Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

On the exotic Grassmannian and its nilpotent variety


Authors: Lucas Fresse and Kyo Nishiyama
Journal: Represent. Theory 20 (2016), 451-481
MSC (2010): Primary 14L30; Secondary 14L35, 14M15, 17B08
DOI: https://doi.org/10.1090/ert/489
Published electronically: November 28, 2016
MathSciNet review: 3576071
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a decomposition of a vector space $ V=V_1\oplus V_2$, the direct product $ \mathfrak{X}$ of the projective space $ \mathbb{P}(V_1)$ with a Grassmann variety $ \mathrm {Gr}_k(V)$ can be viewed as a double flag variety for the symmetric pair $ (G,K)=(\mathrm {GL}(V),\mathrm {GL}(V_1)\times \mathrm {GL}(V_2))$. Relying on the conormal variety for the action of $ K$ on $ \mathfrak{X}$, we show a geometric correspondence between the $ K$-orbits of $ \mathfrak{X}$ and the $ K$-orbits of some appropriate exotic nilpotent cone. We also give a combinatorial interpretation of this correspondence in some special cases. Our construction is inspired by a classical result of Steinberg (1976) and by the recent work of Henderson and Trapa (2012) for the symmetric pair $ (\mathrm {GL}(V),\mathrm {Sp}(V))$.


References [Enhancements On Off] (What's this?)

  • [AH08] Pramod N. Achar and Anthony Henderson, Orbit closures in the enhanced nilpotent cone, Adv. Math. 219 (2008), no. 1, 27-62. MR 2435419, https://doi.org/10.1016/j.aim.2008.04.008
  • [CG97] Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
  • [CM93] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060 (94j:17001)
  • [FGT09] Michael Finkelberg, Victor Ginzburg, and Roman Travkin, Mirabolic affine Grassmannian and character sheaves, Selecta Math. (N.S.) 14 (2009), no. 3-4, 607-628. MR 2511193, https://doi.org/10.1007/s00029-009-0509-x
  • [Hel78] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978. MR 514561 (80k:53081)
  • [HNOO13] Xuhua He, Kyo Nishiyama, Hiroyuki Ochiai, and Yoshiki Oshima, On orbits in double flag varieties for symmetric pairs, Transform. Groups 18 (2013), no. 4, 1091-1136. MR 3127988, https://doi.org/10.1007/s00031-013-9243-8
  • [HT12] Anthony Henderson and Peter E. Trapa, The exotic Robinson-Schensted correspondence, J. Algebra 370 (2012), 32-45. MR 2966826, https://doi.org/10.1016/j.jalgebra.2012.06.029
  • [Joh10] Casey Patrick Johnson, Enhanced nilpotent representations of a cyclic quiver, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)-The University of Utah. MR 2941520
  • [Jos78] Anthony Joseph, Sur la classification des idéaux primitifs dans l'algèbre enveloppante de $ {\rm sl}(n+1,\,{\bf C})$, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 5, A303-A306 (French, with English summary). MR 0506501
  • [Jos79] A. Joseph, $ W$-module structure in the primitive spectrum of the enveloping algebra of a semisimple Lie algebra, Noncommutative harmonic analysis (Proc. Third Colloq., Marseille-Luminy, 1978) Lecture Notes in Math., vol. 728, Springer, Berlin, 1979, pp. 116-135. MR 548328
  • [Kat09] Syu Kato, An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J. 148 (2009), no. 2, 305-371. MR 2524498, https://doi.org/10.1215/00127094-2009-028
  • [Kat11] Syu Kato, Deformations of nilpotent cones and Springer correspondences, Amer. J. Math. 133 (2011), no. 2, 519-553. MR 2797355, https://doi.org/10.1353/ajm.2011.0014
  • [KL79] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165-184. MR 560412, https://doi.org/10.1007/BF01390031
  • [Mat13] Toshihiko Matsuki, An example of orthogonal triple flag variety of finite type, J. Algebra 375 (2013), 148-187. MR 2998952, https://doi.org/10.1016/j.jalgebra.2012.11.012
  • [MŌ90] Toshihiko Matsuki and Toshio Ōshima, Embeddings of discrete series into principal series, The orbit method in representation theory (Copenhagen, 1988) Progr. Math., vol. 82, Birkhäuser Boston, Boston, MA, 1990, pp. 147-175. MR 1095345
  • [MWZ99] Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), no. 1, 97-118. MR 1667147, https://doi.org/10.1006/aima.1998.1776
  • [MWZ00] Peter Magyar, Jerzy Weyman, and Andrei Zelevinsky, Symplectic multiple flag varieties of finite type, J. Algebra 230 (2000), no. 1, 245-265. MR 1774766, https://doi.org/10.1006/jabr.2000.8313
  • [NO11] Kyo Nishiyama and Hiroyuki Ochiai, Double flag varieties for a symmetric pair and finiteness of orbits, J. Lie Theory 21 (2011), no. 1, 79-99. MR 2797821
  • [PV94] V. L. Popov and È. B. Vinberg, Invariant theory, Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137-314, 315 (Russian). MR 1100485
  • [Ros12] Daniele Rosso, Classic and mirabolic Robinson-Schensted-Knuth correspondence for partial flags, Canad. J. Math. 64 (2012), no. 5, 1090-1121. MR 2979579, https://doi.org/10.4153/CJM-2011-071-7
  • [Spa82] Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610
  • [Spr76] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207. MR 0442103
  • [SS13] T. Shoji and K. Sorlin, Exotic symmetric space over a finite field, I, Transform. Groups 18 (2013), no. 3, 877-929. MR 3084338, https://doi.org/10.1007/s00031-013-9237-6
  • [Ste76] Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209-224. MR 0430094
  • [Ste88] Robert Steinberg, An occurrence of the Robinson-Schensted correspondence, J. Algebra 113 (1988), no. 2, 523-528. MR 929778, https://doi.org/10.1016/0021-8693(88)90177-9
  • [Tra09] Roman Travkin, Mirabolic Robinson-Schensted-Knuth correspondence, Selecta Math. (N.S.) 14 (2009), no. 3-4, 727-758. MR 2511197, https://doi.org/10.1007/s00029-009-0508-y
  • [Wys15] B. J. Wyser, The Bruhat order on clans, ArXiv e-prints (2015).
  • [Yam97] Atsuko Yamamoto, Orbits in the flag variety and images of the moment map for classical groups. I, Represent. Theory 1 (1997), 329-404 (electronic). MR 1479152, https://doi.org/10.1090/S1088-4165-97-00007-1

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 14L30, 14L35, 14M15, 17B08

Retrieve articles in all journals with MSC (2010): 14L30, 14L35, 14M15, 17B08


Additional Information

Lucas Fresse
Affiliation: Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France
Email: lucas.fresse@univ-lorraine.fr

Kyo Nishiyama
Affiliation: Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara 252-5258, Japan
Email: kyo@gem.aoyama.ac.jp

DOI: https://doi.org/10.1090/ert/489
Received by editor(s): April 6, 2016
Received by editor(s) in revised form: October 9, 2016
Published electronically: November 28, 2016
Additional Notes: The first author was supported by the ISF Grant Nr. 797/14 and by the ANR project NilpOrbRT (ANR-12-PDOC-0031).
The second author was supported by JSPS KAKENHI Grant Numbers #25610008 and #16K05070.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society