Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Deligne's category $ \underline{\operatorname{Re}}\operatorname{p}(GL_\delta)$ and representations of general linear supergroups


Authors: Jonathan Comes and Benjamin Wilson
Journal: Represent. Theory 16 (2012), 568-609
MSC (2010): Primary 17B10, 18D10
DOI: https://doi.org/10.1090/S1088-4165-2012-00425-3
Published electronically: December 3, 2012
MathSciNet review: 2998810
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify indecomposable summands of mixed tensor powers of the natural representation for the general linear supergroup up to isomorphism. We also give a formula for the characters of these summands in terms of composite supersymmetric Schur polynomials, and give a method for decomposing their tensor products. Along the way, we describe indecomposable objects in $ \underline {\operatorname {Re}}\!\operatorname {p}(GL_\delta )$ and explain how to decompose their tensor products.


References [Enhancements On Off] (What's this?)

  • 1. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate texts in mathematics, Springer-Verlag, 1992. MR 1245487 (94i:16001)
  • 2. Georgia Benkart, Manish Chakrabarti, Thomas Halverson, Robert Leduc, Chanyoung Lee, and Jeffrey Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994), no. 3, 529-567. MR 1280591 (95d:20071)
  • 3. D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991, Basic representation theory of finite groups and associative algebras. MR 1110581 (92m:20005)
  • 4. A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math. 64 (1987), no. 2, 118-175. MR 884183 (88i:20006)
  • 5. J. Brundan and C. Stroppel, Gradings on walled Brauer algebras and Khovanov's arc algebra, Advances in Mathematics 231 (2012), 709-773. MR 2955190
  • 6. -, Highest weight categories arising from Khovanov's diagram algebra II: Koszulity, Transform. Groups 15 (2010), no. 1, 1-45. MR 2600694 (2011b:17014)
  • 7. -, Highest weight categories arising from Khovanov's diagram algebra I: cellularity, Mosc. Math. J. 11 (2011), no. 4, 685-722, 821-822. MR 2918294
  • 8. -, Highest weight categories arising from Khovanov's diagram algebra III: category $ \mathcal O$, Represent. Theory 15 (2011), 170-243. MR 2781018
  • 9. -, Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 373-419. MR 2881300
  • 10. Jonathan Comes and Victor Ostrik, On blocks of Deligne's category $ \underline {\operatorname {Re}}\!\operatorname {p}(S_t)$, Advances in Mathematics 226 (2011), no. 2, 1331-1377. MR 2737787 (2012b:20020)
  • 11. Anton Cox and Maud De Visscher, Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra, Journal of Algebra 340 (2011), no. 1, 151-181. MR 2813567
  • 12. Anton Cox, Maud De Visscher, Stephen Doty, and Paul Martin, On the blocks of the walled Brauer algebra, J. Algebra 320 (2008), no. 1, 169-212. MR 2417984 (2009c:16094)
  • 13. C. J. Cummins and R. C. King, Composite young diagrams, supercharacters of u(m/n) and modification rules, Journal of Physics A: Mathematical and General 20 (1987), no. 11, 3121. MR 914044 (88m:22050)
  • 14. P. Deligne, La catégorie des représentations du groupe symétrique $ S\sb t$, lorsque $ t$ n'est pas un entier naturel, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, pp. 209-273. MR 2348906
  • 15. Pierre Deligne, La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 4, 321-326. MR 1378507 (96m:22012)
  • 16. William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. MR 1153249 (93a:20069)
  • 17. J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1-34. MR 1376244 (97h:20016)
  • 18. Kazuhiko Koike, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math. 74 (1989), no. 1, 57-86. MR 991410 (90j:22014)
  • 19. I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications. MR 1354144 (96h:05207)
  • 20. Saunders MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics, 2nd ed., Springer, September 1998. MR 1712872 (2001j:18001)
  • 21. E. M. Moens and J. Van der Jeugt, A determinantal formula for supersymmetric Schur polynomials, J. Algebraic Combin. 17 (2003), no. 3, 283-307. MR 2001672 (2004f:05187)
  • 22. -, Composite supersymmetric s-functions and characters of $ {\mathfrak{gl}}(m\vert n)$ representations, Lie theory and its applications in physics VI, World Sci. Publ., River Edge, NJ, 2006. MR 2172173 (2006g:17013)
  • 23. P. Selinger, A survey of graphical languages for monoidal categories, New structures for physics, Lecture Notes in Phys., vol. 813, Springer, Heidelberg, 2011, pp. 289-355. MR 2767048
  • 24. Vera Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra $ \mathfrak{ gl}(n\vert m)$, Selecta Math. (N.S.) 2 (1996), no. 4, 607-651. MR 1443186 (98f:17007)
  • 25. A. N. Sergeev, Representations of the Lie superalgebras $ \mathfrak{ gl}(n,\,m)$ and $ Q(n)$ in a space of tensors, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 80-81. MR 739101 (86b:17005)
  • 26. John R. Stembridge, Rational tableaux and the tensor algebra of gln, Journal of Combinatorial Theory, Series A 46 (1987), no. 1, 79-120. MR 899903 (89a:05012)
  • 27. V. G. Turaev, Operator invariants of tangles, and $ R$-matrices, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1073-1107, 1135. MR 1024455 (91e:17011)
  • 28. H. Weyl, The classical groups: their invariants and representations, Princeton Landmarks in Mathematics and Physics, Princeton University Press, 1997. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 17B10, 18D10

Retrieve articles in all journals with MSC (2010): 17B10, 18D10


Additional Information

Jonathan Comes
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: jcomes@uoregon.edu

Benjamin Wilson
Affiliation: Dieffenbachstraße 27, 10967 Berlin, Germany
Email: benjamin@asmusas.net

DOI: https://doi.org/10.1090/S1088-4165-2012-00425-3
Received by editor(s): September 5, 2011
Received by editor(s) in revised form: July 31, 2012
Published electronically: December 3, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society