Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Cyclotomic Carter-Payne homomorphisms


Authors: Sinéad Lyle and Andrew Mathas
Journal: Represent. Theory 18 (2014), 117-154
MSC (2010): Primary 20C08, 20C30
DOI: https://doi.org/10.1090/S1088-4165-2014-00450-3
Published electronically: June 3, 2014
MathSciNet review: 3213527
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a new family of homomorphisms between (graded) Specht modules of the quiver Hecke algebras of type $ A$. These maps have many similarities with the homomorphisms constructed by Carter and Payne in the special case of the symmetric groups, although the maps that we obtain are both more and less general than these.


References [Enhancements On Off] (What's this?)

  • [1] Susumu Ariki, On the decomposition numbers of the Hecke algebra of $ G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808. MR 1443748 (98h:20012)
  • [2] Susumu Ariki, Andrew Mathas, and Hebing Rui, Cyclotomic Nazarov-Wenzl algebras, Nagoya Math. J. 182 (2006), 47-134. MR 2235339 (2007d:20005)
  • [3] Michel Broué, Reflection groups, braid groups, Hecke algebras, finite reductive groups, Current developments in mathematics, 2000, Int. Press, Somerville, MA, 2001, pp. 1-107. MR 1882533 (2003e:20044)
  • [4] Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451-484. MR 2551762 (2010k:20010), https://doi.org/10.1007/s00222-009-0204-8
  • [5] -, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., 222 (2009), 1883-1942. https://doi.org/10.1016/j.aim.2009.06.018
  • [6] Jonathan Brundan, Alexander Kleshchev, and Weiqiang Wang, Graded Specht modules, J. Reine Angew. Math. 655 (2011), 61-87. MR 2806105 (2012f:20006), https://doi.org/10.1515/CRELLE.2011.033
  • [7] R. W. Carter and M. T. J. Payne, On homomorphisms between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 419-425. MR 556922 (81h:20048), https://doi.org/10.1017/S0305004100056851
  • [8] K. Corlett, Homomorphisms Between Specht Modules of the Ariki Koike Algebra, 2011, preprint.
    http://arxiv.org/abs/1108.3672.
  • [9] K. Corlett, On homomorphisms between Specht modules For the Ariki-Koike algebras, PhD thesis, University of East Anglia, UK, 2012.
  • [10] Richard Dipper, Gordon James, and Andrew Mathas, Cyclotomic $ q$-Schur algebras, Math. Z. 229 (1998), no. 3, 385-416. MR 1658581 (2000a:20033), https://doi.org/10.1007/PL00004665
  • [11] J. DIXON, Some results concerning Verma modules, PhD thesis, Queen Mary College, University of London, 2008.
  • [12] Craig J. Dodge, Large dimension homomorphism spaces between Specht modules for symmetric groups, J. Pure Appl. Algebra 215 (2011), no. 12, 2949-2956. MR 2811577 (2012h:20024), https://doi.org/10.1016/j.jpaa.2011.04.015
  • [13] Harald Ellers and John Murray, Branching rules for Specht modules, J. Algebra 307 (2007), no. 1, 278-286. MR 2278054 (2007k:20007), https://doi.org/10.1016/j.jalgebra.2006.07.032
  • [14] I. Gordon and I. Losev, On category $ \mathcal {O}$ for cyclotomic rational Cherednik algebras, J. Eur. Math. Soc., to appear.
    http://arxiv.org/abs/1109.2315.
  • [15] Jun Hu and Andrew Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $ A$, Adv. Math. 225 (2010), no. 2, 598-642. MR 2671176 (2011g:20006), https://doi.org/10.1016/j.aim.2010.03.002
  • [16] -, Seminormal forms and cyclotomic quiver Hecke algebras of type $ A$, 2013, preprint.
    http://arxiv.org/abs/1304.0906.
  • [17] V. G. KAC, Infinite dimensional Lie algebras, CUP, Cambridge, third ed., 1994.
  • [18] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. MR 2525917 (2010i:17023), https://doi.org/10.1090/S1088-4165-09-00346-X
  • [19] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685-2700. MR 2763732 (2012a:17021), https://doi.org/10.1090/S0002-9947-2010-05210-9
  • [20] Alexander S. Kleshchev, Andrew Mathas, and Arun Ram, Universal graded Specht modules for cyclotomic Hecke algebras, Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1245-1289. MR 3004104, https://doi.org/10.1112/plms/pds019
  • [21] Sinéad Lyle, Some $ q$-analogues of the Carter-Payne theorem, J. Reine Angew. Math. 608 (2007), 93-121. MR 2339470 (2008f:20016), https://doi.org/10.1515/CRELLE.2007.054
  • [22] Sinéad Lyle and Andrew Mathas, Row and column removal theorems for homomorphisms of Specht modules and Weyl modules, J. Algebraic Combin. 22 (2005), no. 2, 151-179. MR 2164395 (2006e:20009), https://doi.org/10.1007/s10801-005-2511-5
  • [23] Sinéad Lyle and Andrew Mathas, Carter-Payne homomorphisms and Jantzen filtrations, J. Algebraic Combin. 32 (2010), no. 3, 417-457. MR 2721060 (2011h:20006), https://doi.org/10.1007/s10801-010-0222-z
  • [24] Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR 1711316 (2001g:20006)
  • [25] R. Rouquier, 2-Kac-Moody algebras, 2008, preprint.
    http://arxiv.org/abs/0812.5023.

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20C08, 20C30

Retrieve articles in all journals with MSC (2010): 20C08, 20C30


Additional Information

Sinéad Lyle
Affiliation: School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
Email: s.lyle@uea.ac.uk

Andrew Mathas
Affiliation: School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Email: andrew.mathas@sydney.edu.au

DOI: https://doi.org/10.1090/S1088-4165-2014-00450-3
Keywords: Cyclotomic Hecke algebras, quiver Hecke algebras, Specht modules, Carter-Payne homomorphisms
Received by editor(s): February 18, 2013
Received by editor(s) in revised form: October 22, 2013
Published electronically: June 3, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society