Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

Local base change via Tate cohomology


Author: Niccolò Ronchetti
Journal: Represent. Theory 20 (2016), 263-294
MSC (2010): Primary 11F70, 11S37, 22E50
DOI: https://doi.org/10.1090/ert/486
Published electronically: September 27, 2016
MathSciNet review: 3551160
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a new way to realize cyclic base change (a special case of Langlands functoriality) for prime degree extensions of characteristic zero local fields. Let $ F / E$ be a prime degree $ l$ extension of local fields of residue characteristic $ p \neq l$. Let $ \pi $ be an irreducible cuspidal $ l$-adic representation of $ \mathrm {GL}_n(E)$ and let $ \rho $ be an irreducible cuspidal $ l$-adic representation of $ \mathrm {GL}_n(F)$ which is Galois-invariant. Under some minor technical conditions on $ \pi $ and $ \rho $ (for instance, we assume that both are level zero) we prove that the $ \bmod \,l$-reductions $ r_l(\pi )$ and $ r_l(\rho )$ are in base change if and only if the Tate cohomology of $ \rho $ with respect to the Galois action is isomorphic, as a modular representation of $ \mathrm {GL}_n(E)$, to the Frobenius twist of $ r_l(\pi )$. This proves a special case of a conjecture of Treumann and Venkatesh as they investigate the relationship between linkage and Langlands functoriality.


References [Enhancements On Off] (What's this?)

  • [1] James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
  • [2] James Arthur, The principle of functoriality, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 1, 39-53. MR 1943132, https://doi.org/10.1090/S0273-0979-02-00963-1
  • [3] I. N. Bernstein and K. E. Rummelhart, Draft of: Representations of $ p$-adic groups, lectures at Harvard University, 1992.
  • [4] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive $ {\mathfrak{p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441-472. MR 0579172
  • [5] I. N. Bernstein and A. V. Zelevinsky, Representations of the group $ GL(n,F),$ where $ F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5-70; translation, Russian Math. Surveys 31 (1976), no. 3 (Russian). MR 0425030
  • [6] Richard E. Borcherds, Modular moonshine. III, Duke Math. J. 93 (1998), no. 1, 129-154. MR 1620091, https://doi.org/10.1215/S0012-7094-98-09305-X
  • [7] Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508
  • [8] Colin J. Bushnell and Guy Henniart, Modular local Langlands correspondence for $ {\rm GL}_n$, Int. Math. Res. Not. IMRN 15 (2014), 4124-4145. MR 3244922
  • [9] Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence. I, J. Amer. Math. Soc. 18 (2005), no. 3, 685-710. MR 2138141, https://doi.org/10.1090/S0894-0347-05-00487-X
  • [10] Colin J. Bushnell and Guy Henniart, The essentially tame local Langlands correspondence, III: The general case, Proc. Lond. Math. Soc. (3) 101 (2010), no. 2, 497-553. MR 2679700, https://doi.org/10.1112/plms/pdp053
  • [11] Roger W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. MR 794307
  • [12] Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I: With applications to finite groups and orders, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR 632548
  • [13] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, 2nd ed., Translations of Mathematical Monographs, vol. 121, American Mathematical Society, Providence, RI, 2002. With a foreword by I. R. Shafarevich. MR 1915966
  • [14] Stephen Gelbart, An elementary introduction to the Langlands program, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 177-219. MR 733692, https://doi.org/10.1090/S0273-0979-1984-15237-6
  • [15] S. I. Gel'fand, Representations of the full linear group over a finite field, Mat. Sb. (N.S.) 83 (125) (1970), 15-41; translation, Math. USSR Sbornik 12 (1970), no. 1. MR 0272916
  • [16] J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447. MR 0072878
  • [17] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
  • [18] Gopal Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. France 129 (2001), no. 2, 169-174 (English, with English and French summaries). MR 1871292
  • [19] David Renard, Représentations des groupes réductifs $ p$-adiques, Cours Spécialisés [Specialized Courses], vol. 17, Société Mathématique de France, Paris, 2010 (French). MR 2567785
  • [20] Jean-Pierre Serre, Linear representations of finite groups, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, vol. 42, Springer-Verlag, New York-Heidelberg, 1977. MR 0450380
  • [21] Jean-Pierre Serre, Local fields, Translated from the French by Marvin Jay Greenberg, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. MR 554237
  • [22] Takuro Shintani, Two remarks on irreducible characters of finite general linear groups, J. Math. Soc. Japan 28 (1976), no. 2, 396-414. MR 0414730
  • [23] T. A. Springer, Cusp forms for finite groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 97-120. MR 0263942
  • [24] T. A. Springer, Characters of special groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 121-166. MR 0263943
  • [25] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167-266. MR 0268192
  • [26] J. Tate, Number theoretic background, Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26. MR 546607
  • [27] D. Treumann and A. Venkatesh, Functoriality, Smith theory and the Brauer homomorphism, http://arxiv.org/pdf/1407.2346.pdf.
  • [28] Marie-France Vignéras, Correspondance de Langlands semi-simple pour $ {\rm GL}(n,F)$ modulo $ l\not = p$, Invent. Math. 144 (2001), no. 1, 177-223 (French). MR 1821157, https://doi.org/10.1007/s002220100134
  • [29] Marie-France Vignéras, Représentations $ l$-modulaires d'un groupe réductif $ p$-adique avec $ l\ne p$, Progress in Mathematics, vol. 137, Birkhäuser Boston, Inc., Boston, MA, 1996 (French, with English summary). MR 1395151
  • [30] David A. Vogan Jr., The local Langlands conjecture, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305-379. MR 1216197, https://doi.org/10.1090/conm/145/1216197

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 11F70, 11S37, 22E50

Retrieve articles in all journals with MSC (2010): 11F70, 11S37, 22E50


Additional Information

Niccolò Ronchetti
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
Email: niccronc@stanford.edu

DOI: https://doi.org/10.1090/ert/486
Received by editor(s): July 2, 2015
Received by editor(s) in revised form: April 21, 2016, and July 18, 2016
Published electronically: September 27, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society