Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



On the Jacquet Conjecture on the local converse problem for $ p$-adic $ \mathrm{GL}_N$

Authors: Moshe Adrian, Baiying Liu, Shaun Stevens and Peng Xu
Journal: Represent. Theory 20 (2016), 1-13
MSC (2010): Primary 11S70, 22E50; Secondary 11F85, 22E55
Published electronically: January 27, 2016
MathSciNet review: 3452696
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Based on previous results of Jiang, Nien and the third-named author, we prove that any two minimax unitarizable supercuspidals of $ p$-adic  $ \mathrm {GL}_N$ that have the same depth and central character admit a special pair of Whittaker functions. As a corollary of our result, we prove Jacquet's conjecture on the local converse problem for  $ \mathrm {GL}_N$, when $ N$ is prime.

References [Enhancements On Off] (What's this?)

  • [AL15] Moshe Adrian and Baiying Liu, Some results on simple supercuspidal representations of $ \mathrm {GL}_n(F)$, J. Number Theory 160 (2016), 117-147. MR 3425202,
  • [B87] Colin J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of $ {\rm GL}_N$, J. Reine Angew. Math. 375/376 (1987), 184-210. MR 882297 (88e:22024),
  • [BK93] Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $ {\rm GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652 (94h:22007)
  • [BH98] Colin J. Bushnell and Guy Henniart, Supercuspidal representations of $ {\rm GL}_n$: explicit Whittaker functions, J. Algebra 209 (1998), no. 1, 270-287. MR 1652130 (99j:22022),
  • [BH06] Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $ \rm GL(2)$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120 (2007m:22013)
  • [BH14] Colin J. Bushnell and Guy Henniart, Langlands parameters for epipelagic representations of $ {\rm GL}_n$, Math. Ann. 358 (2014), no. 1-2, 433-463. MR 3158004,
  • [C84] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191-225 (French). MR 760676 (86f:22019)
  • [Ch96] Jiang-Ping Chen, Local factors, central characters, and representations of the general linear group over non-Archimedean local fields, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)-Yale University. MR 2694515
  • [Ch06] Jiang-Ping Jeff Chen, The $ n\times (n-2)$ local converse theorem for $ {\rm GL}(n)$ over a $ p$-adic field, J. Number Theory 120 (2006), no. 2, 193-205. MR 2257542 (2007g:22012),
  • [CPS99] J. W. Cogdell and I. I. Piatetski-Shapiro, Converse theorems for $ {\rm GL}_n$. II, J. Reine Angew. Math. 507 (1999), 165-188. MR 1670207 (2000a:22029),
  • [JPSS83] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367-464. MR 701565 (85g:11044),
  • [JNS15] Dihua Jiang, Chufeng Nien, and Shaun Stevens, Towards the Jacquet conjecture on the local converse problem for $ p$-adic $ {\rm GL}_n$, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 991-1007. MR 3349305,
  • [KM90] Philip Kutzko and David Manderscheid, On the supercuspidal representations of $ {\rm GL}_N,\;N$ the product of two primes, Ann. Sci. École Norm. Sup. (4) 23 (1990), no. 1, 39-88. MR 1042387 (91b:22025)
  • [LR03] Joshua Lansky and A. Raghuram, On the correspondence of representations between $ {\rm GL}(n)$ and division algebras, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1641-1648. MR 1950297 (2003m:22021),
  • [PS08] Vytautas Paskunas and Shaun Stevens, On the realization of maximal simple types and epsilon factors of pairs, Amer. J. Math. 130 (2008), no. 5, 1211-1261. MR 2450207 (2010h:22026),
  • [S84] Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $ {\rm GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67-111. MR 729755 (86b:22031),
  • [X13] P. Xu, A remark on the simple cuspidal representations of $ \mathrm {GL}_n$. Preprint, 2013, arXiv:1310.3519v2.

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 11S70, 22E50, 11F85, 22E55

Retrieve articles in all journals with MSC (2010): 11S70, 22E50, 11F85, 22E55

Additional Information

Moshe Adrian
Affiliation: Department of Mathematics, Queens College, Queens, New York 11367-1597

Baiying Liu
Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540

Shaun Stevens
Affiliation: School of Mathematics, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom

Peng Xu
Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

Keywords: Local converse problem, special pairs of Whittaker functions
Received by editor(s): March 4, 2015
Received by editor(s) in revised form: October 8, 2015
Published electronically: January 27, 2016
Additional Notes: The second author was supported in part by NSF Grant DMS-1302122, and in part by a postdoc research fund from Department of Mathematics, University of Utah
The third and fourth authors were supported by the Engineering and Physical Sciences Research Council (grant EP/H00534X/1)
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society