Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Evaluating characteristic functions of character sheaves at unipotent elements


Author: Jay Taylor
Journal: Represent. Theory 18 (2014), 310-340
MSC (2010): Primary 20C33; Secondary 20G40
DOI: https://doi.org/10.1090/S1088-4165-2014-00457-6
Published electronically: October 17, 2014
MathSciNet review: 3269461
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Assume $ \mathbf {G}$ is a connected reductive algebraic group defined over an algebraic closure $ \mathbb{K} = \overline {\mathbb{F}}_p$ of the finite field of prime order $ p>0$. Furthermore, assume that $ F : \mathbf {G} \to \mathbf {G}$ is a Frobenius endomorphism of $ \mathbf {G}$. In this article we give a formula for the value of any $ F$-stable character sheaf of $ \mathbf {G}$ at a unipotent element. This formula is expressed in terms of class functions of $ \mathbf {G}^F$ which are supported on a single unipotent class of $ \mathbf {G}$. In general these functions are not determined, however, we give an expression for these functions under the assumption that $ Z(\mathbf {G})$ is connected, $ \mathbf {G}/Z(\mathbf {G})$ is simple and $ p$ is a good prime for $ \mathbf {G}$. In this case our formula is completely explicit.


References [Enhancements On Off] (What's this?)

  • [AA07] Pramod N. Achar and Anne-Marie Aubert, Supports unipotents de faisceaux caractères, J. Inst. Math. Jussieu 6 (2007), no. 2, 173-207 (French, with English and French summaries). MR 2311663 (2008c:20021), https://doi.org/10.1017/S1474748006000065
  • [BS84] W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type $ E_{n}$ $ (n=6,\,7,\,8)$, J. Algebra 88 (1984), no. 2, 584-614. MR 747534 (85k:20136), https://doi.org/10.1016/0021-8693(84)90084-X
  • [Bon04] Cédric Bonnafé, Actions of relative Weyl groups. I, J. Group Theory 7 (2004), no. 1, 1-37. MR 2030227 (2004m:20096), https://doi.org/10.1515/jgth.2003.040
  • [Bon05] Cédric Bonnafé, Actions of relative Weyl groups. II, J. Group Theory 8 (2005), no. 3, 351-387. MR 2137975 (2006b:20072), https://doi.org/10.1515/jgth.2005.8.3.351
  • [Car93] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626 (94k:20020)
  • [CR81] Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 632548 (82i:20001)
  • [DLM03] F. Digne, G. Lehrer, and J. Michel, The space of unipotently supported class functions on a finite reductive group, J. Algebra 260 (2003), no. 1, 111-137. MR 1973579 (2004g:20020), https://doi.org/10.1016/S0021-8693(02)00635-X
  • [DLM13] F. Digne, G. Lehrer, and J. Michel, On character sheaves and characters of reductive groups at unipotent classes, preprint (July 2013), arXiv:1307.0698 [math.RT].
  • [DM91] François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841 (92g:20063)
  • [GM00] Meinolf Geck and Gunter Malle, On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Amer. Math. Soc. 352 (2000), no. 1, 429-456. MR 1475683 (2000c:20064), https://doi.org/10.1090/S0002-9947-99-02210-2
  • [GP00] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press Oxford University Press, New York, 2000. MR 1778802 (2002k:20017)
  • [HS77] R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113-127. MR 0486164 (58 #5945)
  • [Hot81] Ryoshi Hotta, On Springer's representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 863-876 (1982). MR 656061 (83h:20038)
  • [How80] Robert B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), no. 1, 62-80. MR 576184 (81g:20094), https://doi.org/10.1112/jlms/s2-21.1.62
  • [Hum75] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773 (53 #633)
  • [LS79] G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41-52. MR 527733 (82g:20070), https://doi.org/10.1112/jlms/s2-19.1.41
