Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

BMW algebra, quantized coordinate algebra and type $ C$ Schur-Weyl duality


Author: Jun Hu
Journal: Represent. Theory 15 (2011), 1-62
MSC (2000): Primary 17B37, 20C20; Secondary 20C08
DOI: https://doi.org/10.1090/S1088-4165-2011-00369-1
Published electronically: January 10, 2011
MathSciNet review: 2754334
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an integral version of the Schur-Weyl duality between the specialized Birman-Murakami-Wenzl algebra $ \mathfrak{B}_n(-q^{2m+1},q)$ and the quantum algebra associated to the symplectic Lie algebra $ \mathfrak{sp}_{2m}$. In particular, we deduce that this Schur-Weyl duality holds over arbitrary (commutative) ground rings, which answers a question of Lehrer and Zhang in the symplectic case. As a byproduct, we show that, as a $ \mathbb{Z}[q,q^{-1}]$-algebra, the quantized coordinate algebra defined by Kashiwara (which he denoted by $ A_q^{\mathbb{Z}}(g)$) is isomorphic to the quantized coordinate algebra arising from a generalized Faddeev-Reshetikhin-Takhtajan construction.


References [Enhancements On Off] (What's this?)

  • 1. H. H. Andersen, P. Polo and K. X Wen, Representations of quantum algebras, Invent. Math. 104 (1991), 1-59. MR 1094046 (92e:17011)
  • 2. A.A. Beilinson, G. Lusztig and R. Macpherson, A geometric setting for the quantum deformation of $ GL_n$, Duke Math. J. 61 (1990) 655-677. MR 1074310 (91m:17012)
  • 3. R. Brauer, On algebras which are connected with semisimple continuous groups, Ann. of Math. 38 (1937), 857-872. MR 1503378
  • 4. W. P. Brown, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955-1956), 1-22. MR 0072122 (17:232a)
  • 5. W. P. Brown, The semisimplicity of $ \omega_f^n$, Ann. of Math. 63 (1956), 324-335. MR 0075931 (17:821g)
  • 6. J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. (1) 313 (1989), 249-273. MR 992598 (90g:57004)
  • 7. R. W. Carter and G. Lusztig, On the modular representations of general linear and symmetric groups, Math. Z. 136 (1974), 193-242. MR 0354887 (50:7364)
  • 8. V. Chari and A. Pressley, ``A guide to quantum groups,'' Cambridge University Press, Cambridge, 1994. MR 1300632 (95j:17010)
  • 9. C. De Concini and C. Procesi, A characteristic free approach to invariant theory, Adv. Math. 21 (1976), 330-354. MR 0422314 (54:10305)
  • 10. R. Dipper, S. Doty and J. Hu, Brauer algebras, symplectic Schur algebras and Schur-Weyl duality, Trans. Amer. Math. Soc. 360 (2008), 189-213. MR 2342000 (2008g:16032)
  • 11. R. Dipper and G. D. James, Representations of Hecke algebras of general linear groups, Proc. London. Math. Soc. (3) 52 (1986), 20-52. MR 812444 (88b:20065)
  • 12. R. Dipper and G. D. James, The $ q$-Schur algebras, Proc. London Math. Soc. (3) 59 (1989), 23-50. MR 997250 (90g:16026)
  • 13. S. Donkin, Good filtrations of rational modules for reductive groups, Arcata Conf. on Repr. of Finite Groups, Proceedings of Symp. in Pure Math., 47 (1987), 69-80. MR 933351 (89f:20048)
  • 14. S. Donkin, Invariants of several matrices, Invent. Math. 110 (1992), 389-401. MR 1185589 (93j:20090)
  • 15. S. Doty, Polynomial representations, algebraic monoids, and Schur algebras of classic type, J. Pure Appl. Algebra 123 (1998), 165-199. MR 1492900 (98j:20057)
  • 16. S. Doty, Presenting generalized $ q$-Schur algebras, Representation Theory (an electronic journal of the AMS) 7 (2003), 196-213. MR 1990659 (2004f:17020)
  • 17. S. Doty, A. Giaquinto and J. Sullivan, Presenting generalized Schur algebras in types $ B$, $ C$, $ D$, Adv. Math. (2) 206 (2006), 434-454. MR 2263710 (2007h:20043)
  • 18. S. Doty and J. Hu, Schur-Weyl duality for orthogonal groups, Proc. London Math. Soc. 98 (2009), 679-713. MR 2500869 (2009m:20072)
  • 19. V.G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equations, Soviet Math. Dokl. 32 (1985), 254-258. MR 802128 (87h:58080)
  • 20. J. Du, A note on quantized Weyl reciprocity at roots of unity, Algebra Colloq. 2 (1995) 363-372. MR 1358684 (96m:17024)
  • 21. J. Du, B. Parshall and L. Scott, Quantum Weyl reciprocity and tilting modules, Commun. Math. Phys. 195 (1998), 321-352. MR 1637785 (99k:17026)
  • 22. J. Enyang, Cellular bases for the Brauer and Birman-Murakami-Wenzl algebras, J. Alg. 281 (2004), 413-449. MR 2098377 (2005f:20008)
  • 23. L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra and Analysis 1 (1989) 178-206 (in Russian). MR 1015339 (90j:17039)
