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ON ENDOMORPHISM ALGEBRAS OF GELFAND-GRAEV

REPRESENTATIONS

TZU-JAN LI

Abstract. For a connected reductive group G defined over Fq and equipped
with the induced Frobenius endomorphism F , we study the relation among
the following three Z-algebras: (i) the Z-model EG of endomorphism algebras
of Gelfand-Graev representations of GF ; (ii) the Grothendieck group KG∗ of

the category of representations of G∗F∗
over Fq (Deligne-Lusztig dual side);

(iii) the ring BG∨ of the scheme (T∨//W )F
∨

over Z (Langlands dual side).
The comparison between (i) and (iii) is motivated by recent advances in the
local Langlands program.
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Introduction and main results

0.1. The problem. In this article, we would like to study the relation among
three algebras EG, KG∗ and BG∨ coming from group representation theory and
from invariant theory. Let us now describe these algebras.

Let p be a prime number, let q = pr for some r ∈ N∗, and fix an algebraic closure
Fq of the finite field Fq. Let G be a connected reductive group defined over Fq, and
let F : G −→ G be the Frobenius endomorphism associated to the Fq-structure of

G. We write G(Fq) simply as G, so GF = {x ∈ G : F (x) = x} is a finite group.
Fix an F -stable Borel subgroup B of G, fix an F -stable maximal torus T of G
included in B, and let W = NG(T )/T be the Weyl group of (G, T ); then W is
F -stable. Let (G∗, T ∗, F ∗) be a Deligne-Lusztig dual (defined over Fq; see §0.7) of
(G, T, F ), and let (G∨, T∨) be a Langlands dual (defined and split over Z; see §3.1)
of (G, T ). The endomorphism F induces an endomorphism F∨ on the character
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group X(T∨) = Homalg(T
∨,Gm) (§3.2). In addition, let Q be the field of algebraic

numbers, and let Z be the ring of algebraic integers. With this setup:
• EG is the Z-model of endomorphism algebras of Gelfand-Graev representa-
tions of GF (see §§1.3–1.5).

• KG∗ is the Grothendieck group of the category of finite-dimensional rep-
resentations of G∗F∗

over Fq (§2.2); it is a Z-algebra whose multiplication
comes from the tensor product.

• BG∨ is the ring of functions of the affine Z-scheme (T∨ � W )F
∨

(§3.3);
more precisely, BG∨ = Z[X(T∨)]W /I where I is the ideal of Z[X(T∨)]W

generated by the set {F∨f − f : f ∈ Z[X(T∨)]W }.
Our goal is to compare these three algebras over rational and integral coefficients.

0.2. Analysis over Q. In the case of Q-coefficients, Curtis-Deligne-Lusztig’s the-
ory (§1.2–§1.4) and Brauer theory (§2.3) give us two Q-algebra isomorphisms:

(0.2.1) QEG � Q
G∗F∗

ss /∼
and QKG∗ � Q

G∗F∗
p′ /∼

.

In (0.2.1), the first isomorphism only depends on a choice of identifications (Q/Z)p′

� Fq
×
↪→ Q

×
, and the second one only depends on a choice of embedding Fq

×
↪→

Q
×
. Via (0.2.1), the natural maps of finite sets

(0.2.2) (G∗F∗

p′ /∼) (G∗F∗

ss /∼) (T∨ � W )F
∨
(Q)Lemma 3.1

Lemma 3.6

induce the following Q-algebra homomorphisms:

(0.2.3) QKG∗ QEG (QBG∨)red QBG∨, red QBG∨ .∼ §3.5

(For a ring A, we denote by Ared the associated reduced ring.)
It is then natural to ask: when are the maps in (0.2.3) all isomorphisms? Could

we change the Q-coefficients in (0.2.3) by Λ-coefficients with Λ a subring of Q, such
that we still have analogous Λ-algebra homomorphisms?

In [BoKe] (see also Lemma 1.8–Theorem 1.9), Bonnafé and Kessar have proved
a “saturatedness property” for the Curtis homomorphism, where they used sym-
metrizing forms to descend an equality of algebras over rational coefficients into an
equality of algebras over integral coefficients. This idea will be the starting point
of our present work.

0.3. Main results. Keep the notation and assumptions introduced so far.
(a) [see Theorem 2.3–Corollary 2.4] The Q-algebra isomorphism QEG � QKG∗

in (0.2.3) descends to a Z[ 1
p|W | ]-algebra isomorphism

Z[ 1
p|W | ]EG � Z[ 1

p|W | ]KG∗ .

