Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165



On reducibility of $ p$-adic principal series representations of $ p$-adic groups

Authors: Dubravka Ban and Joseph Hundley
Journal: Represent. Theory 20 (2016), 249-262
MSC (2010): Primary 22E50, 11S80
Published electronically: August 17, 2016
MathSciNet review: 3537231
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the continuous principal series representations of split connected reductive $ p$-adic groups over $ p$-adic fields. We show that such representations are irreducible when the inducing character lies in a certain cone. This is consistent with a conjecture of Schneider regarding reducibility in the semisimple case.

References [Enhancements On Off] (What's this?)

  • [BBr10] Laurent Berger and Christophe Breuil, Sur quelques représentations potentiellement cristallines de $ {\rm GL}_2(\mathbf {Q}_p)$, Astérisque 330 (2010), 155-211 (French, with English and French summaries). MR 2642406
  • [Col10] Pierre Colmez, Représentations de $ {\rm GL}_2(\mathbf {Q}_p)$ et $ (\varphi ,\Gamma )$-modules, Astérisque 330 (2010), 281-509 (French, with English and French summaries). MR 2642409
  • [SGA3] M. Demazure and A. Grothendieck (eds.), Schémas en groupes. III: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Lecture Notes in Mathematics, vol. 153, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274460
  • [Fr03] H. Frommer, The locally analytic principal series of split reductive groups, Preprintreihe SFB 478, Münster, Heft 265 (2003); available at
  • [Hum75] James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, vol. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773
  • [Jan03] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
  • [Lam01] T. Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001. MR 1838439
  • [Laz65] Michel Lazard, Groupes analytiques $ p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389-603 (French). MR 0209286
  • [OStr10] Sascha Orlik and Matthias Strauch, On the irreducibility of locally analytic principal series representations, Represent. Theory 14 (2010), 713-746. MR 2738585,
  • [Sch11] Peter Schneider, $ p$-adic Lie groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 344, Springer, Heidelberg, 2011. MR 2810332
  • [Sch06] Peter Schneider, Continuous representation theory of $ p$-adic Lie groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1261-1282. MR 2275644
  • [ScT02] P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359-380. MR 1900706,
  • [Spr98] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50, 11S80

Retrieve articles in all journals with MSC (2010): 22E50, 11S80

Additional Information

Dubravka Ban
Affiliation: Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901

Joseph Hundley
Affiliation: 244 Mathematics Building, University at Buffalo, Buffalo, New York 14260-2900

Keywords: $p$-adic representations, $p$-adic groups, principal series
Received by editor(s): February 20, 2016
Received by editor(s) in revised form: June 7, 2016
Published electronically: August 17, 2016
Additional Notes: This research was supported by NSA grant H98230-15-1-0234
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society