ON PRO-\(p\)-IWAHORI INVARIANTS OF \(R\)-REPRESENTATIONS OF REDUCTIVE \(p\)-ADIC GROUPS

N. ABE, G. HENNIART, AND M.-F. VIGNÉRAS

Abstract. Let \(F\) be a locally compact field with residue characteristic \(p\), and let \(G\) be a connected reductive \(F\)-group. Let \(U\) be a pro-\(p\) Iwahori subgroup of \(G = G(F)\). Fix a commutative ring \(R\). If \(\pi\) is a smooth \(R[G]\)-representation, the space of invariants \(\pi^U\) is a right module over the Hecke algebra \(H\) of \(U\) in \(G\).

Let \(P\) be a parabolic subgroup of \(G\) with a Levi decomposition \(P = MN\) adapted to \(U\). We complement a previous investigation of Ollivier-Vignéras on the relation between taking \(U\)-invariants and various functor like \(\text{Ind}^G_P\) and right and left adjoints. More precisely the authors’ previous work with Herzig introduced representations \(I_G(P, \sigma, Q)\) where \(\sigma\) is a smooth representation of \(M\) extending, trivially on \(N\), to a larger parabolic subgroup \(P(\sigma)\), and \(Q\) is a parabolic subgroup between \(P\) and \(P(\sigma)\). Here we relate \(I_G(P, \sigma, Q)^U\) to an analogously defined \(H\)-module \(I_H(P, \sigma^U_M, Q)\), where \(U_M = U \cap M\) and \(\sigma^U_M\) is seen as a module over the Hecke algebra \(H_M\) of \(U_M\) in \(M\). In the reverse direction, if \(V\) is a right \(H_M\)-module, we relate \(I_H(P, V, Q) \otimes c\text{-Ind}^G_{U_M} 1\) to \(I_G(P, V \otimes H_M c\text{-Ind}^M_{U_M} 1, Q)\). As an application we prove that if \(R\) is an algebraically closed field of characteristic \(p\), and \(\pi\) is an irreducible admissible representation of \(G\), then the contragredient of \(\pi\) is 0 unless \(\pi\) has finite dimension.

Contents

1. Introduction 119
2. Notation, useful facts, and preliminaries 122
3. Pro-\(p\) Iwahori invariants of \(I_G(P, \sigma, Q)\) 124
4. Hecke module \(I_H(P, V, Q)\) 134
5. Universal representation \(I_H(P, V, Q) \otimes_H R[U\backslash G]\) 150
6. Vanishing of the smooth dual 156
References 159

1. Introduction

1.1. The present paper is a companion to [AHV] and is similarly inspired by the classification results of [AHHV17]; however it can be read independently. We recall the setting. We have a non-archimedean locally compact field \(F\) of residue characteristic \(p\) and a connected reductive \(F\)-group \(G\). We fix a commutative ring \(R\) and study the smooth \(R\)-representations of \(G = G(F)\).

Received by the editors March 14, 2018, and, in revised form, June 17, 2018.
2010 Mathematics Subject Classification. Primary 20C08; Secondary 11F70.
Key words and phrases. Parabolic induction, pro-\(p\) Iwahori Hecke algebra.
The first-named author was supported by JSPS KAKENHI Grant Number 26707001.

©2018 American Mathematical Society
In [AHHV17] the irreducible admissible \(R \)-representations of \(G \) are classified in terms of supersingular ones when \(R \) is an algebraically closed field of characteristic \(p \). That classification is expressed in terms of representations \(I_G(P, \sigma, Q) \), which make sense for any \(R \). In that notation, \(P \) is a parabolic subgroup of \(G \) with a Levi decomposition \(P = MN \) and \(\sigma \) a smooth \(R \)-representation of the Levi subgroup \(M \); there is a maximal parabolic subgroup \(P(\sigma) \) of \(G \) containing \(P \) to which \(\sigma \) inflated to \(P \) extends to a representation \(e_{P(\sigma)}(\sigma) \), and \(Q \) is a parabolic subgroup of \(G \) with \(P \subset Q \subset P(\sigma) \). Then

\[
I_G(P, \sigma, Q) = \text{Ind}^G_P(e_{P(\sigma)}(\sigma) \otimes \text{St}_{Q}^{P(\sigma)}),
\]

where \(\text{Ind} \) stands for parabolic induction and \(\text{St}_{Q}^{P(\sigma)} = \text{Ind}^{P(\sigma)}_{Q} R/ \sum \text{Ind}^{P(\sigma)}_{Q} R \), the sum being over parabolic subgroups \(Q' \) of \(G \) with \(Q \subset Q' \subset P(\sigma) \). Alternatively, \(I_G(P, \sigma, Q) \) is the quotient of \(Ind^G_P(e_Q(\sigma)) \) by \(\sum Ind^G_{Q'} e_{Q'}(\sigma) \) with \(Q' \) as above, where \(e_Q(\sigma) \) is the restriction of \(e_{P(\sigma)}(\sigma) \) to \(Q \), similarly for \(Q' \).

In [AHV] we mainly studied what happens to \(\text{Ind}^G_P(\sigma)\mid_{\sigma'} \) of \(U \)-invariants, as a right module over the Hecke algebra \(H = H_G \) of \(U \) in \(G \) - the convolution algebra on the double coset space \(\mathcal{U} \backslash G / \mathcal{U} \) - in terms of the module \(\sigma^{U, \mathcal{U}} \) over the Hecke algebra \(H_M \) of \(\mathcal{U}_M \) in \(M \). That goal is achieved in section 4 Theorem 4.17.

1.2. The initial work has been done in [OV17] §4 where \((\text{Ind}^G_{P} \sigma)^{U, \mathcal{U}} \) is identified. Precisely, writing \(M^+ \) for the monoid of elements \(m \in M \) with \(m(U \cap N)m^{-1} \subset U \cap N \), the subalgebra \(H_{M^+} \) of \(H_M \) with support in \(M^+ \), has a natural algebra embedding \(\theta \) into \(H \) and [OV17] Proposition 4.4] identifies \((\text{Ind}^G_{P} \sigma)^{U, \mathcal{U}} \) with \(\text{Ind}^H_{H_{M^+}}(\sigma^{U, \mathcal{U}}) = \sigma^{U, \mathcal{U}} \otimes H_{M^+} \). So in a sense, this paper is a sequel to [OV17] although some of our results here are used in [OV17] §5.

As \(I_G(P, \sigma, Q) \) is only a subquotient of \(\text{Ind}^G_{P} \sigma \) and taking \(U \)-invariants is only left exact, it is not straightforward to describe \(I_G(P, \sigma, Q)^{U, \mathcal{U}} \) from the previous result. However, that takes care of the parabolic induction step, so in a first approach we may assume \(P(\sigma) = G \) so that \(I_G(P, \sigma, Q) = e_G(\sigma) \otimes \text{St}_{Q}^{G} \). The crucial case is when moreover \(\sigma \) is \(e \)-minimal, that is, not an extension \(e_{M}(\tau) \) of a smooth \(R \)-representation \(\tau \) of a proper Levi subgroup of \(M \). That case is treated first and the general case in section 4 only.

1.3. To explain our results, we need more notation. We choose a maximal \(F \)-split torus \(T \) in \(G \) and a minimal parabolic subgroup \(B = ZU \) with Levi component \(Z \) the \(G \)-centralizer of \(T \). We assume that \(P = MN \) contains \(B \) and \(M \) contains \(Z \), and that \(U \) corresponds to an alcove in the apartment associated to \(T \) in the adjoint building of \(G \). It turns out that when \(\sigma \) is \(e \)-minimal and \(P(\sigma) = G \), the set \(\Delta_M \) of simple roots of \(T \) in \(\text{Lie}(M \cap U) \) is orthogonal to its complement in the set \(\Delta \) of simple roots of \(T \) in \(\text{Lie}U \). We assume until the end of this section that \(\Delta_M \) and \(\Delta_2 = \Delta \setminus \Delta_M \) are orthogonal. If \(M_2 \) is the Levi subgroup - containing \(Z \) - corresponding to \(\Delta_2 \), both \(M \) and \(M_2 \) are normal in \(G \), \(M \cap M_2 = Z \) and \(G = MM_2 \). Moreover the normal subgroup \(M_2' \) of \(G \) generated by \(N \) is included in \(M_2 \) and \(G = MM_2' \).
We say that a right H_M-module V is extensible to H if T_2^M acts trivially on V for $z \in Z \cap M'_2$ (section 3.3). In this case, we show that there is a natural structure of right H-module $e_H(V)$ on V such that $T_g \in H$ corresponding to UgU for $g \in M'_2$ acts as in the trivial character of G (section 3.4). We call $e_H(V)$ the extension of V to H though H_M is not a subalgebra of H. That notion is already present in [Abe] in the case where R has characteristic p. Here we extend the construction to any R and prove some more properties. In particular we produce an H-equivariant embedding $e_H(V)$ into $\text{Ind}^H_{H_M}(V)$ (Lemma 3.10). If Q is a parabolic subgroup of G containing P, we go further and put on $e_H(V) \otimes_R (\text{Ind}^G_Q R)^{\mu}$ and $e_H(V) \otimes_R (\text{St}^G_Q)^{\mu}$ structures of H-modules (Proposition 3.15 and Corollary 3.17) - note that H is not a group algebra and there is no obvious notion of tensor product of H-modules.

If σ is an R-representation of M extensible to G, then its extension $e_G(\sigma)$ is simply obtained by letting M'_2 act trivially on the space of σ; moreover it is clear that σ^{μ_M} is extensible to H, and one shows easily that $e_G(\sigma)^{\mu} = e_H(\sigma^{\mu_M})$ as an H-module (section 3.5). Moreover, the natural inclusion of $e_G(\sigma)$ into $\text{Ind}^G_Q \sigma$ induces on taking pro-p Iwahori invariants an embedding $e_H(\sigma^{\mu_M}) \rightarrow (\text{Ind}^G_Q \sigma)^{\mu}$ which, via the isomorphism of [OV17], yields exactly the above embedding of H-modules of $e_H(\sigma^{\mu_M})$ into $\text{Ind}^H_{H_M}(\sigma^{\mu_M})$.

Then we show the H-modules $(e_G(\sigma) \otimes_R \text{Ind}^G_Q R)^{\mu}$ and $e_H(\sigma^{\mu_M}) \otimes_R (\text{Ind}^G_Q R)^{\mu}$ are equal, and similarly $(e_G(\sigma) \otimes_R \text{St}^G_Q)^{\mu}$ and $e_H(\sigma^{\mu_M}) \otimes_R (\text{St}^G_Q)^{\mu}$ are equal (Theorem 4.9).

1.4. We turn back to the general case where we do not assume that Δ_M and $\Delta \setminus \Delta_M$ are orthogonal. Nevertheless, given a right H_M-module V, there exists a largest Levi subgroup $M(V)$ of G containing Z corresponding to $\Delta_M \cup \Delta_1$ where Δ_1 is a subset of $\Delta \setminus \Delta_M$ orthogonal to Δ_M, such that V extends to a right $H_M(V)$-module $e_{M(V)}(V)$ with the notation of section 1.3. For any parabolic subgroup Q between P and $P(V) = M(V)U$ we put (Definition 4.12)

$$I_H(P, V, Q) = \text{Ind}^H_{H_M}(e_{M(V)}(V) \otimes_R (\text{St}^M_{Q \cap M(V)})^{\mu_{M(V)})}.$$

We refer to Theorem 4.17 for the description of the right H-module $I_G(P, \sigma, Q)^{\mu}$ for any smooth R-representation σ of U. As a special case, it says that when σ is e-minimal then $P(\sigma) \supset P(\sigma^{\mu_M})$ and if moreover $P(\sigma) = P(\sigma^{\mu_M})$, then $I_G(P, \sigma, Q)^{\mu}$ is isomorphic to $I_H(P, \sigma^{\mu_M}, Q)$.

Remark 1.1. In [Abe] are attached similar H-modules to (P, V, Q); here we write them as $CI_H(P, V, Q)$ because their definition uses, instead of $\text{Ind}^H_{H_M}$, a different kind of induction, which we call coinduction. In [Abe] those modules are used to give, when R is an algebraically closed field of characteristic p, a classification of simple H-modules in terms of supersingular modules - that classification is similar to the classification of irreducible admissible R-representations of G in [AHHV17]. Using the comparison between induced and coinduced modules established in [Vig15b] 4.3 for any R, our Corollary 4.24 expresses $CI_H(P, V, Q)$ as a module $I_H(P_1, V_1, Q_1)$; consequently we show in section 4.5 that the classification of [Abe] can also be expressed in terms of modules $I_H(P, V, Q)$.

1.5. In a reverse direction one can associate to a right H-module V a smooth R-representation $V \otimes_H R[U \setminus G]$ of G (seeing H as the endomorphism ring of the $R[G]$-module $R[U \setminus G]$).
If \mathcal{V} is a right \mathcal{H}_M-module, we construct, again using [OV17], a natural $R[G]$-map
\[
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[U \setminus G] \rightarrow \text{Ind}^G_P(e_{M(\mathcal{V})}(\mathcal{V} \otimes_{\mathcal{H}_M} R[U \setminus M])) \otimes_{R} \text{St}^M_{Q(\mathcal{V})},
\]
with the notation of section 1.4. We show in section 5 that it is an isomorphism under a mild assumption on the \mathbb{Z}-torsion in \mathcal{V}; in particular it is an isomorphism if $p = 0$ in R.

1.6. In the final section 6 we turn back to the case where R is an algebraically closed field of characteristic p. We prove that the smooth dual of an irreducible admissible R-representation V of G is 0 unless V is finite dimensional - that result is new if F has positive characteristic, a case where the proof of Kohlhaase [Koh] for $\text{char}(F) = 0$ does not apply. Our proof first reduces to the case where V is supercuspidal (by [AHIV17]) then uses again the \mathcal{H}-module V^H.

2. Notation, useful facts, and preliminaries

2.1. The group G and its standard parabolic subgroups $P = MN$. In all that follows, p is a prime number and F is a local field with finite residue field k of characteristic p. We denote an algebraic group over F by a bold letter, like \mathbf{H}, and use the same ordinary letter for the group of F-points, $H = \mathbf{H}(F)$. We fix a connected reductive F-group \mathbf{G}. We fix a maximal F-split torus \mathbf{T} and write \mathbf{Z} for its \mathbf{G}-centralizer; we also fix a minimal parabolic subgroup \mathbf{B} of \mathbf{G} with Levi component \mathbf{Z}, so that $\mathbf{B} = \mathbf{ZU}$ where U is the unipotent radical of \mathbf{B}. Let $X^*(\mathbf{T})$ be the group of F-rational characters of \mathbf{T} and let Φ be the subset of roots of \mathbf{T} in the Lie algebra of \mathbf{G}. Then \mathbf{B} determines a subset Φ^+ of positive roots - the roots of \mathbf{T} in the Lie algebra of \mathbf{U}- and a subset of simple roots Δ. The \mathbf{G}-normalizer \mathbf{N}_G of \mathbf{T} acts on $X^*(\mathbf{T})$ and through that action, \mathbf{N}_G/\mathbf{Z} identifies with the Weyl group of the root system Φ. Set $\mathcal{N} := \mathbf{N}_G(F)$ and note that $\mathbf{N}_G/\mathbf{Z} \simeq \mathcal{N}/\mathbf{Z}$; we write \mathcal{W} for \mathcal{N}/\mathbf{Z}.

A standard parabolic subgroup of \mathbf{G} is a parabolic F-subgroup containing \mathbf{B}. Such a parabolic subgroup \mathbf{P} has a unique Levi subgroup \mathbf{M} containing \mathbf{Z}, so that $\mathbf{P} = \mathbf{MN}$ where \mathbf{N} is the unipotent radical of \mathbf{P} - we also call \mathbf{M} standard. By a common abuse of language to describe the preceding situation, we simply say “let $\mathbf{P} = \mathbf{MN}$ be a standard parabolic subgroup of \mathbf{G}”; we sometimes write \mathbf{N}_P for \mathbf{N} and \mathbf{M}_P for \mathbf{M}. The parabolic subgroup of \mathbf{G} opposite to \mathbf{P} will be written \mathbf{P}° and its unipotent radical $\mathbf{N}_\mathbf{P}$, so that $\mathbf{P} = \mathbf{MN}$, but beware that \mathbf{P} is not standard! We write \mathcal{W}_M for the Weyl group $(\mathcal{M} \cap \mathcal{N})/\mathbf{Z}$.

If $\mathbf{P} = \mathbf{MN}$ is a standard parabolic subgroup of \mathbf{G}, then $\mathbf{M} \cap \mathbf{B}$ is a minimal parabolic subgroup of \mathbf{M}. If $\Phi_\mathbf{M}$ denotes the set of roots of \mathbf{T} in the Lie algebra of \mathbf{M}, with respect to $\mathbf{M} \cap \mathbf{B}$ we have $\Phi^+_\mathbf{M} = \Phi_\mathbf{M} \cap \Phi^+$ and $\Delta_\mathbf{M} = \Phi_\mathbf{M} \cap \Delta$. We also write $\Delta_\mathbf{P}$ for $\Delta_\mathbf{M}$ as \mathbf{P} and \mathbf{M} determine each other, $\mathbf{P} = \mathbf{MU}$. Thus we obtain a bijection $\mathbf{P} \mapsto \Delta_\mathbf{P}$ from standard parabolic subgroups of \mathbf{G} to subsets of Δ, with \mathbf{B} corresponding to Φ and \mathbf{G} to Δ. If I is a subset of Δ, we sometimes denote by $\mathbf{P}_I = \mathbf{M}_I \mathbf{N}_I$ the corresponding standard parabolic subgroup of \mathbf{G}. If $I = \{\emptyset\}$ is a singleton, we write $\mathbf{P}_\emptyset = \mathbf{M}_\emptyset \mathbf{N}_\emptyset$. We note a few useful properties. If \mathbf{P}_1 is another standard parabolic subgroup of \mathbf{G}, then $\mathbf{P} \subset \mathbf{P}_1$ if and only if $\Delta_\mathbf{P} \subset \Delta_{\mathbf{P}_1}$; we have $\Delta_{\mathbf{P} \cap \mathbf{P}_1} = \Delta_\mathbf{P} \cap \Delta_{\mathbf{P}_1}$ and the parabolic subgroup corresponding to $\Delta_\mathbf{P} \cup \Delta_{\mathbf{P}_1}$ is the subgroup $(\mathbf{P}, \mathbf{P}_1)$ of G generated by \mathbf{P} and \mathbf{P}_1. The standard parabolic subgroup of \mathbf{M} associated to $\Delta_\mathbf{M} \cap \Delta_{\mathbf{M}_I}$ is $\mathbf{M} \cap \mathbf{P}_1 = (\mathcal{M} \cap \mathbf{M}_1)(\mathcal{M} \cap \mathbf{N}_1)$ [Car85] Proposition 2.8.9]. It is convenient to write G' for the subgroup of G generated by the unipotent
radicals of the parabolic subgroups; it is also the normal subgroup of G generated by U, and we have $G = ZG'$. For future reference, we now give a useful lemma extracted from [AHHV17].

Lemma 2.1. The group $Z \cap G'$ is generated by the $Z \cap M'_\alpha$, α running through Δ.

Proof. Take $I = \emptyset$ in [AHHV17 II.6.Proposition]. \hfill \Box

Let v_F be the normalized valuation of F. For each $\alpha \in X^*(T)$, the homomorphism $x \mapsto v_F(\alpha(x)) : T \rightarrow \mathbb{Z}$ extends uniquely to a homomorphism $Z \rightarrow \mathbb{Q}$ that we denote in the same way. This defines a homomorphism $Z \twoheadrightarrow X_*(T) \otimes \mathbb{Q}$ such that $\alpha(v(z)) = v_F(\alpha(z))$ for $z \in Z$, $\alpha \in X^*(T)$.

An interesting situation occurs when $\Delta = I \cup J$ is the union of two orthogonal subsets I and J. In that case, $G' = M'_1 M'_J$, M'_1 and M'_J commute with each other, and their intersection is finite and central in G [AHHV17 II.7 Remark 4].

2.2. $I_G(P, \sigma, Q)$ and minimality

We recall from [AHHV17] the construction of $I_G(P, \sigma, Q)$, our main object of study.

Let σ be an R-representation of M and let P_σ be the standard parabolic subgroup with $\Delta_{P_\sigma} = \Delta_\sigma$ where

$$\Delta_\sigma = \{ \alpha \in \Delta \mid \Delta_P \mid Z \cap M'_\alpha \text{ acts trivially on } \sigma \}.$$

We also let $P(\sigma)$ be the standard parabolic subgroup with $\Delta_{P(\sigma)} = \Delta_\sigma \cup \Delta_P$.

This is the largest parabolic subgroup $P(\sigma)$ containing P to which σ extends, here $N \subset P$ acts on σ trivially. Clearly when $P \subset Q \subset P(\sigma)$, σ extends to Q and the extension is denoted by $e_Q(\sigma)$. The restriction of $e_{P(\sigma)}(\sigma)$ to Q is $e_Q(\sigma)$. If there is no risk of ambiguity, we write

$$e(\sigma) = e_{P(\sigma)}(\sigma).$$

Definition 2.2. An $R[G]$-triple is a triple (P, σ, Q) made out of a standard parabolic subgroup $P = MN$ of G, a smooth R-representation of M, and a parabolic subgroup Q of G with $P \subset Q \subset P(\sigma)$. To an $R[G]$-triple (P, σ, Q) is associated a smooth R-representation of G:

$$I_G(P, \sigma, Q) = \text{Ind}^G_{P(\sigma)}(e(\sigma) \otimes \text{St}_Q^{P(\sigma)}),$$

where $\text{St}_Q^{P(\sigma)}$ is the quotient of $\text{Ind}_Q^{P(\sigma)} 1$, 1 denoting the trivial R-representation of Q, by the sum of its subrepresentations $\text{Ind}_Q^{P(\sigma)} 1$, the sum being over the set of parabolic subgroups Q' of G with $Q \subseteq Q' \subset P(\sigma)$.

Note that $I_G(P, \sigma, Q)$ is naturally isomorphic to the quotient of $\text{Ind}_Q^G(e_Q(\sigma))$ by the sum of its subrepresentations $\text{Ind}_{Q'}^G(e_Q(\sigma))$ for $Q \subset Q' \subset P(\sigma)$ by [AHHV Lemma 2.5].

It might happen that σ itself has the form $e_P(\sigma_1)$ for some standard parabolic subgroup $P_1 = M_1 N_1$ contained in P and some R-representation σ_1 of M_1. In that case, $P(\sigma_1) = P(\sigma)$ and $e(\sigma) = e(\sigma_1)$. We say that σ is e-minimal if $\sigma = e_P(\sigma_1)$ implies $P_1 = P, \sigma_1 = \sigma$.
Lemma 2.3 ([AHV Lemma 2.9]). Let $P = MN$ be a standard parabolic subgroup of G and let σ be an R-representation of M. There exists a unique standard parabolic subgroup $P_{\min, \sigma} = M_{\min, \sigma}N_{\min, \sigma}$ of G and a unique e-minimal representation of σ_{\min} of $M_{\min, \sigma}$ with $\sigma = e_P(\sigma_{\min})$. Moreover $P(\sigma) = P(\sigma_{\min})$ and $e(\sigma) = e(\sigma_{\min})$.

Lemma 2.4. Let $P = MN$ be a standard parabolic subgroup of G and let σ be an e-minimal R-representation of M. Then Δ_P and $\Delta_P(\sigma)$ are orthogonal.

That comes from [AHHV17 II.7 Corollary 2]. That corollary of [AHHV17] also shows that when R is a field and σ is supercuspidal, then σ is e-minimal. Lemma 2.4 shows that $\Delta_{P_{\min, \sigma}}$ and $\Delta_{P(\sigma_{\min}) \setminus \Delta_{P_{\min, \sigma}}}$ are orthogonal.

Note that when Δ_P and Δ_σ are orthogonal of union $\Delta = \Delta_P \sqcup \Delta_\sigma$, then $G = P(\sigma) = MM'$ and $e(\sigma)$ is the R-representation of G simply obtained by extending σ trivially on M'.

Lemma 2.5 ([AHV Lemma 2.11]). Let (P, σ, Q) be an $R[G]$-triple. Then we have that $(P_{\min, \sigma}, \sigma_{\min}, Q)$ is an $R[G]$-triple and $I_G(P, \sigma, Q) = I_G(P_{\min, \sigma}, \sigma_{\min}, Q)$.

2.3. Pro-p Iwahori Hecke algebras. We fix a standard parahoric subgroup K of G fixing a special vertex x_0 in the apartment A associated to T in the Bruhat-Tits building of the adjoint group of G. We let B be the Iwahori subgroup fixing the alcove C in A with vertex x_0 contained in the Weyl chamber (of vertex x_0) associated to B. Let U be the pro-p radical of B (the pro-p Iwahori subgroup). The pro-p Iwahori Hecke ring $H = H(G, U)$ is the convolution ring of compactly supported functions $G \to Z$ constant on the double classes of G modulo U. We denote by $T(g)$ the characteristic function of UgU for $g \in G$, seen as an element of H. Let R be a commutative ring. The pro-p Iwahori Hecke R-algebra H_R is $R \otimes_Z H$. We will follow the custom to still denote by h the natural image $1 \otimes h$ of $h \in H$ in H_R.

For $P = MN$ a standard parabolic subgroup of G, the similar objects for M are indexed by M, we have $K_M = K \cap M, B_M = B \cap M, U_M = U \cap M$, the pro-$p$ Iwahori Hecke ring $H_M = H(M, U_M), T^M(m) \in H_M$ the characteristic function of $U_M m U_M$, for $m \in M$, seen as an element of H_M. The pro-p Iwahori subgroup U of G satisfies the Iwahori decomposition with respect to P:

$$U = U_N U_M U_N,$$

where $U_N = U \cap N, U_N^{-1} = U \cap N$. The linear map

$$H_M \xrightarrow{\theta} H, \quad \theta(T^M(m)) = T(m) \quad (m \in M)$$

does not respect the product. But if we introduce the monoid M^+ of elements $m \in M$ contracting U_N, meaning $mU_Nm^{-1} \subset U_N$, and the submodule $H_{M^+} \subset H_M$ of functions with support in M^+, we have [Vig15b Theorem 1.4]:

H_{M^+} is a subring of H_M and H_{M^+} is the localization of H_{M^+} at an element $\tau^M \in H_M$ central and invertible in H_M, meaning $H_M = \bigcup_{n \in \mathbb{N}} H_{M^+}(\tau^M)^{-n}$. The map $H_M \xrightarrow{\theta} H$ is injective and its restriction $\theta|_{H_{M^+}}$ to H_{M^+} respects the product.