  • 24. J. Gruber and G. Hiss, Decomposition numbers of finite classical groups for linear primes, J. Reine Angew. Math. 485 (1997), 55-91. MR 1442189 (99d:20073)
  • 25. J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34. MR 1376244 (97h:20016)
  • 26. J. A. Green, ``Polynomial representations of $ GL_{n}$,'' Lect. Notes in Math. Vol. 830, Springer-Verlag, 1980. MR 606556 (83j:20003)
  • 27. I. Grojnowski and G. Lusztig, A comparison of bases of quantized enveloping algebras, Contemp. Math., 153 (1993), 11-19. MR 1247495 (94m:17012)
  • 28. D. Ju. Grigor'ev, An analogue of the Bruhat decomposition for the closure of the cone of a Chevalley group of the classical series, Sov. Math. Doklady 23 (1981), 393-397.
  • 29. T. Hayashi, Quantum deformation of classical groups, Publ. RIMS. Kyoto Univ. 28 (1992), 57-81. MR 1147851 (92m:17025)
  • 30. J. Hong and S. J. Kang, ``Introduction to Quantum Groups and Crystal Bases'', Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002. MR 1881971 (2002m:17012)
  • 31. J. Hu, Specht filtrations and tensor spaces for the Brauer algebra, J. Algebraic Combinatorics 28 (2008), 281-312. MR 2430306 (2009g:16036)
  • 32. M. Jimbo, A $ q$-difference analogue of $ U({\mathfrak{g}})$ and the Yang-Baxter equation, Lett. Math. Physics 10 (1985), 63-69. MR 797001 (86k:17008)
  • 33. M. Jimbo, A $ q$-analogue of $ U({\mathfrak{gl}}(N+1))$, Hecke algebras, and Yang-Baxter equation, Lett. Math. Physics 11 (1986), 247-252. MR 841713 (87k:17011)
  • 34. M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. (2) 69, (1993), 455-485. MR 1203234 (94b:17024)
  • 35. M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. (2) 73, (1994), 383-413. MR 1262212 (95c:17024)
  • 36. L.H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471. MR 958895 (90g:57007)
  • 37. B. Kostant, Groups over $ \mathbb{Z}$, Proceedings of Symp. in Pure Math., 9 (1966), 90-98. MR 0207713 (34:7528)
  • 38. G.I. Lehrer and R.B. Zhang, Strongly multiplicity free modules for Lie algebras and quantum groups, J. Algebra (1) 306 (2006), 138-174. MR 2271576 (2007g:17008)
  • 39. G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249. MR 954661 (89k:17029)
  • 40. G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257-296. MR 1013053 (91e:17009)
  • 41. G. Lusztig, ``Introduction to Quantum Groups,'' Progress in Math., 110 Birkhäuser, Boston, 1990. MR 1227098 (94m:17016)
  • 42. G. Lusztig, Canonical bases in tensor product, Proc. Natl. Acad. Sci. USA., 89 (1992), 8177-8179. MR 1180036 (93j:17033)
  • 43. H.R. Morton and A.J. Wassermann, A basis for the Birman-Murakami-Wenzl algebra, unpublished paper, 2000, http://www.liv.ac.uk/ su14/knotprints.html.
  • 44. J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. (4) 26 (1987), 745-758. MR 927059 (89c:57007)
  • 45. E. Murphy, The representations of Hecke algebras of type $ A_n$, J. Alg. 173 (1995), 97-121. MR 1327362 (96b:20013)
  • 46. S. Oehms, Centralizer coalgebras, FRT-construction, and symplectic monoids, J. Alg. (1) 244 (2001), 19-44. MR 1856529 (2002h:16062)
  • 47. S. Oehms, Symplectic $ q$-Schur algebras, J. Alg. (2) 304 (2006), 851-905. MR 2264282 (2007f:16043)
  • 48. I. Schur, Über die rationalen Darstellungen der allgemeinen linearen Gruppe, (1927). Reprinted in I. Schur, Gesammelte Abhandlungen, Vol. III, pp. 68-85, Springer-Verlag, Berlin, 1973.
  • 49. H. Weyl, ``The classical groups, their invariants and representations,'' Princeton University Press, 1946. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2000): 17B37, 20C20, 20C08

Retrieve articles in all journals with MSC (2000): 17B37, 20C20, 20C08


Additional Information

Jun Hu
Affiliation: School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
Email: junhu303@yahoo.com.cn

DOI: https://doi.org/10.1090/S1088-4165-2011-00369-1
Keywords: Birman–Murakami–Wenzl algebra, modified quantized enveloping algebra, canonical bases
Received by editor(s): March 8, 2009
Received by editor(s) in revised form: October 14, 2009
Published electronically: January 10, 2011
Additional Notes: This research was supported by National Natural Science Foundation of China (Project 10771014), the Program NCET and partly by an Australian Research Council discovery grant. The author also acknowledges the support of the Chern Institute of Mathematics during his visit in March of 2007.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society