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CALCULUS OF ARCHIMEDEAN RANKIN-SELBERG
INTEGRALS WITH RECURRENCE RELATIONS

TAKU ISHII AND TADASHI MIYAZAKI

ABSTRACT. Let n and n’ be positive integers such that n — n’ € {0,1}. Let
F Dbe either R or C. Let K, and K, be maximal compact subgroups of
GL(n,F) and GL(n/, F), respectively. We give the explicit descriptions of
archimedean Rankin—Selberg integrals at the minimal K- and K, /-types for
pairs of principal series representations of GL(n, F') and GL(n/, F'), using their
recurrence relations. Our results for F' = C can be applied to the arithmetic
study of critical values of automorphic L-functions.

1. INTRODUCTION

The theory of automorphic L-functions via integral representations has its origin
in the work of Hecke [§] for GL(2), and the works of Rankin [23], Selberg [24] for
GL(2) x GL(2). As a direct outgrowth of their works, the theory of Rankin—Selberg
integrals for GL(n) x GL(n') was developed by Jacquet, Piatetski-Shapiro, and
Shalika [13]. Our interest here is the archimedean local theory of their Rankin—
Selberg integrals.

Let F be either R or C. We fix a maximal compact subgroup K, of GL(n, F).
Let IT and I’ be irreducible generic Casselman—Wallach representations of GL(n, F')
and GL(n', F'), respectively. We denote by L(s,II x II') the archimedean L-factor
for II x II'. The theory of archimedean Rankin—Selberg integrals for II x II' was
developed by Jacquet and Shalika. In [16], they showed that any archimedean
Rankin—Selberg integral for IT x II’ is extended to C as a holomorphic multiple of
L(s,Ix1II"), is bounded at infinity in vertical strips, and satisfies the local functional
equation. In [I5], Jacquet refined the proofs of the above results, and showed
further that L(s,II x II') can be expressed as a linear combination of archimedean
Rankin—Selberg integrals for II x I if n —n’ € {0,1}. Their results are sufficient
for the proofs of important analytic properties of automorphic L-functions such
as the analytic continuations, the functional equations and the converse theorems.
However, in the studies of arithmetic properties of automorphic L-functions, the
precise knowledge of archimedean Rankin—Selberg integrals at the special K,,- and
K,-types is required. For example, Sun’s nonvanishing result [28] at the minimal
K,-and K, _1-types is vital to the arithmetic study of critical values of automorphic
L-functions for GL(n) x GL(n — 1) by the cohomological method. The goal of this
paper is to give explicit descriptions of archimedean Rankin—Selberg integrals at the
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minimal K,,- and K,/-types for pairs of principal series representations of GL(n, F')
and GL(n/, F') with n —n’ € {0,1}. We generalize Stade’s results [20], [27] (see [11]
for a simplified proof) for the spherical case to general case.

Let us explain our main result for the GL(n) x GL(n — 1)-case. Assume that IT
and IT’ are irreducible principal series representations of GL(n, F') and GL(n—1, F),
respectively. Let ¢ be the standard additive character of F'. We regard GL(n—1, F)
as a subgroup of GL(n, F') via the embedding

LmGL(n—l,F)BgH(g >EGL(n,F).

1
For W € W(II,4) and W’ € W(II',1)~ 1), we define the archimedean Rankin—
Selberg integral Z (s, W,W') by

zs.ww') = [ W(en ()W (g)|detgl3 /2 dg (Re(s) > 0),
N,_1\GL(n—1,F)

where W(IL,v), W(II',4)~1) are the Whittaker models of II, IT, respectively, N,,_;
is the upper triangular unipotent subgroup of GL(n — 1, F'), and | - | is the usual
norm on F. Let (Tmin, Viin) be the minimal K,-type of II, and we fix a K-
embedding W: Viuin — WL ¢). Let (7)., Vi) be the minimal K,,_q-type of
I, and we fix a K,,_j-embedding W’: V. — W(I',%)~!). Here we give W and
W’ concretely by the Jacquet integrals (cf. §2.4). We note that

Vinin @c Viin 2 v @0 — Z(s, W(v), W'(v)) € Ciyiy

defines an element of Hompg, _, (Vinin ®c Viin, Ciriv), where Cyyiy = C is the triv-
ial K,,_1-module. In the first main theorem (Theorem 27, we give the explicit
description of this K, _j;-homomorphism. More precisely, under the assumption
Hompg, , (Vinin ®c Viins Ciriv) # {0}, we show the equality

(1.1)  Z(s,W(v), W'(v)) = L(s, 1Ll x II")¥ (v @ v) (v € Vinin, V' € V4

min)
with some nonzero ¥ € Hompg, , (Vinin ®c Vi, Ciriv) independent of s, and de-
scribe W explicitly in terms of Gelfand-Tsetlin type bases of Vini, and V., . Here
we remark that the integrals Z(s, W(v), W/(v')) (v € Vipin, v/ € Vi;) vanish if
Hompg, ; (Vinin ®c Vi, Curiv) = {0}. In the second main theorem (Theorem 214)),
we give a similar description for the GL(n) x GL(n)-case. Since the statement of
Theorem [2.14] is slightly complicated, we leave it to §2.

We introduce some applications of our results (Theorems27land [Z14]) for F' = C.
In the arithmetic study of critical values of automorphic L-functions for GL(n) x
GL(n') withn—n’ € {0, 1} by the cohomological method, the archimedean Rankin—
Selberg integrals at the minimal K,- and K,/ -types play important roles, and the
hypothesis of the nonvanishing of them at critical points is called the nonvanishing
hypothesis for GL(n, F') x GL(n’, F'). It is known that a local component at the
complex place of irreducible regular algebraic cuspidal automorphic representation
of GL(n) is a cohomological principal series representation (cf. [22] Proposition
2.14]). Hence, Theorem [Z7] gives another proof of the nonvanishing hypothesis for
GL(n,C) x GL(n — 1,C) at all critical points, which were originally proved by Sun
[28] and were used in Grobner-Harris [7] and Raghuram [22]. In [3], Dong and Xue
proved the nonvanishing hypothesis for GL(n,C) x GL(n,C) at the central critical
point, and they indicate that it is hard to generalize their result to all critical points
by the technique of the translation functor. Theorem [2.14] proves the nonvanishing
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hypothesis for GL(n,C) x GL(n,C) at all critical points, and allows us to improve
the archimedean part of Grenié’s theorem [6, Theorem 2] into more explicit form
(cf. Remark [ZT7). We expect that our explicit results will be applied to deeper
study of special values of automorphic L-functions.

There are some related results to be mentioned here. In the cases of GL(n) x
GL(n — 1) and GL(n) x GL(n), we expect that the archimedean Rankin-Selberg
integrals for appropriate Whittaker functions are equal to the associated L-factors.
This expectation was proved by Jacquet-Langlands [12] and Popa [21] for the
GL(2) x GL(1)-case; by Jacquet [14], Zhang [33] and the second author [20] for
the GL(2) x GL(2)-case; by Hirano and the authors [9] for the GL(3) x GL(2)-case.
The results of this paper, that is, the formula (1)) and the analogous formula for
GL(n) x GL(n) in Theorem [2.14] can be regarded as additional evidences of this
expectation for the higher rank cases. On the other hand, it is somewhat widely
believed that these results will not extend to the case of GL(n) x GL(n’) with
n—n'>2 (cf. [2, Lecture 8, §4]).

Let us briefly explain the idea of the proofs of our main theorems. The key
ingredients are two kinds of special sections for a principal series representation IT
of GL(n, F'). One is the Godement section, which is defined by Jacquet [I5] as an
integral transform of the standard section for some principal series representation
of GL(n — 1, F). It gives a recursive integral representation of a Whittaker func-
tion for II. The other is defined as an integral transform of the standard section
for the same representation II of GL(n, F'). It gives an integral representation of
a Whittaker function for II, which is related to the local theta correspondence in
Watanabe [32, §2]. Using two kinds of the special sections, we construct the recur-
rence relations of the archimedean Rankin—Selberg integrals for pairs of principal
series representations of GL(n, F') and GL(n/, F') with n —n’ € {0,1}. Based on
the representation theory of K, we write down these recurrence relations at the
minimal K,- and K,/ -types, explicitly, and prove the main theorems by induction.
Here we remark that the explicit recurrence relations for the spherical case coin-
cide with those in [I1], which follow from explicit formulas of the radial parts of
spherical Whittaker functions in [10].

This paper consists of five sections together with two appendices. In §21 we
introduce basic notation and state the main theorems. In §3, we define two kinds
of the special sections and give the recurrence relations of the archimedean Rankin—
Selberg integrals. §lis devoted to some preliminary results on the theory of finite
dimensional representations of K,, and GL(n, C). In §5, we prove the main theorems
using the results in §8land §4 In Appendix [Al we generalize the explicit formulas
of the radial parts of Whittaker functions in [10] using the Godement section. In
Appendix [Bl we give a list of symbols, because this paper contains a lot of notation
and symbols.

2. MAIN RESULTS

In this section, we introduce basic notation and our main results. We describe
each object explicitly as possible, although not all of them are necessary to state
our main theorems. The authors believe that they are of interest and useful for
further studies.
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2.1. Notation. We denote by Z, Q, R and C the ring of rational integers, the
rational number field, the real number field and the complex number field, respec-
tively. Let R} be the multiplicative group of positive real numbers. Let Ny be the
set of non-negative integers. The real part, the imaginary part and the complex
conjugate of a complex number z are denoted by Re(z), Im(z) and Z, respectively.

Throughout this paper, F' denotes the archimedean local field, that is, F'is either
R or C. It is convenient to define the constant cx by cg = 1 and c¢c = 2. We define
additive characters ¢,: F — C* (¢t € F) and a norm |- | on F by

exp(2my/—1tz) if F=R,

i(z) = eXp(TFCF\/—_l(tZ —0—5)) = { exp(2my/—1(tz +t2)) if F =C,

and |z|p = [2|°F for z € F, where |- | is the ordinary absolute value. When
t = ¢ € {£1}, we call 9. the standard character of F'. We identify the additive
group F' with its dual group via the isomorphism ¢ — ;, and denote by dpz the
self-dual additive Haar measure on F, that is, drz = dz is the ordinary Lebesgue
measure on R and dcz = 2dx dy (z = x + /—1y) is twice the ordinary Lebesgue
measure on C ~ R%. For m € Z, we define a meromorphic function I'r(s;m) of s
in C by

| Tr(s+m) if F =R,
| Te(s+m/2) if F=C,

where Tg(s) = 77%/2T'(s/2), Tc(s) = 2(27)*T'(s) and I'(s) is the usual Gamma
function.

Throughout this paper, n and n’ are positive integers. The space of n x n/
matrices over F' is denoted by M,, ,,/(F). When n’ = n, we denote M,, ,,(F') simply
by M,,(F). We denote by drz the measure on M, ,,/(F') defined by

Tr(s;m) = cp(mep)~(sertm)/2p (M)

2

drz =[] [] drzis (2 = (2i,5) € My (F)).

i=1j=1
Let O, be the zero matrix in M, ,/(F). Let 1,, be the unit matrix in M, (F).
Let e, = (O1,n-1,1) € My »(F). When n =1, we understand e; = 1.

2.2. Groups and the invariant measures. Let GG, be the general linear group
GL(n, F) of degree n over F. We fix a maximal compact subgroup K,, of G,, by

K _[Om ifF=R
"= Un) if F=C,

where O(n) and U(n) are the orthogonal group and the unitary group of degree n,
respectively. Let NV, and U, be the groups of upper and lower triangular unipotent
matrices in Gy, respectively, that is,

Nn:{x:(arm)EGn\xi7j20(1§j<i§n), :Z?kkaI(lSkSn)

b

Up={u=(u;)€Gnlu;=0(1<i<j<n), uppr=101<k<n)}
We define subgroups M,, and A,, of G,, by
M, = {m = diag(my,ma,--- ,my) |m; € Gy = F* (1<i<n)},
A, = {a =diag(ai, a2, -+ ,an) | a; € RY (1 <i<n)}.
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Let Z,, be the center of G,,. Then we have Z,, = {t1,, |t € G; = F*}. We denote
by C*°(G,,) the space of (C-valued) smooth functions on G,,. We regard C*(G,,)
as a Gp-module via the right translation

(R(9)f)(h) = f(hg) (9:h € Gn, [ e CF(Gn)).

Let dk, dx, du and da be the Haar measures on K,,, N,,, U, and A,,, respectively.
In this paper, we normalize these Haar measures by

/ dk =1, do= H dei,jy du = H dpui,j, da:ﬁ 2CFadai
5 )

1<i<j<n 1<j<i<n i=1 v

with ¢ = (z; ;) € Ny, u = (u;;) € U, and a = diag(as,aqs, - ,a,) € A,. When
n = 1, we understand Ny = Uy = {1} and

f@yde= [ fuydu=F(1)
Ny Uy

for a function f on {1}. We normalize the Haar measure dg on G,, so that

(2.1) /an(g)dg—/Kn/Un /Anf(auk)dadudk_/An/Un /an(kua)dkduda

for any integrable function f on G,,. We normalize the Haar measure dh on Z,, so
that

/ fydn= [ f(g1,)dg
Zn G

for any integrable function f on Z,,, where dg is the Haar measure on GG; normalized
by ([21)). We normalize the right G,,-invariant measure dg on N,\G), so that

(22) [ st = [ - ( IRC da:) dg

for any integrable function f on G,,. We normalize the right G, -invariant measure
dg on Z, N,\G,, so that

(2.3) /N L 0ds= /Z . ( /Z (ko) dh) dg

for any integrable function f on N,\G,.

2.3. Principal series representations of G,. Following Jacquet [15], we will
define principal series representations of G, as representations induced from char-
acters of the lower triangular Borel subgroup U, M,, of GG, in this paper.

Let d = (dy,d2, -+ ,d,) € Z" and v = (v1,v9,-+- ,v,) € C". For |l € Z and
t € F*, we set xi(t) = (t/[t])!. We define characters x4 and 7, of M, by

n n N\ n n
atm) =TT vatm) =TT (12) o) = T ol = [ bt

i=1 i=1 i=1

for m = diag(m,ma,--- ,my) € My,. Let pr, = (Pn,1, P02, 5 Pnn) € Q" with
P =241 —i (1<i<n).

Let I(d,v) be the subspace of C*°(G,,) consisting of all functions f such that
(2:4) fumg) = xa(m)n,—p, (m)f(g) (u € Up, m € My, g € Gy),
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on which G,, acts by the right translation II5, = R. We equip I(d, v) with the usual
Fréchet topology. We call (I, I(d,v)) a (smooth) principal series representation
of G,,. We denote by I(d,v)k, the subspace of I(d,v) consisting of all K, -finite
vectors. When F' = R, we note that

(2.5) Xd+l = Xd, I(d+1,v)=1I(d,v) (le2z™).

When I(d,v) is irreducible, for any element o of the symmetric group &,, of degree
n, we have

(2.6) I(d,v) ~ I((do(1), do2), s do(n))s (Vo(1)s Vo(2)s s Vo(n)))

as representations of G, (¢f. [25] Corollary 2.8]).
Let I(d) be the space of smooth functions f on K, satisfying

f(mk) = xa(m)f (k) (me M, NK,, ke K,),

and we equip this space with the usual Fréchet topology. Because of G,, = U, A, K,
and (24), we can identify the space I(d,v) with I(d) via the restriction map
I(d,v) > f — flk, € I(d) to K,. The inverse map I(d) > f — f, € I(d,v)
of the restriction map is given by

(2.7) fo(uak) =n,—,, (a)f(k) (ueU,, a€A,, ke K,).

We regard I(d) as a G,,-module via this identification, and we denote the action of
G, on I(d) corresponding to II;, by II,, that is,

(I, (9) f) (k) = fu(kg) (9 € Gn, k€ Ky, fe1(d)).

Here we note that II, |k, is the right translation and does not depend on v. We
denote by I(d)k, the subspace of I(d) consisting of all K, -finite vectors. For
f € I(d), we call the map C" 5 v — f, € C*°(G,,) defined by (2.1 the standard
section corresponding to f.

Remark 2.1. For the study of automorphic forms such as the Eisenstein series,
it is convenient to realize principal series representations of G, as representations
(IIg, 4,18, (d,v)) induced from characters of the upper triangular Borel subgroup
B,, = N,,M,,, that is, I'p, (d,v) is the subspace of C*°(G,,) consisting of all functions
f such that

flxzmg) = Xd(m)nuﬂm (m)f(g) (x € Npy, m € My, g€ Gy),

and the action Ilp, 4, of G, is the right translation R. The results in this paper
can be translated into this realization via the G,,-isomorphism

IB,,(da I/) > f — fw" € I((dn,dn,h v ,dl), (I/n,l/nfl, s ,1/1))

with f“"(g9) = f(wng) (g € Gy). Here w, is the anti-diagonal matrix of size n
with 1 at all anti-diagonal entries.