These properties are also true when (M^+, τ^M) is replaced by its inverse $(M^-, (\tau^M)^{-1})$ where $M^- = \{m^{-1} \in M \mid m \in M^+\}$.

3. Pro-p Iwahori invariants of $I_G(P, \sigma, Q)$

3.1. Pro-p Iwahori Hecke algebras: Structures. Here we supplement the notation of sections 2.1 and 2.3. The subgroups $Z^0 = Z \cap K = Z \cap B$ and $Z^1 = Z \cap U$
are normal in \mathcal{N} and we put

$$W = \mathcal{N}/Z^0, \quad W(1) = \mathcal{N}/Z^1, \quad \Lambda = Z/Z^0, \quad \Lambda(1) = Z/Z^1, \quad Z_k = Z^0/Z^1.$$

We have $\mathcal{N} = (\mathcal{N} \cap \mathcal{K})Z$ so that we see the finite Weyl group $\mathbb{W} = \mathcal{N}/Z$ as the subgroup $(\mathcal{N} \cap \mathcal{K})/Z^0$ of W; in this way W is the semidirect product $\Lambda \rtimes \mathbb{W}$. We put $\mathbb{N}_G = \mathcal{N} \cap G'$. The image $W_G = W'$ of \mathbb{N}_G in W is an affine Weyl group generated by the set S^{aff} of affine reflections determined by the walls of the alcove \mathcal{C}. The group W' is normal in W and W is the semidirect product $W' \rtimes \Omega$ where Ω is the image in W of the normalizer \mathbb{N}_G of \mathcal{C} in \mathcal{N}. The length function ℓ on the affine Weyl system (W', S^{aff}) extends to a length function on W such that Ω is the set of elements of length 0. We also view ℓ as a function of $W(1)$ via the quotient map $W(1) \to W$. We write

$$\begin{align*}
(3.1) \quad \hat{w}, \hat{w}, w \in \mathcal{N} \times W(1) \times W \text{ corresponding via the quotient maps } \mathcal{N} \to W(1) \to W.
\end{align*}$$

When $w = s$ in S^{aff} or more generally w in W_G, we will most of the time choose \hat{w} in $\mathcal{N} \cap G'$ and \hat{w} in the image \mathbb{N}_G of $\mathcal{N} \cap G'$ in $W(1)$.

We need now to describe the pro-p Iwahori Hecke ring $\mathcal{H} = \mathcal{H}(G, U)$ [Vig16]. We have $G = UNU$ and for $n, n' \in \mathcal{N}$ we have $UnU = Un'U$ if and only if $nZ^1 = n'Z^1$. For $n = \mathcal{N}$ of image $w \in W(1)$ and $g \in \mathbb{U}$ we denote $T_w = T(n) = T(g)$ in \mathcal{H}. The relations among the basis elements $(T_w)_{w \in W(1)}$ of \mathcal{H} are:

(1) Braid relations: $T_wT_{w'} = T_{ww'}$ for $w, w' \in W(1)$ with $\ell(ww') = \ell(w) + \ell(w')$.

(2) Quadratic relations: $T_{\hat{s}}^2 = q_sT_{\hat{s}} + c_sT_{\hat{s}}$ for $\hat{s} \in W(1)$ lifting $s \in S^{\text{aff}}$, where $q_s = q_G(s) = |U/U \cap \hat{s}U(\hat{s})^{-1}|$ depends only on s, and $c_s = \sum_{t \in Z_k} c_s(t)T_t$ for integers $c_s(t) \in \mathbb{N}$ summing to $q_s - 1$.

We shall need the basis elements $(T_w)_{w \in W(1)}$ of \mathcal{H} defined by:

(1) $T_w = T_w$ for $w \in W(1)$ of length $\ell(w) = 0$.

(2) $T_{\hat{s}} = T_{\hat{s}} - c_s$ for $\hat{s} \in W(1)$ lifting $s \in S^{\text{aff}}$.

(3) $T_{ww'} = T_wT_{w'}$ for $w, w' \in W(1)$ with $\ell(ww') = \ell(w) + \ell(w')$.

We need more notation for the definition of the admissible lifts of S^{aff} in \mathcal{N}_G. Let $s \in S^{\text{aff}}$ fixing a face \mathcal{C}_s of the alcove \mathcal{C} and \mathcal{K}_s the parahoric subgroup of G fixing \mathcal{C}_s. The theory of Bruhat-Tits associates to \mathcal{C}_s a certain root $\alpha_s \in \Phi^{+}$ [Vig16 §4.2]. We consider the group G'_s generated by $U_{\alpha_s} \cup U_{-\alpha_s}$, where $U_{\pm \alpha_s}$, the root subgroup of $\pm \alpha_s$ (if $2\alpha_s \in \Phi$, then $U_{2\alpha_s} \subset U_{\alpha_s}$) and the group G'_s generated by $U_{\alpha_s} \cup U_{-\alpha_s}$ where $U_{\pm \alpha_s} = U_{\pm \alpha_s} \cap \mathcal{K}_s$. When $u \in U_{\alpha_s} \setminus \{1\}$, the intersection $\mathcal{N}_G \cap U_{-\alpha_s}uU_{-\alpha_s}$ (equal to $\mathcal{N}_G \cap U_{-\alpha_s}uU_{-\alpha_s}$ [BT72 6.2.1 (V5)], [Vig16 §3.3 (19)]) possesses a single element $n_\alpha(u)$. The group $Z'_k = Z \cap G'_s$ is contained in $Z \cap \mathcal{K}_s = Z^0$; its image in Z_k is denoted by $Z'_{k,s}$.

The elements $n_\alpha(u)$ for $u \in U_{\alpha_s} \setminus \{1\}$ are the admissible lifts of s in \mathcal{N}_G; their images in $W(1)$ are the admissible lifts of s in $W(1)$. By [Vig16] Theorem 2.2, Proposition 4.4, when $\hat{s} \in W(1)$ is an admissible lift of s, $c_s(t) = 0$ if $t \in Z_k \setminus Z'_{k,s}$, and

$$c_s \equiv (q_s - 1)|Z'_{k,s}|^{-1} \sum_{t \in Z'_{k,s}} T_t \mod p.$$

The admissible lifts of S in \mathcal{N}_G are contained in $\mathcal{N}_G \cap \mathcal{K}$ because $\mathcal{K}_s \subset \mathcal{K}$ when $s \in S$.
Definition 3.1. An admissible lift of the finite Weyl group \(\mathbb{W} \) in \(N_G \) is a map
\[w \mapsto \tilde{w} : \mathbb{W} \to N_G \cap \mathcal{K} \]
such that \(\tilde{s} \) is admissible for all \(s \in S \) and \(\tilde{w} = \tilde{w}_1 \tilde{w}_2 \) for \(w_1, w_2 \in \mathbb{W} \) such that \(w = w_1 w_2 \) and \(\ell(w) = \ell(w_1) + \ell(w_2) \).

Any choice of admissible lifts of \(S \) in \(N_G \cap \mathcal{K} \) extends uniquely to an admissible lift of \(\mathbb{W} \) ([AHHV17 IV.6], [OV17 Proposition 2.7]).

Let \(P = MN \) be a standard parabolic subgroup of \(G \). The groups \(Z, Z^0 = Z \cap K_M = Z \cap B_M, Z^1 = Z \cap U_M \) are the same for \(G \) and \(M \), but \(N_M = N \cap M \) and \(M \cap G' \) are subgroups of \(N' \) and \(G' \). The monoid \(M^+ \) (section 2.3) contains \(N_M \cap K \) and is equal to \(M^+ = U_M N_M + U_M \) where \(N_M = N \cap M^+ \). An element \(z \in Z \) belongs to \(M^+ \) if and only if \(\nu_F(\alpha(z)) \geq 0 \) for all \(\alpha \in \Phi^+ \setminus \Phi^+_M \) (see [Vig15b Lemme 2.2]). Put \(W_M = N_M / Z^0 \) and \(W_M(1) = N_M / Z^1 \).

Let \(\epsilon = + \) or \(\epsilon = - \). We denote by \(W_{M^*}(1) \) the images of \(N_M \) in \(W_M, W_M(1) \). We see the groups \(W_M, W_M(1), W_{M^*} \) as subgroups of \(W, W(1), W_{G'} \). As \(\theta \) (section 2.3), the linear injective map
\[\mathcal{H}_M \xrightarrow{\theta^*} \mathcal{H}, \quad \theta^*(T_w^{m,s}) = T_w^{s}, \quad (w \in W_M(1)), \]
respects the product on the subring \(\mathcal{H}_M \). Here \(T_w^{m,s} \in \mathcal{H}_M \) is defined in the same way as \(T_w^m \) for \(\mathcal{H}_M \). Note that \(\theta \) and \(\theta^* \) satisfy the obvious transitivity property with respect to a change of parabolic subgroups.

3.2. Orthogonal case. Let us examine the case where \(\Delta_M \) and \(\Delta \setminus \Delta_M \) are orthogonal, writing \(M_2 = M_{\Delta \setminus \Delta_M} \) as in section 2.3.

From \(M \cap M_2 \) we get \(W_M \cap W_{M_2} = \Lambda, W_M(1) \cap W_{M_2}(1) = \Lambda(1) \), the semisimple building of \(G \) is the product of those of \(M \) and \(M_2 \). The set \(S_{aff}^{M} \) is the disjoint union of \(S_{aff}^{M_2} \) and \(S_{aff}^{M_2} \). The group \(W_{G'} \) is the direct product of \(W_{M'} \) and \(W_{M_2} \). For \(s \in W_M(1) \) lifting \(s \in S_{aff}^{M} \), the elements \(T_{w}^{m,s} \in \mathcal{H}_M \) and \(T_{w}^{s} \) satisfy the same quadratic relations. A word of caution is necessary for the lengths \(\ell_M \) of \(W_M \) and \(\ell_{M_2} \) of \(W_{M_2} \) different from the restrictions of the length \(\ell \) of \(W_M \), for example \(\ell_M(\lambda) = 0 \) for \(\lambda \in \Lambda \cap W_{M_2} \).

Lemma 3.2. We have \(\Lambda = (W_{M^*} \cap \Lambda)(W_{M_2} \cap \Lambda) \).

Proof. We prove the lemma for \(\epsilon = - \). The case \(\epsilon = + \) is similar. The map \(v : Z \to X_*(T) \otimes \mathbb{Q} \) defined in section 2.4 is trivial on \(Z^0 \) and we also write \(v \) for the resulting homomorphism on \(\Lambda \). For \(\lambda \in \Lambda \) there exists \(\lambda_2 \in W_{M_2} \cap \Lambda \) such that \(\lambda \lambda_2 \in W_{M} \), or equivalently \(\alpha(v(\lambda \lambda_2)) \leq 0 \) for all \(\alpha \in \Phi_+ \setminus \Phi_+^{M_2} \). It suffices to have the inequality for all \(\alpha \in \Delta_{M_2} \). The matrix \((\alpha(\beta'))_{\alpha, \beta \in \Delta_{M_2}} \) is invertible, hence there exists \(n_\beta \in Z \) such that \(\sum_{\beta \in \Delta_{M_2}} n_\beta \alpha(\beta') \leq -\alpha(v(\lambda_2)) \) for all \(\alpha \in \Delta_{M_2} \). As \(v(W_{M_2} \cap \Lambda) \) contains \(\bigoplus_{\alpha \in \Delta_{M_2}} \mathbb{Z} \alpha \) where \(\alpha' \) is the coroot of \(\alpha \) after formula (71), there exists \(\lambda_2 \in W_{M_2} \cap \Lambda \) with \(v(\lambda_2) = \sum_{\beta \in \Delta_{M_2}} n_\beta \beta' \).

The groups \(N \cap M' \) and \(N \cap M_2' \) are normal in \(N \), and
\[N = (N \cap M')(N \cap M_2) = Z(N \cap M')(N \cap M_2), \]
and
\[W = W_M \cap W_{M_2} = W_M W_{M_2} = W_M W_{M_2} W_M W_{M_2} W_M W_{M_2}. \]
The first two equalities are clear, the equality \(W_M W_{M_2} = W_{M^*} W_{M_2} \) follows from \(W_M = \mathbb{W}_M \Lambda, \mathbb{W}_M \subset W_{M^*} \) and the lemma. The inverse image in \(W(1) \) of these
Lemma 3.3. Let \(Y \) be a subgroup of \(N \cap M \). We recall the function \(q(n) = |\mathcal{U}/(\mathcal{U} \cap n^{-1} \mathcal{U} n)| \) on \(N \), Proposition 3.38] and we extend to \(N \) the functions \(q_M \) on \(N \cap M \) and \(q_{M'} \) on \(N \cap M_2 \):

\[
q_M(n) = |\mathcal{U}_M/(\mathcal{U}_M \cap n^{-1} \mathcal{U}_M n)|, \quad q_{M'}(n) = |\mathcal{U}_{M'}/(\mathcal{U}_{M'} \cap n^{-1} \mathcal{U}_{M'} n)|.
\]

The functions \(q, q_M, q_{M'} \) descend to functions on \(W(1) \) and on \(W \), also denoted by \(q, q_M, q_{M'} \).

Proof. We put \(\mathcal{U}_{M'} = \mathcal{U} \cap M' \) and \(\mathcal{U}_{M_2} = \mathcal{U} \cap M_2 \). The product map

\[
(3.6) \quad Z^1 \prod_{\alpha \in \Phi_{M, \text{red}}} \mathcal{U}_\alpha \prod_{\alpha \in \Phi_{M_2, \text{red}}} \mathcal{U}_\alpha \to \mathcal{U}
\]

with \(\mathcal{U}_\alpha = \mathcal{U}_\alpha \cap \mathcal{U} \) is a homeomorphism. We have \(\mathcal{U}_M = Z^1 \mathcal{Y}_{M'} \), \(\mathcal{U}_{M'} = (Z^1 \cap M') \mathcal{Y}_{M'} \) where \(\mathcal{Y}_{M'} = \prod_{\alpha \in \Phi_{M, \text{red}}} \mathcal{U}_\alpha \) and \(N \cap M_2 \) commutes with \(\mathcal{Y}_{M'} \), in particular \(N \cap M_2 \) normalizes \(\mathcal{Y}_{M'} \). Similar results are true when \(M \) and \(M_2 \) are permuted, and \(\mathcal{U} = \mathcal{U}_M \mathcal{U}_{M_2} = \mathcal{U}_M \mathcal{U}_{M_2} \).

Writing \(N = Z(N \cap M') (N \cap M_2') \) (in any order), we see that the product map

\[
(3.7) \quad Z^1 (\mathcal{Y}_{M'} \cap n^{-1} \mathcal{Y}_{M'} n) (\mathcal{Y}_{M_2} \cap n^{-1} \mathcal{Y}_{M_2} n) \to \mathcal{U} \cap n^{-1} \mathcal{U} n
\]

is a homeomorphism. The inclusions induce bijections

\[
(3.8) \quad \mathcal{Y}_{M'}/(\mathcal{Y}_{M'} \cap n^{-1} \mathcal{Y}_{M'} n) \simeq \mathcal{U}_{M'}/(\mathcal{U}_{M'} \cap n^{-1} \mathcal{U}_{M'} n) \simeq \mathcal{U}_M/(\mathcal{U}_M \cap n^{-1} \mathcal{U}_M n),
\]

similarly for \(M_2 \), and also a bijection

\[
(3.9) \quad \mathcal{U}/(\mathcal{U} \cap n^{-1} \mathcal{U} n) \simeq (\mathcal{Y}_{M_2}'/(\mathcal{Y}_{M_2}' \cap n^{-1} \mathcal{Y}_{M_2}' n)) \times (\mathcal{Y}_{M'}/(\mathcal{Y}_{M'} \cap n^{-1} \mathcal{Y}_{M'} n)).
\]

From (3.8) and (3.9), we get

\[
(3.10) \quad \mathcal{U}/(\mathcal{U} \cap n^{-1} \mathcal{U} n) \simeq (\mathcal{U}_{M_2}'/(\mathcal{U}_{M_2}' \cap n \mathcal{U}_{M_2}' n^{-1})) \times (\mathcal{U}_M/(\mathcal{U}_M \cap n \mathcal{U}_M n^{-1}))
\]

which implies the assertion (1) in the lemma.

The assertion (2) follows from (3.7) since \(N \cap M_2' \) normalizes \(\mathcal{Y}_{M'} \); with (1), it implies the assertion (3).

A subgroup of \(N \) normalizes \(\mathcal{U}_M \) if and only if it normalizes \(\mathcal{Y}_{M'} \) by (3.8) if and only if \(q_{M'} = 1 \) on this group. The group \(N \cap M_2' \) normalizes \(\mathcal{Y}_{M'} \). Therefore the group \((N \cap M_2') \mathcal{N}_C \) normalizes \(\mathcal{U}_M \). The coset \((N \cap M_2') \mathcal{N}_C\) contains an element \(n_{M'} \in M' \). For \(x \in (N \cap M_2') \mathcal{N}_C \), \((x n_{M'})^{-1} \mathcal{U} x n_{M'} = n_{M'}^{-1} \mathcal{U} n_{M'} \), hence \(q_M(x n_{M'}) = q_M(n_{M'}). \)

\[\square\]
3.3. Extension of an \mathcal{H}_M-module to \mathcal{H}. This section is inspired by similar results for the pro-p Iwahori Hecke algebras over an algebraically closed field of characteristic p [Abe Proposition 4.16]. We keep the setting of section 3.2 and we introduce ideals:

- \mathcal{J}_e (resp., \mathcal{J}_r) the left (resp., right) ideal of \mathcal{H} generated by $T_w^* - 1_{\mathcal{H}}$ for all $w \in 1W_{M_2}$.
- $\mathcal{J}_{M,e}$ (resp., $\mathcal{J}_{M,r}$) the left (resp., right) ideal of \mathcal{H}_M generated by $T_{\lambda}^{M,*} - 1_{\mathcal{H}_M}$ for all λ in $1W_{M_2} \cap W_M(1) = 1W_{M_2} \cap \Lambda(1)$.

The next proposition shows that the ideals $\mathcal{J}_e = \mathcal{J}_r$ are equal and similarly $\mathcal{J}_{M,e} = \mathcal{J}_{M,r}$. After the proposition, we will drop the indices e and r.

Proposition 3.4. The ideals \mathcal{J}_e and \mathcal{J}_r are equal to the submodule \mathcal{J}' of \mathcal{H} generated by $T_w^* - T_{www}^*$ for all $w \in W(1)$ and $w_2 \in 1W_{M_2}$.

The ideals $\mathcal{J}_{M,e}$ and $\mathcal{J}_{M,r}$ are equal to the submodule \mathcal{J}'_M of \mathcal{H}_M generated by $T_{\lambda_2}^{M,*} - T_{\lambda_2}^{M,*}$ for all $w \in W_M(1)$ and $\lambda_2 \in \Lambda(1) \cap 1W_{M_2}$.

Proof.

(1) We prove $\mathcal{J}_e = \mathcal{J}'$. Let $w \in W(1), w_2 \in 1W_{M_2}$. We prove by induction on the length of w_2 that $T_w^*(T_{w_2}^* - 1) \in \mathcal{J}'$. This is obvious when $\ell(w_2) = 0$ because $T_w^*T_{w_2}^* = T_{www}^*$. Assume that $\ell(w_2) = 1$ and put $s = w_2$. If $\ell(ws) = \ell(w) + 1$, as before $T_w^*(T_s^* - 1) \in \mathcal{J}'$ because $T_w^*T_s^* = T_{ws}^*$. Otherwise $\ell(ws) = \ell(w) - 1$ and $T_w^* = T_{ws-1}^*$. Hence $T_w^*(T_s^* - 1) = T_{ws-1}^*(T_s^* - 1) = T_{ws}^*(q_sT_s^* - T_s^*c_s) - T_w^* = q_sT_{ws}^* - T_w^*(c_s + 1)$. Since $c_s + 1 = \sum_{t \in Z_k}c_s(t)T_t$ with $c_s(t) \in \mathbb{N}$ and $\sum_{t \in Z_k}c_s(t) = q_s$ [Vig16 Proposition 4.4],

$$q_sT_{ws}^* - T_{w_2}^*(c_s + 1) = \sum_{t \in Z_k}c_s(t)(T_{ws}^* - T_w^*T_t^*) = \sum_{t \in Z_k}c_s(t)(T_{ws}^* - T_w^*) \in \mathcal{J}'$$

Assume now that $\ell(w_2) > 1$. Then, we factorize $w_2 = xy$ with $x, y \in 1W_{M_2}$ of length $\ell(x), \ell(y) < \ell(w_2)$ and $\ell(w_2) = \ell(x) + \ell(y)$. The element $T_w^*(T_{w_2}^* - 1) = T_w^*T_x^*(T_{w_2}^* - 1) = T_w^*(T_x^* - 1) \in \mathcal{J}'$. By induction.

Conversely, we factorize $T_{www}^* - T_{e_1}^*$ in \mathcal{J}_e. We factorize $w = xy$ with $y \in 1W_{M_2}$ and $x \in 1W_{M_2} \Omega(1)$. Then, we have $\ell(w) = \ell(x) + \ell(y)$ and $\ell(w_2) = \ell(x) + \ell(yw_2)$. Hence $T_{ww}^* - T_e^* = T_x^*(T_{yw}^* - T_y^*) = T_x^*(T_{yw}^* - 1) - T_x^*(T_y^* - 1) \in \mathcal{J}_e$. This ends the proof of $\mathcal{J}_e = \mathcal{J}'$.

By the same argument, the right ideal \mathcal{J}_r of \mathcal{H} is equal to the submodule of \mathcal{H} generated by $T_{ww}^* - T_{w}^*$ for all $w \in W(1)$ and $w_2 \in 1W_{M_2}$. But this latter submodule is equal to \mathcal{J}' because $1W_{M_2}$ is normal in $W(1)$. Therefore we proved $\mathcal{J}' = \mathcal{J}_e = \mathcal{J}_r$.

(2) Proof of the second assertion. We prove $\mathcal{J}_{M,e} = \mathcal{J}'_M$. The proof is easier than in (1) because for $w \in W_M(1)$ and $\lambda_2 \in 1W_{M_2} \cap \Lambda(1)$, we have $\ell(w\lambda_2) = \ell(w) + \ell(\lambda_2)$ hence $T_{\lambda_2}^{M,*}(T_{\lambda_2}^{M,*} - 1) = T_{\lambda_2}^{M,*} - T_w^{M,*}$. We have also $\ell(\lambda_2w) = \ell(\lambda_2) + \ell(w)$ hence $(T_{\lambda_2}^{M,*} - 1)T_{w_2}^{M,*} = T_{\lambda_2}^{M,*} - T_w^{M,*}$ hence $\mathcal{J}_{M,r}$ is equal to the submodule of \mathcal{H}_M generated by $T_{\lambda_2}^{M,*} - T_{\lambda_2}^{M,*}$ for all $w \in W_M(1)$ and $\lambda_2 \in 1W_{M_2} \cap \Lambda(1)$. This latter submodule is \mathcal{J}'_M, as $1W_{M_2} \cap \Lambda(1) = 1W_{M_2} \cap W_M(1)$ is normal in $W_M(1)$. Therefore $\mathcal{J}'_M = \mathcal{J}_{M,r} = \mathcal{J}_{M,e}$.

\[\square \]
By Proposition 3.4, a basis of \mathcal{J} is $T_w^* - T_{w_2}^*$ for w in a system of representatives of $W(1)/1W_{M'_2}$, and $w_2 \in 1W_{M'_2} \setminus \{1\}$. Similarly a basis of \mathcal{J}_M is $T_{w_2}^* - T_{w_2}^{\lambda_2}$ for w in a system of representatives of $W_M(1)/(\Lambda(1) \cap 1W_{M'_2})$ and $\lambda_2 \in (\Lambda(1) \cap 1W_{M'_2}) \setminus \{1\}$.

Proposition 3.5. The natural ring inclusion of \mathcal{H}_{M^-} in \mathcal{H}_M and the ring inclusion of \mathcal{H}_{M^-} in \mathcal{H} via θ^* induce ring isomorphisms

$$\mathcal{H}_M / \mathcal{J}_M \arrowsurj \mathcal{H}_M / (\mathcal{J}_M \cap \mathcal{H}_{M^-}) \arrowsurj \mathcal{H} / \mathcal{J}.$$

Proof.

(1) The left map is obviously injective. We prove the surjectivity. Let $w \in W_M(1)$. Let $\lambda_2 \in 1W_{M'_2} \cap \Lambda(1)$ such that $w\lambda_2^{-1} \in W_{M^-}(1)$ (see (3.4)). We have

$$T_{w\lambda_2^{-1}}^* \in \mathcal{H}_{M^-} \text{ and } T_w^{M^*} = T_{w\lambda_2^{-1}}^{M^*} + T_{w\lambda_2^{-1}}^*(T_{\lambda_2}^{M^*} - 1).$$

Therefore $T_w^{M^*} \in \mathcal{H}_{M^-} + \mathcal{J}_M$. As w is arbitrary, $\mathcal{H}_M = \mathcal{H}_{M^-} + \mathcal{J}_M$.

(2) The right map is surjective: let $w \in W(1)$ and $w_2 \in 1W_{M'_2}$ such that $ww_2^{-1} \in W_{M^-}(1)$ (see (3.4)). Then $T_w^* - T_{w_2}^* \in \mathcal{J}$ with the same arguments as in (1), using Proposition 3.4. Therefore $\mathcal{H} = \theta^*(\mathcal{H}_{M^-}) + \mathcal{J}$.

