Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Cell structures on the blob algebra


Author: Steen Ryom-Hansen
Journal: Represent. Theory 16 (2012), 540-567
MSC (2010): Primary 20G05, 20C08, 05E10
DOI: https://doi.org/10.1090/S1088-4165-2012-00424-1
Published electronically: November 6, 2012
MathSciNet review: 2993828
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the $ r = 0 $ case of the conjectures by Bonnafé, Geck, Iancu and Lam on cellular structures on the Hecke algebra of type $ B $. We show that this case induces the natural cell structure on the blob algebra $ b_n $ by restriction to one-line bipartitions.


References [Enhancements On Off] (What's this?)

  • [A] S. Ariki, On the decomposition numbers of the Hecke algebra of $ G(m,1,n) $, J. Math. Kyoto Univ. 36 (1996), 789-808. MR 1443748 (98h:20012)
  • [A1] S. Ariki, Robinson-Schensted correspondence and left cells, Advanced studies in Pure Mathematics 28, 2000, Combinatorial methods in Representation Theory pp. 1-20. MR 1855588 (2002i:20003)
  • [ATY] S. Ariki, T. Terasoma, H. Yamada, Schur-Weyl reciprocity for the Hecke algebra of $ {\mathbb{Z}}/r {\mathbb{Z}} \wr {\mathfrak{S}}_n $, J. Algebra 178 (1995), 374-390. MR 1359891 (96k:20010)
  • [BV] D. Barbasch, D. Vogan, Primitive ideals and orbital integrals on complex classical groups, Math. Ann. 259 (1982), pp. 153-199. MR 656661 (83m:22026)
  • [BB] A. Björner, F. Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005. MR 2133266 (2006d:05001)
  • [B] C. Bonnafé, Two-sided cells in type B (asymptotic case), Journal of Algebra 304, (2006), 216-236. MR 2255826 (2007j:20003)
  • [BGIL] C. Bonnafé, M. Geck, L. Iancu and T. Lam, On domino insertion and Kazhdan-Lusztig cells in type $ B_n$. In: Representation theory of algebraic groups and quantum groups (Nagoya, 2006; eds. A. Gyoja et al.), pp. 33-54, Progress in Math. 284, Birkhäuser, 2010. MR 2761947 (2011k:20004)
  • [BI] C. Bonnafé, L. Iancu, Left cells in type $ B_n $ with unequal parameters, Representation Theory 7, (2003), 587-609. MR 2017068 (2004j:20007)
  • [BJ] C. Bonnafé, N. Jacon, Cellular structures on Hecke algebras of type $ B$, J. Algebra, 321, Issue 11, 2009, 3089-3111. MR 2510041 (2010f:20005)
  • [CGM] A. G. Cox, J. Graham, P. P. Martin, The blob algebra in positive characteristic, J. Algebra 266, No. 2, 584-635 (2003) MR 1995129 (2004f:20012)
  • [DJM] R. Dipper, G. James, E. Murphy, Hecke algebras of type $ B_n$ at roots of unity, Proc. London. Math. Soc., 70 (1995), 505-528. MR 1317512 (96b:20004)
  • [CL] C. Carré, B. Leclerc, Splitting the square of a Schur function into its symmetric and antisymmetric parts. J. Algebraic Combin. 4 (1995), no. 3, 201-231. MR 1331743 (97b:05165)
  • [Fa] M. Fayers, An LLT-type algorithm for computing higher-level canonical bases, J. Pure Appl. Algebra 214 (2010), 2186-98. MR 2660908 (2011g:17026)
  • [FG] C. K. Fan, R. M. Green, Monomials and Temperley-Lieb Algebras, J. of Algebra 190 Issue 2, (1997), 498-517. MR 1441960 (98a:20037)
  • [FLOTW] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon, T. Welsh, Branching functions of $ A_{n-1}^{(1)}$ and Jantzen-Seitz problem for Ariki-Koike algebras, Advances in Mathematics 141 (1999), 322-365. MR 1671762 (2000f:17036)
  • [G] M. Geck, Kazhdan-Lusztig cells and the Murphy basis, Proceedings of the London Mathematical Society 93 (2006), pp. 635-665. MR 2266962 (2008f:20012)
  • [Ga] D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras II, Compositio Math. 81 (1992), pp. 307-336. MR 1149172 (93g:17018)
  • [GL] J. Graham, G.I. Lehrer, Cellular algebras, Inventiones Math. 123 (1996), 1-34. MR 1376244 (97h:20016)
  • [GL1] J. Graham, G.I. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Scient. Éc. Norm. Sup., 4e série, 36, 2003, pp. 479-524. MR 2013924 (2004k:20007)