2.4. Whittaker functions. Let ¢ € {£1}, and let 1. be the standard character
of F' defined in §2.11 Let 1., be a character of IN,, defined by
ws,n(x) = ’(/}5(371,2 + Z2,3 + -+ xnfl,n) (LL' = (xi,j) S Nn)

When n = 1, we understand that 1), 1 is the trivial character of N3 = {1}.
Let d € Z™ and v = (v1,va,- -+ ,v,) € C*. A ¢).-form on I(d,v) is a continuous
C-linear form 7T : I(d,v) — C satisfying

T(Hd,u(x)f) = ws,n(‘r)T(f) (,T €Ny, [E€ I(d7 V))
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Kostant [I9] shows that the space of 1.-forms on I(d,v) is one dimensional. Let
us recall the construction of nonzero v.-forms on principal series representations of
G, which are called the Jacquet integrals. If v satisfies

(28) RG(V,H_l — V/L') >0 (1 <i:<n-— 1),
we define the Jacquet integral J.: I(d,v) — C by the integral

7.(f) = /N F@)ben(z) da (f € I(d,v)),

which converges absolutely (see [30, Theorem 15.4.1]). When n = 1, we understand
J(f) = fQ1) (f € I(d,v)). For v € C" satisfying (28], we set ja(d’y)(f) = T(f)
(f € I(d)), where f, is the standard section corresponding to f. By [30, Theorem
15.4.1], we know that T f) has the holomorphic continuation to whole v €
C™ for every f € I(d), and C" x I(d) > (v, f) — J;d’”)(f) € C is continuous.
Furthermore, this extends js(d"/) to all v € C™ as a nonzero continuous C-linear
form on I(d) satisfying

TII (AL (2) f) = e (@) T (f) (z € Ny, [ € 1(d)).
We extend the Jacquet integral J.: I(d,v) — C to whole v € C" by
T=(f) = T (fx,) (f € I(d,v))
which is a nonzero ¢ -form on I(d,v). We set
(2.9) W (f)(g) = T-(La,u(9) f) (felld,v), geGy).
For f € I(d,v), Wc(f) is called a Whittaker function for (II4,,,%.), and satisfies
(2.10) We(f)(2g) = then(@)W(f)(9) (z € Ny, g € Gy).

We note that W.(f,)(g) = jg(d’y)(l_[,, (9)f) is an entire function of v for g € G,, and

the standard section f, corresponding to f € I(d)k, . Let

W(Hd,uvwe) = {We(f) | VS I(d, V)}
When 11, , is irreducible, this is a Whittaker model of Il ,, .

Remark 2.2. We give some remark for the topology on W(Ilg ., 1.). Let U(gnc) be
the universal enveloping algebra of the complexification g,c = gl(n, F') ®g C of the
associated Lie algebra of G,,. Let | > 0, and let A;(G,,) be a subspace of C*(G),)
consisting of all functions W such that Q; x (W) < oo (X € U(gnc)), where
Qux(W) = sup [lglI " IREOW)(@I llgll = Tr(g'g) +Tr((g™) (™)
9€Gn

We endow A;(G,,) with the topology induced by the seminorms Q; x (X € U(gnc))-
In [31, §2.7], it is proved that (R,.4;(G,)) is a smooth Fréchet representation of
G, of moderate growth. Assume that [ is sufficiently large. Then f — W.(f)
defines a continuous G,-homomorphism from I(d, v) to A;(G,) by [15, Proposition
3.2], and W(Ily,,,9.) is its image. Applying Casselman—Wallach’s theorem [30]
Theorem 11.6.7 (2)] to the continuous G,-homomorphism f — W.(f) from I(d,v)
to the closure of W(Ily ., %) in A;(G,), we note that W(Ilg,,¥.) coincides with
its closure, that is, W(Ilg ., %.) is a closed subspace of A;(G,,). Moreover, if I1; , is
irreducible, I(d,v) 3 f — W(f) € W(Ilg,, %) is a topological G,,-isomorphism.
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2.5. The Gelfand—Tsetlin type basis. In this subsection, we give a Gelfand—
Tsetlin type basis of an irreducible holomorphic finite dimensional representation
of GL(n,C). Let gl(n,C) = M,,(C) be the associated Lie algebra of GL(n,C). For
1 <4,j <n, we denote by F; ; the matrix unit in gl(n,C) with 1 at the (7, 7)-th
entry and 0 at other entries. We define the set A,, of dominant weights by

A ={A=A1, A, M) EZ" [ A > X > - > A\ )

Let (7x,Va) be an irreducible holomorphic finite dimensional representation of
GL(n, C) with highest weight A = (A1, A2, -+, An) € Ay, and we fix a U(n)-invariant
hermitian inner product (,-) on V). By Weyl’s dimension formula [I8, Theorem
4.48], we have

ANi—Aj+j—i
dll’nV)\ = H —_j +j Z.
= J—1
1<i<j<n
Let us recall the orthonormal basis on V), which is constructed by Gel’fand and
Tsetlin [4] (see Zhelobenko [34] for a detailed proof). We call

min M2n T Mp,n
Min-1 - Mp-1n-1
M = (mij)i<i<j<n = (mi; € Z)
mi2 May2
mi

)

an integral triangular array of size n, and call m; ; the (i, j)-th entry of M. We
denote by G() the set of integral triangular arrays M = (m; j)i<i<j<n Of size n
such that

(211) MG p = )\z (1 <1< TL), mj k > mj k-1 > Mj+1.k (1 S] <k < n)

For M = (m; j)i<i<j<n € G(A), we define M = (A M M AMY by

J Jj—1
(2.12) v = mig =) mie (1<j<mn)
i=1 i=1

We call ¥M the weight of M. Gelfand and Tsetlin construct an orthonormal basis
{¢mfamec(n) of Va with the following formulas of gl(n, C)-actions:

(2.13) Bkl =71 Cur (1<k<n),
(2.14) (Bl = Y, a5 (M)Cua,, (1<j<n-1),
1<i<)
M+4; ;€GN
(2.15) By = Y., A (M)Cua,, (I<j<n-1)
1<i<j

M—A; ;€G(N)
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for M = (m; j)i1<i<j<n € G(X), where A, ; is the integral triangular array of size n
with 1 at the (4, j)-th entry and 0 at other entries, and

-

At (M) = (I35 (s r — miy — h+9) Ty (a1 —miy — h+i—1)|°

i, [Licn<j npilmng —mij —h+i)(mp; —m;; —h+i—1) )

, ' .

;. |G s = miy = bt i+ 1) Ty (=1 = miy = h+1) |
a, ;(M) = o —hati e — I |
[Li<n<j, npi(mng —mij; —h+i)(mn; —mij —h+i+1)

We denote by H(\) a unique element of G(A) whose weight is A, that is,
(2.16) H(X\) = (hij)i<i<j<n € G(N) with  h; ; = ;.
Then (g(y) is a highest vector in V), that is,

™(Eii)Caoy =AiCay (1 <i<n),  m(Ejr)laoy =0 (1<j<k<n)

There is a Q-rational structure of V) associated to the highest weight vector (g (y)-
It comes from the natural Q-rational structure of a tensor power of the standard
representation of GL(n,C). We fix an embedding of V) into a tensor power of the
standard representation of GL(n,C) so that the image of (z(y) is Q-rational, and
give a Q-rational structure of V) via this embedding.

Let us construct a Gelfand—Tsetlin type Q-rational basis of V). We set

(2.17) Ev =/ r(M)Cu (M = (m;j)i<i<j<n € G(N))

with the rational constant

o — it i, . LA
(2.18)  x(M) = H (mige —myjp—1— i+ 5)(mi g1 — Mjp16 — i+ Jj)!

\<idienen (Mik—1 = Mg k—1 =@+ ) mip —mjpry —i +)

Then {&ar}arec(r) is an orthogonal basis of Vy such that (&ar,&a) = r(M) (M €
G(X)). For an integral triangular array M = (m; ;)i<i<j<n, we define the dual

triangular array MV = (ij)lgiSjgn of M by mxj = —mj41—;;. The formulas
corresponding to (ZI3), (Z14)) and (ZT5]) are given respectively by
(2.19)  m(Brw)énr =1 En (1<k<n),
(2.20) A(Ejj+1)6m = Z aij(M)Errsa, (1<ji<n-1),
1<i<;
]\/[+Ai1]‘EG()\)
221)  m(Epg)éu = Y, ai(MY)éugay, (1<j<n-1)
1<i<j '
M+AY ;€GN

for M = (m; j)i<i<j<n € G(X), where a; j(M) is a rational number given by

1 5 -
he1(mpj —m;; —h+1i) Mp—1,; —Mij —h+1i

% . A .
a; (M) = [l (mnjn = mij = h +4) (H Mh-1-1 = Mij —h+ Z) _
h=2

By these formulas and {g(x) = Cr(x), we know that {{a}arec(n) is a Q-rational
basis of V.
Until the end of this subsection, we assume n > 1. Let

EFN) ={p= (1, p2, - pn-1) €A1 [ N> i > X (1<i<n—1)}



CALCULUS OF ARCHIMEDEAN RANKIN-SELBERG INTEGRALS 723

We regard GL(n — 1,C) as a subgroup of GL(n,C) via the embedding

(2.22) tn: GL(n — 1,C) 3 g > ( 9 On1a

o >6GL(n,(C).

We set M = (mij)i<i<j<n—1 for M = (m; j)i<i<j<n € G(A). By the construction
of {&ar} mrec(n), we know that V) has the irreducible decomposition

(2.23) = P Viw Vin= & Ctu~V,,
HEET(X) MeG(X;p)
as a GL(n — 1,C)-module, where
GO\ ) = {M € GO | M € G(p)}-
Let u € ZY(N\). For M € G(u), we denote by M[)] the element of G(\; i) charac-
terized by ]\7[\/\] = M, that is,

(2.24) M = (&) € Gh: ).

Then we have H(u)[\ = (H/(\,u))’ and &g (. is the highest weight vector in the
GL(n — 1, C)-module Vj, ;. For later use, we prepare Lemma [2.3]

Lemma 2.3. Retain the notation.
(1) We define a C-linear map i/’): Vi = Vo, by

iﬁ(CM) = (M (M € G(p)).

Then il’) is a GL(n — 1, C)-isomorphism which preserves the inner products (-, ).
(2) We define a surjective C-linear map 1-:{2 Va—=V, by
- = if M € G(A\;p),

R (Cur) = { SM i (Aiw)

otherwise

(M € G(N)).

Then f{l’) is a GL(n — 1, C)-homomorphism, and f{l’) o il’) 1s the identity map on V.
(3) We define a surjective C-linear map Rf;: Va—=V, by

i ={ 7 1A <G0)

otherwise (M € G(Y)).
Then Rfl is a GL(n — 1,C)-homomorphism.

Proof. Since {(n}mecn) and {{n}nec(y) are orthonormal basis, we obtain the
statements (1) and (2) by 213), 2I4) and (ZI5). The statement (3) follows from
), (20) and (2. 0

2.6. Complex conjugate representations. For a finite dimensional representa-
tion (7, V;) of GL(n,C), we define the complex conjugate representation (7, V) of
7 as follows:
e Let V. be a set with a fixed bijective map V,; v — v € V.. We regard V.
as a C-vector space via the following addition and scalar multiplication:

U1+ T3 =01 Fug (v1,09 € V), cw=c (ceC,veV,),

where ¢ is the complex conjugate of c.
e The action 7 is defined by 7(¢)v = 7(g9)v (g9 € GL(n,C), v € V).
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By definition, we obtain the following identifications and the natural maps for finite
dimensional representations (7, V;) and (7, V;/) of GL(n,C):

e The complex conjugate representation (7, ﬁ) of 7 is naturally identified
with (7, V) via the correspondence T <+ v (v € V).
e If (-,-) is a U(n)-invariant hermitian inner product on V., then

V. ®c Vy 2 v @0z = (v1,v2) € C

is a nondegenerate C-bilinear U(n)-invariant pairing.
e The complex conjugate representation (7 ® 7/, V. ®c V,+) of 7 ® 7/ is nat-
urally identified with (7 ® 7/, V; ®¢ V;+) via the correspondence

V1 @ Vg T Vg (v1 € Vy, v € V).
e For any subgroup S of GL(n,C), there is a bijective C-anti-linear map
Homg(V,,V,) 3 ¥+ ¥ € Homg (V;, V)

defined by ¥(v) = ¥(v) € Vv (v € V;).
Let A = (A1, A2, ,\n) € A,,. We consider the complex conjugate represen-

tation (7x, V) of 7». We denote by u(n) the associated Lie algebra of U(n). The
complexification u(n)c = u(n) g C of u(n) is isomorphic to gl(n, C) via the corre-
spondence Ezugn) « E;; (1<14,j<n)with

n 1
BV = S 1(Biy = Ejq) ® 1 = V=1(Bij + Eji) ® V-1} € u(n)c.
For 1 <i,57 <nand v € V), we have

(2.25) BN Y = 1 (B ), A ENY T = —75 (B ).

i, 4,7
By the pairing V) ®c Vy 3 v; @ 73 + (v1,v2) € C, we can identify (7x,V)) with
the contragredient representation (ry,Vy') of 75 as a U(n)-module. Let \Y =
(=Ans =M1, ,—A1) € A, Since VY ~ Vv as GL(n,C)-modules, we have

Vi =~ Viv as U(n)-modules. In fact, by (ZI9), 20), Z2I) and ([225), we can

confirm that the C-linear map
VA2 &y = (—1)2sisisn ™ gy € Vav (M = (mij)1<i<j<n € G(N))

is a U(n)-isomorphism. Via this_isomorphism, we derive the Q-rational structure
of V from that of Vyv. Then {€m}mean) is a Q-rational basis of V.

Remark 2.4. We note that {E; ; — E; ; }1<i<j<n forms a basis of the associated Lie

algebra o(n) of O(n). By 220), (Z2I) and 225, we know that
Va3 &m & €Vi (M € G()))
defines a Q-rational O(n)-isomorphism.

2.7. The minimal K,,- and K,/-types. We define a subset A,, p of A,, by A, g =
A, n{0,1}™ and A, c = Ay,. In §42] we study the O(n)-module structure of Vy for
A € A, g, and prove Lemma 2.5

Lemma 2.5. Let A € A, p. Then V) is an irreducible K,,-module. Moreover, for
any X' € Ay, p such that N # X, we have Vy % Vy as K,-modules.
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Let (I14,,I(d,v)) be a principal series representations of G,, with
d:(dldea"';dn)GZna V:(Vlvl/Q,"';Vn)e(Cn

such that d € A, r. By ([2I9) and the Frobenius reciprocity law [I8, Theorem
1.14], we know that 74|k, is the minimal K, -type of Il ,,, and Homg, (Vy, I(d,v))
is 1 dimensional. Let fy,: Vy — I(d,v) be the K,-homomorphism normalized by

fa.(Em(a))(1n) = 1, that is,
(2.26) fa, (v)(uak) = ny—p, (a){Ta(k)v, Em(ay)

forwu € Uy, a € Ay, k € K,, and v € Vy. Here H(A) (A € A,) are defined by
(2I6). For v € Vg, we note that £, (v) is the standard section corresponding to
fa(v) € 1(d) defined by fa(v)(k) = (ra(k)o,En) (k€ Ky).

Let (ILy .+, I(d',v")) be a principal series representations of G, with

d/:(ll, /2,-~-,d;l,)€Z"l, V/:(yi7yé7...7y/)€([:"/

such that —d’ € A,/ p. By (ZI9) and the Frobenius reciprocity law [I8, Theorem
1.14], we know that 7—g/|k , is the minimal K, -type of Ily s, and the space
Hompg ,(V_g,I(d’,v')) is 1 dimensional. Let fy,: V_g — I(d',v') be the K-
homomorphism normalized by fy .- (Er(—ay)(1nr) = 1, that is,

(2.27) £, () (uak) =y —p,, (@) (- (k)v, Epr(—ar))
foruw € Uy, a € Ay, k € Ky and v € V_g. For v € V_g, we note that
fa () is the standard section corresponding to £y (v) € I(d’) defined by f4 (0)(k) =

(T—ar(k)v,§p(—ar)) (k€ Kp).
We define the archimedean L-factor for II;, x Iz ., by

L(s, Mgy x Mg ) = [[ [ Trls + vi + v |di + dj]),

i=1j=1
where the functions I'r(s;m) (m € Z) are defined in §2.11 Moreover, we set
Tp(vid)= [[ Trly—vi+1ldi —dj]),
1<i<j<n
Tp(;d)= [] Tr@)—vi+1;|d;—d)).
1<i<j<n’

In §5.11 we prove Proposition

Proposition 2.6. Retain the notation. Let e € {£1}.

(1) Let g € Gy, and v € V. Then Tr(v; d)W(fq,,(v))(g) is an entire function of
v. Moreover, we have 1/T'p(v;d) # 0 for v € C™ such that Iy, is irreducible.