We prove the injectivity: $\theta^*(\mathcal{H}_{M^-}) \cap \mathcal{J} = \theta^*(\mathcal{H}_M - \mathcal{J}_M)$. Let $\sum_{w \in W_{M^-}(1)} c_w T_w^{M^*}$, with $c_w \in \mathbb{Z}$, be an element of \mathcal{H}_{M^-}. Its image by θ^* is $\sum_{w \in W(1)} c_w T_w^*$ where we have set $c_w = 0$ for $w \in W(1) \setminus W_{M^-}(1)$. We have $\sum_{w \in W(1)} c_w T_w^* \in \mathcal{J}$ if and only if $\sum_{w_2 \in 1W_{M'_2}} c_{w_2} T_{w_2}^* = 0$ for all $w \in W(1)$. If $c_{w_2} \neq 0$, then $w_2 \in 1W_{M'_2} \cap W_M(1)$, that is, $w_2 \in 1W_{M'_2} \cap \Lambda(1)$. The sum $\sum_{w_2 \in 1W_{M'_2}} c_{w_2} T_{w_2}^*$ is equal to $\sum_{\lambda_2 \in 1W_{M'_2} \cap \Lambda(1)} c_{w_2} T_{w_2}^{\lambda_2}$. By Proposition 3.4, $\sum_{w \in W(1)} c_w T_w^{M^*} \in \mathcal{J}_M$ if and only if $\sum_{w \in W_{M^-}(1)} c_w T_w^{M^*} \in \mathcal{J}_M$.

We construct a ring isomorphism

$$e^*: \mathcal{H}_M / \mathcal{J}_M \arrowsurj \mathcal{H} / \mathcal{J}$$

by using Proposition 3.5. For any $w \in W(1)$, $T_w^* + \mathcal{J} = e^*(T_w^{M^*} + \mathcal{J}_M)$ where $w_{M^-} \in W_{M^-}(1) \cap w_1W_{M'_2}$ (see (3.4)), because by Proposition 3.4, $T_w^* + \mathcal{J} = T_w^{M^*} + \mathcal{J}$ and $T_w^{M^*} + \mathcal{J} = e^*(T_w^{M^*} + \mathcal{J}_M)$ by construction of e^*. We check that e^* is induced by θ^*.

Theorem 3.6. The linear map $\mathcal{H}_M \xrightarrow{\theta^*} \mathcal{H}$ induces a ring isomorphism

$$e^*: \mathcal{H}_M / \mathcal{J}_M \arrowsurj \mathcal{H} / \mathcal{J}.$$

Proof. Let $w \in W_M(1)$. We have to show that $T_w^* + \mathcal{J} = e^*(T_w^{M^*} + \mathcal{J}_M)$. We saw above that $T_w^* + \mathcal{J} = e^*(T_w^{M^*} + \mathcal{J}_M)$ with $w = w_{M^-} - \lambda_2$ with $\lambda_2 \in 1W_{M'_2} \cap W_{M}(1)$. As $\ell_M(\lambda_2) = 0$, $T_w^{M^*} = T_w^{M^*} - T_{\lambda_2}^{M^*} \in T_w^{M^*} + \mathcal{J}_M$. Therefore $T_w^{M^*} + \mathcal{J}_M = T_w^{M^*} + \mathcal{J}_M$. This ends the proof of the theorem.

We now wish to compute e^* in terms of the T_w instead of the T_w^*.

Proposition 3.7. Let $w \in W(1)$. Then, $T_w + \mathcal{J} = e^*(T_{wM}^M q_{M_2}(w) + \mathcal{J}_M)$ for any $w_M \in 1W_{M}(1) \cap w_1W_{M'_2}$.
Proof. The element w_M is unique modulo right multiplication by an element $\lambda_2 \in W_M(1) \cap W_{M'}'$ of length $\ell_M(\lambda_2) = 0$ and $T^{M*}_w q_M(w) + \mathcal{J}_M$ does not depend on the choice of w_M. We choose a decomposition (see (3.4)):
\[
w = \tilde{s}_1 \ldots \tilde{s}_a u \tilde{s}_{a+1} \ldots \tilde{s}_{a+b}, \quad \ell(w) = a + b,
\]
for $u \in \Omega(1)$, $\tilde{s}_i \in 1 W_{M'}$ lifting $s_i \in S^\text{aff}_M$ for $1 \leq i \leq a$ and $\tilde{s}_i \in 1 W_{M'}'$ lifting $s_i \in S^\text{aff}_{M_2}$ for $a+1 \leq i \leq a + b$, and we choose $u_M \in W_{M'}(1)$ such that $u \in u_M 1 W_{M_2'}$. Then
\[
w_M = \tilde{s}_1 \ldots \tilde{s}_a u_M \in W_{M'}(1) \cap w_1 W_{M_2'}
\]
and $q_{M_2}(w) = q_{M_2}(\tilde{s}_{a+1} \ldots \tilde{s}_{a+b})$ (Lemma 3.3 (4)). First we check the proposition in three simple cases:

Case 1. Let $w = \tilde{s} \in 1 W_{M'}$ lifting $s \in S^\text{aff}_M$; we have $T_{\tilde{s}} + \mathcal{J} = e^*(T^M_{\tilde{s}} + \mathcal{J}_M)$ because $T^*_M - e^*(T^M_{\tilde{s}}) \in \mathcal{J}$, $T_{\tilde{s}} = T^*_M + c_\tilde{s}$, $T_M^M = T^M_{\tilde{s}} + c_\tilde{s}$ and $1 = q_{M_2}(\tilde{s})$.

Case 2. Let $w = u \in W(1)$ of length $\ell(u) = 0$ and $u_M \in W_{M'}(1)$ such that $u \in u_M 1 W_{M_2'}$. We have $\ell_M(u_M) = 0$ and $q_{M_2}(w) = 1$ (Lemma 3.3). We deduce $T_u + \mathcal{J} = e^*(T^M_{u_M} + \mathcal{J}_M)$ because $T^*_M = T^*_M + \mathcal{J}_M$, and $T_u = T^*_M = T^M_{u_M}$.

Case 3. Let $w = \tilde{s} \in 1 W_{M_2'}$ lifting $s \in S^\text{aff}_{M_2}$; we have $T_{\tilde{s}} + \mathcal{J} = e^*(q_{M_2}(\tilde{s}) + \mathcal{J}_M)$ because $T^*_M - 1, c_\tilde{s} = (q_s - 1) \in \mathcal{J}$, $T_{\tilde{s}} = T^*_M + c_\tilde{s} \in q_s + \mathcal{J}$ and $q_s = q_{M_2}(\tilde{s})$.

In general, the braid relations $T_w = T_{\tilde{s}_1} \ldots T_{\tilde{s}_a} T_u T_{\tilde{s}_{a+1}} \ldots T_{\tilde{s}_{a+b}}$ give a similar product decomposition of $T_w + \mathcal{J}$, and the simple cases 1, 2, 3 imply that $T_w + \mathcal{J}$ is equal to
\[
e^*(T^M_{\tilde{s}_1} + \mathcal{J}_M) \ldots e^*(T^M_{\tilde{s}_a} + \mathcal{J}_M) e^*(T^M_{u_M} + \mathcal{J}_M) e^*(q_{M_2}(\tilde{s}_{a+1})) + \mathcal{J}_M) \ldots e^*(q_{M_2}(\tilde{s}_{a+b}) + \mathcal{J}_M)
\]
\[= e^*(T^M_{w_M} q_M(w) + \mathcal{J}_M).
\]

The proposition is proved. \qed

Propositions 3.4, 3.5, 3.7, and Theorem 3.6 are valid over any commutative ring R (instead of Z).

The two-sided ideal of H_R generated by $T_w^* - 1$ for all $w \in 1 W_{M_2'}$ is $\mathcal{J}_R = \mathcal{J} \otimes Z R$, the two-sided ideal of $H_{M,R}$ generated by $T^*_M - 1$ for all $\lambda \in 1 W_{M_2'} \cap \Lambda(1)$ is $\mathcal{J}_{M,R} = \mathcal{J} \otimes Z R$, and we get as in Proposition 3.5 isomorphisms
\[H_{M,R}/\mathcal{J}_{M,R} \sim H_{M-,R}/(\mathcal{J}_{M,R} \cap H_{M-,R}) \sim H_R/\mathcal{J}_R,
\]
giving an isomorphism $H_{M,R}/\mathcal{J}_{M,R} \rightarrow H_R/\mathcal{J}_R$ induced by θ^*. Therefore, we have an isomorphism from the category of right $H_{M,R}$-modules where \mathcal{J}_M acts by 0 onto the category of right H_R-modules where \mathcal{J} acts by 0.

Definition 3.8. A right $H_{M,R}$-module V where \mathcal{J}_{M} acts by 0 is called extensible to H. The corresponding H_R-module where \mathcal{J} acts by 0 is called its extension to H and denoted by $e_H(V)$ or $e(V)$.

With the element basis T^*_w, V is extensible to H if and only if
\[VT_{\lambda_2}^M = v \text{ for all } v \in V \text{ and } \lambda_2 \in 1 W_{M_2'} \cap \Lambda(1).
\]
The H-module structure on the R-module $e(V) = V$ is determined by
\[VT_w^* = v, \quad VT_w^* = VT_w^M \text{ for all } v \in V, w_2 \in 1 W_{M_2'}, w \in W_{M}(1).
\]
It is also determined by the action of T_w^* for $w \in 1W_{M_2} \cup W_M(1)$ (or $w \in 1W_{M_2} \cup W_{M^+}(1)$). Conversely, a right \mathcal{H}-module W over R is extended from an \mathcal{H}_M-module if and only if

$$vT_{w_2}^* = v \quad \text{for all } v \in W, w_2 \in 1W_{M_2}. \tag{3.13}$$

In terms of the basis elements T_w instead of T_w^*, this says the following.

Corollary 3.9. A right \mathcal{H}_M-module V over R is extensible to \mathcal{H} if and only if

$$vT_{\lambda_2}^M = v \quad \text{for all } v \in V \text{ and } \lambda_2 \in 1W_{M_2} \cap \Lambda(1). \tag{3.14}$$

Then, the structure of an \mathcal{H}-module on the R-module $e(V) = V$ is determined by

$$vT_{w_2} = vq_{w_2}, \quad vT_w = vT_{w_2}^M q_{M_2}(w) \quad \text{for all } v \in V, w_2 \in 1W_{M_2}, w \in W_M(1). \tag{3.15}$$

$(W_M(1)$ or $W_{M^+}(1)$ instead of $W_M(1)$ is enough.) A right \mathcal{H}-module W over R is extended from an \mathcal{H}_M-module if and only if

$$vT_{w_2} = vq_{w_2} \quad \text{for all } v \in W, w_2 \in 1W_{M_2}. \tag{3.16}$$

3.4. $\sigma^{\mathcal{H}_M}$ is extensible to \mathcal{H} of extension $e(\sigma^{\mathcal{H}_M}) = e(\sigma)^{\mathcal{H}_M}$. Let $P = MN$ be a standard parabolic subgroup of G such that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal, and let σ be a smooth R-representation of M extensible to G. Let $P_2 = M_2N_2$ denote the standard parabolic subgroup of G with $\Delta_{P_2} = \Delta \setminus \Delta_P$.

Recall that $G = MM_2'$, that $M \cap M_2' = Z \cap M_2'$ acts trivially on σ, $e(\sigma)$ is the representation of G equal to σ on M and trivial on M_2'. We will describe the \mathcal{H}-module $e(\sigma)^{\mathcal{H}_M}$ in this section. We first consider $e(\sigma)$ as a subrepresentation of $\text{Ind}_P^G \sigma$. For $v \in \sigma$, let $f_v \in (\text{Ind}_P^G \sigma)^{M_2'}$ be the unique function with value v on M_2'.

Then, the map

$$v \mapsto f_v : \sigma \to \text{Ind}_P^G \sigma \tag{3.17}$$

is the natural G-equivariant embedding of $e(\sigma)$ in $\text{Ind}_P^G \sigma$. As $\sigma^{\mathcal{H}_M} = e(\sigma)^{\mathcal{H}_M}$ as R-modules, the image of $e(\sigma)^{\mathcal{H}_M}$ in $(\text{Ind}_P^G \sigma)^{\mathcal{H}_M}$ is made out of the f_v for $v \in \sigma^{\mathcal{H}_M}$.

We now recall the explicit description of $(\text{Ind}_P^G \sigma)^{\mathcal{H}_M}$. For each $d \in W_{M_2}$, we fix a lift $\hat{d} \in 1W_{M_2}$ and for $v \in \sigma^{\mathcal{H}_M}$ let $f_{P,d,v} \in (\text{Ind}_P^G \sigma)^{\mathcal{H}_M}$ for the function with support contained in $Pd\mathcal{U}$ and value v on $d\mathcal{U}$. As $Z \cap M_2'$ acts trivially on σ, the function $f_{P,d,v}$ does not depend on the choice of the lift $\hat{d} \in 1W_{M_2}$ of d. By [OV17] Lemma 4.5, recalling that $w \in W_{M_2}$ is of minimal length in its coset $w\mathcal{W}_M = \mathcal{W}_Mw$ as Δ_{M_2} and $\Delta_\mathcal{M}_2$ are orthogonal to each other:

The map $\bigoplus_{d \in W_{M_2}} \sigma^{\mathcal{H}_M} \to (\text{Ind}_P^G \sigma)^{\mathcal{H}_M}$ given on each d-component by $v \mapsto f_{P,d,v}$, is an \mathcal{H}_{M^+}-equivariant isomorphism where \mathcal{H}_{M^+} is seen as a subring of \mathcal{H} via θ, and induces an \mathcal{H}_R-module isomorphism

$$v \otimes h \mapsto f_{P,d,v,h} : \sigma^{\mathcal{H}_M} \otimes_{\mathcal{H}_{M^+}, \theta} \mathcal{H} \to (\text{Ind}_P^G \sigma)^{\mathcal{H}_M}. \tag{3.18}$$

In particular for $v \in \sigma^{\mathcal{H}_M}$, $v \otimes T(\hat{d})$ does not depend on the choice of the lift $\hat{d} \in 1W_{M_2}$ of d and

$$f_{P,d,v} = f_{P,d,v,T(\hat{d})}. \tag{3.19}$$
As \(G \) is the disjoint union of \(Pd\mathcal{U} \) for \(d \in \mathbb{W}_{M_2} \), we have \(f_v = \sum_{d \in \mathbb{W}_{M_2}} f_{Pd\mathcal{U},v} \) and \(f_v \) is the image of \(v \otimes e_{M_2} \) in \(3.18 \), where
\[
(3.20) \quad e_{M_2} = \sum_{d \in \mathbb{W}_{M_2}} T(d).
\]
Recalling \(3.17 \) we get the following.

Lemma 3.10. The map \(v \mapsto v \otimes e_{M_2} : e(\sigma)^\mathcal{U} \to \sigma^{\mathcal{U}_M} \otimes_{\mathcal{H}_{M,+}} \mathcal{H} \) is an \(\mathcal{H}_R \)-equivariant embedding.

Remark 3.11. The trivial map \(v \mapsto v \otimes 1_{\mathcal{H}} \) is not an \(\mathcal{H}_R \)-equivariant embedding.

We describe the action of \(T(n) \) on \(e(\sigma)^\mathcal{U} \) for \(n \in \mathcal{N} \). By definition for \(v \in e(\sigma)^\mathcal{U} \),
\[
(3.21) \quad vT(n) = \sum_{y \in \mathcal{U}/(\mathcal{U} \cap n^{-1} \mathcal{U} \cap)} \sum_{y_1 \in \mathcal{U}_M} \sum_{y_2 \in \mathcal{U}_M} y_1 y_2 n^{-1} v.
\]

Proposition 3.12. We have \(vT(n) = vT^M(n_M)q_{M_2}(n) \) for any \(n_M \in \mathcal{N} \cap M \) is such that \(n = n_M(M \cap M'_2) \).

Proof. The description \(3.10 \) of \(\mathcal{U}/(\mathcal{U} \cap n^{-1} \mathcal{U} \cap) \) gives
\[
vT(n) = \sum_{y_1 \in \mathcal{U}_M} \sum_{y_2 \in \mathcal{U}_M} y_1 y_2 n^{-1} v.
\]
As \(M'_2 \) acts trivially on \(e(\sigma) \), we obtain
\[
vT(n) = q_{M_2}(n) \sum_{y_1 \in \mathcal{U}_M} \sum_{y_2 \in \mathcal{U}_M} y_1 y_2 n^{-1} v = q_{M_2}(n) vT^M(n_M). \]

\[\square \]

Theorem 3.13. Let \(\sigma \) be a smooth \(R \)-representation of \(M \). If \(P(\sigma) = G \), then \(\sigma^{\mathcal{U}_M} \) is extensible to \(\mathcal{H} \) of extension \(e(\sigma^{\mathcal{U}_M}) = e(\sigma)^\mathcal{U} \). Conversely, if \(\sigma^{\mathcal{U}_M} \) is extensible to \(\mathcal{H} \) and generates \(\sigma \), then \(P(\sigma) = G \).

Proof.

1. The \(\mathcal{H}_M \)-module \(\sigma^{\mathcal{U}_M} \) is extensible to \(\mathcal{H} \) if and only if \(Z \cap M'_2 \) acts trivially on \(\sigma^{\mathcal{U}_M} \). Indeed, for \(v \in \sigma^{\mathcal{U}_M} \), \(z_2 \in Z \cap M'_2 \),
\[
vT^M(z_2) = \sum_{y_1 \in \mathcal{U}_M/(\mathcal{U}_M \cap z_2^{-1} \mathcal{U}_M z_2)} y_1 z_2^{-1} v = \sum_{y_1 \in \mathcal{U}_M/(\mathcal{U}_M \cap z_2^{-1} \mathcal{U}_M z_2)} y_1 z_2^{-1} v = z_2^{-1} v,
\]
by \(3.21 \), then \(3.3 \), then the fact that \(z_2^{-1} \) commutes with the elements of \(\mathcal{Y}_M \).

2. \(P(\sigma) = G \) if and only if \(Z \cap M'_2 \) acts trivially on \(\sigma \) (the group \(Z \cap M'_2 \) is generated by \(Z \cap M'_2 \) for \(\alpha \in \Delta_{M_2} \) by Lemma 2.1). The \(R \)-submodule \(\sigma^{Z \cap M'_2} \) of elements fixed by \(Z \cap M'_2 \) is stable by \(M \), because \(M = ZM' \), the elements of \(M' \) commute with those of \(Z \cap M'_2 \) and \(Z \) normalizes \(Z \cap M'_2 \).

3. Apply (1) and (2) to get the theorem except the equality \(e(\sigma^{\mathcal{U}_M}) = e(\sigma)^\mathcal{U} \) when \(P(\sigma) = G \) which follows from Propositions 3.12 and 3.7 \[\square \]

Let \(1_M \) denote the trivial representation of \(M \) over \(R \) (or 1 when there is no ambiguity on \(M \)). The right \(\mathcal{H}_R \)-module \((1_G)^\mathcal{U} = 1_{\mathcal{H}} \) (or 1 if there is no ambiguity) is the trivial right \(\mathcal{H}_R \)-module: for \(w \in W_M(1) \), \(T_w = q_w \text{id} \) and \(T_w^* = \text{id} \) on \(1_{\mathcal{H}} \).
Example 3.14. The \mathcal{H}-module $(\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$ is the extension of the \mathcal{H}_{M_2}-module $(\text{Ind}\overline{G}_1)^{\mathcal{H}}_{M_2 \cap B}$. Indeed, the representation $\text{Ind}\overline{G}_1$ of G is trivial on N_2, as $G = M M_2'$ and $N_2 \subset M'$ (as $\Phi = \Phi_M \cup \Phi_{M_2}$). For $g = m m_2' m_2$ with $m \in M, m_2' \in M_2'$ and $n_2 \in N_2$, we have $P g m_2 = P m_2' n_2 = P m_2' = P g$. The group $M_2 \cap B = M_2 \cap P$ is the standard minimal parabolic subgroup of M_2 and $(\text{Ind}\overline{G}_1)^{\mathcal{H}}_{M_2} = \text{Ind}\overline{G}_{M_2 \cap B}$. Apply Theorem 3.13 as follows.

3.5. The \mathcal{H}_{R}-module $e(\mathcal{V}) \otimes_R (\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$. Let $P = MN$ be a standard parabolic subgroup of G such that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal, let \mathcal{V} be a right $\mathcal{H}_{M,R}$-module which is extendible to \mathcal{H}_R of extension $e(\mathcal{V})$, and let Q be a parabolic subgroup of G containing P. Let $P_2 = M_2 N_2$ denote the standard parabolic subgroup of G with $\Delta_{P_2} = \Delta \setminus \Delta_P$.

We define on the R-module $e(\mathcal{V}) \otimes_R (\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$ a structure of a right \mathcal{H}_{R}-module as follows.

Proposition 3.15.

1. The diagonal action of T_w^* for $w \in W(1)$ on $e(\mathcal{V}) \otimes_R (\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$ defines a structure of a right \mathcal{H}_{R}-module.

2. The action of the T_w is also diagonal and satisfies:

$$((v \otimes f) T_w, (v \otimes f) T_w^*) = (v T_{uw_m} \otimes f T_{uw_{m_2}'}, v T_{uw_m}^* \otimes f T_{uw_{m_2}'},$$

where $w = uw_{m_2}' w_{m_2}$ with $u \in W(1), \ell(u) = 0, w_{m_2}' \in W_{m_2}'$, $w_{m_2} \in W_{m_2}'$. Thus T_w^* for $w \in W(1)$ acts on $e(\mathcal{V}) \otimes_R (\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$ as in (1). The braid relations obviously hold. The quadratic relations hold because T_s^* with $s \in S_{\text{aff}}$, acts trivially either on $e(\mathcal{V})$ or on $(\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$. Indeed, $S_{\text{aff}} = S_{\text{aff}} M \cup S_{\text{aff}} M_2$, T_s^* for $s \in S_{\text{aff}} M_2$, acts trivially on $(\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$ which is extended from an \mathcal{H}_{M_2}-module (Example 3.14), and T_s^* for $s \in S_{\text{aff}} M_2$, acts trivially on $e(\mathcal{V})$ which is extended from an \mathcal{H}_M-module. This proves (1).

We describe now the action of T_w instead of T_w^* on the \mathcal{H}-module $e(\mathcal{V}) \otimes_R (\text{Ind}\overline{G}_1)^{\mathcal{H}}_R$. Let $w \in W(1)$. We write $w = uw_{M_2}' w_{M_2}$, $u \in W(1), \ell(u) = 0, w_{M_2}' \in W_{M_2}', w_{M_2} \in W_{M_2}'$. We have $\ell(w) = \ell(w_{M_2}') + \ell(w_{M_2}')$ and hence $T_w = T_u T_{w_{M_2}'} T_{w_{M_2}'}$. For $u = w_{M_2}'$, we have $T_u = T_u^*$ and $(v \otimes f) T_u = (v \otimes f) T_u^* = v T_u^* \otimes f T_u^* = v T_u \otimes f T_u^*$. For $w = w_{M_2}'$, $(v \otimes f) T_w^* = v T_w \otimes f$; for $s \in S_{\text{aff}} M_2$, $c_s = \sum_{t \in Z_{M_2} \cap W_{M_2}} c_s(t) T_t^*$ in particular, we have $(v \otimes f) T_s = (v \otimes f) (T_s^* + c_s) = v T_s^* + c_s \otimes f = v T_s \otimes f$. Hence $(v \otimes f) T_w = v T_w \otimes f$. For $w = w_{M_2}'$, we have similarly $(v \otimes f) T_w = v \otimes f T_w^*$ and $(v \otimes f) T_w = v \otimes f T_w^*$. □

Example 3.16. Let \mathcal{X} be a right \mathcal{H}_{R}-module. Then $1_\mathcal{H} \otimes_R \mathcal{X}$ where the T_s^* acts diagonally is an \mathcal{H}_{R}-module isomorphic to \mathcal{X}. But the action of the T_w on $1_\mathcal{H} \otimes_R \mathcal{X}$ is not diagonal.
It is known [Ly15] that \((\text{Ind}^G_Q 1)^H\) and \((\text{St}^G_Q)^H\) are free \(R\)-modules and that \((\text{St}^G_Q)^H\) is the cokernel of the natural \(H\)-map
\[
\bigoplus_{Q \subseteq Q'} (\text{Ind}^G_Q 1)^H \to (\text{Ind}^G_Q 1)^H
\]
although the invariant functor \((-)^H\) is only left exact.

Corollary 3.17. The diagonal action of \(T^*_w\) for \(w \in W(1)\) on \(e(V) \otimes_R (\text{St}^G_Q)^H\) defines a structure of a right \(H\)-module satisfying Proposition 3.15(2).

4. HECKE MODULE \(I_H(P,V,Q)\)

4.1. **Case \(V\) extensible to \(H\).** Let \(P = MN\) be a standard parabolic subgroup of \(G\) such that \(\Delta_P\) and \(\Delta \setminus \Delta_P\) are orthogonal, let \(V\) be a right \(H\)-module extensible to \(H_R\) of extension \(e(V)\), and let \(Q\) be a parabolic subgroup of \(G\) containing \(P\). As \(Q\) and \(M_Q\) determine each other: \(Q = M_Q U\), we denote also \(H_{M_Q} = H_Q\) and \(H_{M_Q,R} = H_{Q,R}\) when \(Q \neq P,G\). When \(Q = G\) we drop \(G\) and we denote \(e_H(V) = e(V)\).

Lemma 4.1. \(V\) is extensible to an \(H_{Q,R}\)-module \(e_{H_Q}(V)\).

Proof. This is straightforward. By Corollary 3.17, \(V\) extensible to \(H\) means that \(T^M(z)\) acts trivially on \(V\) for all \(z \in \mathcal{N}^{M_Q}_2 \cap Z\). We have \(M_Q = M M_{2,Q}'\) with \(M_{2,Q}' \subset M_Q \cap M'\) and \(\mathcal{N}^{M_{2,Q}'} \subset \mathcal{N}^{M_Q}\); hence \(T^M(z)\) acts trivially on \(V\) for all \(z \in \mathcal{N}^{M_{2,Q}} \cap Z\) meaning that \(V\) is extensible to \(H_Q\).

Remark 4.2. We cannot say that \(e_{H_Q}(V)\) is extensible to \(H\) of extension \(e(V)\) when the set of roots \(\Delta_Q\) and \(\Delta \setminus \Delta_Q\) are not orthogonal (Definition 3.8).

