lusztig ``$ R$-polynomials'' for $ \mathcal{H}$ and show that they may be used to define a partial order on $ G(b,1,n)$. Using a generalization of Deodhar's notion of distinguished subexpressions we give a closed formula for the $ R$-polynomials. After passing to a one-variable quotient of the ring of scalars, we construct Kazhdan-Lusztig polynomials for $ \mathcal H$ that reduce to the usual Kazhdan-Lusztig polynomials for the symmetric group when $ b=1$.


References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • 2. M. Broué and G. Malle, Zyklotomische Heckealgebren, Astérisque (1993), no. 212, 119-189, Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235834 (94m:20095)
  • 3. M. Broué, G. Malle, and J. Michel, Generic blocks of finite reductive groups, Astérisque (1993), no. 212, 7-92, Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235832 (95d:20072)
  • 4. M. Broué and J. Michel, Blocs à groupes de défaut abéliens des groupes réductifs finis, Astérisque (1993), no. 212, 93-117, Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235833 (94j:20007)
  • 5. M. Cabanes and M. Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756 (2005g:20067)
  • 6. C.W. Curtis and I. Reiner, Methods of representation theory. Vol. I, John Wiley & Sons, New York, 1981, With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication. MR 632548 (82i:20001)
  • 7. -, Methods of representation theory. Vol. II. With applications to finite groups and orders, Pure and Applied Mathematics, John Wiley & Sons, New York, 1987. MR 892316 (88f:20002)
  • 8. V.V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187-198. MR 0435249 (55:8209)
  • 9. -, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499-511. MR 782232 (86f:20045)
  • 10. -, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra. 111 (1987), 483-506. MR 916182 (89a:20054)
  • 11. M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802 (2002k:20017)
  • 12. J.J. Graham and G.I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1-34. MR 1376244 (97h:20016)
  • 13. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • 14. G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472 (86j:20038)
  • 15. -, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442 (2004k:20011)
  • 16. T. Yokonuma, Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A344-A347. MR 0218467 (36:1553)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20C08, 20F55

Retrieve articles in all journals with MSC (2010): 20C08, 20F55


Additional Information

S. I. Alhaddad
Affiliation: Department of Mathematics, University of South Carolina, Lancaster, Lancaster, South Carolina 29721
Email: alhaddad@gwm.sc.edu

J. Matthew Douglass
Affiliation: Department of Mathematics, University of North Texas, 1155 Union Circle #311430, Denton, Texas 76203-5017
Email: douglass@unt.edu

DOI: https://doi.org/10.1090/S1088-4165-2010-00394-5
Received by editor(s): October 8, 2007
Received by editor(s) in revised form: September 17, 2010, and September 25, 2010
Published electronically: November 15, 2010
Additional Notes: The authors would like to thank Nathaniel Thiem for helpful discussions.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society