  • [JMMO] M. Jimbo, K. Misra, T. Miwa and M. Okado, Combinatorics of representations of $ U_q( \widehat {\frak sl}_n) $ at $ q = 0$, Comm. Math. Phys. 136 (1991), 543-566. MR 1099695 (93a:17015)
  • [KL] D. A. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • [La] T. Lam, Growth diagrams, domino insertion, and sign-imbalance, J. Comb. Theor. Ser. A. 107 (2004), 87-115. MR 2063955 (2005g:05153)
  • [Lu1] G. Lusztig, Left cells in Weyl groups, Lie Group Representations, I (eds. R. L. R. Herb and J. Rosenberg), Lecture Notes in Mathematics 1024 (Springer, Berlin, 1983), pp. 99-111. MR 727851 (85f:20035)
  • [Lu2] G. Lusztig, Hecke algebras with unequal parameters, CRM Monographs Ser. 18, Amer. Math. Soc., Providence, RI, 2003. MR 1974442 (2004k:20011)
  • [Ja] N. Jacon, Crystal graphs of irreducible $ {\mathcal U}_v( \widehat {\frak sl}_e)$-modules of level two and Uglov bipartitions, J. Algebraic Combin. 27 (2008), no. 2, p. 143-162. MR 2375488 (2009c:17017)
  • [Ja1] N. Jacon, An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras, J. Algebra 292 (2005), 100-9. MR 2166797 (2006g:20010)
  • [M] I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1995. MR 1354144 (96h:05207)
  • [MR] P. P. Martin, S. Ryom-Hansen, Virtual Algebraic Lie Theory, Tilting modules and Ringel duality for blob algebras, Proc. London Math. Soc. 89 (2004), 655-675. MR 2107010 (2005i:20007)
  • [MS] P. P. Martin, H. Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. (1994) 30, 189-206. MR 1267001 (95e:81105)
  • [MW] P. P. Martin, D. Woodcock, On the structure of the blob Algebra, J. Algebra 225, (2000), 957-988. MR 1741573 (2000k:16015)
  • [P] T. Pietraho, Knuth Relations for the Hyperoctahedral Groups, J. of Algebraic Combin, 29 (4), (2009), 509-535. MR 2506719 (2010c:20050)
  • [P1] T. Pietraho, Module Structure of Cells in Unequal Parameter Hecke Algebras, Nagoya Mathematical Journal, 198 (2010), 23-45. MR 2666576 (2011h:20007)
  • [RH] S. Ryom-Hansen, The Ariki-Terasoma-Yamada tensor space and the blob algebra, J. of Algebra 324 (2010), 2658-2675. MR 2725194 (2012b:20008)
  • [U] D. Uglov, Canonical bases of higher level $ q$-deformed Fock spaces and Kazhdan-Lusztig polynomials, Kashiwara, Masaki (ed.) et al., Boston: Birkhäuser. Prog. Math. 191 (2000), 249-299. MR 1768086 (2001k:17030)
  • [Sch97] Martin Schonert et al. GAP - Groups, Algorithms, and Programming - version 3 release 4 patchlevel 4" Lehrstuhl Dür Mathematik, Rheinisch Westfalische Technische Hochschule, Aachen, Germany, 1997.
  • [Sa] B. E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edition, Springer-Verlag, New York, 2001. MR 1824028 (2001m:05261)
  • [S] W. Soergel, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37-68. MR 1445511 (99d:17023)
  • [T] M. Taskin, Plactic relations for $ r$-domino tableaux, Electron. J. Combin., volume 19, issue 1, (2012), P38. MR 2880669
  • [vL] M. van Leeuwen, The Robinson-Schensted and Schutzenberger algorithms, an elementary approach, The Foata Festscrhift, Electron. J. Combin. volume 3, issue 2 (1996), P15. MR 1392500 (97e:05200)
  • [Y] X. Yvonne, An algorithm for computing the canonical bases of higher-level $ q$-deformed Fock spaces, J. Algebra 309 (2007), 760-785. MR 2303205 (2009b:17042)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20G05, 20C08, 05E10

Retrieve articles in all journals with MSC (2010): 20G05, 20C08, 05E10


Additional Information

Steen Ryom-Hansen
Affiliation: Instituto de Matemática y Física, Universidad de Talca, Chile
Email: steen@inst-mat.utalca.cl

DOI: https://doi.org/10.1090/S1088-4165-2012-00424-1
Received by editor(s): December 20, 2010
Received by editor(s) in revised form: March 7, 2011, March 1, 2012, and April 3, 2012
Published electronically: November 6, 2012
Additional Notes: This work was supported in part by FONDECYT grants 109070 and 1121129, by Programa Reticulados y Simetría and by the MathAmSud project OPECSHA 01-math-10.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society