Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

On the characters of unipotent representations of a semisimple $ p$-adic group


Authors: Ju-Lee Kim and George Lusztig
Journal: Represent. Theory 17 (2013), 426-441
MSC (2010): Primary 22E50, 20G05
DOI: https://doi.org/10.1090/S1088-4165-2013-00439-9
Published electronically: August 2, 2013
MathSciNet review: 3084245
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a semisimple almost simple algebraic group defined and split over a nonarchimedean local field $ K$ and let $ V$ be a unipotent representation of $ G(K)$ (for example, an Iwahori-spherical representation). We calculate the character of $ V$ at compact very regular elements of $ G(K)$.


References [Enhancements On Off] (What's this?)

  • [AK] Jeffrey D. Adler and Jonathan Korman, The local character expansion near a tame, semisimple element, Amer. J. Math. 129 (2007), no. 2, 381-403. MR 2306039 (2008a:22020), https://doi.org/10.1353/ajm.2007.0005
  • [BK] Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $ p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582-634. MR 1643417 (2000c:22014), https://doi.org/10.1112/S0024611598000574
  • [BT] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251 (French). MR 0327923 (48 #6265)
  • [C1] W. Casselman, The Steinberg character as a true character, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 413-417. MR 0338273 (49 #3039)
  • [C2] W. Casselman, Characters and Jacquet modules, Math. Ann. 230 (1977), no. 2, 101-105. MR 0492083 (58 #11237)
  • [DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103-161. MR 0393266 (52 #14076)
  • [vD] G. van Dijk, Computation of certain induced characters of $ {\mathfrak{p}}$-adic groups, Math. Ann. 199 (1972), 229-240. MR 0338277 (49 #3043)
  • [G] Paul Gérardin, Construction de séries discrètes $ p$-adiques, Lecture Notes in Mathematics, Vol. 462, Springer-Verlag, Berlin, 1975. Sur les séries discrètes non ramifiées des groupes réductifs déployés $ p$-adiques. MR 0396859 (53 #719)
  • [H1] Harish-Chandra, Harmonic analysis on reductive $ p$-adic groups, Lecture Notes in Mathematics, Vol. 162, Springer-Verlag, Berlin, 1970. Notes by G. van Dijk. MR 0414797 (54 #2889)
  • [H2] Harish-Chandra, Harmonic analysis on reductive $ p$-adic groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 167-192. MR 0340486 (49 #5238)
  • [H3] Harish-Chandra, A submersion principle and its applications, Geometry and analysis, Indian Acad. Sci., Bangalore, 1980, pp. 95-102. MR 592255 (82e:22032)
  • [IM] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of $ {\mathfrak{p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5-48. MR 0185016 (32 #2486)
  • [KL] David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153-215. MR 862716 (88d:11121), https://doi.org/10.1007/BF01389157
  • [KmL] J.-L. Kim and G. Lusztig, On the Steinberg character of a semisimple $ p$-adic group. arxiv:1204.4712.
  • [L1] George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, WI, August 8-12, 1977. MR 518617 (80f:20045)
  • [L2] George Lusztig, Some examples of square integrable representations of semisimple $ p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623-653. MR 694380 (84j:22023), https://doi.org/10.2307/1999228
  • [L3] George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472 (86j:20038)
  • [L4] George Lusztig, Classification of unipotent representations of simple $ p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517-589. MR 1369407 (98b:22034), https://doi.org/10.1155/S1073792895000353
  • [MS] Ralf Meyer and Maarten Solleveld, Characters and growth of admissible representations of reductive $ p$-adic groups, J. Inst. Math. Jussieu 11 (2012), no. 2, 289-331. MR 2905306, https://doi.org/10.1017/S1474748011000120
  • [MP] Allen Moy and Gopal Prasad, Unrefined minimal $ K$-types for $ p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393-408. MR 1253198 (95f:22023), https://doi.org/10.1007/BF01231566

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50, 20G05

Retrieve articles in all journals with MSC (2010): 22E50, 20G05


Additional Information

Ju-Lee Kim
Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
Email: julee@ math.mit.edu

George Lusztig
Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
Email: gyuri@ math.mit.edu

DOI: https://doi.org/10.1090/S1088-4165-2013-00439-9
Received by editor(s): December 12, 2012
Received by editor(s) in revised form: December 24, 2012, and March 6, 2013
Published electronically: August 2, 2013
Additional Notes: Both authors are supported in part by the National Science Foundation
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society