(b) [see Proposition 3.4 and Theorem 3.9] BG∨, red is a free Z-module of rank

(0.3.1) rankZ BG∨, red = |(T∨ � W )F
∨
(Q)| = |(G∗

ss/∼)F
∗ |;

moreover, if G∗
der (or equivalently G∨

der) is simply-connected, then BG∨ is a
reduced ring (so BG∨ = BG∨, red), and the above rank (0.3.1) is also equal

to |G∗F∗

ss /∼ |.
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(c) [see Proposition 3.12–Theorem 3.13] The formal character isomorphism

ch : K(Repalg(G
∗))

∼−−−→ Z[X(T∨)]W

induces an inclusion of rings BG∨, red ↪→ KG∗ which is compatible with the
identifications in (0.2.3); moreover, if G∗

der is simply-connected, then this
inclusion of rings becomes a ring isomorphism:

BG∨ = BG∨, red � KG∗ .

In (a), the inversion of |W | is mainly due to the usage of saturatedness technique
(see the proofs of Theorems 1.9 and 2.3), while we expect that such an inversion
is unnecessary. Through recent collaboration with J. Shotton, we can replace this
inversion of |W | by only the inversion of bad primes for the root system of G,
but it will take more work to know if we really have the expected isomorphism
Z[ 1p ]EG � Z[ 1p ]KG∗ for all G. The inversion of p, on the other hand, arises from

the usage of an idempotent eψ of UF (with U the unipotent radical of B) in the
identification ΛEG = eψΛG

F eψ (with Λ a suitable ring), where we need to invert
|UF | (a power of p); see §1.2 and §1.4. For now, I don’t know if we can remove the
inversion of p and reach the isomorphism EG � KG∗ .

For the reducedness of BG∨ in (b), the simple-connectedness of G∗
der is imposed

mainly to fit the induction technique on heights (see Theorem 3.9 and its proof);
without this condition on G∗

der, we still expect that BG∨ is reduced, but little is
known for now (see §3.4 for partial progress on this). The reducedness of BG∨

is a necessary condition of the isomorphism BG∨ � KG∗ in (c) (as KG∗ is re-
duced), but even if BG∨ is reduced, the isomorphism BG∨ = BG∨, red � KG∗

may still not hold without the simple-connectedness of G∗
der, as the inequality

dimQBG∨, red = |(G∗
ss/∼)F

∗ | ≤ |G∗F∗

ss /∼ | = dimQKG∗ may not be equality. For

example, when G∗ = PGL2(Fq) with q odd, BG∨ is reduced and dimQBG∨ = q,

whereas dimQKG∗ = q + 1, so BG∨ �� KG∗ .

0.4. Motivation. The problem of comparison between EG and BG∨ is a finite
group analogue of the “local Langlands correspondence in families” (LLIF) conjec-
ture in [DHKM], which asserts the existence of an isomorphism from the ring of
functions of the moduli stack of Langlands parameters of a p-adic reductive group
to the endomorphism ring of its Whittaker space. Note that the LLIF conjecture
is implied by the Fargues-Scholze conjecture in [FaSc, Conj. I.10.2].

In the case of a reductive group G defined and split over a p-adic field F whose
residue field is Fq, let OF be the ring of integers of F and write G = G(Fq); then
a special case of the LLIF conjecture predicts a ring isomorphism

OZ1
tame�G∨ � End(c-Ind

G(F )
G(OF )ΓG)

which is compatible with the classical local Langlands conjectures; in the above,

Z1
tame = {(s,F) ∈ G∨ ×G∨ : FsF−1 = sq}

is the moduli space of tame Langlands parameters for G∨, OZ1
tame�G∨ is the ring

of functions of Z1
tame � G∨, ΓG is a Gelfand-Graev representation of GF , and

c-Ind
G(F )
G(OF )ΓG is (isomorphic to) the depth-zero part of the corresponding Whit-

taker space. The first projection map G∨ × G∨ −→ G∨ induces a morphism
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Z1
tame � G∨ −→ (G∨ � G∨)(·)

q � (T∨ � W )(·)
q

and hence a ring homomorphism
BG∨ −→ OZ1

tame�G∨ . We may thus draw the following diagram:

OZ1
tame�G∨ End(c-Ind

G(F )
G(OF )ΓG)

BG∨ EG

LLIF
∼

?