Let \(Q'\) be an arbitrary parabolic subgroup of \(G\) containing \(Q\). We are going to define an \(H_{Q,R}\)-embedding \(\text{Ind}^H_{H_{Q,R}}(e_{H_Q}(V)) \stackrel{i(Q,Q')_H}{\longrightarrow} \text{Ind}^H_{H_Q}(e_{H_Q}(V)) = e_{H_Q}(V) \otimes_{H_{M_Q}^+,\theta} H\), \(Q\) defining an \(H\)-homomorphism
\[
\bigoplus_{Q \subseteq Q' \subset G} \text{Ind}^H_{H_{Q,R}}(e_{H_Q}(V)) \to \text{Ind}^H_{H_Q}(e_{H_Q}(V))
\]
of cokernel isomorphic to \(e(V) \otimes_R (\text{St}^G_Q)^H\). In the extreme case \((Q,Q') = (P,G)\), the \(H_{Q,R}\)-embedding \(e(V) \stackrel{i(P,G)_H}{\longrightarrow} \text{Ind}^H_{H_M}(V)\) is given in the following lemma where \(f_G\) and \(f_{PL} \in (\text{Ind}^G_P 1)^H\) denote the characteristic functions of \(G\) and \(PL\), \(f_G = f_{PL} e_{M_2}\) (see 3.20).

Lemma 4.3. There is a natural \(H\)-isomorphism
\[
v \otimes 1_H \mapsto v \otimes f_{PL} : \text{Ind}^H_{H_M}(V) = V \otimes_{H_{M^+},\theta} H \xrightarrow{\kappa_P} e(V) \otimes_R (\text{Ind}^G_P 1)^H,
\]
and compatible \(H\)-embeddings
\[
v \mapsto v \otimes f_G : e(V) \to e(V) \otimes_R (\text{Ind}^G_P 1)^H,
\]
\[
v \mapsto v \otimes e_{M_2} : e(V) \xrightarrow{i(P,G)_H} \text{Ind}^H_{H_{M}}(V).
\]

Proof. We show first that the map
\[
v \mapsto v \otimes f_{PL} : V \to e(V) \otimes_R (\text{Ind}^G_P 1)^H
\]
is \mathcal{H}_{M^+}-equivariant. Let $w \in W_{M^+}(1)$. We write $w = uw_{M^+}w_{M_2}$ as in Proposition 3.15 (2), so that $f_{P\mathcal{U}}T_w = f_{P\mathcal{U}}T_{uw_{M_2}}$. We have $f_{P\mathcal{U}}T_{uw_{M_2}} = f_{P\mathcal{U}}$ because $1_{W_{M^+}} \subset W_{M^+}(1) \cap W_{M^-}(1)$ hence $uw_{M_2} = uw_{M_2}^{-1}$ is in $W_{M^+}(1)$ and in $1_{\mathcal{H}_M} \otimes 1_{\mathcal{H}_{M^+}}$ we have $(1 \otimes 1_{\mathcal{H}})T_{uw_{M_2}} = 1 T_{uw_{M_2}}^M \otimes 1_{\mathcal{H}}$, and $T_{uw_{M_2}}^M$ acts trivially in $1_{\mathcal{H}_M}$ because $\ell_M(uw_{M_2}) = 0$. We deduce $v \otimes f_{P\mathcal{U}}T_w = vT_w \otimes f_{P\mathcal{U}}T_w = vT_w \otimes f_{P\mathcal{U}}$.

By adjunction (4.3) gives an \mathcal{H}_R-equivariant linear map

$$v \otimes 1_{\mathcal{H}} \mapsto v \otimes f_{P\mathcal{U}} : \mathcal{V} \otimes \mathcal{H}_{M^+} \mathcal{H} \xrightarrow{\kappa_\mathcal{P}} e(\mathcal{V}) \otimes_R (\text{Ind}^G_P 1)^M.$$

We prove that $\kappa_\mathcal{P}$ is an isomorphism. Recalling $\hat{d} \in N \cap M_2$, $\hat{d} \in 1_{W_{M_2}}$ lift d, one knows that

$$\mathcal{V} \otimes \mathcal{H}_{M^+} \mathcal{H} = \bigoplus_{d \in \mathbb{W}_{M_2}} \mathcal{V} \otimes T_d \bigoplus \bigoplus_{d \in \mathbb{W}_{M_2}} \mathcal{V} \otimes f_{P\mathcal{U}}(v),$$

where each summand is isomorphic to \mathcal{V}. The left equality follows from section 4.1 and Remark 3.7 in [Vig15b] recalling that $w \in \mathbb{W}_{M_2}$ is of minimal length in its coset $\mathbb{W}_{M^+}w = w\mathbb{W}_{M^+}$ as Δ_M and Δ_{M_2} are orthogonal; for the second equality see section 3.4 (3.19). We have $\mathcal{H}_R(v \otimes T_{\hat{d}}) = (v \otimes f_{P\mathcal{U}})T_{\hat{d}} = v \otimes f_{P\mathcal{U}}T_{\hat{d}}$ (Proposition 3.15). Hence $\kappa_\mathcal{P}$ is an isomorphism.

We consider the composite map

$$v \mapsto v \otimes 1 \mapsto v \otimes f_{P\mathcal{U}}e_{M_2} : e(\mathcal{V}) \otimes_R \mathcal{V} \otimes 1_{\mathcal{H}} \rightarrow e(\mathcal{V}) \otimes_R (\text{Ind}^G_P 1)^M,$$

where the right map is the tensor product $e(\mathcal{V}) \otimes_R -$ of the \mathcal{H}_R-equivariant embedding $1_{\mathcal{H}} \rightarrow (\text{Ind}^G_P 1)^M$ sending 1_R to $f_{P\mathcal{U}}e_{M_2}$ (Lemma 3.10); this map is injective because $(\text{Ind}^G_P 1)^M/1$ is a free R-module; it is \mathcal{H}_R-equivariant for the diagonal action of the T_w on the tensor products (Example 3.16 for the first map). By compatibility with (4.4), we get the \mathcal{H}_R-equivariant embedding $v \mapsto v \otimes e_{M_2} : e(\mathcal{V}) \xrightarrow{\iota(P,G)} \text{Ind}_{\mathcal{H}}^R_{\mathcal{H}_{M^+}}(\mathcal{V})$. \hfill \square

For a general (Q, Q') the \mathcal{H}_R-embedding $\text{Ind}_{\mathcal{H}_{M^+}}^R(e_{\mathcal{H}_{M^+}}(\mathcal{V})) \xrightarrow{\iota(Q,Q')} \text{Ind}_{\mathcal{H}_{Q'}}^R(e_{\mathcal{H}_{Q'}}(\mathcal{V}))$ is given in the next proposition generalizing Lemma 4.3. The element e_{M_2} of \mathcal{H}_R appearing in the definition of $\iota(P, G)$ is replaced in the definition of $\iota(Q, Q')$ by an element $\theta_{Q'}(e_{Q'}) \in \mathcal{H}_R$ that we define first.

Until the end of section 4, we fix an admissible lift $w \mapsto \hat{w} : \mathbb{W} \rightarrow N \cap K$ (Definition 3.1) and \hat{w} denotes the image of \hat{w} in $W(1)$. We denote $\mathbb{W}_{M^+} = \mathbb{W}_Q$ and by $\mathbb{W}_Q \mathbb{W}$ the set of $w \in \mathbb{W}$ of minimal length in their coset $\mathbb{W}_Q w$. The group G is the disjoint union of $Q\mathcal{U}$ for d running through $\mathbb{W}_Q \mathbb{W}$ [OV17 Lemma 2.15 (2)]: $G = \bigsqcup_{d \in \mathbb{W}_Q \mathbb{W}} Q\mathcal{U}_d$. Since $Q\mathcal{U}_d \subset Q'\mathcal{U}$ if and only if $d \in Q'$, namely $d \in \mathbb{W}_Q \mathbb{W}_{Q'}$, we have

$$Q'\mathcal{U} = \bigsqcup_{d \in \mathbb{W}_Q \mathbb{W}_{Q'}} Q\mathcal{U}_d.$$

Set

$$e_{Q'} = \sum_{d \in \mathbb{W}_Q \mathbb{W}_{Q'}} T_d M_{Q'}.$$

We write $e_Q = e_{Q'}$. We have $e_Q = \sum_{d \in \mathbb{W}_{M_2,Q}} T_d M_{S}$.

Remark 4.4. Note that $W^M W = W_{M_2}$ and $e_P = e_{M_2}$, where M_2 is the standard Levi subgroup of G with $\Delta_{M_2} = \Delta \setminus \Delta_M$, as Δ_M and $\Delta \setminus \Delta_M$ are orthogonal. More generally, $\hat{W} \varpi_\varpi_{M, \varpi_\varpi_{M, Q'}} = \hat{W}_\varpi_{M_2, \varpi_\varpi_{M_2, Q'}}$ where $M_{2, Q'} = M_2 \cap M_{Q'}$.

Note that $e_{Q'}^* \in H_{M, +} \cap H_{M, -}$. We consider the linear map

$$\theta_Q^* : H_Q \rightarrow H_{Q'} \quad T_{w}^{M_Q} \mapsto T_{w}^{M_{Q'}} \quad (w \in W_{M_Q}(1)).$$

We write $\theta_Q^* = \theta_Q$ so that $\theta_Q(T_{w}^{M_Q}) = T_{w}$. When $Q = P$ this is the map θ defined earlier. Similarly we denote by $\theta_{Q'}^*$ the linear map sending the $T_{w}^{M_{Q'}}$ to $T_{w}^{M_{Q'}}$ and $\theta_{Q'}^* = \theta_Q^*$. We have

$$\theta_Q^*(e_{Q'}) = \sum_{d \in \varpi_\varpi_{Q, \varpi_\varpi_{Q'}}} T_d, \quad \theta_Q^*(e_{Q'}) = \theta_Q(e_{P}) \theta_{Q'}^*(e_{Q'}).$$

Proposition 4.5. There exists an H_R-isomorphism

$$v \otimes 1_H \mapsto v \otimes f_{QH} : \text{Ind}_{H_Q}^H(e_{H_Q}(V)) = e_{H_Q}(V) \otimes H_{H_M} \rightarrow \otimes e(V) \otimes_R (\text{Ind}_{Q}^G 1)^H,$$

and compatible H_R-embeddings

$$v \otimes f_{QH} = v \otimes f_{QH}^* : e_{H_Q}(V) \otimes_R (\text{Ind}_{Q}^G 1)^H \rightarrow e_{H_Q}(V) \otimes_R (\text{Ind}_{Q}^G 1)^H,$$

$$v \otimes 1_H \mapsto v \otimes \theta_Q^*(e_{Q'}) : \text{Ind}_{H_{Q'}}^H(e_{H_Q}(V)) \rightarrow \text{Ind}_{H_{Q'}}^H(e_{H_Q}(V)).$$

Proof. We have the $H_{MQ, R}$-embedding

$$v \mapsto v \otimes e_{P}^* : e_{H_Q}(V) \rightarrow V \otimes_{H_{M, +, 0}} H_Q = \text{Ind}_{H_{M}}^H(V)$$

by Lemma 4.3.2 as Δ_M is orthogonal to Δ_{M_2} and $\Delta_M \setminus \Delta_M$. Applying the parabolic induction which is exact, we get the H_{R}-embedding

$$v \otimes 1_H \mapsto v \otimes e_{P}^* \otimes 1_H : \text{Ind}_{H_{Q}}^H(e_{H_Q}(V)) \rightarrow \text{Ind}_{H_{Q}}^H(e_{H_Q}(V)).$$

Note that $T_{d}^{M_Q} \in H_{MQ}^H$ for $d \in \varpi_\varpi_{MQ}$. By transitivity of the parabolic induction, it is equal to the H_{R}-embedding

$$v \otimes 1_H \mapsto v \otimes \theta_Q(e_{P}^*) : \text{Ind}_{H_{Q}}^H(e_{H_Q}(V)) \rightarrow \text{Ind}_{H_{M}}^H(V).$$

On the other hand we have the H_{R}-embedding

$$v \otimes f_{QH} \mapsto v \otimes \theta_Q(e_{P}^*) : e(V) \otimes_R (\text{Ind}_{Q}^G 1)^H \rightarrow \text{Ind}_{H_{R}}^H(V)$$

given by the restriction to $e(V) \otimes_R (\text{Ind}_{Q}^G 1)^H$ of the H_{R}-isomorphism given in Lemma 4.3 (4.1), from $e(V) \otimes_R (\text{Ind}_{Q}^G 1)^H$ to $V \otimes_{H_{M, +, 0}} H$ sending $v \otimes f_{QH}$ to $v \otimes 1_H$, noting that $v \otimes f_{QH} = (v \otimes f_{QH}) \theta_Q(e_{P})$ by Proposition 3.15, $f_{QH} = f_{QH} \theta_Q(e_{P})$ and $\theta_Q(e_{P})$ acts trivially on $e(V)$ (this is true for T_{d}^{Q} for $d \in \varpi_\varpi_{MQ}$). Comparing the embeddings (4.12) and (4.13), we get the H_{R}-isomorphism (4.19).

We can replace Q by Q' in the H_{R}-homomorphisms (4.9), (4.12), and (4.13). With (4.12) we see $\text{Ind}_{H_{Q'}}^H(e_{H_{Q'}}(V))$ and $\text{Ind}_{H_{Q}}^H(e_{H_Q}(V))$ as H_{R}-submodules of $\text{Ind}_{H_{M}}^H(V)$. As seen in (4.8) we have $\theta_{Q'}(e_{Q'}) = \theta_Q(e_{P}) \theta_{Q'}(e_{Q'})$. We deduce the H_{R}-embedding (4.11).
By (3.19) for Q and (4.6),
$$f_{Q'U} = \sum_{d \in \mathbb{G} \cap Q'} f_{QU} T_d = f_{QU} \theta_{Q'}(e_{Q'}^\ast)$$
in $(\text{Ind}_G^G 1)^\ast$. We deduce that the H_R-embedding corresponding to (4.11) via κ_Q and $\kappa_{Q'}$ is the H_R-embedding (4.10).

We recall that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal and that \mathcal{V} is extensible to \mathcal{H} of extension $e(\mathcal{V})$.

Corollary 4.6. The cokernel of the H_R-map
$$\bigoplus_{Q \leq Q'} \text{Ind}_{H_{Q'}}^H(e_{H_{Q'}}(\mathcal{V})) \to \text{Ind}_{H_Q}^H(e_{H_Q}(\mathcal{V}))$$
defined by the $\iota(Q, Q')$, is isomorphic to $e(\mathcal{V}) \otimes_R (\text{St}_G^G)^\ast$ via κ_Q.

4.2. Invariants in the tensor product. We return to the setting where $P = MN$ is a standard parabolic subgroup of G, σ is a smooth R-representation of M with $P(\sigma) = G$ of extension $e(\sigma)$ to G, and Q a parabolic subgroup of G containing P. We still assume that Δ_P and $\Delta \setminus \Delta_P$ are orthogonal.

The H_R-modules $e(\sigma)^{H_R} = e(\sigma)^\ast$ are equal (Theorem 3.13). We compute $I_G(P, \sigma, Q)^\ast = (e(\sigma) \otimes_R \text{St}_G^G)^\ast$.

Theorem 4.7. The natural linear maps $e(\sigma)^{H_R} \otimes_R (\text{Ind}_G^G 1)^\ast \to (e(\sigma) \otimes_R \text{Ind}_G^G 1)^\ast$ and $e(\sigma)^{H_R} \otimes_R (\text{St}_G^G)^\ast \to (e(\sigma) \otimes_R \text{St}_G^G)^\ast$ are isomorphisms.

Proof. We need some preliminaries. In [GK14, Ly15], are introduced a finite free \mathbb{Z}-module \mathfrak{M} (depending on Δ_Q) and a \mathcal{B}-equivariant embedding $\text{St}_G^G \to \mathbb{C}^\infty(\mathcal{B}, \mathfrak{M})$ (we indicate the coefficient ring in the Steinberg representation) which induces an isomorphism $(\text{St}_G^G)^\ast \simeq \mathbb{C}^\infty(\mathcal{B}, \mathfrak{M})^\mathcal{B}$.

Lemma 4.8.

1. $(\text{Ind}_G^G \mathbb{Z})^\mathcal{B}$ is a direct factor of $\text{Ind}_G^G \mathbb{Z}$.
2. $(\text{St}_G^G \mathbb{Z})^\mathcal{B}$ is a direct factor of $\text{St}_G^G \mathbb{Z}$.

Proof.

1. [AHV] Example 2.2.
2. As \mathfrak{M} is a free \mathbb{Z}-module, $C^\infty_e(\mathcal{B}, \mathfrak{M})^\mathcal{B}$ is a direct factor of $C^\infty_e(\mathcal{B}, \mathfrak{M})$. Consequently, $\iota((\text{St}_G^G \mathbb{Z})^\mathcal{B}) = C^\infty_e(\mathcal{B}, \mathfrak{M})^\mathcal{B}$ is a direct factor of $\iota(\text{St}_G^G \mathbb{Z})$. As ι is injective, we get (2). \hfill \Box

We now prove Theorem 4.7. We may and do assume that σ is e-minimal (because $P(\sigma) = P(\sigma_{\text{min}})$, $e(\sigma) = e(\sigma_{\text{min}})$) so that Δ_M and $\Delta \setminus \Delta_M$ are orthogonal and we use the same notation as in section 3.2 in particular $M_2 = M_{\Delta \setminus \Delta_M}$. Let V be the space of $e(\sigma)$ on which M_2 acts trivially. The restriction of $\text{Ind}_G^G \mathbb{Z}$ to M_2 is $\text{Ind}_{G \cap M_2}^G \mathbb{Z}$, that of $\text{St}_G^G \mathbb{Z}$ is $\text{St}_{G \cap M_2}^G \mathbb{Z}$.

As in [AHV] Example 2.2], $((\text{Ind}_{G \cap M_2}^G \mathbb{Z}) \otimes V)^{\mathcal{U}M_2} \simeq (\text{Ind}_{G \cap M_2}^G \mathbb{Z})^{\mathcal{U}M_2} \otimes V$. We have
$$(\text{Ind}_{G \cap M_2}^G \mathbb{Z})^{\mathcal{U}M_2} = (\text{Ind}_{G \cap M_2}^G \mathbb{Z})^{\mathcal{U}M_2} = (\text{Ind}_Q^G \mathbb{Z})^{\mathcal{U}}.$$ The first equality follows from $M_2 = (Q \cap M_2)\mathbb{W}_{M_2} \mathcal{U}_{M_2}$, $\mathcal{U}_{M_2} = Z^1 \mathcal{U}_{M_2}$ and Z^1 normalizes \mathcal{U}_{M_2} and is normalized by \mathbb{W}_{M_2}. The second equality follows from $\mathcal{U} = \mathcal{U}_{M_2}$. A similar argument for $\text{St}_G^G \mathbb{Z}$.
\(\mathcal{U}_M \mathcal{U}_M \) and \(\text{Ind}^G_Q Z \) is trivial on \(M' \). Therefore ((\text{Ind}^G_Q Z) \otimes V)^{\mu_M'} \simeq (\text{Ind}^G_Q Z)^{\mu} \otimes V.

Now taking fixed points under \(\mathcal{U}_M \), as \(\mathcal{U} = \mathcal{U}_M' \mathcal{U}_M \),

\[
(\text{Ind}^G_Q Z) \otimes V)^{\mathcal{U}} \simeq ((\text{Ind}^G_Q Z) \otimes V)^{\mu_M} = (\text{Ind}^G_Q Z)^{\mu} \otimes V^{\mu_M}.
\]

The equality uses that the \(\mathcal{Z} \)-module \(\text{Ind}^G_Q Z \) is free. We get the first part of the theorem as (\(\text{Ind}^G_Q Z \)^{\mu} \otimes V)^{\mu_M} \simeq (\text{Ind}^G_Q R \)^{\mu} \otimes R^{V^{\mu_M}}.

Tensoring with \(R \) the usual exact sequence defining \(\text{St}^G_Q \mathcal{Z} \) gives an isomorphism \(\text{St}^G_Q \mathcal{Z} \otimes R \simeq \text{St}^G_Q R \) and in \(\text{GK14, Ly15} \), it is proved that the resulting map \(\text{St}^G_Q R \rightarrow C^\infty_\mathcal{B} (\mathcal{B}, \mathcal{M} \otimes R) \) is also injective. Their proof in no way uses the ring structure of \(R \), and for any \(\mathcal{Z} \)-module \(V \), tensoring with \(V \) gives a \(\mathcal{B} \)-equivariant embedding \(\text{St}^G_Q \mathcal{Z} \otimes V \rightarrow C^\infty_\mathcal{B} (\mathcal{B}, \mathcal{M} \otimes V) \). The natural map \((\text{St}^G_Q \mathcal{Z})^B \otimes V \rightarrow \text{St}^G_Q \mathcal{Z} \otimes V \) is also injective by Lemma 14.3 (2). Taking \(\mathcal{B} \)-fixed points we get inclusions

\[
(\text{St}^G_Q \mathcal{Z})^B \otimes V \rightarrow (\text{St}^G_Q \mathcal{Z} \otimes V)^B \rightarrow C^\infty_\mathcal{B} (\mathcal{B}, \mathcal{M} \otimes V)^B \simeq \mathcal{M} \otimes V.
\]

The composite map is surjective, so the inclusions are isomorphisms. The image of \(\iota \) consists of functions which are left \(Z^0 \)-invariant, and \(\mathcal{B} = Z^0 \mathcal{U}' \) where \(\mathcal{U}' = G' \cap \mathcal{U} \). It follows that \(\iota \) yields an isomorphism \((\text{St}^G_Q \mathcal{Z})^{\mu'} \simeq C^\infty_\mathcal{B} (Z_0 \mathcal{B}, \mathcal{M} \mu') \) again consisting of the constant functions. So that in particular \((\text{St}^G_Q \mathcal{Z})^{\mu'} = (\text{St}^G_Q \mathcal{Z})^B \) and reasoning as previously we get isomorphisms

\[
(\text{St}^G_Q \mathcal{Z})^{\mu'} \otimes V \simeq (\text{St}^G_Q \mathcal{Z} \otimes V)^{\mu'} \simeq \mathcal{M} \otimes V.
\]

The equality \((\text{St}^G_Q \mathcal{Z})^{\mu'} = (\text{St}^G_Q \mathcal{Z})^B \) and the isomorphisms remain true when we replace \(\mathcal{U}' \) by any group between \(\mathcal{B} \) and \(\mathcal{U}' \). We apply these results to \(\text{St}^M_{Q \cap M_2} \mathcal{Z} \otimes V \) to get that the natural map \((\text{St}^M_{Q \cap M_2} \mathcal{Z})^{\mu_M'} \otimes V \rightarrow (\text{St}^M_{Q \cap M_2} \mathcal{Z} \otimes V)^{\mu_M'} \) is an isomorphism and also that \((\text{St}^M_{Q \cap M_2} \mathcal{Z})^{\mu_M'} = (\text{St}^M_{Q \cap M_2} \mathcal{Z})^{\mu_M} \). We have \(\mathcal{U} = \mathcal{U}_M' \mathcal{U}_M \) so \((\text{St}^G_Q \mathcal{Z})^{\mu} = (\text{St}^M_{Q \cap M_2} \mathcal{Z})^{\mu_M} \) and the natural map \((\text{St}^G_Q \mathcal{Z})^{\mu} \otimes V \rightarrow (\text{St}^G_Q \mathcal{Z} \otimes V)^{\mu_M} \) is an isomorphism. The \(\mathcal{Z} \)-module \((\text{St}^G_Q \mathcal{Z})^{\mu} \) is free and the \(V^{\mu_M} = V^{\mu} \), so taking fixed points under \(\mathcal{U}_M \), we get \((\text{St}^G_Q \mathcal{Z})^{\mu} \otimes V \simeq (\text{St}^G_Q \mathcal{Z} \otimes V)^{\mu} \). We have \(\text{St}^G_Q \mathcal{Z} \otimes V = \text{St}^G_Q R \otimes R \mathcal{V} \) and \((\text{St}^G_Q \mathcal{Z})^{\mu} \otimes V^{\mu} = (\text{St}^G_Q R)^{\mu} \otimes R V^{\mu} \). This ends the proof of the theorem.

Theorem 4.9. The \(\mathcal{H}_R \)-modules \((e(\sigma) \otimes_R \text{Ind}^G_Q 1)^{\mu} \) and \((\text{St}^G_Q \mathcal{Z})^{\mu} \) are equal. The \(\mathcal{H}_R \)-modules \((e(\sigma) \otimes_R \text{Ind}^G_Q 1)^{\mu} = (e(\sigma)^{\mu} \otimes_R (\text{Ind}^G_Q 1)^{\mu}) \) are also equal.

Proof. We already know that the \(R \)-modules are equal (Theorem 4.1). We show that they are equal as \(\mathcal{H} \)-modules. The \(\mathcal{H}_R \)-modules \(e(\sigma)^{\mu} \otimes_R (\text{Ind}^G_Q 1)^{\mu} \) are equal (Theorem 4.13, Proposition 4.5, to \(\text{Ind}^G_Q (e(\sigma)^{\mu}) \) (OV17), and to \((e(\sigma) \otimes_R \text{Ind}^G_Q 1)^{\mu} \)). We deduce that the \(\mathcal{H}_R \)-modules \(e(\sigma)^{\mu} \otimes_R (\text{Ind}^G_Q 1)^{\mu} \) are also equal. The same is true when \(Q \) is replaced by a parabolic subgroup \(Q' \) of \(G \) containing \(Q \). The representation \(e(\sigma) \otimes_R \text{St}^G_Q 1 \) is the cokernel of the natural \(R[G] \)-map

\[
\bigoplus_{Q \subseteq Q'} e(\sigma) \otimes_R \text{Ind}^G_Q 1 \rightarrow e(\sigma) \otimes_R \text{Ind}^G_Q 1.
\]
and the \mathcal{H}_R-module $e(\sigma)^{U} \otimes_R (\text{St}_Q^G)^{U}$ is the cokernel of the natural \mathcal{H}_R-map
\[
\bigoplus_{Q \subseteq Q'} e(\sigma)^{U} \otimes_R (\text{Ind}_Q^G 1)^{U} \xrightarrow{\beta_Q} e(\sigma)^{U} \otimes_R (\text{Ind}_Q^G 1)^{U}
\]
obtained by tensoring (3.22) by $e(\sigma)^{U}$ over R, because the tensor product is right exact. The maps $\beta_Q = \alpha_Q^{U}$ are equal and the R-modules $e(\sigma)^{U} \otimes_R (\text{St}_Q^G)^{U} = (e(\sigma) \otimes_R \text{St}_Q^G)^{U}$ are equal. This implies that the \mathcal{H}_R-modules $e(\sigma)^{U} \otimes_R (\text{St}_Q^G)^{U} = (e(\sigma) \otimes_R \text{St}_Q^G)^{U}$ are equal.