(2) Let g € Gy and v € V_gr. Then Tp(v';d YW (fur . (0))(g) is an entire func-
tion of V. Moreover, we have 1/Tp(v/;d') # 0 for v/ € C" such that Wy, is
irreducible.

2.8. Archimedean Rankin—Selberg integrals for G, x G,,_;. In this subsec-

tion, we assume n > 1. Let (Ily,,I(d,v)) and (I1y ./, I(d’,v")) be principal series

representations of G, and G, _1, respectively, with parameters
d:(dlvd%"‘adn)ezna V:(V1;V23"'7Vn)€(cnv
dl:(dllad/% d, )6Zn717 V/:(V]/.ayé7"' v, )Ecnil'

» Yn—1 'y Yn—1
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We assume d € A, p and —d’ € A1 p. If II;, and Iy, are irreducible repre-
sentations, these are not serious assumptions because of ([21) and (2.). We take
fiu, oo, Tr(v;d), Tr(v';d') and L(s, 14, x g ) as in A with n’ =n — 1.

Let € € {£1}, W € W(ly,,¢.), W € WLy ,,9_.) and s € C such that
Re(s) is sufficiently large. We define the archimedean Rankin—Selberg integral
Z(S, W, W/) for HdJ, X Hd’,u’ by

2(s, W, W) = / o W)Wl det ol dg

where ¢,, is defined by ([2.22]). Here we note

(2.28) Z(s, R(un(K))W, ROYW') = Z(s, W, W) (k€ Ko 1),
By (2:28]), we know that
(229) V1 ® Vg > Z(S, W, (fd’,,(’l)l)), W,E(fd/,,,/(’l}_g)))

defines an element of Hompg, |, (Vy®c V_g, Ciriv). Here W, is defined by [29), and
Ciriv = C is the trivial K,,_;-module. Theorem 2.7 is the first main result of this
paper, which gives the explicit expression of the K,,_j-homomorphism (2:29]).

Theorem 2.7. Retain the notation. For vi € Vg and vy € V_g, we have
Z(s, We(fa0(v1)), W—e (far 1 (7))
(—ey/=1)Zim (i) (ditd)
T @imV_g ) Cr(v; d)Tr(v; d)
if —=d' € =4(d), and Z(s, We(f4,, (1)), W_c(fa ./ (V2))) = O otherwise. Here R%,
is given explicitly in Lemma [Z3)3). In particular, we have
Z(s, We (fd V(gH( dn[ )) W—e(fd’,u/(gH(—d’))))
(2.30) (—ey/—1)ZiZ L (n—i)(di+d})
- (dlmv,d,)rp(u,d)rF( )
if —d' € 27 (d). Here H(—d') and H(—d')[d] are defined by ZI6) and ([2.24).

Remark 2.8. Retain the notation, and assume that II;, and Il ,, are both ir-

reducible. By Lemma B3] in §42 Homg, (Vg ®c V_g, Ciriy) is 1 dimensional if
—d' € E*(d), and is equal to {0} otherwise. Hence, Theorem 2.7 and Proposition

1mp1y that (2.29) vanishes if and only if Homg, , (Vi ®c V_a, Criv) = {0}.

L(S,Hd,y X Hd/7yl)<R(id/(v1)7 v2>

L(s, Mg, x Igr,)

Remark 2.9. We set F' = C. By [22] Proposition 2.14 and Theorem 2.21], we note
that the compatible pairs of cohomological representations of G,, and G,,—1 in Sun
[28, §6] can be regarded as pairs of some irreducible principal series representations
Iy, and Iy, with d € A, ¢ and —d’ € =1 (d). Hence, we have another proof of
the nonvanishing result [28, Theorem C| for Gy, X Gy —1, using Theorem 27 instead
of the analogue of |28, Proposition 4.1] for the complex case.

Corollary 2.10. Retain the notation, and assume —d' € =t (d). Then

Z r(M) ™ Earpa) ® Em

MeG(—d")
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18 a unique Q-rational K, _1-invariant vector in Vg @c V_g up to scalar multiple,
and its image under the K,_1-homomorphism ([229)) is given by
o ()7 Z(s, Welfan (Saria))s W (far o (601)))
MeG(—d)
e/ 1) (i) (ditd))
= ( c ) . L(S,Hd,,XHd/ l,/).
Lr(v;d)Lr(v;d') ’ ’
Here v(M) and M[d] are defined by 2I8) and (224), respectively.

Corollary follows from Theorem 27 with Lemma 3] and is an analogue
of Corollary which gives the explicit description of the archimedean part of
[6) Theorem 2].

2.9. Schwartz functions. Let S(M,, ,,/(F')) be the space of Schwartz functions on
My, (F'). We define e(,, ) € S(My, 0 (F)) by

exp(—7Tr(%z2)) if F=R,
exp(—2nTr(zz)) if F=C

for z € M, (F). We denote e(, ) simply by eg,). Let So(M, ./ (F)) be the
subspace of S(M,, v (F')) consisting of all functions ¢ of the form

P(z) = p(ZaE)e(n,n’)(Z) (z € My o (1)),
where p is a polynomial function. We call elements of So(M,, . (F')) standard
Schwartz functions on M,, - (F).
Let C(M,,/(F)) be the space of continuous functions on M,, ,/(F). We define
actions of G,, and G,y on C(M,, v (F)) by

(L(9)F)(2) = f(g~'2), (R(h)[)(z) = f(zh)
forge Gn, h € Gy, f € C( My (F)) and z € My, 5 (F). Since ey, 1y is Ky X Kpr-
invariant, we note that So(M,, ./ (F)) is closed under the action LK R of K,, X K,
and all elements of So(M,, v (F)) are K,, x K, -finite.
Let [ € Ny, and we consider the representation (7(;.0,_,), V(1,0,_,))- Here we put
0,-1 =1(0,0,---,0) € A,,_1 if n > 1, and erase 0,,_;1 if n = 1. We set

e(nn)(2) = exp(—mepTr(‘z2)) = {

(2.31) ) =m+rn+-+mnm (v= 72, ) €Z").
For v = (1,72, ,¥n) € N, we define an integral triangular array Q(v) of size n
by
() eies ih g = SZham Hi=1,
(232) Q('Y) - (qm)lglgjgn with qz,j - { 0 otherwise.

Lemma 2.11. Retain the notation. For v € Ny such that £(y) = I, the inte-
gral triangular array Q(v) is a unique element of G((1,0,_1)) whose weight is ~.
Moreover, we have

G((Zvonfl)) = {Q(V) | v e (7)L7 E(V) = l}'

Proof. By 2.11)), for an integral triangular array M = (m; ;j)1<i<j<n of size n, we
note that M is an element of G((I,0,-1)) if and only if

l=mipn>mip1>-->2m1 >0, m;; =0 (2<i<j<n).
Hence, the assertion follows from the definition (ZI2]) of the weight. O
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We define C-linear maps gogl)n Vi,0n_1) = So(Myn(F)) and agl)n Vi, —
So(Myn(F)) by

l
(2.33) P (Eam)(2) = 21237 -+ zime () (2),

(2.34) P Eom)(2) = 2123 -2 e (2)

for z = (21,22, -+ ,2n) € My o (F) and v = (y1,72, -+ ,n) € N§ such that £(y) = I.
In 4.4 we prove Lemma [Z.12]

Lemma 2.12. Retain the notation and we regard So(M1,,(F)) as a K,-module via

the action R. Then npgl)n and E%{),L are K,,-homomorphisms.

2.10. Injector. Let A = (A1, A2, -+, \,) € Ay, and | € Ny. In this subsection, we
specify each irreducible component of the tensor product Vi ®c V{j0,_,). Let

N =N =LA N)EA AT > A > A > A > > AL > A, )
and Z°(\; 1) = {N € E°(\) | 4(N — A) = 1}. Then Pieri’s rule [5, Corollary 9.2.4]
asserts that V) ®c V{;,0,_,) has the irreducible decomposition
(2.35) Vi@ Vi, .y~ P W

NeZo (M)
as GL(n, C)-modules. We define a U(n)-invariant hermitian inner product on V) ®¢
‘/(lvonfl) by
(v1 ® VY, v ®vh) = (v1,v2) (V], v5) (v1,v2 € Vi, v1,05 € Vo, 1))
For X = (A, M), ,\)) € E°(X), we set
[Licicj<nNi— A5 —i+5)!
[licicjeni =Xy —i45)V
M= XNo—i+ )= —i+5-—1)

(2.37) W= ] ( e ‘7.),( - d ),.

1<idj<n (A=A =i+ )N =N —i+j—1)!

(2.36) STV, \) =

For v = (71,72, ,Vn) € Nij, we set
(Mm+r+--+ ’Yn)

2.38 b =
(2.38) (7) el ]
When n > 1, for p = (p1, p2, 5 fin—1) H+()\), we set
(Ai = pj —i+J)!
(2.39) ST\, pu) = — .
1§g<n (i = Ajpr — i+ j)!

In §4.11 we prove Proposition 2.T3] based on the result of Jucys [I7].

Proposition 2.13. Let A = (A1, A, ,An) €Ay, L€ Ny, N = (M, Ay, ) €
Z°(X;1). Then there is a Q-rational GL(n, C)-homomorphism Ii}l: Vv — Vi &c
Vi1,0,_) Such that the following assertions (i) and (ii) hold:

(i) The ea:plicit expression of I/\’l is given by

Diew)= >, D  canéu®tp (M’ € GIV)),

MeG(\) PeG((1,0n-1))

where ¢t (M' € G(X), M € G(\), P € G((I,0,_1))) are rational numbers
determined by the following conditions, recursively:
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e When n =1, we have b =
)\1+l

1.
e Whenn > 1, for i/ € EF(X), M' € G(\;1), p € EF(N), M € G(\;p),
0<¢g<li and P e G((1,0,,-1); (q,0,_2)), we have

P wo ° ”H<i<‘ n()\i_)\'+1_i+j)!
el = M;PS (N, X)S° (s ) = fﬂ!i (X_;,_Z-H-)v
<i<j<n\""% J :

AT (1 = g5 — i+ Ui = Ny — i+ )]
(2.40) V<isien W= 1 =T )M = Ajpa — i+ )]
x 3 (=) mse (@, ) ST(X, )

o [e) —+
wezt (oo ST a)S(a,n) ST(A @)

W EE® (), a€E°(n)
if i € 2°(u;q), and C%}P = 0 otherwise.
(ii) We have the equalities
(2.41) <I/\}l(§H(,\'))a Eroy ®&ov—n) ) = C°(X; ),
(2.42) (I (v), T (W)) = b = NC°V; ) (v, 0"y (0,0 € V).
2.11. Archimedean Rankin—Selberg integrals for G,, xG,,. Let (Ily,,I(d,v))
and (IIy .-, I(d',v")) be principal series representations of G,, with parameters
d:(dl,dg,---,d)eZ”, I/:(Vl,VQ,'-' )E(Cn
d = (dy,dy,---,d)er", V= (v, vh, - ,u)) € CM
We assume d € A, p and —d’ € A, p. If II;, and Iy ./ are irreducible represen-
tations, these are not serious assumptions because of (2.3)) and (2.6). We take fg,,
for v, Tp(v;d), Tp(v';d") and L(s, 114, x g /) as in 27 with n' = n.
Let e € {£1}, W € W(Hd,uﬂ/)e); W' e W(Hd/,y/,l/)_g) and ¢ € S(My ,(F)). Let

s € C such that Re(s) is sufficiently large. We define the archimedean Rankin—
Selberg integral Z(s, W, W', ¢) for I14, x Iz .+ by

) ’I’L

Qa3 ZsWW. = [ WW (@olen)] det gl do
Nﬂ\Gn
where we put e, = (O1,5,—1,1) € My ,(F) as in §211 Here we note
(2.44) Z(s, W, W', ¢) = Z(s, W', W, ),
(2.45) Z(s, R(k)W, R(k)W', R(k)$) = Z(s, W, W', ) (k € Ky).

Let [ be an integer determined by
le{0,1} and l=—l(d+d)mod2 if F=Rand{(d+d)
le{0,—-1}and I = —4(d+d)mod2 if F=Rand {(d+d)
l=—0d+d) if F=C,
where £(7) (y € Z™) are defined by (Z31]). By [245), we know that
(246) v @T3 @ v > 25, Wefa (1)), W (far s (7)), 610, (03))
defines an element of Hompg, (V4 ®c V_u4 ®¢ Vi1,0,_1)> Criv) if 1 > 0, and

(2.47) v @ T3 @ T3~ Z(8, We(fa, (1)), Wee (T (7)), 83,0 (73))

<0
207
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defines an element of Homg, (Va ®c V_ar ®c V(—1,0,,_,), Ciriv) if I < 0. Here W,

apgly)n, @&jnl) are defined by (2.9), 233), [234), respectively, and Cyyy = C is the
trivial K,-module. Theorem [2.14] is the second main result of this paper, which
gives the explicit expressions of the K,,-homomorphisms (Z46]) and (Z47]).

Theorem 2.14. Retain the notation.
(1) Assumel > 0. Forvy € Vg, va € V_g and vz € V(30

Z(5, We(fa (v1)), W (Far 0 (7)), 031, (v3))

(—ey/=1)Zin (n=i)(di+d) "
= @ V)T (o T (s & Tt X M) o1 @ 3, 12 (02))

if —=d' € E°(d), and Z(s,Wg(fdjy(vl)),W_E(fdgu/(v_g)),wglv)n(vg)) = 0 otherwise.

Here I(i’il, is given explicitly in Proposition 213l In particular, if —d' € E°(d), we
have

w_1), we have

Z (s, We(fa,u (Erray))s Wee(far o (Emr(—ar)))s (pg{)n(f(;)(fdfd’)))
(2.48) e /TS (=) (dit ) (o (-
:( : 1) ¢ ( d,d)L(S,Hd,,XHd/V/).
(dim V_g)Tp(v;d)Tr(v;d") ’ ’

(2) Assumel <0. Forvy € Vg, va € V_g and vs € V(o

Z(8, We(ta0(01)), Wee (fr 0 (2)), B30 (73))
(—ey/—1)Zin (=) (ditd))

== L 11 v 11 ’ oyt Iidzil
(i ValTp (s d) () - e o) (o) e @)
if d € E°(=d'), and Z(s, We(fa,(01)), W_c(far 0 (7)), 31,0 (T3) = 0 otherwise.

Here I;d/’_l is given explicitly in Proposition I3l In particular, if d € =Z°(—d'),
we have

1), we have

Z(s, Welfa Enay))s Wee (o Crr—an)s 850 Eaarar))
(2.49) (—e /__I)Z;‘:’ll(nfi)(dﬂrd;)co(d; ~d)

= L H v H ' ul ).
(dim Vo) Tr(v; d)Tp (v d') (5, Ma x M)

Remark 2.15. Retain the notation, and assume that 114, and Ily ., are both irre-
ducible.

(1) Assume [ > 0. By Lemma 4] in 4.2 Homg, (Vg ®c V_ar ®c Vi1,0n-1)> Cariv)
is 1 dimensional if —d’ € =°(d), and is equal to {0} otherwise. Hence, Theorem
214i(1) and Proposition 28 imply that (Z46]) vanishes if and only if Homg, (Vi ®c
V_a ®c Vii,0,_1), Cuiv) = {0}

(2) Assume [ < 0. By Lemma .4 in §4.21 Homg, (Va ®c V_a ®@c V(—1,0,,_1)s Curiv)
is 1 dimensional if d € E°(—d’), and is equal to {0} otherwise. Hence, Theorem
2141 (2) and Proposition 2:6imply that (2:47) vanishes if and only if Homg,, (Vg ®c
Voo ®c ViZ1,0,_1), Criv) = {0}.

Let P, be a maximal parabolic subgroup of G,, defined by
Po={p=(pij) €Gnlpn; =01 <j<n-1)}

which contains the upper triangular Borel subgroup B,, = N,,M,,. We put y;(t) =
t/Itht (t € F*) as in §23, and set v”" = — 31" (v; + v}). We define a subspace
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Ip, (I,v",s) of C*°(G,,) consisting of all functions f such that

F(09) = X1(Pnn)IPnli "l detplif(9) (0= (piy) € Pay g € i),
on which G,, acts by the right translation Ilp, ; ,» s = R. Then the representation
(Ip, 1075, Ip, (L,v", s)) is called a degenerate principal series representation of G,,.
Similar to the proof of [6, Proposition 7], we can specify the minimal K,-type of
IIp, 1.5, which occurs in IIp, ;v s|k, with multiplicity 1. If I > 0, we know that
T(1,0,_1)| K, 15 the minimal K, -type of Ilp, ;.7 s, and there is a K,-homomorphism
fp, 10,50 Vio,_.) = Ip,(I,V", 5) characterized by

anJvV”,S(fQ(’Y))(g) = (ZTL_I ‘gn i|2)(nSCF—V”CF+l)/2 (g = (gl,j) € Gn)

for v = (v1,72,-+,v) € N§ such that ¢(y) = . If I < 0, we know that
T(—1,0,_1)| K, is the minimal K,-type of llp, ; .~ s, and there is a K,,-homomorphism
fp, st Vicio, 1) = Ip, (1,1, s) characterized by

: — | det gl [Tiq Gni ™
fP,“l,l/”,S(gQ('Y))(g) = (Zﬂfl |gn i|2)(nsCF—V”cF—l)/2

for v = (v1,72, -+ ,n) € N such that £(v) = —1.
For f € Ip, (I,v",s), we define an integral

(2.50) o, (W, W, f) = / g, WOW )0 ds.

