CORRECTIONS TO: “A MURNAGHAN–NAKAYAMA RULE FOR VALUES OF UNIPOTENT CHARACTERS IN CLASSICAL GROUPS”

FRANK LÜBECK AND GUNTER MALLE

Abstract. We settle a missing case in the proof of one of the main applications of our results in [Frank Lübeck and Gunter Malle, A Murnaghan–Nakayama rule for values of unipotent characters in classical groups, Represent. Theory 20 (2016), 139–161, MR3466537].

In [5] we derived a Murnaghan–Nakayama formula for the values of unipotent characters of finite classical groups. As one application, we showed that the first Cartan invariant $c_{11}^{(\ell)}$ of a finite simple classical group G in non-defining characteristic ℓ is never equal to 2 if Sylow ℓ-subgroups of G are non-cyclic. But contrary to what was claimed in the first line of the proof of [5, Thm. 7.1], the same assertion for the case of defining characteristic does not follow from the work of Koshitani, Külshammer, and Sambale [2]. We thank Shigeo Koshitani and Jürgen Müller for pointing this out to us; see [3].

Here we give a short argument for the missing case. The argument also covers the analogous statement in [4, Prop. 6.3] pertaining to simple groups of exceptional Lie type. The crucial observation is that Sylow p-subgroups in groups of Lie type of characteristic p are large. Except for a few small rank cases, we do not need any knowledge about the ordinary character table of the group G.

Note that if $c_{11}^{(p)} = 2$, then there exists $\chi \in \text{Irr}(G)$ such that $1_G + \chi$ is the character of a projective module; in particular, $\chi(g) = -1$ for all p-singular elements $g \in G$.

Lemma 1. Let G be a finite group and p a prime. Assume that $H \leq G$ is a subgroup such that $|G : H|$ is divisible by p, but $|G : H| < |G|_p$. Then $c_{11}^{(p)} > 2$.

Proof. The permutation character π of G on the cosets of H has exactly one trivial constituent 1_G. On the other hand, as $|G : H|$ is divisible by p, the modular reduction of the permutation representation has (at least) two trivial modular constituents: one in the socle, one in the head. Thus, the p-modular reduction of one of the non-trivial ordinary constituents χ of π must contain the trivial p-modular character of G. By Brauer reciprocity, χ then occurs in the projective cover Ψ of the trivial character. If we had $c_{11}^{(p)} = 2$, then necessarily $\Psi = 1_G + \chi$. Since the degree of any projective character is divisible by $|G|_p$, this is a contradiction to $|G|_p \leq \Psi(1) = 1_G(1) + \chi(1) \leq \pi(1) = |G : H|$. \[\square\]
Proposition 2. Let G be a finite simple group of Lie type in characteristic p. Then $c_{11}^{(p)} > 2$ unless $G = L_2(p)$.

Proof. If the Lie-rank of G is not very small, then we can find a subgroup of G which fulfills the condition of Lemma 1. In Table 1, we give a subgroup H (see for example [6, §13] for the existence) of a suitable central extension \hat{G} of G. From the order formule for these groups (see for example [6, Tab. 24.1]) it is easy to check that $H \leq \hat{G}$ fulfills the condition of Lemma 1. Since the center of \hat{G} is of order prime to p, the same holds for $H \leq G$ where H is the image of \hat{H} in G.

It remains to consider the groups of type A_1, A_2, $2A_2$, $3D_4$, $2B_2$, $3G_2$ and $2F_4$. For all of these the (generic) character tables are known and available in CHEVIE [1]. Here we look for all irreducible characters χ which have value -1 on all p-singular (non-semisimple) elements, so that $\chi + 1_G$ is a candidate for the 1-PIM of G. It is easy to see that, apart from two exceptions, all characters either: vanish on some p-singular element, or that a value on a non-trivial unipotent class is positive, or that the values on two non-trivial unipotent classes are different.

The two exceptions occur in type A_1, so $G = L_2(q)$, which has a family of characters of degree $q - 1$ with value -1 on all p-singular elements, and in type A_2, so $G = L_3(q)$, which has a family of characters of degree $q^3 - 1$ which also take value -1 on all p-singular elements. By [7, Thm. 5.2] the 1-PIM of $G = L_2(q)$ has degree $(2^f - 1)q$, where $q = p^f$. Since the maximal character degree for G is $q + 1$, this shows that $c_{11}^{(p)} > 2$ unless $f = 1$; that is, unless $q = p$ is prime, in which case the Sylow p-subgroups of G are cyclic (and so indeed $c_{11}^{(p)} = 2$). Similarly, by [7, Thm. 5.3] the 1-PIM of $G = L_3(q)$, $q = p^f$, has degree $(12^f - 6^f + 1)q^3$, so none of the candidate $1_G + \chi$ mentioned above can be the 1-PIM.

Table 1. Large subgroups

<table>
<thead>
<tr>
<th>G</th>
<th>\hat{G}</th>
<th>χ</th>
<th>$\hat{\chi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SL^+_3(q)$</td>
<td>$Sp_4(q)$</td>
<td>$G_2(q)$</td>
<td>$2A_2(q)$</td>
</tr>
<tr>
<td>$SL^+_n(q)$</td>
<td>$n \geq 5$</td>
<td>$GL^+_n(q)$</td>
<td>$F_4(q)$</td>
</tr>
<tr>
<td>$Sp_{2n+1}(q)$</td>
<td>$n \geq 2$</td>
<td>$Sp_{2n}(q)$</td>
<td>$B_4(q)$</td>
</tr>
<tr>
<td>$Sp_{2n}(q)$</td>
<td>$n \geq 3$</td>
<td>$Sp_{2n-2}(q)Sp_2(q)$</td>
<td>$E_6(q)$</td>
</tr>
<tr>
<td>$Spin^+_2n(q)$</td>
<td>$n \geq 4$</td>
<td>$Spin_{2n-1}(q)$</td>
<td>$E_7(q)$</td>
</tr>
</tbody>
</table>

Observe that the case $p = 2$ was already dealt with in [2, Thm. 4.5].

REFERENCES

CORRECTIONS TO: MURNAGHAN–NAKAYAMA RULE

Lehrstuhl D für Mathematik, RWTH Aachen, Pontdriesch 14/16, 52062 Aachen, Germany.
E-mail address: Frank.Luebeck@math.rwth-aachen.de

FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany.
E-mail address: malle@mathematik.uni-kl.de