Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Spin polynomial functors and representations of Schur superalgebras


Author: Jonathan Axtell
Journal: Represent. Theory 17 (2013), 584-609
MSC (2010): Primary 16D90, 17A70, 18D20, 20G05, 20G43; Secondary 14L15
DOI: https://doi.org/10.1090/S1088-4165-2013-00445-4
Published electronically: December 6, 2013
MathSciNet review: 3138585
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce categories of homogeneous strict polynomial functors, $ \mathsf {Pol}^{\mathrm {I}}_{d,\Bbbk }$ and $ \mathsf {Pol}^{\mathrm {II}}_{d,\Bbbk }$, defined on vector superspaces over a field $ \Bbbk $ of characteristic not equal 2. These categories are related to polynomial representations of the supergroups $ GL(m\vert n)$ and $ Q(n)$. In particular, we prove an equivalence between $ \mathsf {Pol}^{\mathrm {I}}_{d,\Bbbk }$, $ \mathsf {Pol}^{\mathrm {II}}_{d,\Bbbk }$ and the category of finite dimensional supermodules over the Schur superalgebra $ \mathcal {S}(m\vert n,d)$, $ \mathcal {Q}(n,d)$ respectively provided $ m,n \ge d$. We also discuss some aspects of Sergeev duality from the viewpoint of the category $ \mathsf {Pol}^{\mathrm {II}}_{d,\Bbbk }$.


References [Enhancements On Off] (What's this?)

  • [B] N. Bourbaki, Algebra. II. Chapters 4-7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964 (91h:00003)
  • [BrK1] Jonathan Brundan and Alexander Kleshchev, Projective representations of symmetric groups via Sergeev duality, Math. Z. 239 (2002), no. 1, 27-68. MR 1879328 (2003b:20018), https://doi.org/10.1007/s002090100282
  • [BrK2] Jonathan Brundan and Alexander Kleshchev, Modular representations of the supergroup $ Q(n)$. I, J. Algebra 260 (2003), no. 1, 64-98. Special issue celebrating the 80th birthday of Robert Steinberg. MR 1973576 (2004f:20081), https://doi.org/10.1016/S0021-8693(02)00620-8
  • [D] Stephen Donkin, Symmetric and exterior powers, linear source modules and representations of Schur superalgebras, Proc. London Math. Soc. (3) 83 (2001), no. 3, 647-680. MR 1851086 (2002i:20062), https://doi.org/10.1112/plms/83.3.647
  • [FS] Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209-270. MR 1427618 (98h:14055a), https://doi.org/10.1007/s002220050119
  • [G] J. A. Green, Polynomial representations of $ {\rm GL}_{n}$, With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker. Second corrected and augmented edition, Lecture Notes in Mathematics, vol. 830, Springer, Berlin, 2007. MR 2349209 (2009b:20084)
  • [HTY] J. Hong, A. Touzé, O. Yacobi. Polynomial functors and categorifications of Fock space, preprint: arXiv:1111.5317
  • [HY] Jiuzu Hong and Oded Yacobi, Polynomial functors and categorifications of Fock space II, Adv. Math. 237 (2013), 360-403. MR 3028582, https://doi.org/10.1016/j.aim.2013.01.004
  • [Jan] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057 (2004h:20061)
  • [Ke] Gregory Maxwell Kelly, Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge, 1982. MR 651714 (84e:18001)
  • [K] Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457 (2007b:20022)
  • [Kr] H. Krause, Koszul, Ringel and Serre duality for strict polynomial functors, Compos. Math. 149, (2013), no. 6, 996-1018. MR 3077659
  • [L] D. A. Leĭtes, Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk 35 (1980), no. 1(211), 3-57, 255 (Russian). MR 565567 (81j:58003)
  • [Man] Yuri I. Manin, Gauge field theory and complex geometry, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1997. Translated from the 1984 Russian original by N. Koblitz and J. R. King; With an appendix by Sergei Merkulov. MR 1632008 (99e:32001)
  • [P] Teimuraz Pirashvili, Introduction to functor homology, Rational representations, the Steenrod algebra and functor homology, Panor. Synthèses, vol. 16, Soc. Math. France, Paris, 2003, pp. 1-26 (English, with English and French summaries). MR 2117526
  • [Ser] A. N. Sergeev, Tensor algebra of the identity representation as a module over the Lie superalgebras $ {\rm Gl}(n,\,m)$ and $ Q(n)$, Mat. Sb. (N.S.) 123(165) (1984), no. 3, 422-430 (Russian). MR 735715 (85h:17010)
  • [T1] Antoine Touzé, Cohomology of classical algebraic groups from the functorial viewpoint, Adv. Math. 225 (2010), no. 1, 33-68. MR 2669348 (2012a:20074), https://doi.org/10.1016/j.aim.2010.02.014
  • [T2] Antoine Touzé, Ringel duality and derivatives of non-additive functors, J. Pure Appl. Algebra 217 (2013), no. 9, 1642-1673. MR 3042627, https://doi.org/10.1016/j.jpaa.2012.12.007

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 16D90, 17A70, 18D20, 20G05, 20G43, 14L15

Retrieve articles in all journals with MSC (2010): 16D90, 17A70, 18D20, 20G05, 20G43, 14L15


Additional Information

Jonathan Axtell
Affiliation: Department of Mathematics, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea
Email: jdaxtell@snu.ac.kr

DOI: https://doi.org/10.1090/S1088-4165-2013-00445-4
Received by editor(s): February 8, 2013
Received by editor(s) in revised form: May 28, 2013
Published electronically: December 6, 2013
Additional Notes: This work was supported by the BRL research fund grant #2013055408 of the National Research Foundation of Korea.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society