(9="(9i;) € Gn)

This integral is equivalent to ([2:43) via the correspondence
Z(57 M/’ W/a ¢) = an (VV, le an,l,l/”,s(gb))
with gp, 1. s(#) € Ip,(I,v", s) defined by

gp, 10,5 (0)(g) = | det g3 / X—i(R)g(heng) BB~ dh (g € Gy).

G
For g € G,, and v = (71,72, -+ , ) € Niy such that ¢() = ||, we have
gp, 0,5 (21h(Eoi))(9) = Tr(ns — " Dfp, 10 s(Eo()(9) ifl >0,

gp, s (@) Eqe))(9) = Tr(ns — Vs =D)ip, 1o (Eqey)(g) 10
using
2cpdt  T'p(s;m)
t r(scpt+m)/2

o0
/ exp(—meprt?)tscrtm
0

(r e RY, m € Z, Re(scp +m) > 0).

(2.51)

Hence, Theorem 2.14] gives the explicit descriptions of (Z50) at the minimal K, x
K, x Kp-type of 1y, M1ly ,» R1lp, ;. s. We note that

(2.52) 01 @ T3 @ vg — Zp, (We(fa(v1)), W_c(fa 0 (02)), P, 1,075 (v3))
defines an element of Homp, (Va ®c V_ar ®@c Vi1,0,_,), Ciriv) if [ > 0, and
(2.53) 01 @ @03 = Zp,(We(fa (1)), Wc(f v (12)), Ep, 1,05 (T3))

defines an element of Homp, (Vg ®c V_ar ®c V(—1,0,,_,), Ctriv) if { < 0. By Theorem
214l with Lemma [4.4] we obtain Corollary

Corollary 2.16. Retain the notation.
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(1) Assume —d' € 2°(d) (this implies I > 0). Then
> Y. M) e en @b @ ép
MeG(d) M'eG(—d") PeG((1,0,—1))

is a unique Q-rational K, -invariant vector in Vg @c V_a ®@c V{1,0,_,) up to scalar
multiple, and its image under the K, -homomorphism [2352) is given by

>y St
MeG(d) M'eG(—d’) PeG((1,0,,—1))
X Zp, (We(fa,0(€a0))s Wc(farr (Enr)), B, 10,5 (EP))
(e EE i) (g — @) CO(—d'; d) L(s, Mgy X s )
B Tr(v;d)Tr(v;d) I'p(ns —v";1)

Here b(—d—d') and C°(—d';d) are the nonzero rational constants, which are given

by (238) and [237), Tespectwely.
(2) Assume d € Z°(—d’) (this implies 1 < 0). Then

Z Z Z r(M)~ 1MP§M®§M/®§P

MeG(d) M'e€G(—d") PEG((—1,0,_1))

is a unique Q-rational K, -invariant vector in Vq@c V_a @c V(_1,0,_,) up to scalar
multiple, and its image under the K, -homomorphism [2353) is given by

> X > ()Tt

MeG(d) M'eG(—d’) PEC((—1,0n_1))
X Zp, (We(fa,(€a)), Wec(far v (Eaa7)) Ep, 10,5 (EP))

_(—eV=T) S () (it dD (g 4 @) CO(d; —d') L(s, g, x Mg )
- Lr(v;d)Tr(v;d) Tp(ns—v';—1)

Here b(d + d') and C°(d;—d’') are the nonzero rational constants, which are given

by 238) and 237, respectively.

Remark 2.17. We set F' = C. By [3], Proposition 3.3], we note that the compatible
pairs of cohomological representations of G, in Grenié [6] can be regarded as pairs of
some irreducible principal series representations Iy, and Iy ,» with d,—d’ € A,,
such that either —d’ € E°(d) or d € Z°(—d’) holds. Hence, Theorem 214 gives a
proof of Grenié’s conjecture [0, Conjecture 1] at all critical points (Dong and Xue
[3] proved this conjecture only at the central critical point by another method).
Moreover, Corollary gives the explicit descriptions of the archimedean part of
Grenié’s theorem [0, Theorem 2].

Remark 2.18. Although we use the orthonormal basis {(as}areq(y) rather than
{ém}mean) in the proofs, we state the main theorems in terms of the Q-rational
basis {{a} amrec(n) because of the applications in Remark 2171

3. RECURRENCE RELATIONS

3.1. The Godement section (G,,—1 — G,). Let us recall the Godement section,
which is defined by Jacquet in [I5] §7.1]. Assume n > 1. Let d = (dy,da, -+ ,dp) €
Z" and v = (v1,v, - ,v,) € C*. We set d = (dy,dg,-++ ,d,_1) € Z" ! and
U= (vi,va,  ,Vp_1) €EC" L Let f € I(C/i\)K and we denote by f5 the standard

n—17
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section corresponding to f. Let ¢ € So(My—1n(F)). When Re(v, —v;) > —1
(1 <i < n-—1), we define the Godement section g:lrmyn( fz, @) by the convergent
integral

(fo,8)(9) = Xa, (det g)| det g| "= 1/2

X/ ¢((h70n—1,1)g)fﬁ( )Xd (det h)‘deth‘un-i-n/Q dh
Grn-1

n7Vn

for g € G,,. Here we set x;(t) = (t/|t|)! (I € Z, t € F*) as in §23 Jacquet
shows that g;}'myn (f7,®)(g) extends to a meromorphic function of v, in C, which is
a holomorphic multiple of

Il Trvn—vi+1;ldy - di]).

1<i<n—1

Moreover, g;}'ﬂ v, (fo,¢) is an element of I(d,v)k, if it is defined. For later use, we
prepare Lemma [3.11

Lemma 3.1. Retain the notation. Then we have
31 Hasls, ) = (et Kl (fo. R(K)) (h € Ky),
(3:2)  (detk)""gi , (Wgp(K)fo, L(KNG) = g5 . (fo,0) (K € Ky1).

Proof. When Re(v,, —v;) > —1 (1 < i < n — 1), the equalities (3I) and ([B.2)
follow immediately from the definition. Hence, by the uniqueness of the analytic
continuations, we obtain the assertion. O

Let e € {£1}. In [I5] §7.2], Jacquet gives convenient integral representations of
Whittaker functions. If v satisfies (2:8)), then for g € G,,, we have

i (5, 9))(9) = Xa, (det g)| det g 72+~ D/

(3.3) <[ ( / e ) dz)

X We(f5)(h™ ) xa, (det k)| det h| /2 dh,

where e,_1 = (O1,n-2,1) € My ,_1(F). Jacquet shows that the right hand side
of B3) converges absolutely for all v € C", and defines an entire function of v
(see [15, Proposition 7.2]). Thus the equality holds for all ». In Appendix [A] we
show that the integral representation ([B.3]) can be regarded as a generalization of
the recursive formula [I0, Theorem 14] of spherical Whittaker functions.

We(e

3.2. The section (G,, — G,,). In this subsection, we define another section, whose
Whittaker function has appeared in Jacquet’s formulas [I5] (8.1) and (8.3)]. Let
deZ"and v € C". Let f € I(d)k, and ¢ € So(M,(F)). We denote by f, the
standard section corresponding to f. For s € C, [ € Z and g € G,,, we set

(3.4) 5 (for ) / Fo(gh)d(h)xa(det h)| det |57 ap,

Proposition 3.2. Let d € Z", 1 € Z and € € {£1}. Let Q be an open relatively
compact subset of C™. Then there is a constant co such that, for any f € I(d)k
and ¢ € So(M,,(F)), the following assertions (i) and (ii) hold:

n
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(i) On any compact subset of {(s,v,g) € C x Q x Gy, | Re(s) > ¢o}, the integral
BA) converges absolutely and uniformly.

(i) Let v € Q and s € C such that Re(s) > co. Then g} ,(fu,¢) is an element of
I(d,v)k, satisfying

(3.5) o, (k)ef s (for @) = (det k) ~'g] (£, L(K)9) (k € Ky),
(3.6) (det &) g, (. (K') fo, R(K)®) = g7 o(fo, &) (k' € K,).
Moreover, for g € G,,, we have

(3.7)  Welgl (£ 9)(9) = /G W.(f,)(gh)d(h)xi(det h)| det b3 172 dh.

Here f, is the standard section corresponding to f.

Proof. For g € G, we set ||g| = Tr(g'g) + Tr((g~ ) g~?)) and denote by

g9 =u(g)a(g)k(g) (u(g) € Un, alg) € An, k(g) € Ky)
the decomposition of g according to G,, = U, A, K,,. It is easy to see that
3.8)  lalg)ll < llgll = llkgk'll,  llghll <llgllInll,  a(gh) = a(g)a(k(g)h)

for g,h € G,, and k, k' € K,,. Since Gy, > g — 1,—,,(a(g)) € C is an element of
1(0,,v) with 0,, = (0,0,---,0) € Z™, we have

(3.9) / [ —p, (a(x))| dz < 0o (v € C" satistying (Z8))

by the absolute convergence of the Jacquet integral [30, Theorem 15.4.1].

We take d, [, € and Q as in the statement. Replacing 2 with its superset if
necessary, we may assume that ) contains an element v satisfying (Z8). By (3.8)
and [15, Proposition 3.2], there are a constant ¢; and a continuous seminorm Q on
I(d) such that, for any v € , g € G,, and f € I(d), the following inequalities hold:

(3.10) 1 —p (a(9))] < gl IWe(fo)(9) < llgll“r Q(f).

By [15l Lemma 3.3 (ii)], there is a positive constant ¢y such that, for any ¢ > ¢
and ¢ € S(M,,(F)), the integral

(3.11) / [R]|< p(h)| det h| =172 qn
Gn

converges absolutely.
Let f € I(d)k, and ¢ € So(M,(F)). By B.3), I0) and the definition of
I(d,v), for v € Q, z € N, and ¢, h € G,,, we have an estimate

(3.12) o (zgh)| < [nu—p,, (a(@))] lg|* [|A]** sup [f(K)].
keK,

By the absolute convergence of BII) and [BI2) with « = 1,, we obtain the
assertion (i).

Let v € Q and s € C such that Re(s) > ¢p. By definition, we have (33, (3:0)
and

(3.13) 815 (fus @) (umg) = xa(m)m—p, (Mg} s (fu: ¢)(9)

for w € U,, m € M,, and g € G,,. Since Il , is admissible and gzs(fl,,cﬁ) is a
continuous Kj,-finite function on G, satisfying (8.13), we know that g7 (f,,®) is
smooth and an element of I(d,v) g, by [I8, Propositions 8.4 and 8.5].
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Let g € G,,. If v € Q satisfies ([2.8)), we obtain the equality B.7) as follows:

We(gs (furd))(g) = / 80 o(for ) (20) e () d

N,

:/ (/ Fo(zgh)d(h)xa(det h)| det h[5H D72 dh> oo () d

N, \Ja,

:/ </ folzgh)y_e n(z) d:r) d(h)xi(det h)| det h|;+(n—1)/2 dh
Gn N,

- / W.(£,) (gh)é(h)xa(det b)| det Al D72 ap,
Gy

Here the third equality is justified by Fubini’s theorem, since the double integral
converges absolutely by [39), (BI12)) and the absolute convergence of (B.IT]).

In order to complete the proof, it suffices to show that both sides of [B1) are
holomorphic functions of (s, ) on a domain

(3.14) {(s,v) € Cx Q| Re(s) > co}.

By B8), (3I0) and the absolute convergence of ([BI1l), the integral on the right
hand side of ([3.7)) converges absolutely and uniformly on any compact subset of the
domain (3.I4)), and defines a holomorphic function on the domain ([B.14).

Let S3; be a subspace of Sp(M,,(F')) spanned by L(k)¢ (k € K,), and we
regard Sy as a K,-module via the action det ' ®L. Let Iy, be a subspace of
I(d) g, spanned by {T'(¢') | ¢' € Sy, T € Homp, (Sg,1, I(d)k, )} Then we have
g (fv,®)lk, € Is by (B30). Since ¢ is K,-finite and 114, is admissible, the space
I is finite dimensional. Let {f4;}/2; be an orthonormal basis of I ; with respect
to the L?-inner product

(f1, fo)r2 = /K fl(k)mdk (f1, fo € I(d)).
Since gf (fu: ®)|k, = 21 (8l s(fur )i foi) 12 fo,is we have
Wa(gis(flh(b))(g) = Z(gf,s(fVa¢)|Kn7 f¢7i>L2 Wa(f¢7i,u)(g),
i=1

where fy4;, is the standard section corresponding to fg ;. By this expression and
the statement (i), we know that the right hand side of (B is holomorphic on the

domain ([314). O
Remark 3.3. The equality ) with [ = 0 can be regarded as the local theta
correspondence for a principal series representation Il;, in [32, §2].

3.3. Recurrence relations with two kinds of the sections. Let ¢ € {*1}.
For ¢ € S(M,,,1(F)), we define F.(¢) € S(My,,,(F)) by

(3.15) Fo)(t) = / S(2) o (t2) dp2 (t € My (F)).
M, 1 (F)
Let
d:(d17d27"'7dn)EZn7 V:(V17V27"'7V’n)€(cn7
d = (dy,dy,--,d,) € v V= (Vv u) € cv.
If n > 1, we set d= (di,do, -+ ,dp—1) and U = (vq,v9, -+ ,vp_1). If 0/ > 1, we set

~ o~

d = (d},dy,---,d,_,)and v/ = (v, v, VL, _4).
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Proposition 3.4 (G, x G, — G, X G,_1). Retain the notation, and assume
n =n>1 Let f € I(dg, and f € I(c/l\’)anl. We denote by f, and [, the
standard sections corresponding to f and f’, respectively. Let ¢1 € So(Myp—1.,(F))
and ¢g € So(My,,(F)). For s € C such that Re(s) is sufficiently large, we have

Z(s, We(f), W_¢ (gZzL/n,u;L (f5,¢1)), d2) = Z(5, We(8hr s4ur (for¢0)), W_c(f5)),
where ¢ € So(M,,(F)) is defined by
¢0(2) = ¢1((1n-1,0n-1,1)2)d2(enz) (z € M (F)).
Proof. Using (@3), Jacquet shows the following equality [I5, (8.1)]:
Z(s, We(fy), W_c(gd, o (5. 01)), ¢2)

:/ (/ Ws(fu)(bn(h)g)%(g))(d;(detg)\detg‘sF+uL+(n—1)/2 dg>
Ny—1\Gn-1

x W_o(f5)(h)| det b5 /2 dh.
Hence, we obtain the assertion by Proposition O
Proposition 3.5 (G, x G—1 — Gp—1 X G,—1). Retain the notation, and assume
n' =n-—1. Let f € I(d)k, , and f' € I(d)k,_,. We denote by f5 and f,, the

standard sections corresponding to f and f', respectively. Let ¢1 € So(My—1(F))
and ¢ € So(My—1,1(F)). For s € C such that Re(s) is sufficiently large, we have

Z(s, We(gg , (for00)), W_c(fL))
= Z(s, We([fo), W_c(85, 540, (fLrr01))s Fe(2)),
where ¢ € So(My—1,,(F)) is defined by
$0(2) = ¢1(2(1n—1,0n_11))¢2(2 ‘en) (2 € Mp—1,n(F)).
Proof. Using [B3)), Jacquet shows the following equality [15, (8.3)]:
Z(s, We (g4, ., (fo: #0)), W—(£1))

B / (/ W_c(f,)(gh)p1(h)xa, (det h)| det h|SF+V"+(n_2)/2dh>
n—1\Gn-1 1

X We(f2)(9)Fe(¢2)(en-19)| det g|F- dg.
Hence, we obtain the assertion by Proposition O

4. FINITE DIMENSIONAL REPRESENTATIONS

In this section, we give some preliminary results on the theory of finite dimen-
sional representations of K, and GL(n,C). The most important results of this
section are Lemmas [.1T] and T3] which give computable expressions of (the
polynomial parts of) the standard Schwartz functions which have appeared in the
recurrence relations of the archimedean Rankin—Selberg integrals (Propositions [3.4]
and [3.5]).

