Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Endomorphism algebras of admissible $ p$-adic representations of $ p$-adic Lie groups


Authors: Gabriel Dospinescu and Benjamin Schraen
Journal: Represent. Theory 17 (2013), 237-246
MSC (2010): Primary 20G05, 20G25, 11E57, 11E95
DOI: https://doi.org/10.1090/S1088-4165-2013-00432-6
Published electronically: May 9, 2013
MathSciNet review: 3053464
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove Schur's lemma for absolutely irreducible admissible $ p$-adic Banach space (respectively locally analytic) representations of $ p$-adic Lie groups. We also prove finiteness results for the endomorphism algebra of an irreducible admissible representation.


References [Enhancements On Off] (What's this?)

  • [1] K. Ardakov, S.J. Wadsley, On irreducible representations of compact p-adic analytic groups, to appear in Annals of Mathematics.
  • [2] Laurent Berger and Christophe Breuil, Sur quelques représentations potentiellement cristallines de $ {\rm GL}_2(\mathbf {Q}_p)$, Astérisque 330 (2010), 155-211 (French, with English and French summaries). MR 2642406 (2012i:11053)
  • [3] Pierre Colmez, La série principale unitaire de $ {\rm GL}_2(\mathbf {Q}_p)$, Astérisque 330 (2010), 213-262 (French, with English and French summaries). MR 2642407 (2011g:22026)
  • [4] Pierre Colmez, Représentations de $ {\rm GL}_2(\mathbf {Q}_p)$ et $ (\phi ,\Gamma )$-modules, Astérisque 330 (2010), 281-509 (French, with English and French summaries). MR 2642409 (2011j:11224)
  • [5] P. Colmez, La série principale unitaire $ p$-adique-vecteurs localement analytiques, to appear in Proceedings of the LMS Durham Symposium 2011.
  • [6] P. Colmez, G. Dospinescu, Complétés universels de représentations de $ {\rm GL}_2(\mathbb{Q}_p)$, preprint.
  • [7] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$ p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368 (2000m:20039)
  • [8] Gabriel Dospinescu, Actions infinitésimales dans la correspondance de Langlands locale $ p$-adique, Math. Ann. 354 (2012), no. 2, 627-657. MR 2965255, https://doi.org/10.1007/s00208-011-0736-2
  • [9] G. Dospinescu, Équations différentielles $ p$-adiques et foncteurs de Jacquet localement analytiques, to appear in Proceedings of the LMS Durham Symposium 2011.
  • [10] M. Emerton, Locally analytic vectors in representations of locally $ p$-adic analytic groups, to appear in Memoirs of the AMS.
  • [11] Irving Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575-580. MR 0025451 (10,7a)
  • [12] Mark Kisin, Deformations of $ G_{\mathbb{Q}_p}$ and $ {\rm GL}_2(\mathbb{Q}_p)$ representations, Astérisque 330 (2010), 511-528 (English, with English and French summaries). MR 2642410 (2011e:11185)
  • [13] Jan Kohlhaase, Invariant distributions on $ p$-adic analytic groups, Duke Math. J. 137 (2007), no. 1, 19-62. MR 2309143 (2008j:22024), https://doi.org/10.1215/S0012-7094-07-13712-8
  • [14] Michel Lazard, Groupes analytiques $ p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389-603 (French). MR 0209286 (35 #188)
  • [15] Ruochuan Liu, Bingyong Xie, and Yuancao Zhang, Locally analytic vectors of unitary principal series of $ {\rm GL}_2(\mathbb{Q}_p)$, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 1, 167-190 (English, with English and French summaries). MR 2961790
  • [16] V. Paškūnas, The image of Colmez's Montréal functor, to appear in Publ. Math. de l'HES, available at http://www.math.uni-bielefeld.de/~paskunas/.
  • [17] Claudio Procesi, Rings with polynomial identities, Marcel Dekker Inc., New York, 1973. Pure and Applied Mathematics, 17. MR 0366968 (51 #3214)
  • [18] Daniel Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc. 21 (1969), 171-172. MR 0238892 (39 #252)
  • [19] Tobias Schmidt, Auslander regularity of $ p$-adic distribution algebras, Represent. Theory 12 (2008), 37-57. MR 2375595 (2009b:22018), https://doi.org/10.1090/S1088-4165-08-00323-3
  • [20] Peter Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1869547 (2003a:46106)
  • [21] P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359-380. MR 1900706 (2003c:22026), https://doi.org/10.1007/BF02784538
  • [22] Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $ p$-adic representation theory, with applications to $ {\rm GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443-468 (electronic). MR 1887640 (2003b:11132), https://doi.org/10.1090/S0894-0347-01-00377-0
  • [23] Peter Schneider and Jeremy Teitelbaum, Algebras of $ p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145-196. MR 1990669 (2004g:22015), https://doi.org/10.1007/s00222-002-0284-1
  • [24] Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $ p$-adic representation theory, with applications to $ {\rm GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443-468 (electronic). MR 1887640 (2003b:11132), https://doi.org/10.1090/S0894-0347-01-00377-0
  • [25] P. Schneider and J. Teitelbaum, $ U({\mathfrak{g}})$-finite locally analytic representations, Represent. Theory 5 (2001), 111-128 (electronic). With an appendix by Dipendra Prasad. MR 1835001 (2002e:22023), https://doi.org/10.1090/S1088-4165-01-00109-1

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20G05, 20G25, 11E57, 11E95

Retrieve articles in all journals with MSC (2010): 20G05, 20G25, 11E57, 11E95


Additional Information

Gabriel Dospinescu
Affiliation: CMLS École Polytechnique, UMR CNRS 7640, F–91128 Palaiseau cedex, France
Address at time of publication: UMPA ENS de Lyon (site Sciences) 46, allée d’Italie, 69364 Lyon cedex 07, France
Email: gabriel.dospinescu@ens-lyon.fr

Benjamin Schraen
Affiliation: Laboratoire de Mathématiques de Versailles, UMR CNRS 8100, 45, avenue des États Unis - Bâtiment Fermat, F–78035 Versailles Cedex, France
Email: benjamin.schraen@uvsq.fr

DOI: https://doi.org/10.1090/S1088-4165-2013-00432-6
Received by editor(s): July 27, 2011
Received by editor(s) in revised form: December 7, 2012
Published electronically: May 9, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society