  • [Lus81] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169-178. MR 641425 (83c:20059), https://doi.org/10.1016/0001-8708(81)90038-4
  • [Lus84a] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472 (86j:20038)
  • [Lus84b] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205-272. MR 732546 (86d:20050), https://doi.org/10.1007/BF01388564
  • [Lus85] G. Lusztig, Character sheaves. I, Adv. in Math 56 (1985), no. 3, 193-237; Character sheaves. II, Adv. in Math 57 (1985), no. 3, 126-265; Character sheaves. III, Adv. in Math 57 (1985), no. 3, 266-315; Character sheaves.IV, Adv. in Math 59 (1986), no. 1, 1-63; Character sheaves. V, Adv. in Math 61 (1985), no. 2, 103-155.
  • [Lus86] G. Lusztig, On the character values of finite Chevalley groups at unipotent elements, J. Algebra 104 (1986), no. 1, 146-194. MR 865898 (88c:20051), https://doi.org/10.1016/0021-8693(86)90245-0
  • [Lus90] G. Lusztig, Green functions and character sheaves, Ann. of Math. (2) 131 (1990), no. 2, 355-408. MR 1043271 (91c:20054), https://doi.org/10.2307/1971496
  • [Sho82] T. Shoji, On the Green polynomials of a Chevalley group of type $ F_{4}$, Comm. Algebra 10 (1982), no. 5, 505-543. MR 647835 (83d:20030), https://doi.org/10.1080/00927878208822732
  • [Sho83] T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), no. 2, 239-267. MR 723216 (85f:20032), https://doi.org/10.1007/BF01394315
  • [Sho87] T. Shoji, Green functions of reductive groups over a finite field, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 289-301. MR 933366 (88m:20014)
  • [Sho88] T. Shoji, Geometry of orbits and Springer correspondence, Astérisque (1988), no. 168, 9, 61-140, Orbites unipotentes et représentations, I. MR 1021493 (91b:20057)
  • [Sho95] T. Shoji, Character sheaves and almost characters of reductive groups. I, II, Adv. Math. 111 (1995), no. 2, 244-313, 314-354. MR 1318530 (95k:20069), https://doi.org/10.1006/aima.1995.1024
  • [Sho97] T. Shoji, Unipotent characters of finite classical groups, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 373-413. MR 1429881 (98h:20079)
  • [Sho06] T. Shoji, Generalized Green functions and unipotent classes for finite reductive groups. I, Nagoya Math. J. 184 (2006), 155-198. MR 2285233 (2008a:20076)
  • [Sho07] Toshiaki Shoji, Generalized Green functions and unipotent classes for finite reductive groups. II, Nagoya Math. J. 188 (2007), 133-170. MR 2371771 (2009c:20091)
  • [Spa82] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin, 1982. MR 672610 (84a:14024)
  • [Spr78] T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279-293. MR 0491988 (58 #11154)
  • [Ste99] Robert Steinberg, The isomorphism and isogeny theorems for reductive algebraic groups, J. Algebra 216 (1999), no. 1, 366-383. MR 1694546 (2000g:20090), https://doi.org/10.1006/jabr.1998.7776
  • [Tay13a] J. Taylor, Multiplicities in GGGRs for classical-type groups with connected centre I, preprint (June 2013), arXiv:1306.5882 [math.RT].
  • [Tay13b] J. Taylor, On unipotent supports of reductive groups with a disconnected centre, J. Algebra 391 (2013), 41-61. MR 3081621, https://doi.org/10.1016/j.jalgebra.2013.06.004
  • [Wal01] J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque (2001), no. 269. MR 1817880 (2002h:22014)

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 20C33, 20G40

Retrieve articles in all journals with MSC (2010): 20C33, 20G40


Additional Information

Jay Taylor
Affiliation: FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
Email: taylor@mathematik.uni-kl.de

DOI: https://doi.org/10.1090/S1088-4165-2014-00457-6
Received by editor(s): February 5, 2014
Received by editor(s) in revised form: September 12, 2014
Published electronically: October 17, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society