Remark 4.10. The proof shows that the representations $e(\sigma) \otimes_R \text{Ind}_Q^G 1$ and $e(\sigma) \otimes \text{St}_Q^G$ of G are generated by their U-fixed vectors if the representation σ of M is generated by its U_M-fixed vectors. Indeed, the R-modules $e(\sigma)^{U} = \sigma^{U_M} \otimes_R (\text{Ind}_Q^G 1)^{U_M}$ are equal. If σ^{U_M} generates σ, then $e(\sigma)$ is generated by $e(\sigma)^{U}$. The representation $\text{Ind}_Q^G 1_{M_1}$ is generated by $\text{Ind}_Q^G 1$ (this follows from the lemma below), we have $G = M M_2$ and M_2 acts trivially on $e(\sigma)$. Therefore the $R[G]$-module generated by $\sigma^{U} \otimes_R (\text{Ind}_Q^G 1)^{U}$ is $e(\sigma) \otimes_R \text{Ind}_Q^G 1$. As $e(\sigma) \otimes_R \text{St}_Q^G$ is a quotient of $e(\sigma) \otimes_R \text{Ind}_Q^G 1$, the $R[G]$-module generated by $\sigma^{U} \otimes_R (\text{St}_Q^G)^{U}$ is $e(\sigma) \otimes_R \text{St}_Q^G$.

Lemma 4.11. For any standard parabolic subgroup P of G, the representation $\text{Ind}_P^G 1_{G'}$ is generated by its U-fixed vectors.

Proof. Because $G = PG'$ it suffices to prove that if J is an open compact subgroup of N the characteristic function 1_{PJ} of PJ is a finite sum of translates of 1_{PLU} by G'. For $t \in T$ we have $PLUt = Pt^{-1} \mathcal{U}_T$ and we can choose $t \in T \cap J'$ such that $t^{-1} \mathcal{U}_T \subseteq J$.

4.3. **General triples.** Let $P = MN$ be a standard parabolic subgroup of G. We now investigate situations where Δ_P and $\Delta \setminus \Delta_P$ are not necessarily orthogonal. Let \mathcal{V} be a right $\mathcal{H}_{M,R}$-module.

Definition 4.12. Let $P(V) = M(V) \cap N(V)$ be the standard parabolic subgroup of G with $\Delta_P(V) = \Delta_P \cup \Delta_V$.

\[
\Delta_V = \{ \alpha \in \Delta \text{ orthogonal to } \Delta_M, T^M(z) \text{ acts trivially on } \mathcal{V} \text{ for all } z \in Z \cap M_\alpha' \}.
\]
If Q is a parabolic subgroup of G between P and $P(V)$, the triple (P, V, Q) called an \mathcal{H}_R-triple, defines a right \mathcal{H}_R-module $I_{H}(P, V, Q)$ equal to
\[
\text{Ind}_{H(M(V))}(e(V) \otimes_R (\text{St}_{Q \cap M(V)}^M)^{U_M(V)}) = (e(V) \otimes_R (\text{St}_{Q \cap M(V)}^M)^{U_M(V)}) \otimes_{\mathcal{H}_{M(V)}} \mathcal{H}_{R},
\]
where $e(V)$ is the extension of \mathcal{V} to $\mathcal{H}_{M(V)}$.

This definition is justified by the fact that $M(V)$ is the maximal standard Levi subgroup of G such that the $\mathcal{H}_{M,R}$-module \mathcal{V} is extensible to $\mathcal{H}_{M(V)}$.

Lemma 4.13. Δ_V is the maximal subset of $\Delta \setminus \Delta_P$ orthogonal to Δ_P such that $T^{M,*}_\lambda$ acts trivially on \mathcal{V} for all $\lambda \in \Lambda(1) \cap 1W_{M_\alpha'}$.

Proof. For $J \subseteq \Delta$ let M_J denote the standard Levi subgroup of G with $\Delta_{M_J} = J$. The group $Z \cap M_J'$ is generated by the $Z \cap M_\alpha'$ for all $\alpha \in J$ (Lemma 2.1). When J is orthogonal to Δ_M and $\lambda \in \Lambda_{M_J}(1)$, $\ell_M(\lambda) = 0$ where ℓ_M is the length associated to S^aff_M, and the map $\lambda \mapsto T^{M,*}_\lambda = T^{M}_\lambda : M_J(1) \to \mathcal{H}_M$ is multiplicative.
The following is the natural generalization of Proposition 4.5 and Corollary 4.6. Let Q' be a parabolic subgroup of G with $Q \subset Q' \subset P(V)$. Applying the results of section 4.1 to $M(V)$ and its standard parabolic subgroups $Q \cap M(V) \subset Q' \cap M(V)$, we have an $\mathcal{H}_{M(V), R}$-isomorphism

$$\text{Ind}_{\mathcal{H}_Q}^{\mathcal{H}_{M(V)}}(e_{\mathcal{H}_Q}(V)) = e_{\mathcal{H}_Q}(V) \otimes_{\mathcal{H}_{\mathcal{M}_Q}} \theta_{\mathcal{H}_{M(V), R}}(\kappa_{Q \cap M(V)}) e(V) \otimes_R (\text{Ind}_{Q \cap M(V)}^M(V) \mathbf{1})_{\mathcal{M}(V)}$$

and an $\mathcal{H}_{M(V), R}$-embedding

$$\text{Ind}_{\mathcal{H}_{Q'}}^{\mathcal{H}_{M(V)}}(e_{\mathcal{H}_{Q'}}(V)) \xrightarrow{\iota(Q \cap M(V), Q' \cap M(V))} \text{Ind}_{\mathcal{H}_Q}^{\mathcal{H}_{M(V)}}(e_{\mathcal{H}_Q}(V))$$

Applying the parabolic induction $\text{Ind}_{\mathcal{H}_{M(V)}}^\mathcal{H}$ which is exact and transitive, we obtain an \mathcal{H}_R-isomorphism $\kappa_Q = \text{Ind}_{\mathcal{H}_{M(V)}}^\mathcal{H}(\kappa_{Q \cap M(V)})$,

$$\text{Ind}_{\mathcal{H}_Q}^{\mathcal{H}_{M(V)}}(e_{\mathcal{H}_Q}(V)) \xrightarrow{\kappa_Q} \text{Ind}_{\mathcal{H}_{M(V)}}^{\mathcal{H}}(e(\mathcal{V}) \otimes R (\text{Ind}_{Q \cap M(V)}^M(V) \mathbf{1})_{\mathcal{M}(V)})$$

and an \mathcal{H}_R-embedding $\iota(Q, Q') = \text{Ind}_{\mathcal{H}_{M(V)}}^{\mathcal{H}}(\iota(Q, Q') M(V))$

$$v \otimes 1_{\mathcal{H}_M(V)} \mapsto v \otimes f_{Q \cap M(V)} \otimes 1_{\mathcal{H}}$$

Applying Corollary 4.6 we obtain:

Theorem 4.14. Let (P, V, Q) be an \mathcal{H}_R-triple. Then, the cokernel of the \mathcal{H}_R-map

$$\oplus_{Q \subset Q' \subset P(V)} \text{Ind}_{\mathcal{H}_Q}^{\mathcal{H}_{M(V)}}(e_{\mathcal{H}_Q}(V)) \rightarrow \text{Ind}_{\mathcal{H}_Q}^{\mathcal{H}}(e_{\mathcal{H}_Q}(V)),$$

defined by the $\iota(Q, Q')$ is isomorphic to $I_{\mathcal{H}}(P, V, Q)$ via the \mathcal{H}_R-isomorphism κ_Q.

Let σ be a smooth R-representation of M and let Q be a parabolic subgroup of G with $P \subset Q \subset P(\sigma)$.

Remark 4.15. The \mathcal{H}_R-module $I_{\mathcal{H}}(P, \sigma_{\mathcal{M}}, Q)$ is defined if $\Delta_Q \setminus \Delta_P$ and Δ_P are orthogonal because $Q \subset P(\sigma) \subset P(\sigma_{\mathcal{M}})$ (Theorem 3.13).

We denote here by $P_{\min} = M_{\min}, N_{\min}$ the minimal standard parabolic subgroup of G contained in P such that $\sigma = e_P(\sigma |_{M_{\min}})$ (Lemma 2.3) we drop the index σ. The sets of roots $\Delta_{P_{\min}}$ and $\Delta_P(\sigma |_{M_{\min}}) \setminus \Delta_{P_{\min}}$ are orthogonal (Lemma 2.4). The groups $P(\sigma) = P(\sigma |_{M_{\min}})$, the representations $e(\sigma) = e(\sigma |_{M_{\min}})$ of $M(\sigma)$, the representations $I_{\mathcal{G}}(P, \sigma, Q) = I_{\mathcal{G}}(P_{\min}, \sigma |_{M_{\min}}, Q) = \text{Ind}_{P(\sigma)}^P(\sigma \otimes R \text{St}_Q^{P(\sigma)})$ of G, and the R-modules $\sigma_{\mathcal{M}_{\min}} = \sigma_{\mathcal{M}}$ are equal. From Theorem 3.13

$$P(\sigma) \subset P(\sigma_{\mathcal{M}_{\min}}), \quad e_{\mathcal{H}_M(\sigma)}(\sigma_{\mathcal{M}_{\min}}) = e(\sigma_{\mathcal{M}_{\min}}),$$

and $P(\sigma_{\mathcal{M}_{\min}}) = P(\sigma)$ if $\sigma_{\mathcal{M}_{\min}}$ generates the representation $\sigma |_{M_{\min}}$. The \mathcal{H}_R-module

$$I_{\mathcal{H}}(P_{\min}, \sigma_{\mathcal{M}_{\min}}, Q) = \text{Ind}_{\mathcal{H}_{M(\sigma_{\mathcal{M}_{\min}})}}^{\mathcal{H}_M} (e(\sigma_{\mathcal{M}_{\min}}) \otimes_R (\text{St}_Q^{P(\sigma_{\mathcal{M}_{\min}})})_{\mathcal{M}(\sigma_{\mathcal{M}_{\min}})}$$

is defined because $\Delta_{P_{\min}}$ and $\Delta_P(\sigma_{\mathcal{M}_{\min}}) \setminus \Delta_{P_{\min}}$ are orthogonal and $P \subset Q \subset P(\sigma) \subset P(\sigma_{\mathcal{M}_{\min}})$.

Remark 4.16. If $\sigma^\dagger_{M_{\text{min}}}$ generates the representation $\sigma|_{M_{\text{min}}}$ (in particular if R is an algebraically closed field of characteristic p and σ is irreducible), then $P(\sigma) = P(\sigma^\dagger_{M_{\text{min}}})$ hence

$$I_H(P_{\text{min}}, \sigma^\dagger_{M_{\text{min}}}, Q) = \text{Ind}^H_{\mathcal{H}_M(\sigma)}(e_{\mathcal{H}_M(\sigma)}(\sigma^\dagger_{M_{\text{min}}}) \otimes_R (\text{St}_{Q\cap M(\sigma)}^M(\sigma)^\dagger_{M(\sigma)})].$$

Applying Theorem 4.19 to $(P_{\text{min}} \cap M(\sigma), \sigma|_{M_{\text{min}}}, Q \cap M(\sigma))$, the $M_{\mathcal{H}_M(\sigma), R}$-modules

$$e_{\mathcal{H}_M(\sigma)}(\sigma^\dagger_{M_{\text{min}}}) \otimes_R (\text{St}_{Q\cap M(\sigma)}^M(\sigma)^\dagger_{M(\sigma)}) = (e_{M(\sigma)}(\sigma) \otimes R \text{St}_{Q\cap M(\sigma)}^M(\sigma)^\dagger_{M(\sigma)})$$

are equal. We have the \mathcal{H}_R-isomorphism [OV17 Proposition 4.4]:

$$I_G(P, \sigma, Q)^\dagger = (\text{Ind}^G_{P(\sigma)}(e(\sigma) \otimes_R \text{St}_Q^P(\sigma)))^\dagger$$

$$\xrightarrow{\text{ov}} \text{Ind}^H_{\mathcal{H}_M(\sigma)}((e(\sigma) \otimes_R \text{St}_{Q\cap M(\sigma)}^M(\sigma)^\dagger_{M(\sigma)}))$$

$$f_P(\sigma)_{\dagger, x} \mapsto x \otimes 1_{\mathcal{H}}$$

We deduce the following.

Theorem 4.17. Let (P, σ, Q) be an $R[G]$-triple. Then, we have the \mathcal{H}_R-isomorphism

$$I_G(P, \sigma, Q)^\dagger \xrightarrow{\text{ov}} \text{Ind}^H_{\mathcal{H}_M(\sigma)}((e_{\mathcal{H}_M(\sigma)}(\sigma^\dagger_{M_{\text{min}}}) \otimes_R (\text{St}_{Q\cap M(\sigma)}^M(\sigma)^\dagger_{M(\sigma)})].$$

In particular,

$$I_G(P, \sigma, Q)^\dagger \simeq \begin{cases} I_H(P_{\text{min}}, \sigma^\dagger_{M_{\text{min}}}, Q) & \text{if } P(\sigma) = P(\sigma^\dagger_{M_{\text{min}}}), \\ I_H(P, \sigma^\dagger_{M_{\text{min}}}, Q) & \text{if } P = P_{\text{min}}, P(\sigma) = P(\sigma^\dagger_{M}). \end{cases}$$

4.4. Comparison of the parabolic induction and coinduction. Let $P = MN$ be a standard parabolic subgroup of G, let V be a right \mathcal{H}_R-module, and let Q be a parabolic subgroup of G with $Q \subset P(V)$. When R is an algebraically closed field of characteristic p, in [Abe], we associated to (P, V, Q) an \mathcal{H}_R-module using the parabolic coinduction

$$\text{Coind}^H_{\mathcal{H}_M Q}(-) = \text{Hom}_{\mathcal{H}_M Q^\vee, \sigma^*}(\mathcal{H}, -) : \text{Mod}_R(\mathcal{H}_M Q) \to \text{Mod}_R(\mathcal{H})$$

instead of the parabolic induction $\text{Ind}^H_{\mathcal{H}_M Q}(-) = - \otimes_{\mathcal{H}_M Q^\vee, \sigma} \mathcal{H}$. The index θ^* in the parabolic coinduction means that $\mathcal{H}_{M_{Q^\vee}}$ embeds in \mathcal{H} by $\theta^*_{Q^\vee}$. Our terminology is different from the one in [Abe] where the parabolic coinduction is called induction. For a parabolic subgroup Q' of G with $Q \subset Q' \subset P(V)$, there is a natural inclusion of \mathcal{H}_R-modules

$$\text{Hom}_{\mathcal{H}_{M_{Q^\vee}}, \sigma^*}(\mathcal{H}, e_{\mathcal{H}_{Q^\vee}}(V)) \xrightarrow{i(Q, Q')} \text{Hom}_{\mathcal{H}_{M_{Q^\vee}}, \sigma^*}(\mathcal{H}, e_{\mathcal{H}_{Q}}(V))$$

because $\theta^*(\mathcal{H}_{M_{Q^\vee}}) \subset \theta^*(\mathcal{H}_{M_{Q^\vee}})$ as $W_{M_{Q^\vee}(1)} \subset W_{M_{Q^\vee}(1)}$, and $v T_{w, M_{Q^\vee}, \sigma} = v T_{w, M_{Q^\vee}, \sigma}$ for $w \in W_{M_{Q^\vee}(1)}$ and $v \in V$. (This is [Abe] Proposition 4.19 when R is an algebraically closed field of characteristic p. This follows from our formulation of the extension for any R.)

Definition 4.18. Let $CI_H(P, V, Q)$ denote the cokernel of the map

$$\bigoplus_{Q \subseteq Q' \subset P(V)} \text{Hom}_{\mathcal{H}_{M_{Q^\vee}}, \sigma^*}(\mathcal{H}, e_{\mathcal{H}_{Q^\vee}}(V)) \to \text{Hom}_{\mathcal{H}_{M_{Q^\vee}}, \sigma^*}(\mathcal{H}, e_{\mathcal{H}_{Q}}(V))$$

defined by the \mathcal{H}_R-embeddings $i(Q, Q')$.
When R is an algebraically closed field of characteristic p, we showed that the \mathcal{H}_R-module $CI_{\mathcal{H}}(P, V, Q)$ is simple when V is simple and supersingular (Definition 4.25), and that any simple \mathcal{H}_R-module is of this form for an \mathcal{H}_R-triple (P, V, Q) where V is simple and supersingular, P, Q and the isomorphism class of V are unique [Abe]. The aim of this section is to compare the \mathcal{H}_R-modules $I_{\mathcal{H}}(P, V, Q)$ with the \mathcal{H}_R-modules $CI_{\mathcal{H}}(P, V, Q)$ and to show that the classification is also valid with the \mathcal{H}_R-modules $I_{\mathcal{H}}(P, V, Q)$.

It is already known that a parabolically coinduced module is a parabolically induced module and vice versa [Abe, Proposition 4.15], [Vig15b, Theorem 1.8]. To make it more precise we need to introduce notation.

We lift the elements w of the finite Weyl group \mathcal{W} to $\tilde{w} \in N_G \cap K$ as in [AHHV17 IV.6], [OV17 Proposition 2.7]: they satisfy the braid relations $\hat{\ell}(w_1) + \hat{\ell}(w_2) = \ell(w_1 w_2)$ when $\ell(w) = \ell(w_1) + \ell(w_2) = \ell(w_1 w_2)$ and when $s \in S$, \tilde{s} is admissible, in particular lies in $1 W_G$.

Let w, w_M, w_M^M denote, respectively, the longest elements in $M = \tilde{M}$. w restricts to a group isomorphism $w_M : M = \tilde{M} \rightarrow M = \tilde{M}$, respecting the finite Weyl subgroups w_M^M of $M = \tilde{M}$. It has a natural direct decomposition indexed by the set $\Delta_M = \Phi^+ \setminus \Phi^+_M$. The conjugation $\tilde{w} \mapsto \tilde{w}_M$ sends the positive part \tilde{w}_M of \tilde{w} onto \tilde{w}_M, and exchanging w_M with \tilde{w}_M. w.

Let w_M be the standard Levi subgroup of G with $\Delta_M = \Phi^+ \setminus \Phi^+_M$ and $w.P$ the standard parabolic subgroup of G with Levi $w.M$. We have

$$w.M = w_M^M w_M^{-1} = \tilde{w}_M w_M^{-1}, \quad w_{w.M} = w_M w = (w^M)^{-1}.$$

The conjugation $w \mapsto w^M w(W^M)^{-1}$ in W gives a group isomorphism $w_M : W_M \rightarrow W_{w.M}$ sending $S_{w.M}$ onto $S_{w,M}$, respecting the finite Weyl subgroups $w_M^M w_M(W^M)^{-1} = W_{w,M} = w W_{w,M} w^{-1}$, and exchanging $W_{w,M}$ and $W_{(w,M)} = w W_{w,M} w^{-1}$. The conjugation by \tilde{w}_M restricts to a group isomorphism $W_M(1) \rightarrow W_{w,M}(1)$ sending $W_M(1)$ onto $W_{w,M}(1)$. The linear isomorphism

$$\tilde{w}(\tilde{M}_M) \mapsto \tilde{w}_M w_M(\tilde{M}_M)^{-1}, \quad w \in W_M(1),$$

is a ring isomorphism between the pro-p-Iwahori Hecke rings of M and $w.M$. It sends the positive part $\tilde{w}_M^+ \setminus \tilde{w}_M^+$ of \tilde{w}_M onto the negative part \tilde{w}_M^- of \tilde{w}_M [Vig15b Proposition 2.20]. We have $\tilde{w} = \tilde{w}_M \tilde{w}_M w = \tilde{w}_M \tilde{w}_M, \quad (\tilde{w}_M)^{-1} = \tilde{w}_M w_M t_M$ where $t_M = \tilde{w}_M^2 \tilde{w}_M^{-2} \in Z_k$.

Definition 4.19. The twist $\tilde{w}_M^+ \tilde{w} M \tilde{w}^M \tilde{w} M$ of \tilde{w} by \tilde{w}_M is the right $\tilde{w}_M \tilde{w} M$-module deduced from the right $\tilde{w}_M \tilde{w} M$-module $\tilde{w} M \tilde{w}$ by functoriality: as R-modules $\tilde{w}_M \tilde{w} M \tilde{w} M = \tilde{w}_M \tilde{w} M \tilde{w} M$, (4.19) sending $w \mapsto (\tilde{w}_M)^{-1}$.

We can define the twist $\tilde{w}_M^+ \tilde{w} M \tilde{w} M$ of \tilde{w} with the $T_{w.M}^{M}$ instead of $T_{w.M}$.

Lemma 4.20. For $v \in V, w \in W_M(1)$ we have $v T_{w.M}^{M, *}(w) = v T_{w.M}^{M, *}(w)$ in $\tilde{w}_M^+ \tilde{w} M \tilde{w} M$.

Proof. By the ring isomorphism $\tilde{w}_M \tilde{w}_M \tilde{w}_M \tilde{w}_M = c_{\tilde{w}}^M$ when $\tilde{w}_M(1)$ lifts $\tilde{w}_M(1)$, so the equality of the lemma is true for $w = \tilde{w}_M$. Apply the braid relations to get the equality for all $w \in W_M(1)$. \hfill \Box

We return to the \mathcal{H}_R-module Hom$_{\mathcal{H}_{M \tilde{w} M}}(\mathcal{H}, V)$ parabolically coinduced from V. It has a natural direct decomposition indexed by the set $\mathcal{W} w M$ of elements d in
the finite Weyl group \(\mathbb{W} \) of minimal length in the coset \(d\mathbb{W}_M \). Indeed it is known that the linear map

\[
f \mapsto (f(T_d))_{d \in \mathbb{W}_M} : \text{Hom}_{\mathcal{H}_M}(-, \mathcal{V}) \to \bigoplus_{d \in \mathbb{W}_M} \mathcal{V}
\]
is an isomorphism. For \(v \in \mathcal{V} \) and \(d \in \mathbb{W}_M \), there is a unique element

\[
f_{d,v} \in \text{Hom}_{\mathcal{H}_M}(-, \mathcal{V})
\]
satisfying \(f(T_d) = v \) and \(f(T_{d'}) = 0 \) for \(d' \in \mathbb{W}_M \setminus \{d\} \).

It is known that the map \(v \mapsto f_{\tilde{w}^M,v} : \tilde{w}^M \mathcal{V} \to \text{Hom}_{\mathcal{H}_M}(-, \mathcal{V}) \) is \(\mathcal{H}_{(w,M)} \)-equivariant:

\[
f_{\tilde{w}^M,v} T_{\tilde{w}^M} = f_{\tilde{w}^M,v} T_w \quad \text{for all} \quad v \in \mathcal{V}, w \in W_{w,M} \setminus \{1\}. \]

By adjunction, this \(\mathcal{H}_{(w,M)} \)-equivariant map gives an \(\mathcal{H}_R \)-homomorphism from an induced module to a coinduced module:

\[
(4.21) \quad v \otimes 1_H \mapsto f_{\tilde{w}^M,v} : \tilde{w}^M \mathcal{V} \otimes_{\mathcal{H}_{(w,M)}} \mathcal{V} \to \text{Hom}_{\mathcal{H}_M}(-, \mathcal{V}).
\]

This is an isomorphism [Abc Proposition 4.15], [Vig15b Theorem 1.8].

The naive guess that a variant \(\mu_Q \) of \(\mu_P \) induces an \(\mathcal{H}_R \)-isomorphism between the \(\mathcal{H}_R \)-modules \(I_H(w.P, \tilde{w}^M \mathcal{V}, w.Q) \) and \(CI_{\mathcal{H}}(P, \mathcal{V}, Q) \) turns out to be true. The proof is the aim of the rest of this section.

The \(\mathcal{H}_R \)-module \(I_H(w.P, \tilde{w}^M \mathcal{V}, w.Q) \) is well defined because the parabolic subgroups of \(G \) containing \(w.P \) and contained in \(P(\tilde{w}^M \mathcal{V}) \) are \(w.Q \) for \(P \subset Q \subset P(\mathcal{V}) \), as follows from Lemma 4.21.

Lemma 4.21. \(\Delta_{\tilde{w}^M,\mathcal{V}} = -w(\Delta_{\mathcal{V}}) \).

Proof. Recall that \(\Delta_{\mathcal{V}} \) is the set of simple roots \(\alpha \in \Delta \setminus \Delta_M \) orthogonal to \(\Delta_M \) and \(T_M(z) \) acts trivially on \(\mathcal{V} \) for all \(z \in Z \cap M'_\alpha \), and the corresponding standard parabolic subgroup \(P_{\mathcal{V}} = M_{\mathcal{V}} N_{\mathcal{V}} \). The \(Z \cap M'_\alpha \) for \(\alpha \in \Delta_{\mathcal{V}} \) generate the group \(Z \cap M'_\alpha \). A root \(\alpha \in \Delta \setminus \Delta_M \) orthogonal to \(\Delta_M \) is fixed by \(w.M \) so \(\tilde{w}^M(\alpha) = w(\alpha) \) and

\[
\tilde{w}^M w.M \tilde{w}^M(\alpha) = \tilde{w}^M w.M \tilde{w}^M(\alpha) = \tilde{w}^M w.M (\tilde{w}^M)^{-1} = \tilde{w}^M w.M (\tilde{w}^M)^{-1}.
\]
The proof of Lemma 4.21 is straightforward as \(\Delta = -w(\Delta) \), \(\Delta_{w.M} = -w(\Delta_M) \).

Before going further, we check the commutativity of the extension with the twist. As \(Q = M_Q U \) and \(M_Q \) determine each other we denote \(w.M_Q = w.Q, w.M_Q = w.Q \) when \(Q \neq P, G \).