For the readability, we explain the structure of this section. In §4.1] we recall
Jucys’s result for the Clebsch—Gordan coefficients, and prove Proposition 213l In
4.2 we prove Lemma and prepare some lemmas for finite dimensional repre-
sentations of K. In §43 we construct some polynomial functions on M,, ,,»(C),
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concretely, and study the polynomial functions coming from the recurrence rela-

tions (Lemmas [L11] and LI2)) using the Clebsch—Gordan coefficients. In §44] we
construct the standard Schwartz functions on M, ,,v (F') based on the results in §4.3]
and calculate the Fourier transform (3I5]) in Lemma T3

4.1. The Clebsch—Gordan coefficients. Let A = (A1, Ao, -+, A,) € Ay, 1 € N
and X' = (A}, AL, -+, A € 2°(A;1). By Pieri’s rule (2.35), we can take a GL(n, C)-
homomorphism Ii}l: Vi = Vi ®c Vi0,_,) satisfying

(4.1) (Y (v), V(') = (v,0) (v, 0" € Vav).
Such ii;l is unique up to multiplication by scalars in U(1). We set

D)= Y Yoo apfiu®ip (M’ e G(X)),

MEeG(N) PEG((1,0n-1))

and call CY5P (M € G(\), P € G((,0,_1)), M’ € G(X)) the Clebsch-Gordan

. . A1l .
coefficients. When n =1, we may normalize C\ ", = 1, since

) ={n+1}, Ga)={M}, GO =A{l}, G+ ={\+1}

We consider the case of n > 1. Let € E*(\) and 0 < g < [. By the irreducible
decomposition ([Z335) and Lemma 2:3(1), (2), there are some constants

“2) (2 o) (' € =7 (V) =G 0)

such that, for any p' € Z+(\), the following equality holds:

A LN Y-
S = BN ’ Ly if p' € E°(;q),
(43) (R/)'\L X RE;’,(())T;ill))) o Ii;l o IZ‘/ = ( n, q /,[/ ) H

0 otherwise,
where the symbols i,’), f{l/) are defined in Lemma [23(1), (2), respectively. Then, for

any M' € G\\;u'), M € G(\; ), P € G((1,0,-1);(¢,0,—2)) and p/ € =H(N), we
have

I

! — ~
(44) Cr = (232 {>C%f if 4 € Z°(sq),
0 otherwise,
since
<ig;q(gﬁ,), Gr ® Cﬁ> = Cglﬁ if 1 € Z° (s q),

<((Rﬁ @ Rigor ) o IV o 1) (G G @ Cﬁ> = Cyp’
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The constants ({2) are called the isoscalar factors. In [I7] (see also [I] and
[29, Chapter 18]), Jucys gives the following expressions of them under some nor-
malization of ii}l:
A LN [T =@ SV N)STA, p)Se (s p)S° (s 1)
woq|p ) SO (N, N)ST(N, ')
(4.5)
<z
a€E+(MNNE+H(N)
w€E° (), a€E° (1)
for p/ € ET(N)NE°(u; q), where the symbols S°(N, \) and St (A, ) are defined by
230) and ([239)), respectively. Hereafter, we assume that ii;l is normalized so that
(@3) holds. Then all the Clebsch—Gordan coefficients C%’,P are real numbers, and
we have

—1)¥e=ms°(a,a) SH(N, a)
Se(u',e)Se(a, ) SHT(A a)

(v ®Cp = Z Z ¢ ®Cp, Tiﬁl(CM/) >I§;Z(CM’)

NEeZo(\l) M/eG(N)
_ Z Z CULP N (Car)
E°(Al) M/EG(N)
for M € G(X\) and P € G((Z,On,l)).

Lemma 4.1. Retain the notation. We use the symbols H(X), Q(v) (v € N§) and
C° (N5 ) defined by 216), 232) and 23T), respectively.

(1) Assumen > 1 and p € =X (N)NET(N). Let M € G(N\) and M’ € G(\') such
that M = M’ € G(p). Then we have

CMvQ((On—lJ)) — “ SO(A/’ )‘/)S+(>‘/a lu)
M Se(W, \)SH(\,p)

(4.6)

In particular, we have C%Q(On) =141=0.

(2) We have ngi, Q=N Co(N5N).

Proof. First, we will prove the statement (2) by induction with respect to n. In the
case of n = 1, the statement (2) follows from C°(Aj; A1) = 1 and our normalization

C;,i’)"f)‘l = 1. Let us consider the case of n > 2. Let \ = (A, A2, , Ap—1) and
N = (N, Ay, -+, A\ ). By (@3), we have

N SO(N, N) S°(A,A) SN, A) STV, A)
<) =4 O =) ~ e

A ST, M) ST(A, ) SP(N,A) So(N,

B T M W R eV R (SE
B N = A =i+ 0N =X, —i+n—1! [ co(v;

A, !
N, L= N+ A,

1<i<n—1
By this equality and (4], we have

cHv.e -y _ |GV (r®).e-%)

H()\) Co()/\\/;j\\) H(N)

Hence, the statement (2) follows from the induction hypothesis and this relation.
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Next, we will prove the statement (1) by induction with respect to n. Assume
n>1land p € ZEX(N)NET(AN). Let M € G(\) and M’ € G(X) such that
M =M’ € G(u). By @4) and (435]), we have
MO, 10) _ (A LN (3@ _ [USTV,N)STIN, 1) (37.(0,-1)

M py, O p ) M SC(N, \)SH(A, ) M

In the case of n = 2, the statement (1) follows from this relation and our normal-

ization Cj\ijo = 1. In the case of n > 3, the statement (1) follows from this relation
and the induction hypothesis. O

Proof of Proposition 213l We define a GL(n, C)-homomorphism Ii;l Vv = Vi®c
‘/(lvonfl) by

I = VbV = N)C (VN T
where b(\ — \) is defined by ([238). We take constants chn,” (M’ € G(X), M €
G(N), P € G((1,0,,_1))) so that
)= > Yoo enleueer (M' € G(\)).
MeG(X\) PeG((1,0,,-1))
Then, for M € G()A), P € G((1,0,-1)) and M’ € G(X'), we have

MP b(N = A\)Ce(N; \)r(M') CM.P
M r(M)r(P) M

where (M) is defined by (2I8). Hence, the equality CA +l = 1 follows from our
normalization C’A\i’ﬂ =1 in the case of n = 1. The recursive formula (240) follows
from ([@4)) and (£3)) in the case of n > 1. The equality (Z41)) follows from r(H (X)) =

r(H(N)) =1, b(y) =r(Q(7))~! (v € N3) and Lemma [LI}(2). The equality (Z.42])
follows from (1. O

4.2. Some lemmas for representations of K,. Let Ci, = C be the trivial
GL(n,C)-module. The purpose of this subsection is to give proofs of Lemma
and Lemmas (.2, {3 and £41

Lemma 4.2. Let A € A, F.

(1) The space Hompg, (V) ®c Va, Cuiv) 48 a 1 dimensional space spanned by the
C-linear map

1%\ ®(Cv)\9 U1 Q Vg — <1)1,U2> e C.
(2) Let N € A p NE°(N), and set | = LN — X). For X' € E°(X\;1) such that
X' # N, we have Homg, (Vv ®c Var, Criy) = {0}.

Lemma 4.3. Assume n > 1, and we regard K,_1 as a subgroup of K,, via (Z22)).
Let \€ Ay, p and p € Ap—1,p. Then Hompg, | (Vi ®@c V,, Cuiv) s a 1 dimensional
space spanned by the C-linear map

Va®c V, 30 @03 — <R2(U1), va) € Ciyiy

if w € 2T (N), and is equal to {0} otherwise. Here R;)l is defined in Lemma 23)(3).
Moreover, if p € Zt(X), then

Z r(M) ™"y ® Enr

MeG(n)
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s a unique Q-rational K, _1-invariant vector in V) Q¢ V# up to scalar multiple.

Lemma 4.4. Let \, X € A, g such that {(N — ) > 0. Letl € Ng. If F =R, we
assume | € {0,1}. Then Hompg, (Vi ®c Vi ®c V1,00 1), Cariv) s a 1 dimensional
space spanned by the C-linear map

Vi ®@c Vi ®@c Vo, ,) 2 V1 ® T3 @ Uz — <1 (Ul) vy @ w3) € Ciriy

if N € 2°(\;1), and is equal to {0} otherwise. Moreover, if N € Z°(\;1), then
M.P

(4.7) > > (J]V\’I’,) énr ® & @ Ep,

M/€G(N) MEG(A) PEG((1,0n_1))

is a unique Q-rational K, -invariant vector in Vy ®c Vi Q¢ Vo up to scalar

n—1)
multiple.

Since proofs of Lemmas 25 4.2 [£3] and 4] are easy for F' = C, the main
concern is the case of F' = R. We have Ap,r = {(1;,0,—;) | 0 < j < n} with
1,=(1,1,---,1) € Z7 and 0,,_; = (0,0,--- ,0) € Z"7. Here we erase the symbol
1, if j = 0, and erase the symbol 0,_; if j =n. Let 0 <1 < n, and we regard the
[-th exterior power /\Z(Mnyl(([:)) of M,,.1(C) as a GL(n,C)-module via the action
derived from the matrix multiplication. Then we have V{3, 0,_,) =~ /\Z(Mml((C)) as
GL(n, C)-modules via the correspondence

Cv e Ay Aees Ay, (M € G((11,0,-1)))

with 1 < iy < iy < -++ <4 < n such that Y =1 (i € {i1,42, - ,i}). Here ¢; is
the matrix unit in M,, ;1 (C) with 1 at the (j, 1)-th entry and 0 at other entries, for
1 <j <n. We identify V(q, 0,_,) With /\l(Mml((C)) via this isomorphism.

We have O(n) = SO(n) U SO(n)ko with ky = diag(1,1,---,1,—1) € O(n) and
SO(n) = {k € O(n) | detk = 1}. The complexification so(n)c of the associated
Lie algebra so(n) of SO(n) is given by so(n)c = @<, j<n (CEso(n) with E"°(") =
E;; — E;,;. Here we understand ko = —1 and so(1)c = {0} if n = 1. Let us recall
some facts in the highest weight theory [I8, Theorem 4.28] for SO(n). Let m be the
largest integer such that 2m < n. When n > 2, for an irreducible representation
(1,V;) of SO(n), there is a nonzero vector vy in V; such that, for 1 < i < m and
2i+1<j<n,

(B35 v0 = V=TAr v, T (B3 + VIS Juo = 0

with some Ay = (Ar1, A2, -+, Ar ) € Z™. Such vector vy is unique up to nonzero
scalar multiple, and we call vg an SO(n)-highest weight vector of weight A.. The
weight A\, is called the highest weight of 7, and 7 — A, gives a bijection from
the set of equivalence classes of irreducible representations of SO(n) to the set of
A= (/\17 Ao, s A1, )\m) e A, Satisfying
(M, A2,y Am—1, —Am) €A, if nis even,
{ Am >0 if n is odd.

For A = (A, A2, , Am—1, Am) € Ay, such that A, > 0, we take a representation
(Tso(n),xs Vso(n),a) of SO(n) as follows:

o Let (Tso(n),n» Vso(n),n) be an irreducible representation of SO(n) with highest
weight A unless n = 2m and A, > 0.
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o Let (Tso(n),n» Vso(n),n) be a direct sum of two irreducible representations of
SO(n) with highest weights A and (A1, A2, -+, Ap—1, —Am) if n = 2m and
Am > 0.

By Weyl’s dimension formula [I8, Theorem 4.48], we have

(2i+n) (i+n—1)
(t+h)(i+n—"h)i(n—1—h)(h—1)

(4.8) dim Vo (n), (141,14 1,0, 1) =

for 1 <h <m and i€ Ng.

Lemma 4.5. Retain the notation. Let 0 <1 < n. As an O(n)-module, Vi1, 0,_,)
is irreducible and V(1,0,_,) % Vi1,.0,_,) for any 0 < 1" < n such that I' # 1. We
set h =min{l,n —1}. When n > 2, we have

(4.9) V1,000 = Vao(n),(1n,0m_n) @5 SO(n)-modules.
Proof. For 1 <iy <ig <---<i;<nandey,éeg, - ,&, € {1}, we have
T(1,,0,_) (diag(er, €2, yen)) €y Aeiy Aoo- Aoy = €484 -+ €4y iy Negy Aoee Ay

By this equality, we know that Homo(,)(V(1,,0,_,); V(1,,,0,_,,)) = {0} for any 0 <
" < n such that I’ # I. Hence, our task is to show ([@3) and the irreducibility of
V(1,,0,,_,) as an O(n)-module.

In the case of n > 2 and n # 21, the isomorphism (£9) follows from [I8, Examples
in Chapter IV, §7], and we note that V(q, o, ,) is an irreducible O(n)-module. In
the case of n = 1, the irreducibility of an O(1)-module V{4, 0, , is trivial. Let us

consider the case of n = 2[. By direct computation, for ¢ € {£1}, we confirm that
ve =(e1 + vV —lea) Ales +vV—1eg) A A(en—3+ V—1en—2) A (en—1 +ev—1e,)

is an SO(n)-highest weight vector of weight (1;_1,¢) in V{4, 0,) and satisfies the
equality 7(1,,0,)(ko)ve = v_c. Since dim V(q, o,) = dim V)1, by [&8), we know
that (4.9) holds and V{3, ¢, is an irreducible O(n)-module. O

Proof of Lemma [Z3l The assertion for F = R follows immediately from Lemma
The assertion for F' = C follows immediately from the highest weight theory
[18, Theorem 4.28] for U(n). O

Lemma 4.6. Assumen > 2. Let 1 <1 <n—1. We set h = min{l,n —1}. Let
L:Va,_ 100 i) = V0, ®c Viv,_,) be a C-linear map defined by

Li(ei, Neig Ao Aeyy_,) = Z(% Neg N Nej,  ANej) ®ej
j=1
for iy, ia, -+, 4i—1 € {1,2,--- ,n}. Here we understand I;(1) = Z?Zl ¢j Qe if
I =1. Then1; is an O(n)-homomorphism. Moreover, there is an SO(n)-submodule

V' of Wllaonfl) &c V(laon—l) such that V' =~ Vﬁo(n)7(271h7170m7h) and
(4.10)

1,,0,_1),1
‘/(11,0",—1,) ®c ‘/7(1,07171) = IgliJrhO,lL),l,l)(W1l+1,0n,—l—1)) & Il(‘/(ll,—lyon—l+l)) D V/a
where Igiﬁ”gll’l{l) is the GL(n, C)-homomorphism in Proposition 213
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Proof. For v € Vi1, ,0,_,,,) and 1 <i < j < n, we have

IZ(T(11—1,0n4+1)(EZ;(n))v) = (7(11,07171) & T(l,On—l))(Ef,;(n))ll(v>7

L(71,-1,00 1) (0)v) = (T(1,,0,_1) @ T(1,0,_1)) (ko)L (v)

by direct computation. Hence, I; is an O(n)-homomorphism.

For an SO(n)-highest weight vector v of weight A in V{4, 0, ,), we note that
v ® (e1 + v/—1eg) is an SO(n)-highest weight vector of weight A + (1,0,,_1) in
V1,0, ®c Va0, ,)- Hence, by Lemma 3] there is an SO(n)-submodule V' of
Vi1,0,_) ®c V(1,0,_,) such that V' ~ Vi, 2.1, _1.0 , and we know that

m—h)

(1,0,_1),1
I(li+1,0,i,[,1)(‘/(]-H»lvon—lfl)) + Il(V(lthoanl)) +V’
is a direct sum. By [@.8), we know that dim V3,0, ,) ®c V(1,0,_,) is equal to
dim‘/(ll+170n—l—l) + dim V(ll—lvon—lﬂ) + dim ‘/50(7")7(2>1h,—170m—h)‘
This implies that (ZI0) holds. O

Lemma 4.7. Let (1,V;) be a finite dimensional representation of GL(n,C) with a

U(n)-invariant hermitian inner product {-,-) on V,. Let {v;}{_, be an orthonormal

basis of V. Let (7/,V.) be a finite dimensional representation of GL(n,C).

(1) A C-linear map V1: Home(Vyr, V,) — Home (Ve @c Vi, Coiy) defined by
(N @) = (f(v'),v) (f € Home(Vy, V7), v € Vi, w € V7)

is biyjective, and its inverse map is given by
d
) =D fW @m) v (f € Home(Ver &c Vz, Cuiy), v/ € Vi),
i=1

Moreover, we have V1 (Homp, (V,+,V;)) = Hompg, (Vo @c Vi, Criv)-
(2) A C-linear map Vy: Vyr @c V; — Home (Vy, Vi) defined by

Uy (v @ 7v7)(v2) = (v, v1)0 (v1,v2 € Vo, v/ € V)

is bijective, and its inverse map is given by
d
V() =) flu) ®m; (f € Home(V;, V).
i=1

Moreover, we have ®5((Vy ®@c V;)5») = Homg, (V;, V), where (Vo @c Vo) En s

the subspace of Vo ®c V; consisting of all K, -invariant vectors.

