Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



On the irreducibility of locally analytic principal series representations

Authors: Sascha Orlik and Matthias Strauch
Journal: Represent. Theory 14 (2010), 713-746
MSC (2010): Primary 22E50
Published electronically: December 1, 2010
MathSciNet review: 2738585
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbf{G}$ be a $ p$-adic connected reductive group with Lie algebra $ \mathfrak{g}$. For a parabolic subgroup $ \mathbf{P} \subset \mathbf{G}$ and a finite-dimensional locally analytic representation $ V$ of a Levi subgroup of $ \mathbf{P}$, we study the induced locally analytic $ \mathbf{G}$-representation $ W = \operatorname{Ind}_{\mathbf{P}}^{\mathbf{G}}(V)$. Our result is the following criterion concerning the topological irreducibility of $ W$: If the Verma module $ U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V'$ associated to the dual representation $ V'$ is irreducible, then $ W$ is topologically irreducible as well.

References [Enhancements On Off] (What's this?)

  • [BGR] S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis. Grundlehren der Mathematischen Wissenschaften, 261. Springer-Verlag, Berlin (1984). MR 746961 (86b:32031)
  • [BS] C. Breuil, P. Schneider, First steps towards $ p$-adic Langlands Functoriality, J. Reine Angew. Math. 610, 149-180 (2007) MR 2359853 (2009f:11147)
  • [BT1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local: I. Données radicielles valuées., Publ. Math. Inst. Hautes Étud. Sci. 41, 5-251 (1972). MR 0327923 (48:6265)
  • [BT2] F. Bruhat, J. Tits, Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d'une donnée radicielle valuée., Publ. Math., Inst. Hautes Étud. Sci. 60, 197-376 (1984). MR 0756316 (86c:20042)
  • [Ca] P. Cartier, Representations of $ \mathfrak{p}$-adic groups: a survey. Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 111-155, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, R.I. (1979). MR 546593 (81e:22029)
  • [D] J. Dixmier, Enveloping Algebras. North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, New York, Oxford (1977). MR 0498740 (58:16803b)
  • [DDMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-$ p$ groups. Second edition. Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, Cambridge (1999). MR 1720368 (2000m:20039)
  • [Em] M. Emerton, Locally analytic vectors in representations of locally p-adic analytic groups, To appear in Memoirs of the AMS.
  • [Fe] C. T. Feaux de Lacroix, Einige Resultate über die topologischen Darstellungen $ p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $ p$-adischen Körper, Schriftenreihe des Mathematischen Instituts der Universität Münster, 3. Serie, Heft 23 (1999). MR 1691735 (2000k:22021)
  • [Fr] H. Frommer, The locally analytic principal series of split reductive groups, Preprintreihe SFB 478, Münster, Heft 265 (2003); available at
  • [K1] J. Kohlhaase, Invariant distributions on $ p$-adic analytic groups, Duke Math. Journal, vol. 137, no. 1, 19-62 (2007). MR 2309143 (2008j:22024)
  • [K2] J. Kohlhaase, The cohomology of locally analytic representations, preprint, Münster (2008); available at:, to appear in J. Reine Angew. Math. (Crelle).
  • [KS] M. Kisin, M. Strauch, Locally analytic cuspidal representations of $ GL_2$ and related groups. Journal of the Institute of Mathematics of Jussieu, 5 (3), 373-421 (2006). MR 2241928 (2007j:22028)
  • [L] M. Lazard, Groupes analytiques $ p$-adique, Publ. Math., Inst. Hautes Étud. Sci. 26, 5-219 (1965). MR 0209286 (35:188)
  • [Mo] Y. Morita, Analytic representations of $ {SL}_2$ over a $ \mathfrak{p}$-adic number field. II., Automorphic forms of several variables (Katata, 1983), 282-297, Progr. Math., 46, Birkhäuser Boston, Boston, MA (1984). MR 763019 (86j:22027)
  • [Sch] T. Schmidt, Auslander Regularity of $ p$-adic Distribution Algebras, Represent. Theory 12, 37-57 (2008). MR 2375595 (2009b:22018)
  • [S] P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin (2002). MR 1869547 (2003a:46106)
  • [S-S] P. Schneider, U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. IHÉS 85, 97-191 (1997). MR 1471867 (98m:22023)
  • [ST1] P. Schneider, J. Teitelbaum, Locally analytic distributions and $ p$-adic representation theory, with applications to $ {GL}\sb 2$, J. Amer. Math. Soc. 15, no. 2, 443-468 (2002). MR 1887640 (2003b:11132)
  • [ST2] P. Schneider, J. Teitelbaum, Algebras of $ p$-adic distributions and admissible representations, Invent. Math. 153, no. 1, 145-196 (2003). MR 1990669 (2004g:22015)
  • [ST3] P. Schneider, J. Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9, 297-326 (2005). MR 2133762 (2006a:22016)
  • [ST4] P. Schneider, J. Teitelbaum, $ p$-adic Fourier theory, Doc. Math. 6, 447-481 (2001). MR 1871671 (2002j:11143)
  • [Ti] J. Tits, Reductive groups over local fields, Automorphic forms, representations and $ L$-functions, Proc. Symp. Pure Math. Am. Math. Soc., Corvallis/Oregon 1977, Proc. Symp. Pure Math. 33, 1, 29-69 (1979). MR 546588 (80h:20064)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50

Retrieve articles in all journals with MSC (2010): 22E50

Additional Information

Sascha Orlik
Affiliation: Fachgruppe Mathematik and Informatik, Bergische Universität Wuppertal, Gaußtraße 20, 42097 Wuppertal, Germany

Matthias Strauch
Affiliation: Department of Mathematics, Indiana University, 831 East Third Street, Bloomington, Indiana 47401

Received by editor(s): November 26, 2007
Received by editor(s) in revised form: March 16, 2010, and May 23, 2010
Published electronically: December 1, 2010
Additional Notes: M.S. is partially supported by NSF grant DMS-0902103.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society