Lemma 4.22. \(e_{H_{w,Q}}(\tilde{w}^M \mathcal{V}) = \tilde{w}^Q e_{H_{w,Q}}(\mathcal{V}) \).

Proof. As \(\mathcal{H}_R \)-modules \(\mathcal{V} = e_{H_{w,Q}}(\tilde{w}^M \mathcal{V}) = \tilde{w}^Q e_{H_{w,Q}}(\mathcal{V}) \). A direct computation shows that the Hecke element \(T_{w,Q} \) acts in the \(\mathcal{H}_R \)-module \(e_{H_{w,Q}}(\tilde{w}^M \mathcal{V}) \), by the identity if \(w \in \tilde{w}^Q \), \(W_{1/2} \), \((\tilde{w}^M) \), and by \(T_{w,Q}^{-1} \) if \(w \in \tilde{w}^Q \), \(W_{1/2} \), \((\tilde{w}^M) \), where \(M \) denotes the standard Levi subgroup with \(\Delta_M = \Delta_Q \setminus \Delta_P \). Whereas in the \(\mathcal{H}_R \)-module \(\tilde{w}^Q e_{H_{w,Q}}(\mathcal{V}) \), the Hecke element \(T_{w,Q} \) acts by the identity if \(w \in W_{1/2} \) and by \(T_{w,Q}^{-1} \) if \(w \in W_{1/2} \). So the lemma means that

\[
1 W_{w,M} = \tilde{w}^Q 1 W_{w,M} (\tilde{w}^M)^{-1}, \quad (\tilde{w}^Q)^{-1} w \tilde{w}^Q = (\tilde{w}^M)^{-1} w \tilde{w}^M \quad \text{if} \quad w \in W_{w,M} \setminus \{1\}.
\]

These properties are easily proved using that \(1 W_{G} \) is normal in \(W(1) \) and that the sets of roots \(\Delta_P \) and \(\Delta_Q \setminus \Delta_P \) are orthogonal: \(w.Q = w.M w.M \), the elements \(w.M \) and \(w.M \) normalize \(W_M \) and \(W_{M_2} \), the elements of \(\tilde{w}^M_2 \) commutes with the elements of \(\mathbb{W}_M \).
We return to our guess. The variant μ_Q of μ_P is obtained by combining the commutativity of the extension with the twist and the isomorphism \((1.21)\) applied to \((Q, e_{\mathcal{H}_Q}(V))\) instead of \((P, V)\). The \mathcal{H}_R-isomorphism μ_Q is
\[(4.22) \quad v \otimes 1_\mathcal{H} \mapsto f_{\tilde{w}^M,v} : \text{Ind}^\mathcal{H}_{\tilde{\mathcal{H}}_{w,Q}}(e_{\tilde{\mathcal{H}}_{w,Q}}(\tilde{w}^M,V)) \xrightarrow{\mu_Q} \text{Hom}_{\tilde{\mathcal{H}}_{w,Q}}(\mathcal{H}, e_{\mathcal{H}_Q}(V)).\]

Our guess is that μ_Q induces an \mathcal{H}_R-isomorphism from the cokernel of the \mathcal{H}_R-map
\[\bigoplus_{Q \subseteq Q' \subset P(V)} \text{Ind}^\mathcal{H}_{\tilde{\mathcal{H}}_{w,Q'}}(e_{\tilde{\mathcal{H}}_{w,Q'}}(\tilde{w}^M,V)) \to \text{Ind}^\mathcal{H}_{\tilde{\mathcal{H}}_{w,Q}}(e_{\tilde{\mathcal{H}}_{w,Q}}(\tilde{w}^M,V))\]
defined by the \mathcal{H}_R-embeddings $i(w.Q, w.Q')$, isomorphic to $I_{\mathcal{H}}(w.P, \tilde{w}^M.V, w.Q)$ via $\kappa_{w,Q}$ (Theorem 4.13), onto the cokernel $CI_{\mathcal{H}}(P, V, Q)$ the \mathcal{H}_R-map
\[\bigoplus_{Q \subseteq Q' \subset P(V)} \text{Hom}_{\tilde{\mathcal{H}}_{w,Q'}}(\mathcal{H}, e_{\mathcal{H}_Q'}(V)) \to \text{Hom}_{\tilde{\mathcal{H}}_{w,Q}}(\mathcal{H}, e_{\mathcal{H}_Q}(V))\]
defined by the \mathcal{H}_R-embeddings $i(Q, Q')$. This is true if $i(Q, Q')$ corresponds to $i(w.Q, w.Q')$ via the isomorphisms μ_Q' and μ_Q. This is the content of the next proposition.

Proposition 4.23. For all $Q \subseteq Q' \subset P(V)$ we have
\[i(Q, Q') \circ \mu_Q' = \mu_Q \circ i(w.Q, w.Q').\]

We postpone to section 4.6 the rather long proof of the proposition.

Corollary 4.24. The \mathcal{H}_R-isomorphism $\mu_Q \circ \kappa_{w,Q}^{-1}$ induces an \mathcal{H}_R-isomorphism
\[I_{\mathcal{H}}(w.P, \tilde{w}^M.V, w.Q) \to CI_{\mathcal{H}}(P, V, Q).\]

4.5. **Supersingular \mathcal{H}_R-modules, classification of simple \mathcal{H}_R-modules.** We recall first the notion of supersingularity based on the action of the center of \mathcal{H}.

The center of \mathcal{H} [Vig14, Theorem 1.3] contains a subalgebra Z_{T^+} isomorphic to $\mathbb{Z}[T^+/T_1]$ where T^+ is the monoid of dominant elements of T and T_1 is the pro-p-Sylow subgroup of the maximal compact subgroup of T.

Let $t \in T$ of image $\mu_t \in W(1)$ and let \((E_o(w))_{w \in W(1)}\) denote the alcove walk basis of \mathcal{H} associated to a closed Weyl chamber o of \mathbb{W}. The element
\[E_o(C(\mu_t)) = \sum_{\mu'} E_o(\mu')\]
is the sum over the elements in μ' in the conjugacy class $C(\mu_t)$ of μ_t in $W(1)$. It is a central element of \mathcal{H} and does not depend on the choice of o. We write also $z(t) = E_o(C(\mu_t))$.

Definition 4.25. A non-zero right \mathcal{H}_R-module V is called supersingular when, for any $v \in V$ and any non-invertible $t \in T^+$, there exists a positive integer $n \in \mathbb{N}$ such that $v(z(t))^n = 0$. If one can choose n independent on (v, t), then V is called uniformly supersingular.

Remark 4.26. One can choose n independent on (v, t) when V is finitely generated as a right \mathcal{H}_R-module. If R is a field and V is simple we can take $n = 1$.

When G is compact modulo the center, $T^+ = T$, and any non-zero \mathcal{H}_R-module is supersingular.
The induction functor \(\text{Ind}^H_{H,M} : \text{Mod}(H,M,R) \to \text{Mod}(H,R) \) has a left adjoint \(\mathcal{L}^H_{H,M} \) and a right adjoint \(\mathcal{R}^H_{H,M} \) [Vig15b] for \(\mathcal{V} \in \text{Mod}(H,R) \),

\[
(4.23) \quad \mathcal{L}^H_{H,M} (\mathcal{V}) = \check{w}^{w,M} \circ (\mathcal{V} \otimes H_{(w,M)}, \theta^* \check{H}_{w,M}), \quad \mathcal{R}^H_{H,M} (\mathcal{V}) = \text{Hom}_{H,M+} (H,M, \mathcal{V}).
\]

In the left adjoint, \(\mathcal{V} \) is seen as a right \(H_{(w,M)}^- \)-module via the ring homomorphism \(\theta^*_{w,M} : H_{(w,M)}^- \to H \); in the right adjoint, \(\mathcal{V} \) is seen as a right \(H_{M+} \)-module via the ring homomorphism \(\theta_M : H_{M+} \to H \) (section 2.3).

Proposition 4.27. Assume that \(\mathcal{V} \) is a supersingular right \(H_R \)-module and that \(p \) is nilpotent in \(\mathcal{V} \). Then \(\mathcal{L}^H_{H,M} (\mathcal{V}) = 0 \), and if \(\mathcal{V} \) is uniformly supersingular \(\mathcal{R}^H_{H,M} (\mathcal{V}) = 0 \).

Proof. This is a consequence of three known properties:

1. \(H_M \) is the localization of \(H_{M+} \) (resp., \(H_{M-} \)) at \(\mathcal{T}^M_\mu \) for any element \(\mu \in \Lambda^+_T(1) \), central in \(W_M(1) \) and strictly \(N \)-positive (resp., \(N \)-negative), and \(\mathcal{T}^M_\mu = \mathcal{T}^{M,*}_\mu \). See [Vig15b] Theorem 1.4].
2. When \(o \) is anti-dominant, \(E_o(\mu) = T^*_\mu \) if \(\mu \in \Lambda^+(1) \) and \(E_o(\mu) = T^*_\mu \) if \(\mu \in \Lambda^-(1) \).
3. Let an integer \(n > 0 \) and \(\mu \in \Lambda(1) \) such that the \(\mathcal{W} \)-orbit of \(v(\mu) \in X_c(T) \otimes \mathbf{Q} \) (definition in section 2.1] and of \(\mu \) have the same number of elements. Then

\[
(E_o(C(\mu)))^n E_o(\mu) - E_o(\mu)^{n+1} \in pH.
\]

See [Vig15a] Lemma 6.5], where the hypotheses are given in the proof (but not written in the lemma).

Let \(\mu \in \Lambda^+_T(1) \) satisfying (1) for \(M^+ \) and (3), similarly let \(w, \mu \in \Lambda^-_T(1) \) satisfying (1) for \((w,M)^- \) and (3). For \((R, \mathcal{V}) \) as in the proposition, let \(v \in \mathcal{V} \) and \(n > 0 \) such that \(v E_o(C(\mu))^n = n E_o(C(w,\mu))^n = 0 \). Multiplying by \(E_o(\mu) \) or \(E_o(w,\mu) \), and applying (3) and (2) for \(o \) anti-dominant we get:

\[
v E_o(\mu)^{n+1} = v T^*_\mu^{n+1} \in p \mathcal{V}, \quad v E_o(w,\mu)^{n+1} = v T^*_w^{n+1} \in p \mathcal{V}.
\]

The proposition follows from: \(v T^*_\mu^{n+1}, v T^*_w^{n+1} \) in \(p \mathcal{V} \) (as explained in [Abc16 Proposition 5.17] when \(p = 0 \) in \(R \)). From \(v(T^*_w \mu)^{n+1} \) in \(p \mathcal{V} \), we get \(v \otimes (T^*_w \mu)^{n+1} \) in \(p \mathcal{V} \otimes H_{(w,M)}^-, \theta^* H_{w,M} \). As \(T^*_w \mu \) is invertible in \(H_{w,M} \) we get \(v \otimes 1_{H_{w,M}} \) in \(p \mathcal{V} \otimes H_{(w,M)}^-, \theta^* H_{w,M} \). As \(v \) was arbitrary, \(\mathcal{V} \otimes H_{(w,M)}^-, \theta^* H_{w,M} \subset p \mathcal{V} \otimes H_{(w,M)}^-, \theta^* H_{w,M} \). If \(p \) is nilpotent in \(\mathcal{V} \), then \(\mathcal{V} \otimes H_{(w,M)}^-, \theta^* H_{w,M} = 0 \). Suppose now that there exists \(n > 0 \) such that \(\mathcal{V}(z(t))^n = 0 \) for any non-invertible \(t \in T^+ \); then \(VT^*_\mu^{n+1} \subset p \mathcal{V} \) where \(\mu = \mu_t \) and hence \(\varphi(h) = \varphi(hT^*_\mu^{n-1}) T^*_\mu^{n+1} \) in \(p \mathcal{V} \) for an arbitrary \(\varphi \in \text{Hom}_{H_{M+}}(H_{M}, \mathcal{V}) \) and an arbitrary \(h \in H_{M} \). We deduce \(\text{Hom}_{H_{M+}}(H_{M}, \mathcal{V}) \subset \text{Hom}_{H_{M+}}(H_{M}, p \mathcal{V}) \). If \(p \) is nilpotent in \(\mathcal{V} \), then \(\text{Hom}_{H_{M+}}(H_{M}, \mathcal{V}) = 0 \). \(\square \)

Recalling that \(\check{w}^{M} \mathcal{V} \) is obtained by functoriality from \(\mathcal{V} \) and the ring isomorphism \(\iota(\check{w}^{M}) \) defined in (4.20], the equivalence between \(\mathcal{V} \) supersingular and \(\check{w}^{M} \mathcal{V} \) supersingular follows from Lemma 4.28

Lemma 4.28.

1. Let \(t \in T \). Then \(t \) is dominant for \(U_M \) if and only if \(\check{w}^{M} t (\check{w}^{M})^{-1} \in T \) is dominant for \(U_{w,M} \).
Lemma 4.31. The R-algebra isomorphism $\mathcal{H}_{M,R} \xrightarrow{\iota(\tilde{w}^M)} \mathcal{H}_{w,M,R}$, $T_w^M \mapsto T_{\tilde{w}^M}^M$ for $w \in W_M(1)$ sends $\varepsilon(t)$ to $\varepsilon(w^M(t))$ for $t \in T$ dominant for U_M.

Proof. The conjugation by \tilde{w}^M stabilizes T, sends U_M to $U_{w,M}$, and sends the W_M-orbit of $t \in T$ to the $W_{w,M}$-orbit of $\tilde{w}^M(t)$, as $w^M W_M(w^M) = w^M$. It is known that $\iota(\tilde{w}^M)$ respects the anti-dominant alcove walk bases [Vig15b, Proposition 2.20]: it sends $E^M(w)$ to $E^w(w^M(w^M)^{-1})$ for $w \in W_M(1)$.

We deduce the following.

Corollary 4.29. Let \mathcal{V} be a right $\mathcal{H}_{M,R}$-module. Then \mathcal{V} is supersingular if and only if the right $\mathcal{H}_{w,M,R}$-module $w^M \mathcal{V}$ is supersingular.

Assume R is an algebraically close field of characteristic p. The supersingular simple $\mathcal{H}_{M,R}$-modules are classified in [Vig15a]. By Corollaries 4.24 and 4.29, the classification of the simple \mathcal{H}_R-modules in [Abe] remains valid with the \mathcal{H}_R-modules $I_H(P, V, Q)$ instead of $CI_H(P, V, Q)$:

Corollary 4.30 (Classification of simple \mathcal{H}_R-modules). Assume R is an algebraically closed field of characteristic p. Let (P, V, Q) be an \mathcal{H}_R-triple where V is simple and supersingular. Then, the \mathcal{H}_R-module $I_H(P, V, Q)$ is simple. A simple \mathcal{H}_R-module is isomorphic to $I_H(P, V, Q)$ for an \mathcal{H}_R-triple (P, V, Q) where V is simple and supersingular, P, Q and the isomorphism class of V are unique.

4.6. A commutative diagram. We prove in this section Proposition 4.23. For $Q \subset Q' \subset P(V)$ we show by an explicit computation that

$$
\mu_Q^{-1} \circ i(Q, Q') \circ \mu_{Q'} \text{Ind}_{\mathcal{H}_{w,Q'}}^\mathcal{H}((\tilde{w}^M, \mathcal{V})) \rightarrow \text{Ind}_{\mathcal{H}_{w,Q}}^\mathcal{H}(e_{\mathcal{H}_{w,Q}}(\tilde{w}^M, \mathcal{V}))
$$

is equal to $\iota(w, Q, w, Q')$. The R-module $e_{\mathcal{H}_{w,Q'}}(\tilde{w}^M, \mathcal{V}) \otimes 1_H$ generates the \mathcal{H}_R-module $e_{\mathcal{H}_{w,Q'}}(\tilde{w}^M, \mathcal{V}) \otimes \otimes_{\mathcal{H}_R}(\tilde{w}^M, \mathcal{V})$ and by (4.17)

$$(4.24) \quad \iota(w, Q, w, Q')(v \otimes 1_H) = v \otimes \sum_{d \in W_{w,Q} \mathcal{V}} T_d
$$

for $v \in V$ seen as an element of $e_{\mathcal{H}_{w,Q'}}(\tilde{w}^M, \mathcal{V})$ in the LHS and an element of $e_{\mathcal{H}_{w,Q}}(\tilde{w}^M, \mathcal{V})$ in the RHS.

Lemma 4.31. $(\mu_Q^{-1} \circ i(Q, Q') \circ \mu_{Q'})(v \otimes 1_H) = v \otimes \sum_{d \in W_{w,Q} \mathcal{V}} q_d T_{w}^{w}(\tilde{w}^M, d^{-1})$.

Proof. $\mu_{Q'}(v \otimes 1_H)$ is the unique homomorphism $f_{\tilde{w}^M} : v \in \hom_{\tilde{w}^M, \mathcal{V}}(\mathcal{H}, e_{\mathcal{H}_{Q'}}(\mathcal{V}))$ sending T_{w}^{w} to v and vanishing on T_d for $d' \in W_{w,M} \mathcal{V} \setminus \{wQ'\}$ by (4.22). By (4.19), $i(Q, Q')$ is the natural embedding of $\hom_{\tilde{w}^M, \mathcal{V}}(\mathcal{H}, e_{\mathcal{H}_{Q'}}(\mathcal{V}))$ in $\hom_{\tilde{w}^M, \mathcal{V}}(\mathcal{H}, e_{\mathcal{H}_{Q'}}(\mathcal{V}))$ therefore $i(Q, Q')(f_{\tilde{w}^M, \mathcal{V}})$ is the unique homomorphism $\hom_{\tilde{w}^M, \mathcal{V}}(\mathcal{H}, e_{\mathcal{H}_{Q'}}(\mathcal{V}))$ sending T_{w}^{w} to v and vanishing on T_d for $d' \in W_{w,M} \mathcal{V} \setminus \{wQ'\}$. As $W_{w,M} = W_{w,Q'} W_{M,Q'}$, this homomorphism vanishes on T_{w}^{w} for w not
in $\mathbb{W}^{M_{Q'}}\mathbb{W}^{W_{M_{Q'}}}_{M_{Q'}}$. By [Abe6] Lemma 2.22, the inverse of μ_Q is the H_R-isomorphism

$$\text{Hom}_{H_{M_{Q}}}^{H}(\mathcal{H}, e_{H_{M_{Q}}} (V)) \overset{H_{Q}}{\rightarrow} \text{Ind}_{H_{M_{Q}}}^{H}(e_{H_{M_{Q}}} (\tilde{w}^M_{M} V))$$

$$f \mapsto \sum_{d \in \mathbb{W}^{W_{M}}} f(T_d) \otimes T_{\tilde{w}^M_{M} d^{-1}},$$

where $\mathbb{W}^{W_{M}}$ is the set of $d \in \mathbb{W}$ with minimal length in the coset $d\mathbb{W}_{M}$. We deduce the explicit formula

$$(\mu_Q^{-1} \circ i(Q,Q') \circ \mu_Q')(v \otimes 1_H) = \sum_{w \in \mathbb{W}^{W_{M}}_{Q}} i(Q,Q')(f_{w_{M_{Q}},v}^Q)(T_{\tilde{w}}) \otimes T_{\tilde{w}^M_{M} Q}^{-1}.$$

Some terms are zero: the terms for $w \in \mathbb{W}^{W_{M}}_{Q}$ not in $\mathbb{W}^{M_{Q'}}\mathbb{W}^{W_{M}}_{M_{Q'}}$, we analyze the other terms for w in $\mathbb{W}^{W_{M}}_{Q'} \cap \mathbb{W}^{M_{Q'}}\mathbb{W}^{W_{M}}_{M_{Q'}}$: this set is $\mathbb{W}^{M_{Q'}}\mathbb{W}^{W_{M}}_{M_{Q'}}$. Let $w = w_{M_{Q}} d, d \in \mathbb{W}^{W_{M}}_{Q'}$, and $\tilde{w} = \tilde{w}^M_{M} \tilde{d}$ with $\tilde{d} \in 1 W_{M}$ lifting d. By the braid relations $T_{\tilde{w}} = T_{\tilde{w}^M_{M}} T_{\tilde{d}}$. We have $T_{\tilde{d}} = \theta^*(T_{\tilde{d}})$ by the braid relations because $d \in \mathbb{W}^{M_{Q'}}$, $S_{M_{Q'}} \subset S_{\text{aff}}^{M_{Q'}}$ and $\theta^*(c_{s}) = c_s$ for $s \in S_{M_{Q'}}$. As $\mathbb{W}^{M_{Q'}}_{Q'} \subset W_{M_{Q'}} \cap W_{M_{Q'}}$, we deduce:

$$i(Q,Q')(f_{w_{M_{Q}},v}^Q)(T_{\tilde{w}}) = i(Q,Q')(f_{w_{M_{Q}},v}^Q)(T_{\tilde{w}^M_{M} Q}^{-1} T_{\tilde{d}}) = i(Q,Q')(f_{w_{M_{Q}},v}^Q)(T_{\tilde{w}^M_{M} Q}^{-1}) T_{\tilde{d}}^M_{Q'}$$

$$= v T_{\tilde{d}} = q_d v.$$

Corollary 3.3 gives the last equality.}

The formula for $(\mu_Q^{-1} \circ i(Q,Q') \circ \mu_Q')(v \otimes 1_H)$ given in Lemma 4.31 is different from the formula (4.24) for $i(w,Q,w')(v \otimes 1_H)$. It needs some work to prove that they are equal.

A first reassuring remark is that $\mathbb{W}^{M_{Q'}}_{M_{Q}} \mathbb{W}^{M_{Q'}}_{M_{Q'}} = \{ w d^{-1}w \mid d \in \mathbb{W}^{W_{M}}_{Q} \}$, so the two summation sets have the same number of elements. But better,

$$\mathbb{W}^{M_{Q'}}_{M_{Q}} \mathbb{W}^{M_{Q'}}_{M_{Q'}} = \{ w^Q(w Q' d)^{-1} \mid d \in \mathbb{W}^{W_{M}}_{Q} \}$$

because $w Q' \mathbb{W}^{W_{M}}_{Q'} w Q = \mathbb{W}^{W_{M}}_{Q'}$. To prove the latter equality, we apply the criterion: $w \in \mathbb{W}^{W_{M}_{Q'}}$ lies in $\mathbb{W}^{W_{M}}_{Q'}$ if and only if $w(\alpha) > 0$ for all $\alpha \in \Delta_{Q}$ noticing that $d \in \mathbb{W}^{W_{M}}_{Q'}$ implies $w Q(\alpha) \in -\Delta_{Q}$, $d w Q(\alpha) \in -\Phi_{M_{Q'}}$, $w Q d w Q(\alpha) > 0$. Let $x_d = w Q(w Q' d)^{-1}$. We have $\tilde{w}^M_{M}(w Q' \tilde{d})^{-1} = \tilde{x}_d$ because the lifts \tilde{w} of the elements $w \in \mathbb{W}$ satisfy the braid relations and $\ell(x_d) = \ell(w Q d^{-1} w Q') = \ell(w Q') - \ell(w Q d^{-1}) = \ell(w Q') - \ell(w Q) - \ell(d) = \ell(w Q') + \ell(w Q) - \ell(d)$. We have $q_d = q_{w, Q, x_d w, Q}$ because $w d^{-1}w = w_{Q, x_d, w, Q'}$, and $q_d = q_{d^{-1}} = q_{w d^{-1}, w}$. So

$$\sum_{d \in \mathbb{W}^{W_{M}}_{Q'}} q_d T_{\tilde{w}^M_{M} Q}^{-1} = \sum_{x_d \in \mathbb{W}^{M_{Q'}}_{Q} \mathbb{W}_{M_{Q'}}^{W_{M}}_{Q'}} q_{w, Q, x_d w, Q} T_{\tilde{x}_d}.$$
In the RHS, only $\tilde{\mathbb{w}}^{M}.V, w.Q, w.Q'$ appear. The same holds true in the formula (4.24). The map $(P, V, Q, Q') \mapsto (w.P, \tilde{\mathbb{w}}^{M}.V, w.Q, w.Q')$ is a bijection of the set of triples (P, V, Q, Q') where $P = MN, Q, Q'$ are standard parabolic subgroups of G, \mathbb{V} a right \mathcal{H}_R-module, $Q \subset Q' \subset P(\mathbb{V})$ by Lemma 4.21. So we can replace $(w.P, \tilde{\mathbb{w}}^{M}.V, w.Q, w.Q')$ by (P, V, Q, Q'). Our task is reduced to prove in $e_{\mathcal{H}_Q}(\mathbb{V}) \otimes_{\mathcal{H}^+_{M Q}} \mathcal{H}_R$:

\[(4.26)\]
\[v \otimes \sum_{d \in \mathcal{W}_{M Q}} T_d = v \otimes \sum_{d \in \mathcal{W}_{M Q}} q_{w_Q d w_{Q'}} T^*_d.\]

A second simplification is possible: we can replace $Q \subset Q'$ by the standard parabolic subgroups $Q_2 \subset Q'_2$ of G with $\Delta_{Q_2} = \Delta_Q \setminus \Delta_P$ and $\Delta_{Q'_2} = \Delta_{Q'} \setminus \Delta_P$, because Δ_P and $\Delta_{P(\mathbb{V})} \setminus \Delta_P$ are orthogonal. Indeed, $\mathcal{W}_{M Q} = \mathcal{W}_M \times \mathcal{W}_{M Q_2}$ and $\mathcal{W}_{M Q} = \mathcal{W}_M \times \mathcal{W}_{M Q'_2}$ are direct products, the longest elements $w_{Q'} = w_M w_{Q_2}, w_Q = w_M w_{Q_2}$ are direct products and

$\mathcal{W}_{M Q} \mathcal{W}_{M Q_2} = \mathcal{W}_{M Q_2} \mathcal{W}_{M Q'_2}, \quad w_Q d w_{Q'} = w_{Q_2} d w_{Q'_2}.$

Once this is done, we use the properties of $e_{\mathcal{H}_Q}(\mathbb{V})$: $vh \otimes 1_\mathcal{H} = v \otimes \theta_Q(h)$ for $h \in \mathcal{H}^+_{M Q_2}$, and T^*_d acts trivially on $e_{\mathcal{H}_Q}(\mathbb{V})$ for $w \in 1 \mathcal{W}_{M Q_2} \cup (\Lambda(1) \cap 1 \mathcal{W}_{M Q'_2})$.

