Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

On a pairing of Goldberg-Shahidi for even orthogonal groups


Author: Wen-Wei Li
Journal: Represent. Theory 17 (2013), 337-381
MSC (2010): Primary 22E50; Secondary 11F70
DOI: https://doi.org/10.1090/S1088-4165-2013-00435-1
Published electronically: June 17, 2013
MathSciNet review: 3067291
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \pi \otimes \sigma $ be a supercuspidal representation of $ \mathrm {GL}(2n) \times \mathrm {SO}(2n)$ over a $ p$-adic field with $ \pi $ selfdual, where $ \mathrm {SO}(2n)$ stands for a quasisplit even special orthogonal group. In order to study its normalized parabolic induction to $ \mathrm {SO}(6n)$, Goldberg and Shahidi defined a pairing $ R$ between the matrix coefficients of $ \pi $ and $ \sigma $ which controls the residue of the standard intertwining operator. The elliptic part $ R_$$ \text {ell}$ of $ R$ is conjectured to be related to twisted endoscopic transfer. Based on Arthur's endoscopic classification and Spallone's improvement of Goldberg-Shahidi program, we will verify some of their predictions for general $ n$, under the assumption that $ \pi $ does not come from $ \mathrm {SO}(2n+1)$.


References [Enhancements On Off] (What's this?)

