Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Geometrizing the minimal representations of even orthogonal groups


Authors: Vincent Lafforgue and Sergey Lysenko
Journal: Represent. Theory 17 (2013), 263-325
MSC (2010): Primary 14D24; Secondary 22E57, 11R39
DOI: https://doi.org/10.1090/S1088-4165-2013-00431-4
Published electronically: May 28, 2013
MathSciNet review: 3057297
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a smooth projective curve. Write $ \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}}$ for the moduli stack of $ \mathrm {S}\mathbb{O}_{2n}$-torsors on $ X$. We give a geometric interpretation of the automorphic function $ f$ on $ \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} $ corresponding to the minimal representation. Namely, we construct a perverse sheaf $ \mathcal {K}_H$ on $ \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}}$ such that $ f$ should be equal to the trace of the Frobenius of $ \mathcal {K}_H$ plus some constant function. The construction is based on some explicit geometric formulas for the Fourier coefficients of $ f$ on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program.


References [Enhancements On Off] (What's this?)

  • [1] James Arthur, Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989), 13-71. Orbites unipotentes et représentations, II. MR 1021499 (91f:22030)
  • [2] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171 (French). MR 751966 (86g:32015)
  • [3] A. Beilinson, V. Drinfeld, Quantization of Hitchin integrable system and Hecke eigensheaves, preprint available at http://www.math.utexas.edu/users/benzvi/Langlands.html
  • [4] Indranil Biswas and Yogish I. Holla, Harder-Narasimhan reduction of a principal bundle, Nagoya Math. J. 174 (2004), 201-223. MR 2066109 (2005m:14057)
  • [5] Tom Braden, On the reducibility of characteristic varieties, Proc. Amer. Math. Soc. 130 (2002), no. 7, 2037-2043. MR 1896039 (2003d:32036), https://doi.org/10.1090/S0002-9939-02-06469-9
  • [6] Alexander Braverman, Michael Finkelberg, and Dennis Gaitsgory, Uhlenbeck spaces via affine Lie algebras, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 17-135. MR 2181803 (2007f:14008), https://doi.org/10.1007/0-8176-4467-9_2
  • [7] A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287-384. MR 1933587 (2003k:11109), https://doi.org/10.1007/s00222-002-0237-8
  • [8] D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. (2) 160 (2004), no. 2, 617-682. MR 2123934 (2006k:11223), https://doi.org/10.4007/annals.2004.160.617
  • [9] D. Gaitsgory, Contractibility of the space of rational maps, arXiv:1108.1741
  • [10] Wee Teck Gan and Gordan Savin, On minimal representations definitions and properties, Represent. Theory 9 (2005), 46-93 (electronic). MR 2123125 (2006a:22015), https://doi.org/10.1090/S1088-4165-05-00191-3
  • [11] David Ginzburg, Certain conjectures relating unipotent orbits to automorphic representations, Israel J. Math. 151 (2006), 323-355. MR 2214128 (2007b:11068), https://doi.org/10.1007/BF02777366
  • [12] David Ginzburg, Stephen Rallis, and David Soudry, On the automorphic theta representation for simply laced groups, Israel J. Math. 100 (1997), 61-116. MR 1469105 (99c:11058), https://doi.org/10.1007/BF02773635
  • [13] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 0217086 (36 #178)
  • [14] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994. With a chapter in French by Christian Houzel; Corrected reprint of the 1990 original. MR 1299726 (95g:58222)
  • [15] Yves Laszlo and Martin Olsson, The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 169-210. MR 2434693 (2009f:14003b), https://doi.org/10.1007/s10240-008-0012-5
  • [16] G. Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131-210 (French). MR 908218 (88g:14019)
  • [17] Yves Laszlo, About $ G$-bundles over elliptic curves, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 413-424. MR 1625614 (99c:14016)
  • [18] Sergey Lysenko, Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 3, 415-466 (English, with English and French summaries). MR 2265675 (2008d:14019), https://doi.org/10.1016/j.ansens.2006.01.003
  • [19] Sergey Lysenko, Geometric theta-lifting for the dual pair $ \mathbb{S}\mathbb{O}_{2m},\mathbb{S}{\rm p}_{2n}$, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 3, 427-493 (English, with English and French summaries). MR 2839456 (2012k:22025)
  • [20] Sergey Lysenko, Geometric Waldspurger periods, Compos. Math. 144 (2008), no. 2, 377-438. MR 2406117 (2010c:14008), https://doi.org/10.1112/S0010437X07003156
  • [21] C. Mœglin, Orbites unipotentes et spectre discret non ramifié: le cas des groupes classiques déployés, Compositio Math. 77 (1991), no. 1, 1-54 (French). MR 1091891 (92d:11054)
  • [22] Alexander Polishchuk, Abelian varieties, theta functions and the Fourier transform, Cambridge Tracts in Mathematics, vol. 153, Cambridge University Press, Cambridge, 2003. MR 1987784 (2004m:14094)
  • [23] Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099-1127. MR 2144974 (2006a:14035), https://doi.org/10.4007/annals.2004.160.1099
  • [24] Roger Richardson, Gerhard Röhrle, and Robert Steinberg, Parabolic subgroups with abelian unipotent radical, Invent. Math. 110 (1992), no. 3, 649-671. MR 1189494 (93j:20092), https://doi.org/10.1007/BF01231348
  • [25] Roskies, The minimal representation of $ \mathrm {S}\mathbb{O}(4,3)$ over a $ p$-adic field, Dissertation, Stanford University (1996)
  • [26] Stephen S. Shatz, Degeneration and specialization in algebraic families of vector bundles, Bull. Amer. Math. Soc. 82 (1976), no. 4, 560-562. MR 0407020 (53 #10803)
  • [27] Pierre Torasso, Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle, Duke Math. J. 90 (1997), no. 2, 261-377 (French). MR 1484858 (99c:22028), https://doi.org/10.1215/S0012-7094-97-09009-8

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 14D24, 22E57, 11R39

Retrieve articles in all journals with MSC (2010): 14D24, 22E57, 11R39


Additional Information

Vincent Lafforgue
Affiliation: CNRS et MAPMO, UMR 7349, Université d’Orléans, Rue de Chartres, B.P. 6759 - 45067 Orléans cedex 2, France
Email: vlafforg@math.jussieu.fr

Sergey Lysenko
Affiliation: Institut Elie Cartan Nancy, Université de Lorraine, B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
Email: Sergey.Lysenko@univ-lorraine.fr

DOI: https://doi.org/10.1090/S1088-4165-2013-00431-4
Keywords: Geometric Langlands, minimal representation, theta lifting
Received by editor(s): April 22, 2011
Received by editor(s) in revised form: February 7, 2012, and November 26, 2012
Published electronically: May 28, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society