Set $1 \mathcal{W}_{M Q_2} = \{w \in 1 \mathcal{W}_{M Q_2} : w \text{ is a lift of some element in } \mathcal{W}_{M Q_2}\}$ and $1 \mathcal{W}_{M Q'_2}$ similarly. Then $Z_k \cap 1 \mathcal{W}_{M Q'_2} \subset (\Lambda(1) \cap 1 \mathcal{W}_{M Q'_2}) \cap 1 \mathcal{W}_{M Q_2}$ and $1 \mathcal{W}_{M Q'_2} \subset 1 \mathcal{W}_{M Q'_2} \cap 1 \mathcal{W}_{M Q_2}$. This implies that (4.26) where $Q \subset Q'$ has been replaced by $Q_2 \subset Q'_2$ follows from a congruence

\[(4.27)\]
\[\sum_{d \in \mathcal{W}_{M Q_2} \mathcal{W}_{M Q'_2}} T_d \equiv \sum_{d \in \mathcal{W}_{M Q_2} \mathcal{W}_{M Q'_2}} q_{w_Q d w_{Q'}} T^*_d\]

in the finite subring $H(1 \mathcal{W}_{M Q_2})$ of \mathcal{H} generated by $\{T_{w} : w \in 1 \mathcal{W}_{M Q_2}\}$ modulo the right ideal J_2 with generators $\{\theta_Q(T^*_d) - 1 \mid w \in (Z_k \cap 1 \mathcal{W}_{M Q'_2}) \cup 1 \mathcal{W}_{M Q'_2}\}$.

Another simplification concerns T^*_d modulo J_2 for $d \in \mathcal{W}_{M Q'_2}$. We recall that for any reduced decomposition $d = s_1 \ldots s_n$ with $s_i \in S \cap \mathcal{W}_{M Q'_2}$ we have $T^*_d = (T_{\hat{s}_1} - c_{\hat{s}_1}) \ldots (T_{\hat{s}_n} - c_{\hat{s}_n})$ where the \tilde{s}_i are admissible. For \tilde{s} admissible, by (3.2)

$\tilde{c}_\tilde{s} \equiv q_\tilde{s} - 1.$

Therefore

$T^*_d \equiv (T_{\tilde{s}_1} - q_{\tilde{s}_1} + 1) \ldots (T_{\tilde{s}_n} - q_{\tilde{s}_n} + 1)$.

Let $J' \subset J_2$ be the ideal of $H(1 \mathcal{W}_{M Q'_2})$ generated by $\{T_t - 1 \mid t \in Z_k \cap 1 \mathcal{W}_{M Q'_2}\}$. Then the ring $H(1 \mathcal{W}_{M Q'_2})/J'$ and its right ideal J_2/J' are the specialization of the generic finite ring $H(\mathcal{W}_{M Q'_2})^g$ over $\mathbb{Z}[[q_s]_{s \in S_{M Q'_2}}]$ where the q_s for $s \in S_{M Q'_2} = S \cap \mathcal{W}_{M Q'_2}$ are indeterminates, and of its right ideal J_2^g with the same generators. The similar congruence modulo J_2^g in $H(\mathcal{W}_{M Q'_2})^g$ (the generic congruence) implies the congruence (4.27) by specialization.

We will prove the generic congruence in a more general setting where H is the generic Hecke ring of a finite Coxeter system (\mathcal{W}, S) and parameters $(q_s)_{s \in S}$ such that $q_s = q_{s'}$ when s, s' are conjugate in \mathcal{W}. The Hecke ring H is a $\mathbb{Z}[[q_s]_{s \in S}]$-free
Lemma 4.32. A basis of \((T_w)_{w \in \mathcal{W}}\) for all \(s \in S\). The other basis \((T_w^*)_{w \in \mathcal{W}}\) satisfies the braid relations and the quadratic relations \((T_w^*)^2 = q_s + (q_s - 1)T_w^*\) for \(s \in S\), and is related to the first basis by \(T_w^* = T_s - (q_s - 1)\) for \(s \in S\), and more generally \(T_wT_{w^{-1}} = T_{w^{-1}}T_w = q_w\) for \(w \in \mathcal{W}\) [Vig16, Proposition 4.13]. Let \(J \subset S\) and \(J\) is the right ideal of \(H\) with generators \(T_w^* - 1\) for all \(w\) in the group \(\mathcal{W}_J\) generated by \(J\).

** Lemma 4.33.** In the generic Hecke ring \(H\), the congruence modulo \(J\)

\[
\sum_{d \in \mathcal{W}_J \mathcal{W}} T_d \equiv \sum_{d \in \mathcal{W}_J \mathcal{W}} q_{w,J,dw}T_d^* \quad \text{for all } w \in \mathcal{W}.
\]

holds true.

Proof.

Step 1. We show

\[
\mathcal{W}_J \mathcal{W} = w_J \mathcal{W} \mathcal{W} w, \quad q_{w,J,dw}T_d^* = T_{w,J}T_{w,J,dw}T_w^*.
\]

The equality between the groups follows from the characterization of \(\mathcal{W}_J \mathcal{W}\) in \(\mathcal{W}\): an element \(d \in \mathcal{W}\) has minimal length in \(\mathcal{W}_J d\) if and only if \(\ell(ud) = \ell(u) + \ell(d)\) for all \(u \in \mathcal{W}_J\). An easy computation shows that \(\ell(udw) = \ell(u) + \ell(wdw)\) for all \(u \in \mathcal{W}_J, d \in \mathcal{W}_J \mathcal{W}\) (both sides are equal to \(\ell(u) + \ell(w) - \ell(w_J) - \ell(d)\)). The second equality follows from \(q_{w,J,dw} = q_{dw}w\) because \((w_J)^2 = 1\) and \(\ell(w_J) + \ell(w_J dw) = \ell(dw)\) (both sides are \(\ell(w) = \ell(d)\)) and from \(q_{dw}T_d^* = T_{dw}T_{w^{-1}}T_d = T_{dw}T_w^*\). We also have \(T_{dw} = T_{w,J}T_{w,J,dw}\).

Step 2. The multiplication by \(q_{w,J}\) on the quotient \(H/J\) is injective (Lemma 4.32) and \(q_{w,J} \equiv T_{w,J}\). By Step 1 \(q_{w,J,dw}T_d^* = T_{w,J,dw}T_w^*\) and

\[
\sum_{d \in \mathcal{W}_J \mathcal{W}} q_{w,J,dw}T_d^* \equiv \sum_{d \in \mathcal{W}_J \mathcal{W}} T_d T_w^* \quad \text{for all } s \in S.
\]

The congruence

\[
(4.28) \quad \sum_{d \in \mathcal{W}_J \mathcal{W}} T_d \equiv \sum_{d \in \mathcal{W}_J \mathcal{W}} T_d T_s^*
\]

for all \(s \in S\) implies the lemma because \(T_w^* = T_{s_1}^* \ldots T_{s_n}^*\) for any reduced decomposition \(w = s_1 \ldots s_n\) with \(s_i \in S\).
Step 3. When $J = \emptyset$, the congruence (4.28) is an equality

\[(4.29) \quad \sum_{w \in W} T_w = \sum_{w \in W} T_w T_s^*.
\]

It holds true because $\sum_{w \in W} T_w = \sum_{w < w_s} T_w (T_s + 1)$ and $(T_s + 1) T_s^* = T_s T_s^* + T_s^* = q_s + T_s^* = T_s + 1$.

Step 4. Conversely the congruence (4.28) follows from (4.29) because

\[
\sum_{w \in W} T_w = (\sum_{u \in W} T_u) \sum_{d \in \mathcal{W} \cap J} T_d \equiv (\sum_{u \in W} q_u) \sum_{d \in \mathcal{W} \cap J} T_d
\]

(recall $q_u = T_{u^{-1}} u \equiv T_u$) and we can simplify by $\sum_{u \in W} q_u$ in H/J. \hfill \Box

This ends the proof of Proposition 4.23.

5. Universal representation

$I_H(P, V, Q) \otimes H R[U\backslash G]$

The invariant functor $(-)^{\mathcal{U}}$ by the pro-p-Iwahori subgroup U of G has a left adjoint

\[\otimes R[U\backslash G] : \text{Mod}_R(H) \rightarrow \text{Mod}_R^\infty(G).\]

The smooth R-representation $V \otimes_{H_R} R[U\backslash G]$ of G constructed from the right H_R-module V is called universal. We write

\[R[U\backslash G] = X.\]

Question 5.1. Does $V \neq 0$ imply $V \otimes_{H_R} X \neq 0$ or does $v \otimes 1_U = 0$ for $v \in V$ imply $v = 0$? We have no counterexample. If R is a field and the H_R-module V is simple, the two questions are equivalent: $V \otimes_{H_R} X \neq 0$ if and only if the map $v \mapsto v \otimes 1_U$ is injective. When R is an algebraically closed field of characteristic p, $V \otimes_{H_R} X \neq 0$ for all simple H_R-modules V if this is true for V simple supersingular (this is a consequence of Corollary 5.13).

The functor $- \otimes_{H_R} X$ satisfies a few good properties: it has a right adjoint and is compatible with the parabolic induction and the left adjoint (of the parabolic induction). Let $P = MN$ be a standard parabolic subgroup and $X_M = R[U_M \backslash M]$. We have functor isomorphisms

\[(5.1) \quad (- \otimes_{H_R} X) \circ \text{Ind}^H_{H_M} \rightarrow \text{Ind}^G_P (- \otimes_{H_{M,R}} X_M),
\]

\[(5.2) \quad (-)_N \circ (- \otimes_{H_R} X) \rightarrow (- \otimes_{H_{M,R}} X_M) \circ \text{Ind}^H_{H_M}.\]

The first one is [OV17, formula 4.15], the second one is obtained by left adjunction from the isomorphism $\text{Ind}^H_{H_M} \circ (-)^{\mathcal{U}_M} \rightarrow (-)^{\mathcal{U}} \circ \text{Ind}^G_P$ [OV17, formula (4.14)]. If V is a right H_R-supersingular module and p is nilpotent in V, then $L^H_{H_M}(V) = 0$ if $M \neq G$ (Proposition 4.27). Applying (5.2) we deduce the following.

Proposition 5.2. If p is nilpotent in V and V supersingular, then $V \otimes_{H_R} X$ is left cuspidal.
Remark 5.3. For a non-zero smooth R-representation τ of M, Δ_τ is orthogonal to Δ_P if τ is left cuspidal. Indeed, we recall from [AHHV17 II.7 Corollary 2] that Δ_τ is not orthogonal to Δ_P if and only if there exists a proper standard parabolic subgroup X of M such that σ is trivial on the unipotent radical of X; moreover τ is a subrepresentation of $\text{Ind}_X^M(\tau|_X)$, so the image of τ by the left adjoint of Ind_X^M is not 0.

From now on, \mathcal{V} is a non-zero right $\mathcal{H}_{M,R}$-module and

$$\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} X_M.$$

In general, when $\sigma \neq 0$, let $P_\perp(\sigma)$ be the standard parabolic subgroup of G with $\Delta_{P_\perp(\sigma)} = \Delta_P \cup \Delta_{\perp,\sigma}$ where $\Delta_{\perp,\sigma}$ is the set of simple roots $\alpha \in \Delta_\sigma$ orthogonal to Δ_P.

Proposition 5.4.

1. $P(\mathcal{V}) \subset P_\perp(\sigma)$ if $\sigma \neq 0$.
2. $P(\mathcal{V}) = P_\perp(\sigma)$ if the map $v \mapsto v \otimes 1_{\mathcal{U}_M}$ is injective.
3. $P(\mathcal{V}) = P(\sigma)$ if the map $v \mapsto v \otimes 1_{\mathcal{U}_M}$ is injective, p nilpotent in \mathcal{V} and \mathcal{V} supersingular.
4. $P(\mathcal{V}) = P(\sigma)$ if $\sigma \neq 0$, R is a field of characteristic p and \mathcal{V} simple supersingular.

Proof.

1. $P(\mathcal{V}) \subset P_\perp(\sigma)$ means that $Z \cap M^\vee_\mathcal{V}$ acts trivially on $\mathcal{V} \otimes 1_{\mathcal{U}_M}$, where $M_\mathcal{V}$ is the standard Levi subgroup such that $\Delta_{M_\mathcal{V}} = \Delta_\mathcal{V}$. Let $z \in Z \cap M'_\mathcal{V}$ and $v \in \mathcal{V}$. As $\Delta_\mathcal{M}$ and $\Delta_\mathcal{V}$ are orthogonal, we have $T^M \ast (z) = T^M(z)$ and $\mathcal{U}_M z \mathcal{U}_M = \mathcal{U}_M z$. We have $v \otimes 1_{\mathcal{U}_M} = v T^M(z) \otimes 1_{\mathcal{U}_M} = v \otimes T^M(z) 1_{\mathcal{U}_M} = v \otimes 1_{\mathcal{U}_M} = v \otimes z^{-1} 1_{\mathcal{U}_M} = z^{-1} (v \otimes 1_{\mathcal{U}_M})$.

2. If $v \otimes 1_{\mathcal{U}_M} = 0$ for $v \in \mathcal{V}$ implies $v = 0$, then $\sigma = 0$ because $\mathcal{V} \neq 0$. By (1) $P(\mathcal{V}) \subset P_\perp(\sigma)$. As in the proof of (1), for $z \in Z \cap M'_\perp,\sigma$ we have $v T^M \ast(z) \otimes 1_{\mathcal{U}_M} = v T^M(z) \otimes 1_{\mathcal{U}_M} = v \otimes 1_{\mathcal{U}_M}$ and our hypothesis implies $v T^M \ast(z) = v$ hence $P(\mathcal{V}) \supset P_\perp(\sigma)$.

3. Proposition 5.2, Remark 5.3 and (2).

4. Question 5.1 and (3). □

Let Q be a parabolic subgroup of G with $P \subset Q \subset P(\mathcal{V})$. In this chapter we will compute $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$ where $I_{\mathcal{H}}(P, \mathcal{V}, Q) = \text{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^R(e(\mathcal{V}) \otimes (\text{St}_{Q \cap M(\mathcal{V})}^M(\mathcal{V})))^{\mathcal{U}(\mathcal{V})}$. The smooth R-representation $I_G(P, \sigma, Q)$ of G is well defined: it is 0 if $\sigma = 0$ and $\text{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^R(e(\sigma) \otimes \text{St}_Q^P(\sigma))$ if $\sigma \neq 0$ because (P, σ, Q) is an $R[G]$-triple by Proposition 5.4. We will show that the universal representation $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G]$ is isomorphic to $I_G(P, \sigma, Q)$, if $P(\mathcal{V}) = P(\sigma)$ and $p = 0$, or if $\sigma = 0$ (Corollary 5.12). In particular, $I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}} R[\mathcal{U} \backslash G] \simeq I_G(P, \sigma, Q)$ when R is an algebraically closed field of characteristic p and \mathcal{V} is supersingular.

5.1. $Q = G$. We consider first the case $Q = G$. We are in the simple situation where \mathcal{V} is extensible to \mathcal{H} and $P(\mathcal{V}) = P(\sigma) = G$, $I_{\mathcal{H}}(P, \mathcal{V}, G) = e(\mathcal{V})$ and $I_G(P, \sigma, G) = e(\sigma)$. We recall that $\Delta \setminus \Delta_P$ is orthogonal to Δ_P and that M_2 denotes the standard Levi subgroup of G with $\Delta_{M_2} = \Delta \setminus \Delta_P$.

The \mathcal{H}_R-morphism $e(V) \to e(\sigma)_{M} = \sigma^M$ sending v to $v \otimes 1_{U_M}$ for $v \in V$, given by adjunction an $R[G]$-homomorphism

$$v \otimes 1_U \mapsto v \otimes 1_{U_M} : e(V) \otimes_{\mathcal{H}_R} X \xrightarrow{\Phi^G} e(\sigma).$$

If Φ^G is an isomorphism, then $e(V) \otimes_{\mathcal{H}_R} X$ is the extension to G of $(e(V) \otimes_{\mathcal{H}_R} X)|_M$, meaning that M_2 acts trivially on $e(V) \otimes_{\mathcal{H}_R} X$. The converse is true.

Lemma 5.6. If M'_2 acts trivially on $e(V) \otimes_{\mathcal{H}_R} X$, then Φ^G is an isomorphism.

Proof. Suppose that M'_2 acts trivially on $e(V) \otimes_{\mathcal{H}_R} X$. Then $e(V) \otimes_{\mathcal{H}_R} X$ is the extension to G of $(e(V) \otimes_{\mathcal{H}_R} X)|_M$, and by Theorem 3.13 $(e(V) \otimes_{\mathcal{H}_R} X)^{M}$ is the extension of $(e(V) \otimes_{\mathcal{H}_R} X)^{M'}$. Therefore, by (3.12),

$$(v \otimes 1_U)T_w = (v \otimes 1_U)T_{w^*}^{M} \quad \text{for all} \quad v \in V, \quad w \in W_M(1).$$

As V is extensible to H, the natural map $v \mapsto v \otimes 1_U : V \xrightarrow{\Psi} (e(V) \otimes_{\mathcal{H}_R} X)^{M}$ is \mathcal{H}_M-equivariant, i.e.,

$$vT_{w}^{M^*} \otimes 1_U = (v \otimes 1_U)T_{w}^{M^*} \quad \text{for all} \quad v \in V, \quad w \in W_M(1),$$

because (3.12) $vT_{w}^{M^*} \otimes 1_U = vT_{w} \otimes 1_U = v \otimes T_{w}^{*} = (v \otimes 1_U)T_{w}^{*}$ in $(e(V) \otimes_{\mathcal{H}_R} X)$.

We recall that $- \otimes_{\mathcal{H}_{M,R}} X_M$ is the left adjoint of $(-)^{M}$. The adjoint $R[M]$-homomorphism $\sigma = V \otimes_{\mathcal{H}_{M,R}} X_M \to e(V) \otimes_{\mathcal{H}_R} X$ sends $v \otimes 1_{U_M}$ to $v \otimes 1_U$ for all $v \in V$. The $R[M]$-module generated by the $v \otimes 1_U$ for all $v \in V$ is equal to $e(V) \otimes_{\mathcal{H}_R} X$ because M'_2 acts trivially. Hence we obtained an inverse of Φ^G. □

Our next move is to determine if M'_2 acts trivially on $e(V) \otimes_{\mathcal{H}_R} X$. It is equivalent to see if M'_2 acts trivially on $e(V) \otimes 1_U$ as this set generates the representation $e(V) \otimes_{\mathcal{H}_R} X$ of G and M'_2 acts as M'_2 and M commute and $G = ZM'_2$. Obviously, $U \cap M'_2$ acts trivially on $e(V) \otimes 1_U$. The group of double classes $(U \cap M'_2) \setminus M'_2/(U \cap M'_2)$ is generated by the lifts $s \in N \cap M'_2$ of the simple affine roots s of $W_{M'_2}$. Therefore, M'_2 acts trivially on $e(V) \otimes_{\mathcal{H}_R} X$ if and only if for any simple affine root $s \in S_{M'_2}^\text{aff}$ of $W_{M'_2}$, any $s \in N \cap M'_2$ lifting s acts trivially on $e(V) \otimes 1_U$.

Lemma 5.6. Let $v \in V$, $s \in S_{M'_2}^\text{aff}$ and $\hat{s} \in N \cap M'_2$ lifting s. We have

$$(q_s + 1)(v \otimes 1_U - \hat{s}(v \otimes 1_U)) = 0.$$

Proof. We compute:

$$T_s(\hat{s}1_U) = \hat{s}(T_s1_U) = 1_{U_M\hat{s}U(\hat{s})^{-1}} = \sum_u \hat{s}u(\hat{s})^{-1}1_U = \sum_{u^o} u^{op}1_U,$$

$$T_s(\hat{s}1_U) = \hat{s}^2(T_s1_U) = 1_{U_M\hat{s}U(\hat{s})^{-2}} = \sum_u u\hat{s}1_U$$

for u in the group $U/(\hat{s}^{-1}U\hat{s} \cap U)$ and u^{op} in the group $\hat{s}U(\hat{s})^{-1}/(\hat{s}\hat{s}U(\hat{s})^{-1} \cap U)$; the reason is that \hat{s}^2 normalizes U, $U\hat{s}U\hat{s}^{-1}$ is the disjoint union of the sets $U\hat{s}u^{-1}(\hat{s})^{-1}$ and $\hat{s}U(\hat{s})^{-1}U$ is the disjoint union of the sets $U\hat{s}^{-1}u^{-1}$, we introduce now a natural bijection

$$u \mapsto u^{op} : U/(\hat{s}^{-1}U\hat{s} \cap U) \to \hat{s}U(\hat{s})^{-1}/(\hat{s}\hat{s}U(\hat{s})^{-1} \cap U)$$

which is not a group homomorphism. We recall the finite reductive group $G_{k,s}$ quotient of the parahoric subgroup \mathbb{R}_s of G fixing the face fixed by s of the alcove C. The Iwahori groups Z^0U and $Z^0\hat{s}U(\hat{s})^{-1}$ are contained in \mathbb{R}_s and their images
in \(G_{s,k}\) are opposite Borel subgroups \(Z_kU_{s,k}\) and \(Z_kU_{s,k}^{op}\). Via the surjective maps
\[u \mapsto \overline{u} : \mathcal{U} \to U_{s,k} \text{ and } u^{op} \mapsto \overline{u^{op}} : \mathcal{U}(\hat{s})^{-1} \to U_{s,k}^{op} \] we identify the groups
\[\mathcal{U}/(\hat{s}^{-1}U\hat{s} \cap \mathcal{U}) \simeq U_{s,k} \text{ and similarly } \hat{s}\mathcal{U}(\hat{s})^{-1}/(\hat{s}\mathcal{U}(\hat{s})^{-1} \cap \mathcal{U}) \simeq U_{s,k}^{op}. \]
Let \(G'_{k,s}\) be the group generated by \(U_{s,k}\) and \(U_{s,k}^{op}\), and let \(B'_{s,k} = G'_{k,s} \cap Z_kU_{s,k} = (G'_{k,s} \cap Z_k)U_{s,k}\). We suppose (as we can) that \(\hat{s} \in \mathfrak{s}_k\) and that its image \(\hat{s}_k\) in \(G_{s,k}\) lies in \(G'_{k,s}\). We have \(\hat{s}_kU_{s,k}(\hat{s}_k)^{-1} = U_{s,k}^{op}\) and the Bruhat decomposition \(G'_{k,s} = B'_{k,s} \cup U_{s,k}\hat{s}_kB_{k,s}\) implies the existence of a canonical bijection \(\overline{u^{op}} \mapsto \overline{u : (U_{k,s} \setminus \{1\})} \to (U_{k,s} \setminus \{1\})\) respecting the cosets \(\overline{u^{op}B'_{k,s}} = \overline{u\hat{s}_kB'_{k,s}}\). Via the preceding identifications we get the wanted bijection \(\overline{5.3}\).

For \(v \in e(\mathcal{V})\) and \(z \in Z^0 \cap M_2^\prime\) we have \(vT_z = v\), \(z1_{\mathcal{U}} = T_z1_{\mathcal{U}}\) and \(v \otimes T_z1_{\mathcal{U}} = vT_z \otimes 1_{\mathcal{U}}\) therefore \(Z^0 \cap M_2^\prime\) acts trivially on \(\mathcal{V} \otimes 1_{\mathcal{U}}\). The action of the group \((Z^0 \cap M_2^\prime)\mathcal{U}\) on \(\mathcal{V} \otimes 1_{\mathcal{U}}\) is also trivial. As the image of \(Z^0 \cap M_2^\prime\) in \(G_{s,k}\) contains \(Z_k \cap G'_{s,k}\),
\[u\hat{s}(v \otimes 1_{\mathcal{U}}) = u^{op}(v \otimes 1_{\mathcal{U}}) \]
when \(u\) and \(u^{op}\) are not units and correspond via the bijection \(\overline{5.3}\). So we have
\[v \otimes T_s(\hat{s}1_{\mathcal{U}}) - (v \otimes 1_{\mathcal{U}}) = v \otimes T_s(\hat{s}^21_{\mathcal{U}}) - v \otimes \hat{s}1_{\mathcal{U}}. \]
We can move \(T_s\) on the other side of \(\otimes\) and as \(vT_s = q_s v\) (Corollary \(3.9\)), we can replace \(T_s\) by \(q_s\). We have \(v \otimes \hat{s}^21_{\mathcal{U}} = v \otimes T_{s^2}1_{\mathcal{U}}\) because \(\hat{s}^2 \in Z^0 \cap M_2^\prime\) normalizes \(\mathcal{U}\); as we can move \(T_{s^2}\) on the other side of \(\otimes\) and as \(vT_{s^2} = v\) we can forget \(\hat{s}^2\). So \(\overline{5.4}\) is equivalent to \((q_s + 1)(v \otimes 1_{\mathcal{U}} - \hat{s}(v \otimes 1_{\mathcal{U}})) = 0. \)

Combining the two lemmas we obtain the following.

Proposition 5.7. When \(\mathcal{V}\) is extensible to \(\mathcal{H}\) and has no \(q_s + 1\)-torsion for any \(s \in S^\text{aff}_{M_2^\prime}\), then \(M_2^\prime\) acts trivially on \(e(\mathcal{V}) \otimes_\mathcal{H} \mathbb{X}\) and \(\Phi^G\) is an \(R[G]\)-isomorphism.

Example 5.8. Let \(G = GL(2, F)\) and let \(R\) be an algebraically closed field where \(q_{s_0} + 1 = q_{s_1} + 1 = 0\) and \(S^\text{aff} = \{s_0, s_1\}\). (Note that \(q_{s_0} = q_{s_1}\) is the order of the residue field of \(F\).) Then the dimension of \(1_\mathcal{H} \otimes_\mathcal{H} \mathbb{X}\) is infinite, in particular \(1_\mathcal{H} \otimes_\mathcal{H} \mathbb{X} \neq 1_G\).

