Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Localization in quiver moduli spaces


Author: Thorsten Weist
Journal: Represent. Theory 17 (2013), 382-425
MSC (2010): Primary 14D20, 16G20
DOI: https://doi.org/10.1090/S1088-4165-2013-00436-3
Published electronically: July 10, 2013
MathSciNet review: 3073549
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Torus fixed points of quiver moduli spaces are given by stable representations of the universal (abelian) covering quiver. As far as the Kronecker quiver is concerned they can be described by stable representations of certain bipartite quivers coming along with a stable colouring. By use of the glueing method it is possible to construct a huge class of such quivers implying a lower bound for the Euler characteristic. For certain roots it is even possible to construct all torus fixed points.


References [Enhancements On Off] (What's this?)

  • [1] I. N. Bernstein, I. M. Gel'fand, V. A. Ponomarev: Coxeter functors and Gabriel's theorem. Russian Math. Surveys 28, 17-32 (1973). MR 393065 (52#13876)
  • [2] A. Białynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology 12 (1973), 99-103. MR 0313261 (47 #1816)
  • [3] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1981/82), no. 3, 331-378. MR 643558 (84i:16030), https://doi.org/10.1007/BF01396624
  • [4] Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston Inc., Boston, MA, 1997. MR 1433132 (98i:22021)
  • [5] R. Martínez-Villa and J. A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983), no. 3, 277-292. MR 724038 (85f:16035), https://doi.org/10.1016/0022-4049(83)90062-2
  • [6] Frederik Denef, Quantum quivers and Hall/hole halos, J. High Energy Phys. 10 (2002), 023, 42. MR 1952307 (2004b:81158), https://doi.org/10.1088/1126-6708/2002/10/023
  • [7] M. Douglas, Oral communication to Markus Reineke from 02.08.2004.
  • [8] J.-M. Drezet, Cohomologie des variétés de modules de hauteur nulle, Math. Ann. 281 (1988), no. 1, 43-85 (French). MR 944602 (89j:14009), https://doi.org/10.1007/BF01449215
  • [9] Michael Drmota, Combinatorics and asymptotics on trees, Cubo 6 (2004), no. 2, 105-136 (English, with English and Spanish summaries). MR 2092045 (2005h:05100)
  • [10] P. Gabriel, The universal cover of a representation-finite algebra, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 903, Springer, Berlin, 1981, pp. 68-105. MR 654725 (83f:16036)
  • [11] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original. MR 1288523 (95d:14001)
  • [12] G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215-248. MR 0364254 (51 #509)
  • [13] Frank Harary and Edgar M. Palmer, Graphical enumeration, Academic Press, New York, 1973. MR 0357214 (50 #9682)
  • [14] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773 (53 #633)
  • [15] V. G. Kac, Infinite root systems, representations of graphs and invariant theory. II, J. Algebra 78 (1982), no. 1, 141-162. MR 677715 (85b:17003), https://doi.org/10.1016/0021-8693(82)90105-3
  • [16] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. MR 1315461 (96a:16009), https://doi.org/10.1093/qmath/45.4.515
  • [17] W. Lück, Algebraische Topologie. Vieweg, Wiesbaden 2005.
  • [18] William S. Massey, Singular homology theory, Graduate Texts in Mathematics, vol. 70, Springer-Verlag, New York, 1980. MR 569059 (81g:55002)
  • [19] A. Meir and J. W. Moon, On the altitude of nodes in random trees, Canad. J. Math. 30 (1978), no. 5, 997-1015. MR 506256 (80k:05043), https://doi.org/10.4153/CJM-1978-085-0
  • [20] Shigeru Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury. MR 2004218 (2004g:14002)
  • [21] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
  • [22] Markus Reineke, Localization in quiver moduli, J. Reine Angew. Math. 631 (2009), 59-83. MR 2542217 (2010m:16022), https://doi.org/10.1515/CRELLE.2009.041
  • [23] Markus Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), no. 2, 349-368. MR 1974891 (2004a:16028), https://doi.org/10.1007/s00222-002-0273-4
  • [24] Markus Reineke, Moduli of representations of quivers, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 589-637. MR 2484736 (2010a:16026), https://doi.org/10.4171/062-1/14
  • [25] Aidan Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65 (1992), no. 1, 46-64. MR 1162487 (93d:16014), https://doi.org/10.1112/plms/s3-65.1.46
  • [26] R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, Addison Wesley, 1996.
  • [27] T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser Boston, Mass., 1981. MR 632835 (84i:20002)
  • [28] T. Weist, Asymptotische Eulercharakteristik von Kroneckermodulräumen. Diplomarbeit, Westfälische-Wilhelms-Universität Münster, 2005.
  • [29] Thorsten Weist, Tree modules of the generalised Kronecker quiver, J. Algebra 323 (2010), no. 4, 1107-1138. MR 2578596 (2011e:16028), https://doi.org/10.1016/j.jalgebra.2009.11.033

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 14D20, 16G20

Retrieve articles in all journals with MSC (2010): 14D20, 16G20


Additional Information

Thorsten Weist
Affiliation: Fachbereich C - Mathematik, Bergische Universität Wuppertal, D - 42097 Wuppertal, Germany
Email: weist@math.uni-wuppertal.de

DOI: https://doi.org/10.1090/S1088-4165-2013-00436-3
Received by editor(s): April 18, 2012
Received by editor(s) in revised form: January 14, 2013
Published electronically: July 10, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society