  • [1] James Arthur, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 3-19 (1988). MR 983600 (90c:22052), https://doi.org/10.1007/BF02837809
  • [2] James Arthur, On local character relations, Selecta Math. (N.S.) 2 (1996), no. 4, 501-579. MR 1443184 (2000a:22017), https://doi.org/10.1007/PL00001383
  • [3] James Arthur, The endoscopic classification of representations: Orthogonal and symplectic groups, to appear in American Mathematical Society Colloquium Publications, 2013.
  • [4] Laurent Clozel, Characters of nonconnected, reductive $ p$-adic groups, Canad. J. Math. 39 (1987), no. 1, 149-167. MR 889110 (88i:22039), https://doi.org/10.4153/CJM-1987-008-3
  • [5] Laurent Clozel, Invariant harmonic analysis on the Schwartz space of a reductive $ p$-adic group, Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 101-121. MR 1168480 (93h:22020)
  • [6] Laurent Clozel, Michael Harris, Jean-Pierre Labesse, and Bao-Châu Ngô (eds.), On the stabilization of the trace formula, Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1, International Press, Somerville, MA, 2011. MR 2742611
  • [7] James W. Cogdell and Freydoon Shahidi, Some generalized functionals and their Bessel functions, Arithmetic geometry and automorphic forms, Adv. Lect. Math. (ALM), vol. 19, Int. Press, Somerville, MA, 2011, pp. 55-90. MR 2906906
  • [8] David Goldberg and Freydoon Shahidi, On the tempered spectrum of quasi-split classical groups. II, Canad. J. Math. 53 (2001), no. 2, 244-277. MR 1820909 (2001m:22035), https://doi.org/10.4153/CJM-2001-011-7
  • [9] David Goldberg and Freydoon Shahidi, On the tempered spectrum of quasi-split classical groups, Duke Math. J. 92 (1998), no. 2, 255-294. MR 1612785 (99c:22024), https://doi.org/10.1215/S0012-7094-98-09206-7
  • [10] David Goldberg and Freydoon Shahidi, On the tempered spectrum of quasi-split classical groups. III: The odd orthogonal groups, ArXiv e-prints, June 2009.
  • [11] Harish-Chandra, Harmonic analysis on reductive $ p$-adic groups, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin, 1970. Notes by G. van Dijk. MR 0414797 (54 #2889)
  • [12] Harish-Chandra, Admissible invariant distributions on reductive $ p$-adic groups, University Lecture Series, vol. 16, American Mathematical Society, Providence, RI, 1999. Preface and notes by Stephen DeBacker and Paul J. Sally, Jr. MR 1702257 (2001b:22015)
  • [13] Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802 (2002m:11050)
  • [14] Guy Henniart, Une preuve simple des conjectures de Langlands pour $ {\rm GL}(n)$ sur un corps $ p$-adique, Invent. Math. 139 (2000), no. 2, 439-455 (French, with English summary). MR 1738446 (2001e:11052), https://doi.org/10.1007/s002220050012
  • [15] Guy Henniart, Une caractérisation de la correspondance de Langlands locale pour $ {\rm GL}(n)$, Bull. Soc. Math. France 130 (2002), no. 4, 587-602 (French, with English and French summaries). MR 1947454 (2004d:22013)
  • [16] Hervé Jacquet, Generic representations, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Springer, Berlin, 1977, pp. 91-101. Lecture Notes in Math., Vol. 587. MR 0499005 (58 #16985)
  • [17] Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096 (2000k:22024)
  • [18] J.-P. Labesse, Stable twisted trace formula: elliptic terms, J. Inst. Math. Jussieu 3 (2004), no. 4, 473-530. MR 2094449 (2005g:11084), https://doi.org/10.1017/S1474748004000143
  • [19] R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219-271. MR 909227 (89c:11172), https://doi.org/10.1007/BF01458070
  • [20] B. Lemaire, Caractéres tordus des représentations admissibles, ArXiv e-prints (2010).
  • [21] Wen-Wei Li, Transfert d'intégrales orbitales pour le groupe métaplectique, Compos. Math. 147 (2011), no. 2, 524-590. MR 2776612 (2012g:22011), https://doi.org/10.1112/S0010437X10004963
  • [22] Wen-Wei Li, La formule des traces pour les rev$ \hat {e}$tements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. École Norm. Sup. (4) 45 (2012), no. 5, 787-859.
  • [23] Bao Châu Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1-169 (French). MR 2653248 (2011h:22011), https://doi.org/10.1007/s10240-010-0026-7
  • [24] Patrice Perrin, Représentations de Schrödinger, indice de Maslov et groupe metaplectique, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin, 1981, pp. 370-407 (French). MR 644841 (83m:22027)
  • [25] Jean-Pierre Serre, L'invariant de Witt de la forme $ {\rm Tr}(x^2)$, Comment. Math. Helv. 59 (1984), no. 4, 651-676 (French). MR 780081 (86k:11067), https://doi.org/10.1007/BF02566371
  • [26] Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for $ p$-adic groups, Duke Math. J. 66 (1992), no. 1, 1-41. MR 1159430 (93b:22034), https://doi.org/10.1215/S0012-7094-92-06601-4
  • [27] Freydoon Shahidi, The notion of norm and the representation theory of orthogonal groups, Invent. Math. 119 (1995), no. 1, 1-36. MR 1309970 (96e:22034), https://doi.org/10.1007/BF01245173
  • [28] Freydoon Shahidi, Eisenstein series and automorphic $ L$-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI, 2010. MR 2683009 (2012d:11119)
  • [29] Freydoon Shahidi and Steven Spallone, Residues of intertwining operators for $ \rm SO^*_6$ as character identities, Compos. Math. 146 (2010), no. 3, 772-794. MR 2644934 (2011e:22025), https://doi.org/10.1112/S0010437X09004515
  • [30] Steven Spallone, Residues of intertwining operators for classical groups, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn 056, 37. MR 2439554 (2010g:11150), https://doi.org/10.1093/imrn/rnn056
  • [31] Steven Spallone, An integration formula of Shahidi, Harmonic analysis on reductive, $ p$-adic groups, Contemp. Math., vol. 543, Amer. Math. Soc., Providence, RI, 2011, pp. 215-236. MR 2798430
  • [32] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728 (37 #6288)
  • [33] J.-L. Waldspurger, Le groupe $ {\bf GL}_N$ tordu, sur un corps $ p$-adique. I, Duke Math. J. 137 (2007), no. 2, 185-234 (French, with English and French summaries). MR 2309147 (2009b:22019), https://doi.org/10.1215/S0012-7094-07-13721-9
  • [34] J.-L. Waldspurger, Calcul d'une valeur d'un facteur epsilon par une formule intégrale, ArXiv e-prints (2009).
  • [35] J.-L. Waldspurger, Les facteurs de transfert pour les groupes classiques: un formulaire, Manuscripta Math. 133 (2010), no. 1-2, 41-82 (French, with English and French summaries). MR 2672539 (2012b:22025), https://doi.org/10.1007/s00229-010-0363-3
  • [36] J.-L. Waldspurger, Une formule intégrale reliée à la conjecture locale de Gross-Prasad, Compos. Math. 146 (2010), no. 5, 1180-1290 (French, with English summary). MR 2684300 (2012b:22024), https://doi.org/10.1112/S0010437X10004744
  • [37] Jean-Loup Waldspurger, L'endoscopie tordue n'est pas si tordue, Mem. Amer. Math. Soc. 194 (2008), no. 908, x+261.
  • [38] J.-L. Waldspurger, À propos du lemme fondamental pondéré tordu, Math. Ann. 343 (2009), no. 1, 103-174 (French, with English summary). MR 2448443 (2010c:22013), https://doi.org/10.1007/s00208-008-0267-7
  • [39] André Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211 (French). MR 0165033 (29 #2324)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50, 11F70

Retrieve articles in all journals with MSC (2010): 22E50, 11F70


Additional Information

Wen-Wei Li
Affiliation: Morningside Center of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences 55, Zhongguancun East Road, 100190 Beijing, China
Email: wwli@math.ac.cn

DOI: https://doi.org/10.1090/S1088-4165-2013-00435-1
Received by editor(s): June 1, 2012
Received by editor(s) in revised form: December 6, 2012, and January 6, 2013
Published electronically: June 17, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society