Remote Access Representation Theory
Green Open Access

Representation Theory

ISSN 1088-4165

 
 

 

The unicity of types for depth-zero supercuspidal representations


Author: Peter Latham
Journal: Represent. Theory 21 (2017), 590-610
MSC (2010): Primary 22E50
DOI: https://doi.org/10.1090/ert/511
Published electronically: December 13, 2017
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the unicity of types for depth-zero supercuspidal representations of an arbitrary $ p$-adic group $ G$, showing that each depth-zero supercuspidal representation of $ G$ contains a unique conjugacy class of typical representations of maximal compact subgroups of $ G$. As a corollary, we obtain an inertial Langlands correspondence for these representations via the Langlands correspondence of DeBacker and Reeder.


References [Enhancements On Off] (What's this?)

  • [Ber84] J. N. Bernstein, Le ``centre'' de Bernstein, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1-32 (French). Edited by P. Deligne. MR 771671
  • [BK98] Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $ p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582-634. MR 1643417
  • [BM02] Christophe Breuil and Ariane Mézard, Multiplicités modulaires et représentations de $ {\rm GL}_2({\bf Z}_p)$ et de $ {\rm Gal}(\overline{\bf Q}_p/{\bf Q}_p)$ en $ l=p$, Duke Math. J. 115 (2002), no. 2, 205-310 (French, with English and French summaries). With an appendix by Guy Henniart. MR 1944572
  • [BT72] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251 (French). MR 0327923
  • [BT84] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984), no. 60, 197-376. MR 756316
  • [DR09] Stephen DeBacker and Mark Reeder, Depth-zero supercuspidal $ L$-packets and their stability, Ann. of Math. (2) 169 (2009), no. 3, 795-901. MR 2480618
  • [Fin15] Jessica Fintzen, On the Moy-Prasad filtration, arXiv 1511.00726 (2015).
  • [Lat15] Peter Latham, On the unicity of types in special linear groups, arXiv 1511.00642 (2015).
  • [Lat16] Peter Latham, Unicity of types for supercuspidal representations of $ p$-adic $ \mathbf{SL}_2$, J. Number Theory 162 (2016), 376-390. MR 3448273
  • [Mac80] I. G. Macdonald, Zeta functions attached to finite general linear groups, Math. Ann. 249 (1980), no. 1, 1-15. MR 575444
  • [Mor93] Lawrence Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1-54. MR 1235019
  • [Mor99] Lawrence Morris, Level zero $ \bf G$-types, Compositio Math. 118 (1999), no. 2, 135-157. MR 1713308
  • [MP94] Allen Moy and Gopal Prasad, Unrefined minimal $ K$-types for $ p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393-408. MR 1253198
  • [MP96] Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $ K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98-121. MR 1371680
  • [Pas05] Vytautas Paskunas, Unicity of types for supercuspidal representations of $ {\rm GL}_N$, Proc. London Math. Soc. (3) 91 (2005), no. 3, 623-654. MR 2180458
  • [SS97] Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97-191. MR 1471867

Similar Articles

Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2010): 22E50

Retrieve articles in all journals with MSC (2010): 22E50


Additional Information

Peter Latham
Affiliation: Department of Mathematics, University of East Anglia, Norwich, United Kingdom
Email: peter.latham@kcl.ac.uk

DOI: https://doi.org/10.1090/ert/511
Keywords: Theory of types, $p$-adic groups, depth-zero supercuspidals, Langlands correspondence
Received by editor(s): September 13, 2016
Received by editor(s) in revised form: October 3, 2017, and November 9, 2017
Published electronically: December 13, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society