Proof. The former part of the statement (1) follows from definition. The latter part
of the statement (1) follows from

V() (' @7 (kW ©7) = ([ (k)0), 7(k)0) = (k™) f(7' (k)0'), 0)
— 0y (r(k V) o for (K)(v ©7)

for f € Home(V,r,V;), v € Voo v €V, and k € K.
The former part of the statement (2) follows from definition. The latter part of
the statement (2) follows from

Uy (7" @ 7) (k)0 @ T7) (v2) = (v, 7(k)v1 )7/ (k)0 = (T(k™ g, v1)7' (k)0
=7 (k)W (v @ 01)(7(k~")va)
for vi,vy € V-, v € Vo and k € K. O
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Proof of Lemma L2 Let A € A, p. By Lemmal[2.5 we note that Hompg, (Vi, V) is
a 1 dimensional space spanned by the identity map. Hence, we obtain the statement
(1) by Lemma A7(1).

Let X € A, p NE°(A), and we set I = £(N — \). By the decompositions (2Z35]),
(#I0) and Lemma 0] we have Hompg, (Vi/, Var) = {0} for A € Z°(A;1) such that
N’ #£ X. Hence, we obtain the statement (2) by Lemma FL7|(1). O

Proof of Lemma 43l By ([223) and Lemma 2.5 we know that Homg, ,(Vi,V,)
is equal to (CRf; if 4 € 27(\), and is equal to {0} otherwise. By Lemma 7] we
obtain the former part of the assertion, and know that, if u € ZT()),

Y R @lu= > (nw@lup

MEG() MEG(p)

is a unique K, _;-invariant vector in V), ®c VA up to scalar multiple. Hence, by
[2I7) and the properties of complex conjugate representations in §2.61 we obtain
the latter part of the assertion. ([l

Proof of Lemma @4l By the decompositions (235), [@I0) and Lemma A3 we
know that the space Homg, (Var, VA ®@c Vii0,_,)) is equal to (CIiZl it N e Z°(\; 1),
and is equal to {0} otherwise. By Lemma [L7] we obtain the former part of the
assertion, and know that, if A" € Z°(\;1),

> ) @ lur
M/EG(N)

is a unique Kj-invariant vector in V) ®c V(0,_,) ®c Vi up to scalar multiple.
Hence, by (ZI7) and the properties of complex conjugate representations in §2.6]
we obtain the latter part of the assertion. O

4.3. Polynomial functions. We set
APOY — IX = (A1, Xy, An) €Ay | A, >0}

We denote by P(M,, ./ (C)) the subspace of C'(M,, ., (C)) consisting of all polynomial
functions. Let [ € Ny. We denote by P;(M,, v (C)) the subspace of P(M,, ,,»(C)) con-
sisting of all degree ! homogeneous polynomial functions. We regard P;(M,, .,/ (C))
as a GL(n, C) x GL(n’, C)-module via the action LX R which is defined in §2.91 Let
g = min{n,n'}. Then the GL(n)-GL(n') duality [5 Theorem 5.6.7] asserts that

PMuw (@)~ P Vo, ., B Viro

AEARY | p(A)=1

n—q)

as GL(n, C) x GL(n’, C)-modules. Since 1/&0”_” ~Vixo,_,) s U(n)-modules, we
also have
(4.11) Pi(Mp,n (C)) =~ @ Vino._o) Be Vinoe,, )
AEARY | p(A)=1

as U(n) x GL(n’, C)-modules.

The purpose of this subsection is to construct polynomial functions, explicitly.
We define U(n) x GL(n, C)-homomorphisms P§: ViKc Vi — P(M,,(C)) (A € AR°Y)
by Lemma 8
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Lemma 4.8. Let A\ € ARY. Then there is a U(n) x GL(n,C)-homomorphism
PS: Vi W Vi — P(M,(C)) characterized by

(4.12) PS (71 M w2)(g) = (ma(g)va,v1) (v1,v2 € Vy, g € GL(n,C)).

Proof. Because of the irreducible decomposition (LI, there is a nonzero U(n) x
GL(n,C)-homomorphism P: V\ K¢ Vi — P(M,(C)). Since GL(n,C) is dense in
M,,(C) and

(4.13) P(v1 X w2)(g) = P(vr R 7a(g)v2)(1,,) (v1,v2 € Vy, g € GL(n,C)),
we note that
V)\g(c Vi Koy — P(’U_lgl)g)(ln) eC
is a nonzero C-bilinear pairing. Because of
P(7x(k)vr B (k)vz)(1n) = P(vr W va)(1n) (k € U(n))
and Lemma [L2[(1) for F' = C, there is a nonzero constant ¢ such that
(4.14) P(v1 K w9)(1,) = ¢ (va, v1) (v1,v2 € V).

By ([I3) and (£I4), we know that P§ = ¢~ 'P satisfies (L12)). Since GL(n,C) is
dense in M,,(C), we note that [£I2)) characterizes PS. O

When n > 1, we define U(n— 1) x GL(n, C)-homomorphisms P}t : V, K¢ V{,, 0y =
P(M,,_1.,(C)) (1 € AY) by Lemma E0

n—1

Lemma 4.9. Assume n > 1 and let ;1 € AP, There is a U(n — 1) x GL(n,C)-

n—1-

homomorphism P} : V,, Wc Vi,0) = P(Mn—-1,,(C)) characterized by

(4.15) P (Cr R 0)((1n-1,0n-11)2) = P, 0y (Caru,0) B 0) (2)

for M € G(p), v € Vo) and z € M, (C). Here M[(y,0)] is defined by ([2.24).
Furthermore, we have

(4.16) PH (O Carji0))(2) = PLOR ) (2 (1n-1,0n-11))
forveV,, M e G(p) and z € M;,_1,,(C).

Proof. We regard GL(n — 1,C) as a subgroup of GL(n,C) via the embedding ¢,
defined by ([222). By the irreducible decomposition {II) and Lemma 23(1), the
image of a U(n — 1) x GL(n, C)-homomorphism

VM (8 Vv(p,’o) B C_M Xov+— P(()M,O) (CM[(}L,O)] X ’U) S P(Mn((C))
is contained in the image of an injective U(n — 1) x GL(n, C)-homomorphism
P(Mnfl’n((C)) Sp—= (Z — p((lnfl, On,l,l)z)) S P(Mn(C))
Hence, there is a U(n — 1) x GL(n, C)-homomorphism
P:Z 7# &(C Vv(u,o) — 'P(Mnfl)n(C))

characterized by ({I3). By the irreducible decompositions ([@I]) and Lemma
23(1), two injective U(n — 1) x GL(n — 1, C)-homomorphisms

ViR Vi 35K Gy = P (0 Curi0))) € PMa—1,0(C)),
VRV 301 Ry = (2 PL(0T Kvg) (2 (1n-1,0n-1.1))) € P(Mp_1,(C))
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coincide up to scalar multiple. Hence, ([£.10) follows from the equalities
P (Car B Carfgp,o) (1n-1, On—1,1)) = (Curieu,0)]: Carfu0n) = 1
and P2 (Car 8 Car) (1n—1) = (Car, Car) = 1 for M € G(p). O
Let | € Ng. We define two C-linear maps pgl)n Vo, — PM1,(C)) and
Pt Viro, ) = P(M1(C)) by
Pin(Com)(2) = ph Com)(2) = VB() 23 -2l

for z = (21,22, -+, 2n) € M1 (C) and v = (1,72, - ,n) € N such that £() = [.
Here Q(v) and b(v) are defined by (Z32]) and (Z38)), respectively.

Lemma 4.10. Letl € Ny.

(1) The group GL(n,C) acts on P(M1,,(C)) by R. Then pgl
homomorphism such that, for z € M,,(C) and v € V(i o

is a GL(n,C)-

)

n—1)’

l o -
(4.17) p) () (en2) = Pilo. 1 (Cat0na) B0)(2).

(2) The group U(n) acts on P(M,,,1(C)) by L. Then pgi)l is a U(n)-homomorphism
such that, for z € My, (C) and v € Vi o

n-1)’

) o _
(4.18) Py (@) (2en) = Plo, ) (TE Cao,_s.))(2)-

Proof. Let v = (y1,72, -+ ,n) € N§j. By direct computation, we have
R(E;)pi) (Com)) = 1Pin (Com):
R(E; )P 0 (Carn) = /154103 + 1) DY n (Cotr8,—8, 1))
R(Ej41.)p (Cam) = /% (i1 + D) p{)
L(E;0)p} ) (Cae) = —7ipih (Com)s

) //— ) jfmmm———————————
L(EjajJrl)p'EL,)l(CQ(’Y)) ==/ +1) sz,)1(CQ(y75,~+5,-+1))7

) 0 jfmm———————————
L(Ej+1,j)P7(z,)1(CQ(v)) = —\/v+1(y +1) P5L31(CQ(W+5j75j+1))

n (gQ(’7_5j+6j+1))’

for1<i<nand1l<j<n-—1. Here we put pgl’)n((Q(,Y/)) = pg?l(CQ(vl)) =0 if
v ¢ Nii, and denote by §; the element of Z™ with 1 at i-th entry and 0 at other
entries for 1 <4 < n. Comparing these formulas with (ZI3]), 2I4) and 25, we
know that pgly)n is a GL(n, C)-homomorphism. Using (Z25)) and

LESY) = L(E,;) (L<ij<n)  on P(Mua(0)),

we further know that Pg,)1 is a U(n)-homomorphism.

Next, we will prove the equality (£I7). When n = 1, this equality follows from
G(l) = {l} and pg{)l(g)(g) =(n1(9)¢1, @) = ¢ (9 € GL(1,C)). Assume n > 1. We
regard GL(n — 1,C) as a subgroup of GL(n,C) via the embedding ¢,, defined by
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[222). Because of the irreducible decompositions ([£I1]) and Lemma 23|1), two
injective U(n — 1) x GL(n, C)-homomorphisms

Vo, Be Vo, 1) 3 G, ) 8o = (2 DL (0)(en2)) € P(M,(T)),

VO + Me Vo, 1)9CQ wl)‘szPlO (CQ 7,1l))®v)etp( 2(C))
coincide up to scalar multiple. Hence, ([£.I7) follows from the equalities

l o -
P (G, ) (en) =1, Pio. (€0 i) B o, ) (ln) = 1.
The proof of the equality [@I8)]) is similar. O

Lemmas 41Tl and play important roles to give the explicit description of the
recurrence relations of the archimedean Rankin—Selberg integrals. The polynomial
function pg in Lemma 1] (resp. Lemma [L12)) comes from the polynomial part of
the standard Schwartz function ¢g in Proposition B4l (resp. Proposition B.1]).

Lemma 4.11. Assumen > 1. Let u € AP and v € N, We set | = £(v) and

— !
po(2) = P (Cargy B Car0)) (Lnm1 One1,1) 2005 (Cay ) (€n2)
for z € M,(C). Then we have

po = Z Z Cg((u,o))7Q((0n71,l)) Cﬁ/((uﬁ)%@('y) PS, (Cy B (n),s
NeEEe ((1,0):1) N,N'€G(N\)

where C%’,P is the Clebsch—Gordan coefficient in §411

Proof. We set Qo = Q((0,—1,1)) and Q1 = Q(v). Let g € GL(n,C). By Lemmas
48 49 and [£.10, we have

Po(9) =P5, (Cr(.0)) B Cr((.00)) (9 P01 (Cao B a1 (9)
=(7(0.0) (91 ((w.0): S (00 {710, (9)Car» Cao)
=((T(1,0) © 71,0, ) (D (1,00 © C@rs Ca((10)) @ Qo)

By (@), (£0) and Lemma 48] we have

H((1,0)), H((1,0)),Q1
po(g) = Z Z CN((H 0)),Qo CN/((H 0)),Q <T)\’ CN/ CN>
M eZo((1,0)31) N,N’'€G(N)
H((1,0)), H((1,0)),Q1 po 7
= Z Z CN((H 0)),Qo CN/((H 0)),Q P)\’(CN X CN’)(g)
E°((1,0)31) N,N"€G(X)
Since GL(n, C) is dense in M, (C), we obtain the assertion. O

Lemma 4.12. Assumen > 1. Let u € AfLO_l{ and v € N~ We set 1 = £(v) and

p0(2) = P Gy B Car) (2 {(Lne1, On1.1))DY 1 1 (Com) (2 'en)
for z € M,,_1 ,(C). Then we have

,0)), s H((p,0)), n—1,l -
Po = Z Z Cﬁ((“ 0)),Q((v,0)) CN/((H 0)),Q((0r—1,1)) P:, (Cﬁ X (n),
wEE° (usl) NEG((1',0);1)
N'eG((w',0))

where C%’,P is the Clebsch—Gordan coefficient in §4.11
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Proof. We set Qo = Q((0n,—1,1)) and Q1 = Q((7,0)). Let z = (1,-1,O0pn—1,1)g with
g € GL(n,C). Then we have pgf)_m((@(v))(zten) = pgf)l(g)(g fe,) by definition.
Hence, by Lemmas L8] and [£10] we have
Po(2) =P{,,.0) (Car (1,00 B Car((1.00)) (9)Pr0, 1) (Car K o) (9)

=(711.0)(9)Ct1((1.0))> Cr (o)) {710, (9)Ca0s Cr)

=((T(1.0) © 71,0, ) (9 ((1,0)) D CQos CH((1.0)) @ C@n )-
By (1)) and (4]), we have

po(z) _ Z Z Cg((ﬂwo)%Ql Cﬁ/((ﬁho))on <7_/\/ (Q)CNM (:N>
N eE°((n,0);1) N,N'eG(N)

Because of H((4,0)) € G((10): 1), @1 € G((L,0p_1); (1. 0p_2)) and (@), for X €
Z°((p,0);7) and N € G(X), we have Cg((”’o))’Ql = 0 unless X' = (¢/,0) and
N € G((¢/,0); u') with some p’ € =°(u;1). Hence, we have

po(Z) _ Z Z Cﬁ((ﬂ,O))an Cﬁ/((lhO))aQo <T(u’,0) (Q)CNH <N>
wEEC (u3l) NeG((p',0);u”)
N’eG((n,0))
_ Z Z C]HV((H’O))’QI C]HV/((H’O))’QO P;, (g X (n)(2)
wEEC (pu3l) NeG((p',0);1”)
N’eG((1,0))
by Lemmas A8 and Since {(1p—1,0n-11)g | ¢ € GL(n,C)} is dense in
M,,—1,,(C), we obtain the assertion. O

4.4. Standard Schwartz functions. For A\ € AP°Y | we define two C-linear maps
®S: Va M Vi 2 01 Mg = PS (07 K vg)(2)e(n) (2) € So(M,(F)),
O3 V3 K Vi 3 01 Kog — P (07 K vg) (2)eq) (2) € So(M,,(F))
with z € M, (F). By the K,, x K,-invariance of e(,) and Lemma H.8, we know that
these are K, X K,-homomorphisms.
When n > 1, for € AP, we define two C-linear maps
oV, Mo Vi) 2 07 Koy = P (0T R 2)(2)en-1,n)(2) € So(Mn_1,n(F)),
@) : V,, R Vipoy 3 01 B3 5 P (07 K 0g)(2)€(n_1.0)(2) € So(My—1,0(F))
with z € M, _1 »(F). By the K, 1 x K,-invariance of e, _1 ;) and Lemma A9 we

know that these are K, _1 x K,-homomorphisms.
We regard So(Mj,,(F)) and So(M,, 1(F)) as K,-modules via the actions R and

L, respectively. Let [ € Ny. We define two C-linear maps ‘P;l,)f Vion) —
So(M,,,1(F7)) and @m Vi1,0,_1) = So(My,1(F)) by

n,l:

e Vo, 27 = pL () (2)ewm (2) € oMy (F)),

B Vino, 1) 20+ D (0)(2)e(m1y (2) € So(My1(F))

with z € M,, 1 (F'). By the K,-invariance of e(, 1y and Lemma .10, we know that
these are K,-homomorphisms.
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Proof of Lemma 212l Since b(y) = r(Q(v))~! for v € N7, we have

l l () 1
PO 0)(2) = ph ) (@eam(2),  BL@)(2) = Db () (2)eqn(2)
for v € Vi3 0,_,) and z € My ,(F). By the K,-invariance of e(; ;) and Lemma Z.T0,
we obtain the assertion. O

In Lemma EI3 we consider the Fourier transforms of ¢ (v), Eg?l(v) (v €

n,l
Vi1,0,_1)); which we need to describe the recurrence relation in Proposition 3.5,
explicitly.

Lemma 4.13. Let ¢ € {£1} and | € No. Assume | € {0,1} if F = R. For
v € V0,_,), we have

Felomi (@) = (-eV=D'B1,0),  F(@h(v) = (~=V=D)'i)(v),
where the Fourier transform F. is defined in (3.15).

