Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



Distinguished tame supercuspidal representations and odd orthogonal periods

Authors: Jeffrey Hakim and Joshua Lansky
Journal: Represent. Theory 16 (2012), 276-316
MSC (2010): Primary 22E50, 11F70; Secondary 11F67, 11E08, 11E81
Published electronically: June 1, 2012
MathSciNet review: 2925798
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We further develop and simplify the general theory of distinguished tame supercuspidal representations of reductive $ p$-adic groups due to Hakim and Murnaghan, as well as the analogous theory for finite reductive groups due to Lusztig. We apply our results to study the representations of $ \mathrm {GL}_n(F)$, with $ n$ odd and $ F$ a nonarchimedean local field, that are distinguished with respect to an orthogonal group in $ n$ variables. In particular, we determine precisely when a supercuspidal representation is distinguished with respect to an orthogonal group and, if so, that the space of distinguishing linear forms has dimension one.

References [Enhancements On Off] (What's this?)

  • [AD] J. Adler and S. DeBacker, ``Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups'', J. Reine Angew. Math. 578 (2004), 1-35. MR 2097545 (2005j:22008)
  • [D] S. DeBacker, ``Parameterizing conjugacy classes of maximal unramified tori via Bruhat-Tits theory'', Michigan Math. J. 54 (2006), no. 1, 157-178. MR 2214792 (2007d:22012)
  • [DL] P. Deligne and G. Lusztig, ``Representations of reductive groups over finite fields'', Ann. of Math. (2) 103 (1976), no. 1, 103-161. MR 0393266 (52:14076)
  • [FK] Y. Flicker and D. Kazhdan, ``Metaplectic correspondence'', Inst. Hautes Studes Sci. Publ. Math., No. 64 (1986), 53-110. MR 876160 (88d:11049)
  • [H] J. Hakim, ``Tame supercuspidal representations of $ \mathrm {GL}_n$ distinguished by orthogonal involutions'', preprint.
  • [HMa] J. Hakim and Z. Mao, ``Cuspidal representations associated to $ ({\rm GL}(n),{\rm O}(n))$ over finite fields and $ p$-adic fields'', J. Algebra 213 (1999), no. 1, 129-143. MR 1674664 (99m:22019)
  • [HMu] J. Hakim and F. Murnaghan, ``Distinguished tame supercuspidal representations'', Int. Math. Res. Pap., IMRP 2008, no. 2, Art. ID rpn005, 166 pp. MR 2431732 (2010a:22022)
  • [Ho] R. Howe, ``Tamely ramified supercuspidal representations of $ {\rm Gl}_{n}$'', Pacific J. Math. 73 (1977), no. 2, 437-460. MR 0492087 (58:11241)
  • [Hu] J. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York, 1981. MR 0396773 (53:633)
  • [IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. MR 1070716 (92e:11001)
  • [J] N. Jacobson, Basic Algebra I, Second edition, W. H. Freeman and Company, New York, 1985. MR 780184 (86d:00001)
  • [Ja] H. Jacquet, ``Représentations distinguées pour le groupe orthogonal'', C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 13, 957-961. MR 1113084 (92h:11041)
  • [Lm] T.Y. Lam, Introduction to Quadratic Forms over Fields, Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, 2005. MR 2104929 (2005h:11075)
  • [La] S. Lang, Algebraic Number Theory, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1970. MR 0282947 (44:181)
  • [Lu] G. Lusztig, ``Symmetric spaces over a finite field'', The Grothendieck Festschrift Vol. III (ed. P. Cartier, et. al.), Birkhäuser, Boston-Basel-Berlin, 1990, pp. 57-81. MR 1106911 (92e:20034)
  • [Ma] Z. Mao, ``A fundamental lemma for metaplectic correspondence'', J. Reine Angew. Math., 496 (1998), 107-129. MR 1605813 (99b:22029)
  • [MP] A. Moy and G. Prasad, ``Unrefined minimal $ K$-types for $ p$-adic groups'', Invent. Math., 116 (1994), no. 1-3, 393-408. MR 1253198 (95f:22023)
  • [Mu1] F. Murnaghan, ``Parametrization of tame supercuspidal representations'', On Certain $ L$-functions, Clay Math. Proc., 13, Amer. Math. Soc., Providence, RI (2011), 439-469. MR 2767524
  • [Mu2] F. Murnaghan, ``Regularity and distinction of supercuspidal representations'', Harmonic Analysis on Reductive, $ p$-adic Groups, Contemp. Math., 543, Amer. Math. Soc., Providence, RI, (2011), 155-183. MR 2798427
  • [O] O. T. O'Meara, Introduction to Quadratic Forms, Reprint of the 1973 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2000. MR 1754311 (2000m:11032)
  • [Of] O. Offen, ``Kloosterman-Fourier inversion for symmetric matrices'', Bull. Soc. Math. France, 133 (2005), no. 3, 331-348. MR 2169821 (2006j:11073)
  • [PR] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press, New York, 1991. MR 1278263 (95b:11039)
  • [V] C. Valverde, ``On induced representations distinguished by orthogonal groups'', preprint.
  • [W1] J.-L. Waldspurger, ``Correspondance de Shimura'', J. Math. Pures Appl. (9) 59 (1980), no. 1, 1-132. MR 577010 (83f:10029)
  • [W2] J.-L. Waldspurger, ``Sur les coefficients de Fourier des formes modulaires de poids demi-entier'', J. Math. Pures Appl. (9) 60 (1981), no. 4, 375-484. MR 646366 (83h:10061)
  • [Y] J.-K. Yu, ``Construction of tame supercuspidal representations'', J. Amer. Math. Soc. 14 (2001), no. 3, 579-622 (electronic). MR 1824988 (2002f:22033)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50, 11F70, 11F67, 11E08, 11E81

Retrieve articles in all journals with MSC (2010): 22E50, 11F70, 11F67, 11E08, 11E81

Additional Information

Jeffrey Hakim
Affiliation: Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016

Joshua Lansky
Affiliation: Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016

Keywords: Supercuspidal representation, involution, distinguished representation, orthogonal group.
Received by editor(s): March 7, 2011
Received by editor(s) in revised form: November 23, 2011
Published electronically: June 1, 2012
Additional Notes: Both authors were supported by NSF grant DMS-0854844.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society