Indeed, the Steinberg representation \(\text{St}_G = (\text{Ind}_G^Z 1_Z) / 1_G\) of \(G\) is an indecomposable representation of length 2 containing an irreducible infinite dimensional representation \(\pi\) with \(\pi^U = 0\) of quotient the character \((-1)\text{val}^\text{det}\). This follows from the proof of Theorem 3 and from Proposition 24 in [Vig80]. The kernel of the quotient map \(\text{St}_G \otimes (-1)\text{val}^\text{det} \to 1_G\) is infinite dimensional without a non-zero \(\mathcal{U}\)-invariant vector. As the characteristic of \(R\) is not \(p\), the functor of \(\mathcal{U}\)-invariants is exact hence \((\text{St}_G \otimes (-1)\text{val}^\text{det})^\mathcal{U} = 1_\mathcal{H}\). As \(- \otimes_\mathcal{H} R[U \setminus G]\) is the left adjoint of \((-)^\mathcal{U}\) there is a non-zero homomorphism
\[1_\mathcal{H} \otimes_\mathcal{H} \mathbb{X} \to \text{St}_G \otimes (-1)\text{val}^\text{det} \]
with image generated by its \(\mathcal{U}\)-invariants. The homomorphism is therefore surjective.
5.2. \mathcal{V} extensible to \mathcal{H}. Let $P = MN$ be a standard parahoric subgroup of G with Δ_P and $\Delta \setminus \Delta_P$ orthogonal. We still suppose that the $\mathcal{H}_{M,R}$-module \mathcal{V} is extensible to \mathcal{H}, but now $P \subset Q \subset G$. So we have $I_\mathcal{H}(P, \mathcal{V}, Q) = e(\mathcal{V}) \otimes_R (St_Q^G)^{1^U}$ and $I_G(P, \sigma, Q) = e(\sigma) \otimes_R St_Q^G$ where $\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} X_M$. We compare the images by $- \otimes_{\mathcal{H}_R} X$ of the \mathcal{H}_R-modules $e(\mathcal{V}) \otimes_R (\text{Ind}^G_Q 1)^{1^U}$ and $e(\mathcal{V}) \otimes_R (St_Q^G)^{1^U}$ with the smooth R-representations $e(\sigma) \otimes \text{Ind}^G_Q 1$ and $e(\sigma) \otimes St_Q^G$ of G.

As $- \otimes_{\mathcal{H}_R} X$ is left adjoint of $(-)^{1^U}$, the \mathcal{H}_R-homomorphism $v \otimes f \mapsto v \otimes 1_{U_M} \otimes f : e(\mathcal{V}) \otimes_R (\text{Ind}^G_Q 1)^{1^U} \to (e(\sigma) \otimes_R \text{Ind}^G_Q 1)^{1^U}$ gives by adjunction an $R[G]$-homomorphism

$$v \otimes f \otimes 1_{U_M} \mapsto v \otimes 1_{U_M} : e_{\mathcal{V}}(\mathcal{V}) \otimes_{\mathcal{H}_{M,R}} X_{M,\mathcal{H}} \xrightarrow{\Phi^G_Q} e(\sigma) \otimes_{R} \text{Ind}^G_Q 1.$$

When $Q = G$ we have $\Phi^G_Q = \Phi^G$. By Remark 4.10 Φ^G_Q is surjective. Proposition 5.7 applies with M_Q instead of G and gives the $R[M_Q]$-homomorphism

$$v \otimes 1_{U_{M,Q}} \mapsto v \otimes 1_{U_M} : e_{\mathcal{V}}(\mathcal{V}) \otimes_{\mathcal{H}_{M,Q,R}} X_{M,Q} \xrightarrow{\Phi^Q} e(\sigma).$$

Proposition 5.9. The $R[G]$-homomorphism Φ^G_Q is an isomorphism if Φ^Q is an isomorphism, in particular if \mathcal{V} has no $q_s + 1$-torsion for any $s \in S^{\text{aff}}_{M,Q}.$

Proof. The proposition follows from another construction of Φ^G_Q that we now describe. Proposition 4.5 gives the \mathcal{H}_R-module isomorphism

$$v \otimes f_{QU} \mapsto v \otimes 1_{\mathcal{H}} : (e(\mathcal{V}) \otimes_R (\text{Ind}^G_Q 1)^{1^U}) \to \text{Ind}^R_{\mathcal{H}_Q}(e_{\mathcal{V}}(\mathcal{V})) = e_{\mathcal{V}}(\mathcal{V}) \otimes_{\mathcal{H}_{M,Q,R}} \mathcal{H}.$$

We have the $R[G]$-isomorphism [OV17, Corollary 4.7]

$$v \otimes 1_{\mathcal{H}} \otimes 1_{U_M} \mapsto f_{QU,v \otimes 1_{U_{M,Q}}} : \text{Ind}^H_{\mathcal{H}_Q}(e_{\mathcal{V}}(\mathcal{V})) \otimes_{\mathcal{H}_R} X \to \text{Ind}^G_{\mathcal{V}}(e_{\mathcal{V}}(\mathcal{V}) \otimes_{\mathcal{H}_{M,Q,R}} X_{M,Q})$$

and the $R[G]$-isomorphism

$$f_{QU,v \otimes 1_{U_{M}}} \mapsto v \otimes 1_{U_M} \otimes f_{QU} : \text{Ind}^G_Q(e(\sigma)(\mathcal{V})) \to e(\sigma) \otimes \text{Ind}^G_Q 1.$$

From Φ^Q and these three homomorphisms, there exists a unique $R[G]$-homomorphism

$$(e(\mathcal{V}) \otimes_R (\text{Ind}^G_Q 1)^{1^U}) \otimes_{\mathcal{H}_R} X \to e(\sigma) \otimes_{R} \text{Ind}^G_Q 1$$

sending $v \otimes f_{QU} \otimes 1_{U}$ to $v \otimes 1_{U_M} \otimes f_{QU}$. We deduce: this homomorphism is equal to Φ^G_Q, $\mathcal{V} \otimes 1_{U_1} \otimes 1_{U_2} \otimes f_{QU}$ generates $(e(\mathcal{V}) \otimes_R (\text{Ind}^G_Q 1)^{1^U}) \otimes_{\mathcal{H}_R} X$, if Φ^Q is an isomorphism, then Φ^G_Q is an isomorphism. By Proposition 5.7 if \mathcal{V} has no $q_s + 1$-torsion for any $s \in S^{\text{aff}}_{M,Q}$, then Φ^Q and Φ^G_Q are isomorphisms. \hfill \Box

We recall that the $\mathcal{H}_{M,R}$-module \mathcal{V} is extensible to \mathcal{H}.

Proposition 5.10. The $R[G]$-homomorphism Φ^G_Q induces an $R[G]$-homomorphism

$$(e(\mathcal{V}) \otimes_R (St_Q^G)^{1^U}) \otimes_{\mathcal{H}_R} X \to e(\sigma) \otimes_{R} St_Q^G,$$

It is an isomorphism if Φ^G_Q is an $R[G]$-isomorphism for all parabolic subgroups Q' of G containing Q, in particular if \mathcal{V} has no $q_s + 1$-torsion for any $s \in S^{\text{aff}}_{M,Q}$.

Proof. The proof is straightforward, with the arguments already developed for Proposition 4.5 and Theorem 4.9. The representations \(e(\sigma) \otimes_R \text{St}_Q^G \) and \((e(V) \otimes_R (\text{St}_Q^G)_{U}) \otimes_{\mathcal{H}_R} X \) of \(G \) are the cokernels of the natural \(R[G] \)-homomorphisms

\[
\oplus_{Q \subseteq Q'} e(\sigma) \otimes_R \text{Ind}_{Q}^{G} 1 \xrightarrow{\text{id} \otimes \alpha} e(\sigma) \otimes_R \text{Ind}_{Q}^{G} 1,
\]

\[
\oplus_{Q \subseteq Q'} (e(V) \otimes_R (\text{Ind}_{Q}^{G} 1)_{U}) \otimes_{\mathcal{H}_R} X \xrightarrow{\text{id} \otimes \alpha' \otimes \text{id}} (e(V) \otimes_R (\text{Ind}_{Q}^{G} 1)_{U}) \otimes_{\mathcal{H}_R} X.
\]

These \(R[G] \)-homomorphisms make a commutative diagram with the \(R[G] \)-homomorphisms \(\oplus_{Q \subseteq Q'} \Phi^G_Q \) and \(\Phi^G_Q \) going from the lower line to the upper line. Indeed, let \(v \otimes f_{Q'U} \otimes 1_U \in (e(V) \otimes_R (\text{Ind}_{Q}^{G} 1)_{U}) \otimes_{\mathcal{H}_R} X \). On the one hand, it goes to \(v \otimes f_{Q'U} e(Q'_{1}) \otimes 1_U \in (e(V) \otimes_R (\text{Ind}_{Q}^{G} 1)_{U}) \otimes_{\mathcal{H}_R} X \) by the horizontal map, and then to \(v \otimes 1_{U_M} \otimes f_{Q'U} e(Q'_{1}) \) by the vertical map. On the other hand, it goes to \(v \otimes 1_{U_M} \otimes f_{Q'U} e(Q'_{1}) \) by the horizontal map, and then to \(v \otimes 1_{U_M} \otimes f_{Q'U} e(Q'_{1}) \) by the horizontal map. One deduces that \(\Phi^G_Q \) induces an \(R[G] \)-homomorphism \((e(V) \otimes_R (\text{St}_Q^G)_{U}) \otimes_{\mathcal{H}_R} X \rightarrow e(\sigma) \otimes_R \text{St}_Q^G \), which is an isomorphism if \(\Phi^G_Q \) is an \(R[G] \)-isomorphism for all \(Q \subseteq Q' \).

5.3. General. We consider now the general case: let \(P = MN \subset Q \) be two standard parabolic subgroups of \(G \) and let \(\mathcal{V} \) be a non-zero right \(\mathcal{H}_{M,R} \)-module with \(Q \subset P(\mathcal{V}) \). We recall \(I_{\mathcal{H}}(P, \mathcal{V}, Q) = \text{Ind}_{\mathcal{H}_{M(\mathcal{V})}}^{\mathcal{H}}(e(\mathcal{V}) \otimes_R (\text{St}_Q^P)_{U(\mathcal{V})}) \) and \(\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} \mathcal{X}_M \) (Proposition 5.4). There is a natural \(R[G] \)-homomorphism

\[
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} X \xrightarrow{\phi^G_P} \text{Ind}_{P(\mathcal{V})}^{\mathcal{G}}(e(\mathcal{V}) \otimes_R \text{St}_Q^P) \]

obtained by composition of the \(R[G] \)-isomorphism [OV17, Corollary 4.7] (proof of Proposition 3.3):

\[
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} X \rightarrow \text{Ind}_{P(\mathcal{V})}^{\mathcal{G}}((e(\mathcal{V}) \otimes_R (\text{St}_Q^P)_{U(\mathcal{V})}) \otimes_{\mathcal{H}_{M(\mathcal{V}),R}} \mathcal{X}_M(\mathcal{V}))
\]

with the \(R[G] \)-homomorphism

\[
\text{Ind}_{P(\mathcal{V})}^{\mathcal{G}}((e(\mathcal{V}) \otimes_R (\text{St}_Q^P)_{U(\mathcal{V})}) \otimes_{\mathcal{H}_{M(\mathcal{V}),R}} \mathcal{X}_M(\mathcal{V})) \rightarrow \text{Ind}_{P(\mathcal{V})}^{\mathcal{G}}(e(\mathcal{V}) \otimes_R \text{St}_Q^P)
\]

image by the parabolic induction \(\text{Ind}_{P(\mathcal{V})}^{\mathcal{G}} \) of the homomorphism

\[
(e(\mathcal{V}) \otimes_R (\text{St}_Q^P)_{U(\mathcal{V})}) \otimes_{\mathcal{H}_{M(\mathcal{V}),R}} \mathcal{X}_M(\mathcal{V}) \rightarrow e(\mathcal{V}) \otimes_R \text{St}_Q^P
\]

induced by the \(R[M(\mathcal{V})] \)-homomorphism \(\Phi^P_Q = \Phi^M_{Q \cap M(\mathcal{V})} \) of Proposition 5.10 applied to \(M(\mathcal{V}) \) instead of \(G \).

This homomorphism \(\Phi^G_P \) is an isomorphism if \(\Phi^P_Q \) is an isomorphism, in particular if \(\mathcal{V} \) has no \(q_s + 1 \)-torsion for any \(s \in S^\text{aff}_{M_2} \) where \(\Delta_{M_2} = \Delta_{M(\mathcal{V})} \setminus \Delta_M \) (Proposition 5.10). We get the main theorem of this section.

Theorem 5.11. Let \((P = MN, \mathcal{V}, Q) \) be an \(\mathcal{H}_R \)-triple and \(\sigma = \mathcal{V} \otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M] \). Then, \((P, \sigma, Q) \) is an \(R[G] \)-triple. The \(R[G] \)-homomorphism

\[
I_{\mathcal{H}}(P, \mathcal{V}, Q) \otimes_{\mathcal{H}_R} R[\mathcal{U} \setminus G] \xrightarrow{\Phi^G_P} \text{Ind}_{P(\mathcal{V})}^{\mathcal{G}}(e(\mathcal{V}) \otimes_R \text{St}_Q^P)
\]

is an isomorphism if \(\Phi^P_Q \) is an isomorphism. In particular \(\Phi^G_P \) is an isomorphism if \(\mathcal{V} \) has no \(q_s + 1 \)-torsion for any \(s \in S^\text{aff}_{M_2} \).
Recalling $I_G(P, \sigma, Q) = \text{Ind}_{P(\sigma)}^G(e(\sigma) \otimes_R \text{St}_Q^{p(\sigma)})$ when $\sigma \neq 0$, we deduce the following.

Corollary 5.12. We have the following:
$I_H(P, V, Q) \otimes_{H_r} R[U\backslash G] \simeq I_G(P, \sigma, Q)$, if $\sigma \neq 0$, $P(V) = P(\sigma)$ and V has no p_s+1-torsion for any $s \in S_{M_2}$.
$I_H(P, V, Q) \otimes_{H_r} R[U\backslash G] = I_G(P, \sigma, Q) = 0$, if $\sigma = 0$.

Recalling $P(V) = P(\sigma)$ if $\sigma \neq 0$, R is a field of characteristic p and V simple supersingular (Proposition 5.4 (4)), we deduce the following.

Corollary 5.13. $I_H(P, V, Q) \otimes_{H_r} R[U\backslash G] \simeq I_G(P, \sigma, Q)$ if R is a field of characteristic p and V simple supersingular.

6. **Vanishing of the smooth dual**

Let V be an $R[G]$-module. The dual $\text{Hom}_R(V, R)$ of V is an $R[G]$-module for the contragredient action: $gL(gv) = L(v)$ if $g \in G$, $L \in \text{Hom}_R(V, R)$ is a linear form and $v \in V$. When $V \in \text{Mod}_R^p(G)$ is a smooth R-representation of G, the dual of V is not necessarily smooth. A linear form L is smooth if there exists an open subgroup $H \subset G$ such that $L(hv) = L(v)$ for all $h \in H, v \in V$; the space $\text{Hom}_R(V, R)_{\text{fin}}$ of smooth linear forms is a smooth R-representation of G, called the **smooth dual** (or smooth contragredient) of V. The smooth dual of V is contained in the dual of V.

Example 6.1. When R is a field and the dimension of V over R is finite, the dual of V is equal to the smooth dual of V because the kernel of the action of G on V is an open normal subgroup $H \subset G$; the action of G on the dual $\text{Hom}_R(V, R)$ is trivial on H.

We assume in this section that R is a field of characteristic p. Let $P = MN$ be a parabolic subgroup of G and $V \in \text{Mod}_R^p(M)$. Generalizing the proof given in [Vig07, 8.1] when $G = GL(2, F)$ and the dimension of V is 1, we show the following.

Proposition 6.2. If $P \neq G$, the smooth dual of $\text{Ind}_P^G(V)$ is 0.

Proof. Let L be a smooth linear form on $\text{Ind}_P^G(V)$ and let K be an open pro-p-subgroup of G which fixes L. Let J be an arbitrary open subgroup of K, $g \in G$ and $f \in (\text{Ind}_P^G(V))^J$ with support PgJ. We want to show that $L(f) = 0$. Let J' be any open normal subgroup of J and let φ denote the function in $(\text{Ind}_P^G(V))^{J'}$ with support PgJ' and value $\varphi(g) = f(g)$ at g. For $j \in J$ we have $L(j\varphi) = L(\varphi)$, and the support of $j\varphi(x) = \varphi(xj)$ is $P_gJ'j^{-1}$. The function f is the sum of translates $j\varphi$, where j ranges through the left cosets of the image X of $g^{-1}Pg \cap J$ in J/J', so that $L(f) = rL(\varphi)$ where r is the order of X in J/J'. We can certainly find J' such that $r \neq 1$, and then r is a positive power of p. As the characteristic of R is p we have $L(f) = 0$. \hfill \Box

The module $R[U\backslash G]$ is contained in the module $R^{U\backslash G}$ of functions $f : U\backslash G \to R$. The actions of H and of G on $R[U\backslash G]$ extend to $R^{U\backslash G}$ by the same formulas. The pairing

$$ (f, \varphi) \mapsto \langle f, \varphi \rangle = \sum_{g \in U\backslash G} f(g)\varphi(g) : R^{U\backslash G} \times R[U\backslash G] \to R $$
identifies $R^d \backslash G$ with the dual of $R[U \backslash G]$. Let $h \in H$ and $\tilde{h} \in H$, $\tilde{h}(g) = h(g^{-1})$ for $g \in G$. We have

$$
\langle f, h \varphi \rangle = \langle \tilde{h} f, \varphi \rangle.
$$

Proposition 6.3. When R is an algebraically closed field of characteristic p, G is not compact modulo the center and V is a simple supersingular right H_R-module, the smooth dual of $V \otimes H_R R[U \backslash G]$ is 0.

Proof. Let H_R^{aff} be the subalgebra of H_R of basis $(T_w)_{w \in W'}(1)$ where $W'(1)$ is the inverse image of W' in $W(1)$. The dual of $V \otimes H_R R[U \backslash G]$ is contained in the dual of $V \otimes H_R^{\text{aff}} R[U \backslash G]$; the H_R^{aff}-module $V|_{H_R^{\text{aff}}}$ is a finite sum of supersingular characters. Let $\chi : H_R^{\text{aff}} \rightarrow R$ be a supersingular character. The dual of $\chi \otimes H_R^{\text{aff}} R[U \backslash G]$ is contained in the dual of $R[U \backslash G]$ isomorphic to $R^d \backslash G$. It is the space of $f \in R^d \backslash G$ with $\tilde{h} f = \chi(h)f$ for all $h \in H_R^{\text{aff}}$. The smooth dual of $\chi \otimes H_R^{\text{aff}} R[U \backslash G]$ is 0 if the dual of $\chi \otimes H_R^{\text{aff}} R[U \backslash G]$ has no non-zero element fixed by U. Let us take $f \in R^d \backslash G/U$ with $\tilde{h} f = \chi(h)f$ for all $h \in H_R^{\text{aff}}$. We shall prove that $f = 0$. We have $\tilde{T}_w = T_{w^{-1}}$ for $w \in W(1)$.

Let \prec denote the Bruhat order of $W(1)$ associated to S^{aff}. The elements $(T_t)_{t \in Z_k}$ and $(T_s)_{s \in S^{\text{aff}}}$ where \tilde{s} is an admissible lift of s in $W^{\text{aff}}(1)$, generate the algebra H_R^{aff} and

$$
T_t T_w = T_{tw}, \quad T_s T_w = \begin{cases} T_{\tilde{w} s}, & \tilde{s}w > w, \\ c_s T_w, & \tilde{s}w < w, \end{cases}
$$

with $c_s = -|Z_k, s| \sum_{t \in Z_k, s} T_t$ because the characteristic of R is p. Expressing $f = \sum_{w \in W(1)} a_w T_w$, $a_w \in R$, as an infinite sum, we have

$$
T_t f = \sum_{w \in W(1)} a_{t^{-1} w} T_w, \quad T_s f = \sum_{w \in W(1), \tilde{s}w < w} (a_{(\tilde{s})^{-1} w} + a_w c_s) T_w.
$$

A character χ of H_R^{aff} is associated to a character $\chi_k : Z_k \rightarrow R^*$ and a subset J of

$$
S^{\text{aff}}_\chi = \{ s \in S^{\text{aff}} \mid (\chi_k)|_{Z_k^{\text{aff}}} \text{ trivial } \}
$$

[Vig15a] Definition 2.7. We have

$$
\left\{ \begin{array}{ll}
(\chi(t)) = \chi_k(t), & t \in Z_k, \\
(\chi(\tilde{s})) = \left\{ \begin{array}{ll}
0, & s \in S^{\text{aff}} \setminus J, \\
-1, & s \in J.
\end{array} \right.
\end{array} \right.
$$

Therefore $\chi_k(t)f = \tilde{T}_t f = T_{t^{-1}} f$ hence $\chi_k(t)a_{tw} = a_{tw}$. We have $\chi(T_s)f = \tilde{T}_s f = T_{(\tilde{s})^{-1}} f = T_{(\tilde{s})^{-1}} T_{(\tilde{s})^{-2}} f = \chi_k((\tilde{s})^2) T_{\tilde{s}} f$; as $(\tilde{s})^2 \in Z_k, s$ three lines before Proposition 4.4] and $J \subset S^{\text{aff}}_\chi$, we obtain

$$
T_{\tilde{s}} f = \left\{ \begin{array}{ll}
0, & s \in S^{\text{aff}} \setminus J, \\
-f, & s \in J.
\end{array} \right.
$$
Introducing $\chi_k(t)a_w = a_{tw}$ in the formula for $T_\tilde{f}$, we get
\[
\sum_{w \in W(1), \tilde{s}w < w} a_w c_\tilde{s} T_w = -|Z'_{k,s}|^{-1} \sum_{w \in W(1), \tilde{s}w < w, t \in Z'_{k,s}} a_w T_{tw} \\
= -|Z'_{k,s}|^{-1} \sum_{w \in W(1), \tilde{s}w < w, t \in Z'_{k,s}} a_{t^{-1}w} T_{tw} \\
= -|Z'_{k,s}|^{-1} \sum_{t \in Z'_{k,s}} \chi_k(t^{-1}) \sum_{w \in W(1), \tilde{s}w < w} a_w T_{tw} \\
= \chi_k(c_\tilde{s}) \sum_{w \in W(1), \tilde{s}w < w} a_w T_{w}.
\]

\[
T_\tilde{f} = \sum_{w \in W(1), \tilde{s}w < w} (a_{(\tilde{s})^{-1}w} + a_w \chi_k(c_\tilde{s})) T_w
\]

\[
= \begin{cases}
\sum_{w \in W(1), \tilde{s}w < w} a_{(\tilde{s})^{-1}w} T_w, & s \in S^{\text{aff}} \setminus S^{\text{aff}}_{\chi_k}, \\
\sum_{w \in W(1), \tilde{s}w < w} (a_{(\tilde{s})^{-1}w} - a_w) T_w, & s \in S^{\text{aff}}_{\chi_k}.
\end{cases}
\]

From the last equality and (6.2) for $T_\tilde{f}$, we get:

\[
a_{\tilde{s}w} = \begin{cases}
0, & s \in J \cup (S^{\text{aff}} \setminus S^{\text{aff}}_{\chi_k}), \tilde{s}w < w, \\
a_w, & s \in S^{\text{aff}}_{\chi_k} \setminus J.
\end{cases}
\]

Assume that $a_w \neq 0$. By the first condition, we know that $w > \tilde{s}w$ for $s \in J \cup (S^{\text{aff}} \setminus S^{\text{aff}}_{\chi_k})$. The character χ is supersingular if for each irreducible component X of S^{aff}, the intersection $X \cap J$ is not empty and different from $X \ [\text{Vig15a}]$ Definition 2.7, Theorem 6.18]. This implies that the group generated by the $s \in S^{\text{aff}}_{\chi_k} \setminus J$ is finite. If χ is supersingular, by the second condition we can suppose $w > \tilde{s}w$ for any $s \in S^{\text{aff}}_{\chi_k}$. But there is no such element if $S^{\text{aff}}_{\chi_k}$ is not empty. \hfill \Box

Theorem 6.4. Let π be an irreducible admissible R-representation of G with a non-zero smooth dual where R is an algebraically closed field of characteristic p. Then π is finite dimensional.

Proof. Let (P, σ, Q) be an $R[G]$-triple with σ supercuspidal such that $\pi \simeq I_G(P, \sigma, Q)$. The representation $I_G(P, \sigma, Q)$ is a quotient of $\text{Ind}^G_Q e_Q(\sigma)$ hence the smooth dual of $\text{Ind}^G_Q e_Q(\sigma)$ is not zero. From Proposition 6.2, $Q = G$. We have $I_G(P, \sigma, G) = e(\sigma)$. The smooth dual of σ contains the smooth linear dual of $e(\sigma)$ hence is not zero. As σ is supercuspidal, the \mathcal{H}_M-module σ^{mut} contains a simple supersingular submodule \mathcal{V} [Vig15a] Proposition 7.10, Corollary 7.11]. The functor $- \otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M]$ being the right adjoint of $(-)^{\text{mut}}$, the irreducible representation σ is a quotient of $\mathcal{V} \otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M]$, hence the smooth dual of $\mathcal{V} \otimes_{\mathcal{H}_{M,R}} R[\mathcal{U}_M \setminus M]$ is not zero. By Proposition 6.3, $M = Z$. Hence σ is finite dimensional and the same is true for $e(\sigma) = I_G(B, \sigma, G) \simeq \pi$. \hfill \Box

Remark 6.5. When the characteristic of F is 0, Theorem 6.4 was proved by Kohlhaase for a field R of characteristic p. He gives two proofs [Koh Propostion 3.9, Remark 3.10], but none of them extends to F of characteristic p. Our proof is valid without restriction on the characteristic of F and does not use the results of Kohlhaase. Our assumption that R is an algebraically closed field of characteristic p comes from the classification theorem in [AHHV17].
References

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

Email address: abenori@math.sci.hokudai.ac.jp

Université de Paris-Sud, Laboratoire de Mathématiques d’Orsay, Orsay cedex F-91405 France; CNRS, Orsay cedex F-91405 France

Email address: Guy.Henniart@math.u-psud.fr

Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, Paris 75013 France

Email address: vigneras@math.jussieu.fr