Proof. Tt suffices to show the assertion for v = () with v € Nij such that £(v) =
For t = (t17t27 s ;tn) S Ml,n(F)a we have

Fo (0 o) (1) = / PG

-/ H/z exp(—mcpZizi — mecpV —1(tiz; + 1:2;)) dpz;
= Vb()(—eV/—1E) " exp(~mepfit;) = (—evV/—1)B1) (Com)(2).

Here the third equality follows from the elementary formula
(4.19) / 2" exp(—mepzz + mepV/—1(2t + 2t))dpz = (V—1)" exp(—mcpt t)
F

for (t e R, m € {0,1}) or (t € C, m € Ny) according as F' = R or F = C. Moreover,
we have

F (B (Co)) () = Fe(0 Com)) () = (V=155 (Cor) (1)
= (V=D (Cor)(8),

which completes the proof. O

5. THE PROOFS OF THE MAIN THEOREMS

In this section, we prove our main theorems (Theorems 277 and 2I4)) using the
results in §3l and §

5.1. Explicit calculations for the sections. In this subsection, we calculate the
sections in §3] explicitly, at the minimal K,,-types of principal series representations.

Lemma 5.1. Let a = diag(ai, a9, - ,a,) € Ap, u € Uy, X € Ay, and M € G()).
Then we have the following equalities

(51) <T)\(ua)<'M,CM> <7‘)\(au é'M,CM Ha% s

(5.2) N, (@) / em)(ua)du =1n_,, (a)/ e (au) du = %

U, U, | det a\



CALCULUS OF ARCHIMEDEAN RANKIN-SELBERG INTEGRALS 749

where yM = (/M AM ... M) s the weight of M defined by [2.12).
Proof. By 213) and [215), we have

a)(m = (H aziM> v, Ta(u)lm = (v + > PN (w)CN,
i1

NeG(A), yM>jexyN

where pys n is some polynomial function on U, and > is the lexicographical
order. The equality (EJ]) follows from these equalities and the orthonormality of
{Cm}mean)- The equality (B.2) follows from direct computation

npn(a)/ e(n)(ua)du:n_pn(a)/U e(n)(au) du

n n

n 1—1
_ —(n+1-2i)cp/2 2 2
= H a; exp(—mcpa;) H exp(—mCra;T; ju; ;) dpt; ;
. ; F
i=1 =

- —(n— e a
= Ha”i (n=ter/2 exp(_ﬂ-CFazz) = (n)(i )1 2
i=1 | det a j

Here the first equality follows from the substitution u — aua™!, and the third
equality follows from the substitution u;; — a; 1um- and the elementary formula

with ¢t = m = 0. O
E19)

For A = (A, A2, -+, A\n) € Ap, M = (my 5)1<i<j<n € G(A) and | € Z, we define
At+leA,and M+1eGA+1) by

)\+l:(>\1—|—l,)\2—|—l,'~' ,)\n—Fl), M+l:(mi,j+l)1§i§j§n;

and denote A + (—I) and M + (=) simply by A — 1 and M — [, respectively. For
AeA,, l€Z, g€ GL(n,C)and M,N € G()\), we have
(det g)'(ma(9)Car, Cn) = (Tasi(9)Cars ()
Lemma 5.2. Let d = (dy,ds, -+ ,d,) €Z" and v = (vi,v9, -+ ,vy) € C™.
(1) Assumen > 1. We take d and ¥ as in 931 Ifd € A, r, we have

8 n (75 (Chr@)- ‘I’;I_d” Cor(a)—a, ®Cr-d.))

(5.3) not
lell v (H Pp(vn —vi+1; di — dn)) fa,.(Car)

=1

for M € G(d). If —d € A, r, we have

S -
gdwn( o) ® gy, Co-dyra, B ran))

lelV <H Prp(vp —vi+1;dy, — di)) fa.0(Car)

for M € G(—d). Here fy,, and fy, are defined by @26) and 221), respectively.

(5.4)



750 T. ISHII AND T. MIYAZAKI

(2) Let Il € Z and s € C such that Re(s) is sufficiently large. If d € Ay p and
d+1¢€ AP°Y  we have

g s (fa. (Cray), ®o (a1t ¥ Cariay41) )

(5.5) = — 1 (H PF(S + vy di + l)) fd,v(gM) (M € G(d))

dim Vd i1

If —d € A, r and —d — 1 € AR°Y, we have
gr s (fa0 (Cr—a))s %4 1(Cr—1 B Cp(—ay-1) )

(5.6) _ ; (ﬁ Tp(s+ v —d; — l)) fd,y(C_M) (M € G(—d)).

dimV_y e

Proof. First, we consider the proof of the statement (1). Since the proofs of (B3]
and (B.4) are similar, here we will prove only (53). Assume n > 1 and d € A, p.
We define a C-linear map g : V; — I(d v) by

g+(Cm) = gd,,“V,,L( dV(CH(d)) (CH(d) dn X Cr—d, )) (M € G(d)).

Then g, is a Kn-homomorphlsm because of (B1)). Since Hompg, (Vy, I(d,v)) is 1
dimensional, there is a constant ci such that g, = c;f;,. Let us calculate cy.

Since (EI2) and [@I6) imply
o Crr@—a, B Ca@-a,)((h On1.1)) = (73_0, (Wp@_a,> Str(@)-a, o1 ()
for h € G,,_1, we have
et =iy (H(d))(1n) = 8+(Cra)) (1n)
_/G”1<Tc7dn(h)CH(cT)dnvCH(E)dn>e(n—1)(h)

% £3.5(Crea) (h™1)Xa, (det h)| det [ *"/% dh.

Decomposing h = kua (k € K,,—1, u € Up—1, a € A,—1) and applying Schur’s
orthogonality [I8, Corollary 1.10] for the integration on K,_; with the equalities

(det h) d, y(CH d))(h_l) = nD—Pn71 (a_1)<7—[1\7dn (k)CH(J),dnucH(g[),dn>

and dim Vc?— 4, = dim V7, we have

1
CyL =— T4 ua ~ , = ern—1)(ua)du
* dlng/AM</UM< 7, (4@ -a, > Cor (@ -a, ) 0 (n=1) (u0) )

X o—p,_, (o~ )| det alr T da.
By Lemma 5.1l and (2351]), we have

-1

15 > Y _ 4 2cpda;

C+ = H exp(—ﬂ'CFag)a,Eyn vi+ )CF+d1 dn, ?
dim V3 ; 0 a;

= [[Tr(vn—vi+ 1; di — dy,).

Hence, the equality (53) follows from gy = c4fy,.
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Next, we consider the proof of the statement (2). Since the proofs of (5.3) and
(5.6) are similar, here we will prove only (5.5). Assume d € A,, r and d+1 € ARV,
We define a C-linear map go: Vy — I(d,v) by

20(Cr) = 7o (£, (Cr(ay)s @541 (Carst ® Crr(ay+a) ) (M € G(d)).

Then g, is a K,-homomorphism because of [B3]). Since Homg, (Vy, I(d,v)) is 1
dimensional, there is a constant ¢, such that g, = c.fy,. Let us calculate c¢,. By

[#12), we have

Co :Cofd,V(H(d))(]-n) = gO(CH(d))(]'n)

= / fa,0 (Crr(ay) () (Tagi(R)Crray+1s Coay+1) €y (h) xi(det h)| det R[5 D2 ap,

n

Decomposing h = auk (a € A,,, u € Uy, k € K,,) and applying Schur’s orthogonal-
ity [18, Corollary 1.10] for the integration on K, with the equalities

xi(det h)fa o (Caray) () = N—p, (@) (Tay1(B)Cr(ay+15 Ca(ay+ )
Ta+1(P)Cr(a)+1 = Z (Ta+1(k)Crr(ay+1> Cartt) Tasi(aw)Car g

MeG(d)
and dim Vg4; = dim Vg, we have

1
:dide/ (/U (Tas1(aw)Car(ay+15 Cr(d)+1 )€ (n) (a) du)

n

X 1y, (@)| det a5 "D dq,

Co

By Lemma 5.1l and ([2351]), we have

1 e i .
~ dimV, H/ exp(—mepa?)al T Tt SCF 44
m Vg - ‘

a;

1
r d; +1
dlde H ps +vis di +1).
Hence, the equality (5.3) follows from g, = cofy,,. O

Corollary 5.3. We use the notation in Lemma B2(1). If d € A, F, we have

(dim V) xa, (det g)| det g|'7 vnt(n=1)/2

H;;frF( —vi+1;d; — dy)

< ( / G B dn>((h,hzm)w_s(en_lz)dz)
X We(£75(Cp@)) (™)X, (det )| det bl "/2 dh

We(fa (Cm))(g) =
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for M € G(d) and g € G,,. If —d € A, r, we have
(dim V_7)xa, (det g)|det g[2 "~/
[0 Cr(vn —vi + 15 dyy — dy)

<[ ( /| T e, G, BT () 9) Yo dz>

We(fa, (Car))(9) =

T — — vp+n/2
X We(£75(Cor ) (A )xa, (det h)| det b7 /% di
for M € G(—d) and g € G,,.
Proof. The assertion follows immediately from ([3.3) and Lemma [5.2](1). O

In order to prove Proposition [Z.6] we prepare Lemma [5.4] of complex analysis.

Lemma 5.4. Let Q; and Qy be open relatively compact subsets of C? such that
Qo contains the closure of Q1. Let Q3 be an open relatively compact subset of C
which contains the closure of {s1 — s2 | (s1,52) € Q2}. Let 5(2) be a meromorphic
function on Q3. Then there is a constant cy which depends only on (Q1,Qs, B(2))
and satisfies the inequality
sup  [B(s1—s2)f(s1,82)| Sco sup  [f(s1,82)]
(s1,82)€Q (51,52)€Q2

for any bounded holomorphic function f(s1,s2) on Qo such that B(s1 — s2) f(s1, S2)
is holomorphic on Qs.

Proof. We take a compact subset Q5 of Q3 so that {s; — s3 | (s1,82) € 1} C Q%
and §(z) is holomorphic at any point of the boundary of 5. Then there is a finite
subset S of the interior of 5 such that 3(z) is holomorphic at any point of Qf
which is not in S. Take a sufficiently small 7o > 0 so that, for any (s1,s2) €
and any a € S,

{(2,82) | z € D(s1;3r0)} C Qa2,  D(a;3r9) CQ;,  D(a;3re) NS = {a},
where D(t;7) ={z € C||z—t|<r} fort € Cand r > 0. Let
O ={2€Q5||z—al >r for any a € S}.
Since 3(z) is holomorphic at any point of the compact set QF, we know that 5(z) is
bounded on €25. Let co = sup.cqy [8(2)|. Let f(s1,s2) be a bounded holomorphic

function on Q5 such that 8(s1 —s2)f(s1, s2) is holomorphic on Qs. For (s1,s2) € Oy
such that s; — so € f, we have

|B(s1 = s2) f(s1,82)| = [B(s1 — s2)| X | f(s1,82)| <co sup [f(t1,t2)]

(t1,t2)EQ,

For (s1,$2) € Q1 such that s — s2 & Y, we have

1 2
|B(s1 — s2)f(s1,82)] = Py B(sy — s2 + 2roe¥ 1) f(s1 + 2rgeY 1 55) db
0
1 2
Sﬂ |B(s1 — s2 + 2T06ﬁ0)| x | f(s1+ 2T06ﬁ9, s9)|df
0
1 21
<— co sup |f(ti,t2)]d0 =co sup |f(t1,t2)]

27 Jo (t1,t2)€Q: (t1,t2)€EQs
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by the mean value theorem for holomorphic functions and the choice of rg. There-
fore, we complete the proof. O

Proof of Proposition [Z0. We will prove the statement (1) by induction with re-
spect to n. In the case of n = 1, the statement (1) holds, since T'r(vq;d;) = 1,
We(fa, 0, (v))(9) = Xxa,(9)|g|% . Let us consider the case of n > 2. Let M € G(d).
By Corollary B3] we have

(5.7)

T r(v; d)We(fa, (Car))(9) = (dim V) xa, (det g)| det [T~/

g /G ( /M oy 20, G-, B ar=a.) (1 12) ) clens2) dz)
X Tr(0: W (f7,5(Cr ) (h")xa, (det h)| det 2 dh.

By the induction hypothesis, I'p(7; d)WE(f(zﬁ((H@))(h_l) is an entire function
of U for any h € G,_i. Applying Lemma [54] for f(z) = T'p(z + 1; |d; — d;|)
(1 <i<j<n-1), we know that the majorization [I5, Proposition 3.3 with
X =1] for Wa(f(ia(CH(cT))) is also valid for T'p(7; @Ws(fag(g{@)). Hence, similar
to the proof of [I5 Proposition 7.2], we know that the right hand side of (5.7)
converges absolutely and is an entire function of v. Hence, we obtain the former
part of the statement (1). For v € C" such that Iy, is irreducible, there is some
g € Gy, such that W.(f4,(Cm))(9) = Te(Ig(9)fa,(Car)) # O, since the Jacquet
integral J. is a nonzero continuous C-linear form on I(d, v). Hence, the latter part
of the statement (1) follows from the former part, and we complete the proof of the
statement (1). The proof of the statement (2) is similar. O

5.2. Explicit recurrence relations. Let (Il;,,I(d,v)) and (Ilg ./, I(d,v')) be
principal series representations of G,, and G, respectively, with parameters
d:(dl,dg,"‘,dn)GZn, I/:(l/l,l/g,"‘ )€(Cn
d = (dy,dy,--,d,) ez, V= vh- V) eC.
Let € € {£1}. Let s € C such that Re(s) is sufficiently large.

Proposition 5.5. Retain the notation. Assume n’ = n > 1, —d' € A, p and
de=Z(=d)NA,p. Let l=¢(d+d). Then we have

(S We (fdv(CH(d))) W_ (fd’ (CH( d’) ))s @glzl(CQ(der/)))

H(=d')+d;,,Q((0n-1.1)) CH( d)+d;,,Q(d+d")
H(—d)[d]+d!, (d)+dr,

dim Vfd’ Hi:l FF(S + v + Vn; di + d%)
dim Vo T[22 T (), —v) + 15 d), — dj)
X Z(s,Wg(fd,y(CH(fg,)[d])),Wfs(fg,’;,(CH(ig,)))).

— . o
Proof. Let ¢1 = ®7 - (Cy(_aryyar B CCantra,) and és = B, (Coarar)- By
Proposition 34, we have

Z(Sv Ws(fd,U((:H(d)))a W_E(g;”n’y’( &, (CH( a ), (/51)) b2 )
= Z(S7 W, (gfl;ﬁeru;l (fd,V(CH(d))7 9250))7 75( (f/,;/(CH(fJ/)))L
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where ¢o(z) = ¢1((1n—1,0n—_1,1)2)P2(enz) (2 € M, (F)). Since we have
M= e, — v+ 1; d, — d)
dimV_5

gd/ vl ( J U/(CH( a) ) ¢1) fd’ (CH(—d'))

by ([B.4)), it suffices to prove the equality

Z(Sv Wt‘(g;’ 541, (de(CH(d))ad)O))v W—E(f&\/ﬂ;' (CH(_E/))))

(5.8) = CHED T Q(On-1D) GH(~d)+d, Q(d+d)) I, Tr(s +vi+v,; di+d))
' H(=d")[d)+d, H(d)+d;, dim Vy

X Z(SaWs(fd,u(gH(_g/)[d]))aWfs(f@j/ (CH(—cT/))))'
By Lemma 11| we have

o H(—d)4d},,Q((05—1,l
gd;,H%(fd,u(CH(d)),(bo) = Z Z CN( )+d;,,Q((0n-1,1))

(5.9) NEBC (—d/+d!,3l) N,N'€G(N)
H(—d)+d, ,Q(d+d) o —
x Cn (T QU o st (Faw(Caay), 3, (Cv B Cnr)).
By (3.4)), we note that
v C_M = gsl’n,erV;L (fdﬂf(v)’ (P_())\’(Ul X CMJFd,n)) (g)

defines an element of Hompg, (Va ®c Vi —a: , Ciriv) for X € E°(=d' +d,;1), v1 € Vi
and g € G,. Hence, by Lemma 2] for N € Z°(—d' +d ;1) and N, N’ € G(X'), we
have

8% orwr (faw(Cray), DX (Cn W Cn))(9) =0

unless \' = d +d), and N' = H(d) + d],. By (&3] and this equality, we have
(5.10)

o d')+d!y Q((0n 1.1 !, Q(d+d
8ar v, (£au (Car(ay), do) = Z O QO ) ) Q)

H(d)+,
NeG(d+d,,)
X 8ar spur (aw (Cr(ay)s Payar (Cv B Chriay+ay, ))-
By ([228)) and ([B3]), we note that
Cy @U Z(S,Wa (géfn,sw (fa, V(’Ul)7m(CM+d,'" X U_2)))7W—a(fg/,;/@)))

defines an element of Homg, (Vg ®c V. d,,(Cmv) for v1 € Vg and vy € Vigyar -
Hence, by Lemma [£3] for N € G(d + d},), we have

