Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

A geometric construction of types for the smooth representations of PGL(2) over a local field


Author: Paul Broussous
Journal: Represent. Theory 17 (2013), 508-523
MSC (2010): Primary 22E50; Secondary 20J05
DOI: https://doi.org/10.1090/S1088-4165-2013-00441-7
Published electronically: October 4, 2013
MathSciNet review: 3110480
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that almost all (Bushnell and Kutzko) types of
$ {\rm PGL}(2,F)$, $ F$ a non-Archimedean locally compact field of odd residue characteristic, naturally appear in the cohomology of finite graphs.


References [Enhancements On Off] (What's this?)

  • [1] Paul Broussous, Minimal strata for $ {\rm GL}(m,D)$, J. Reine Angew. Math. 514 (1999), 199-236. MR 1711267 (2000m:22020), https://doi.org/10.1515/crll.1999.071
  • [2] Paul Broussous, Simplicial complexes lying equivariantly over the affine building of $ {\rm GL}(N)$, Math. Ann. 329 (2004), no. 3, 495-511. MR 2127987 (2005m:20117), https://doi.org/10.1007/s00208-004-0516-3
  • [3] Paul Broussous, Representations of $ {\rm PGL}(2)$ of a local field and harmonic cochains on graphs, Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), no. 3, 495-513 (English, with English and French summaries). MR 2582439 (2011e:22021)
  • [4] Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $ \rm GL(2)$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120 (2007m:22013)
  • [5] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $ {\rm GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652 (94h:22007)
  • [6] Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $ p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582-634. MR 1643417 (2000c:22014), https://doi.org/10.1112/S0024611598000574
  • [7] Armand Borel and Jean-Pierre Serre, Cohomologie à supports compacts des immeubles de Bruhat-Tits; applications à la cohomologie des groupes $ S$-arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A110-A113 (French). MR 0274456 (43 #221)
  • [8] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191-225 (French). MR 760676 (86f:22019)
  • [9] G. Henniart, Sur l'unicité des types pour $ {\rm GL}_2$, appendix to Multiplicité modulaires et représentations de $ {\rm GL}(2,{\mathbb{Z}}_p )$ et $ {\rm Gal}({\bar {\mathbb{Q}}}_p/{\mathbb{Q}}_p)$ en $ l=p$, by C. Breuil and A. Mézard.
  • [10] P. C. Kutzko, On the supercuspidal representations of $ {\rm Gl}_{2}$, Amer. J. Math. 100 (1978), no. 1, 43-60. MR 0507253 (58 #22411a)
  • [11] Alan Roche, Types and Hecke algebras for principal series representations of split reductive $ p$-adic groups, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 3, 361-413 (English, with English and French summaries). MR 1621409 (99d:22028), https://doi.org/10.1016/S0012-9593(98)80139-0

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50, 20J05

Retrieve articles in all journals with MSC (2010): 22E50, 20J05


Additional Information

Paul Broussous
Affiliation: Département de Mathématiques, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France
Email: paul.broussous@math.univ-poitiers.fr

DOI: https://doi.org/10.1090/S1088-4165-2013-00441-7
Received by editor(s): March 26, 2012
Received by editor(s) in revised form: April 17, 2013
Published electronically: October 4, 2013
Additional Notes: The author wants to thanks the anonymous referee whose remarks helped him to improve the presentation of this article
Dedicated: Dedicated to Guy Henniart on his 60th birthday
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society