(5 W, (gd’ ,s+vl (fd V(CH ) d+d' (CN X CH(d)-i—d’ ))) W—e(f@,y’?(CH(_a\/)))) =0
unless N = H(—d’) +d,. By (£5), (&I0) and this equality, we obtain (B.8). O

Proposition 5.6. Retain the notation. Assumen' =n—1,d € Ay, g and —d' €
EY(d)NAp—1,p. Let 1 =4(d+d"). Then we have
Z (s, We(faw (Car(—arya))s W-e(ar o (Ca(—ar))))

_ I H(~d'—d,0)), QU+’ ,0)) ~H((—d' ~d0,0)), Q((0,-1,1)) ) "
= (—ev-1) (CH(d) dn Cr—ayaa, ' )

dim V T Tr(s + vy + vl —dn — dj)
dim V_gr 72 11 Up(vn —vi+1; —dy + di)

x Z (s, We( Jp(CH(dA)))vW*E(fd’,u’(CH(fd/)))a@gl,)n—l(CQ(Jer/)))'
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o l N
PT‘OOf. Let d)l = (I>—d’—d” (CH(—d’)—dn ®<H(—d’)—dn) and (;52 = 90;11,1(<Q(2+d'))' By
Proposition [3.5] we have

(5 We (gdn,un(du(CH )’d’O)) W (far v (Car )))
= (5, Wellzp G W (5 o G 00 Fl).
where ¢o(2) = ¢1(2(1p—1,0n-11))P2(2'e,) (z € Mn_lm( )). We have

R - [, Tr(s + vy + V) —dy — df) -
80, stwn (ar o (Cor(—any), 1) = ! V. far v (Crr(—ary)

by (E6). Because of these equalities and Lemma [£T3] it suffices to prove

(3 W, ( ,L,V"( ED(CH(J))’QSO))a Wfs(fd/,u’(CH(—d/))))
— C dﬂvo)) Q((d+d,’0)) CH((_dl_dnvo))aQ((Onfhl))
)—dn H(—d")[d]—dn
(5:11) IS Trvn = v+ 15 —do + di)

dim VE
x Z (s, We(fan Cr—aryia))s Wee(Ear o (Crr—ar))))-
By Lemma 12 we have

(5.12)
H((—d' —dy,0)),Q((d+d’,0
gh o EoCa) @) = Y St DU
N EEC (=d' —dnsl) NEG((N,0);))
N’'€G((N,0))

H((—d'—dy,0 0n1,l (o
<l DO b (61 (Cora) @5 (G B Cw)).
By (32), we note that

v® = 84, (f75(0), 23 (Car—a, B 1)) (9)

defines an element of Hompg, _, (V;®c Viga,,Cuiv) for X € E°(=d' — dy;1), v
Viro) and g € G, Hence, by Lemma A2 for N € G((X,0);\'), N' € G(( ))
and ) € Z°(—d' — dy;1), we have

gt ((5(Ca) @5 (Cy B ) =0
unless X' = d - dp and N= H(‘i) —d,. By (&I2) and this equality, we have
gdn7’/n( d V(CH(d ) ¢0)

= H((=d'=dp,0)),Q((d+d’,0)) ~H((—d'—dn,0)),Q((0n—1,1))
(5.13) - Z Chia)-d, Cn
N’'€G(d—dy)
<84 v, (075 Ca@) 5y (Cr@—a, BCN))-

By (228) and (B1), we note that
G @7 = Z(s, W g, (7000 5 (@8 Cur-a)))s Wl (0))

defines an element of Homg, (Vg ®c V_a, Ciiy) for v1 € V; and vo € V5 d,
Hence, by Lemma A3} for N' € G(d —d,), we have

Z(S, Ws (g(;myn (f(zp(CH({[)) (CH(d —d, X CN’))) Wfs(fd/,u’(gH(—d’)))) =0
unless N/ = H(-d')—d,. By (]E{D, (BI3) and this equality, we obtain (B11). O
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Theorem 5.7. Retain the notation. Assume d € Ay, g and —d' € A,y p. We take
T'r(v;d) and Tr(v';d) as in §2710
(1) Assumen’ =n and d € Z°(—d’). Letl = £(d+ d'). Then we have
_ - —
Z (s, We(fau(Crray))s Wee(far (Crr—ar)))s @g,)n(CQ(der')))

(e mD)E it ) (0 d)CO(d; —d!) L(s, Mgy X Ta,)
o (dide)I‘F(u;d)I‘F(u’;d/) '

(2) Assumen’ =n—1 and —d' € Z*(d). Then we have
Z(s, We(ta,0 (Cor-arya))s Wee (v (Cor(-ary)))
B ( . ,—) :zlln 1(d+d)L(S Hd’/de/ /)
dlmV_d/ \/ —d/ FF U,d FF /,d/).
Here v(H(—d')[d]) is defined by (m)

Proof. Let us prove the statement (1) by induction with respect to n. First, we
consider the case of n = 1. Since

W (b (Gay)) (ak) = @27 k™ W (T, 04 (Cay)) (ak) = @17 kS,
@glﬁl-’_dl)@dﬁ—d’l)(ak) _ (aE)dHrd’l eXp(—wcFaQ)

for a € Ay =R} and k € Ky, we have

Z (5, We(fay 0, (Car))s Wee(fay 01 (Car)), @gdf+d (Car+ar))

> / r 2cp d
— (/ eXp(_ﬂ'CF(lz)a(s"'”l"'”l)CF+d1+d1 ZCraa a) (/ dk)
0 a K,

=Tp(s+vi+v; di+dy) = L(s,1g, o, X Tgy o).

Here the second equality follows from ([2351). Next, we consider the case of n > 2.
Let ¢ = ¢(d + d'). By Propositions and [5.6] we have

Z (s, We(fau(Crray))s Wee(far (Crr—ar)))s @%(C@(dm')))

CH(—d’)+d,’,L,Q(d+d’) H(=d")+d;,,Q((0n-1.1))
= (—ev/—1)1 H (d)+d;, _ H(=d)d]+d,
CH((fdA’fdmO)),Q((d+d’,0)) CH(=d'=d3,0)), Q((05-1,9))
H(d)=dn H(~d)[d]~d,,

dim V5 [Ty Tr(s + v + v di + ) 1 Dr(s + v + v —dy, — d))
dim Vy [P Tp(, — v+ 1; dfy — d) T2 Tr(vn — vi + 1; —dy, + d;)
% Z (5, Wei7:) Crra) W3 5 Crr_an ) Bi 1 Coaran))-
Moreover, by Lemma [Tl we have

CH(=d)+d,,Q(d+d") o (=d)+d;,,Q((0n-1,1))
H(d)+d, H(=d")[d]+d,
CH((fCT’fdmO)), QUd+d’,0)) ~H((—d'—dn,0)), Q((0n—1,9))
H(d)~dy H(-d)[d]—dy,

H (dp —dyp —h+n)l(—d), +d,, —h+n—1)!
(dp+d, —h+n)(=dj, —d, —h+n—-1)I

q'(dn, +d’

By the above equalities and the induction hypothesis, we obtain the statement (1).
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The statement (2) follows from Lemma E.I] Proposition (5.6 the statement (1)
and

1 _ H (i — g — i+ )i — Nj1 — i+ 5)!
for A= (A, Aa, -, An) € Ay and = (p1, 2, 5 fin1) € 2T (). O

Proof of Theorem 21l The equality (Z30) follows from Theorem [B7(2). Since
229) is an element of Homp, _, (Va®c V-4, Ciriv), we complete the proof by Lemma
4.0l [l

Proof of Theorem 2142). The equality (Z49]) follows from Theorem [57(1). Since
[247) is an element of Homg, (Vg ®c V_ar ®c V(—1,0,_,)> Ctriv), we complete the
proof by Lemma [£4] O

Similar to Propositions and [5.6] we obtain Propositions (.8 and

Proposition 5.8. Retain the notation. Assume n’ = n > 1, d € A, and
—de=Z(d)NA,p. Letl=4(—d—d"). Then we have

Z (5, We(a Caray))s Wee (Far o (Cargany))s 030 (Co(—aar))

H(d)~d;,,Q((0n-1,1)) ~H(d)~d,,,Q(~d~d")
H(d)[—d]—d!, H(—d)—dj,

dimVy [T Tr(s+vi+v); —d; —d),)
dimV_q H?:_ll Trp(v, —vi+1; —=d), +d)
X Z(S,Wg(fd’y(CH(&\,)[id]))7ng(f&\/,l//\/ (CH@))))‘

Proposition 5.9. Retain the notation. Assume n’ = n—1, —d € A, r and
d e EZH(—=d)NAy_1,p. Letl =4(—d —d'). Then we have

Z (s, We(fa,u (Cor(ary—ay))s Wee(far v (Criqary)))

(d"+d,0)), QU=d=d',0)) (H((d +n.0), Q((On-1.0) ) 7
= (V=)' (Coprt Chan-d+. )
y dlrnv_gjl_[i:1 F(s+uvn+v;d,+d)
dim Ve [1'5 ' Tp(vn — vi + 1; d,, — d;)
= 1
X Z(57Ws(f(zi;(CH(,dA))),W*E(fd/,u’ (CH(d’)))vQog,)nfl(CQ(fgfd’)))'
Similar to Theorem [£.7], we obtain Theorem [5.10] using Propositions and (5.9

Theorem 5.10. Retain the notation. Assume —d € Ay, p and d' € Ay p. We take
T'r(v;d) and Trp(v';d’") as in §2710

(1) Assumen’ =n and —d € Z°(d’). Letl = ¢(—d —d'). Then we have

Z (5, We(fa,u (Cor(—ay))s W—c(far v (Crigary)), Lpgl,)n(CQ(fdfd’)))

(e mD)ZE i) (T d = @) CO(—d; d) L(s, Mgy X Mg ,)
a (dim V_g)Lp(v; d)Tr(v';d') '
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(2) Assumen’ =n —1 and d' € E*(—d). Then we have
Z(s, We (fdu(CH(d’ a))s Wefar v (Carcary)))
- (EV ) d‘+d )L(S,Hd’y X Hd/,u’)
(dim V) \/ H(d[=d)Tp(v;d)Tp(v;d)
Proof of Theorem 214(1). The equality (2:48) follows from Theorem [B.I0(1) and
244). Since (2.4G) is an element of Homg, (Vg ®c Voo ®c Vii0,_1), Ciriv), we

complete the proof by Lemma [£.4] and the properties of complex conjugate repre-
sentations in §2.61 O

APPENDIX A. EXPLICIT FORMULAS OF WHITTAKER FUNCTIONS

In this appendix, we consider the explicit formulas of the radial parts of Whit-
taker functions on G,. Let ¢ € {£1}, d = (d1,da, -+ ,d,) € Z", and v =
(v1,v2,-- ,v,) € C". Assume that either d € A, p or —d € A, p holds. We
set

T (a) = { Nopn(@Wellan(€a@))@)  Fd€hup,

Npo (OWe(fa (Em—ay))(a) if —d € Ay

Then we have Theorem [AIl which is the generalization of the explicit formulas
[10, Theorem 14] of spherical Whittaker functions on GL(n,R).

Theorem A.1l. Retain the notation, and we assume n > 1. We take d and U as
in §301 Let a = diag(ay, az, -+ ,a,) € A,. Then we have

Hn au,,c;:Jr\d —dn|

i=1 """

W(E)( ) =

a) =
d,v H;L—l FF(VH_Vi—I—l' |d’— |)
2 2
X/ Hexp( 7TCF< 123 n a’i))t_VnCF |di—dn| M
(R3)" z+1 +2 »
with t = diag(ty, ta, -+ ,tn_1) € Ap_1.

Proof. We will prove here only the case of d € A,, p, since the proof for the case of
—d € Ay, p is similar. By Lemmas [£.8 and 4.9, we have

p dn (m X Crr(d)—d, ) ((h, hz)a)

n—1
- (H afidﬁ) (Ta-a, W@ -a,> Sr(@)-a, 1en—1m) ((h, h2)a)

for h € G,—1 and z € M,,_1,1(F'). Hence, by Corollary [5.3] we have

7 dim VA) I qWnti=Derptdi—dn,
W(E) a)=1n_, (a W_.(f v a) = ( d i=1 QO
a (@) =n—p (A)We(fa, (Ca(a)))(a) T R R

. /Gn_1 </Mn—1‘1(F) e("_lvn)((h’ hz)a)¢—e(6n_1z) dZ>

X W (75 @) (20 (W@ s Sor(d)—a, ) X (det )] det A2 "2 dh.
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Decomposing h™! = xtk (x € N,,_1, t = diag(t1,t2, - ,tn_1) € Ap_1, k € K,,_1)
and applying Schur’s orthogonality [I8, Corollary 1.10] for the integration on K,,_
together with the equalities

(T30, W@ -a,> SH(@)-a, ) Xdn (det )

n—1
= (H ti_di+dn> <7'E(k)CH(J); CH((§)> (by Lemma [5.1))
i=1

and
Wet7, (G (1) = e (D)W (5.5 (72() ) ()
= > Tk @ Car) Y1 (@) We(f75(Can)) (8),

MeG(d)
we have
n(unticleptdi—d,
N(E)(a) _ I[i— 1a5 Jor
S Trvn — vi + 15 di — dy)
/ (/ / en-1m) (L7 '2 71 17 27 2)a) e 1 (2)
R )n ! n 1 n ll(F)
n—1
() —(Un4+n—i)cp—d;+dy, 2cp dt;
X tp_c(en_12)dz dw) Wgﬁ( ) H t —

i=1
Let us consider the integral

/ / (n— 1,n)((t71x71,tilelz)a)z/)a,n_l(m)w_a(en_lz) dz dx.
Np—1 J My, 11(F

1

Substituting < o 1
1,n—1

) — z, this integral becomes

(A1) /N e(n—1,n)((Ln—1, On—1,1)tn(t " H)za)¥_c »(2) da.

By the elementary formula (19) and the equality
e(n—l,n)((ln—lv On-1,1) Ln(til)xa)

n—1
= Hexp —mept; 2q H exp(—mept; 242 a:wa:”)
=1 j=i+1

we know that (AJ)) is equal to

t2 a?
H exp( WCF( + t_zi))t(” Z)CFaZ_-':(I:F'
K2

+1

Therefore, we obtaln the assertion. O
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APPENDIX B. THE LIST OF SYMBOLS

Symbol Page (g, 4, Ip, (d,v))
RY rawi B,

No 17 W,

Re(:) T e

Im(z) ravi T

z (for 2 €C) rawvi| (dv)

F ravi W(f)

cr (17 W, e)

[-IF ravi U(gnc)

e 17 Ai(Gr)

drz 17 A x

Lp(s;m) 717 E;;

n 17 A,

n' 17 (T)w V)\)

My (F) 17 () (on Vi)

M, (F) v G(A)

On.nr | M =D
1n [17 {Crtamean

én v A

G o H())

K, o r(M)

N, ravi| {Eartmeann

U, raw MY

M, I3 =+(\)

A, 17 L/n\

Z, M (for M € G()))
C>(Ghn) Vi

R (on C®(Gy)) Vot G(Asp)

Xd 718 {\;f A

Ny I~u

Pn Ry

(Hd,l/a I(dv V)) (19! R,);

I(d7 V)Kn (Fv 77-)

G, v (forveV;)

I(d) 719 T (for U € Homg(V;,V;r))
fo 719 (7x: V)

I(d)x, 719 ()

N
kg kS

~
=

SsHsE=
| ]
HEH

3
£

SIS
H B

SHS
SRt

HEEHENHEEHHEEEHEREE

3
b

HEE B

‘
X

3
£

‘
=
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[m I

°(As1)

(-,) (on Vy®c Vi, 1))
S°(N, \)

Co(\5N)

b(7)

ST\, )

I)\,l

)\/

M,P
Capr

Z(s, W,W', ¢)

P,

(Op, 17, Ip, (1,0, 5))
fp, 105

fp,1s

Zp,(W,W', f)

gp, 1,5 (P)

d (for d € Z")

v (forveCn™)

ga. . (f5:0)

nsVn

~ SN RN R RN RAREHERRANRN
HHEEEHHEEREHEHHEEEEE HOEEHHEEEEHHEEEEEE

3
x
&

gﬁs(fl/a ®)
W)
Iy

(v

oL N
< g ‘ W >
1;
¢j

ko
Eso_(n)

,J
(Tso(n). A Veo(n),2)
AprOly
P(Mpn (C))
Pl(Mn,n’ (C))
P3
Pl

l
P

Pg,)l

5
5
+
@)
@0
l
SOSL,)I

_(
905%)1

A+l (for AeA,, 1€Z)
M+1 (for M e G\, l€Z)

761

733

737
737

737

(40
(40
ren)
(40

[0
743
743

(45
(45

e
e
ey
e
ey
e

7

EWE
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