If the center of G is connected, for a sufficiently large integral extension Λ ⊃ Z[ 1p ],

the ring ΛBG∨ (resp. ΛEG) should be thought of as the integral closure of the scalars

Λ in Λ.OZ1
tame�G∨ (resp. in Λ.End(c-Ind

G(F )
G(OF )ΓG)), so the LLIF conjecture should

give us a Λ-algebra isomorphism

(0.4.1) ΛBG∨ � ΛEG.

In [Hel] and [HeMo], the LLIF has been proved for G = GLn(F ), and, as a
corollary, a Λ-algebra isomorphism (0.4.1) has been deduced for G = GLn(Fq)

and for Λ being the ring of Witt vectors of F� (note that (0.4.1) was also used
as an ingredient in their proof). However, as (0.4.1) is basically a result of finite
groups, an argument without p-adic techniques (such as those used for the LLIF) is
expected, and the present article provides such an argument under some additional
hypotheses:

Theorem 0.1 (§0.3(a), (c) or Corollary 3.14). If G∗
der is simply-connected, then

we have the Λ-algebra isomorphism (0.4.1) for Λ = Z[ 1
p|W | ].

0.5. Plan of the article. In §1, we review properties of endomorphism algebras
of a modular Gelfand-Graev representation, construct the Z-model EG, and study
Curtis homomorphisms; in §2, we introduce the Grothendieck group KG∗ on the
Deligne-Lusztig dual side, review the Brauer theory, and then compare KG∗ with
the algebra EG. In §3, using methods from algebraic geometry, combinatorics of
root datum and algebraic representation theory, we turn to study the algebra BG∨

on the Langlands-dual side and finally compare BG∨ with KG∗ and EG.

0.6. A graphical summary. Let Λ be an integral domain such that Z[ 1p ] ⊂ Λ ⊂
Q. The following diagram, which will eventually be shown to be commutative (see
Lemma 1.6 and Proposition 3.12), summarizes the relations among the principal
objects studied in this article.

Notations used in the diagram: G∗F∗

ss / ∼ (resp. G∗F∗

p′ / ∼) denotes the set of

semisimple (resp. p-regular) conjugacy classes in G∗F∗
; “Res” means the obvious

restriction maps; Tw := gT = gTg−1 is the F -stable maximal torus of G whose
GF -conjugacy class corresponds to w ∈ W , so g ∈ G and the image of g−1F (g) ∈
NG(T ) in W is w (recall that the GF -conjugacy classes of F -stable tori in G are

parametrized by F -conjugacy classes in W in this way); CurG = (CurGTw
)w∈W is

the Curtis embedding which will be defined in §1.7.
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∏
w∈W

Q
T∗F∗
w

Q
G∗F∗

ss /∼
Q

(T∨�W )F
∨
(Q)

Q
G∗F∗

p′ /∼

∏
w∈W

QTF
w QEG QBG∨, red QBG∨

∏
w∈W

QKT∗
w

QKG∗

∏
w∈W

ΛTF
w ΛEG ΛBG∨, red ΛBG∨

∏
w∈W

ΛKT∗
w

ΛKG∗

∏
w∈W

ZTF
w BG∨, red BG∨

∏
w∈W

KT∗
w

KG∗

Z[X(T∨)]W Z[X(T∨)]W

K(Repalg(G
∗))

Res

∼

∼

∼

CurG

∼

∼ ∼

∼

CurG∼
?

?

Res

∼

Res

∼
ch

Res

Res

0.7. Notation and convention. The following notation and assumptions, as well
as those introduced so far, will be used throughout the article.

Root data [Sp]. Let X(T ) = Homalg(T,Gm) (resp. Y (T ) = Homalg(Gm, T ))
be the character group (resp. cocharacter group) of T . Denote by R ⊂ X(T ) and
R∨ ⊂ Y (T ) (resp. Δ ⊂ X(T ) and Δ∨ ⊂ Y (T )) the set of roots and the set of
coroots (resp. the set of simple roots and the set of simple coroots) determined by
(G, T ) (resp. by (G, T,B)). Then (X(T ), Y (T ), R,R∨) the root datum of (G, T ).

Deligne-Lusztig dual [DiMi]. Fix a Deligne-Lusztig dual (G∗, T ∗, F ∗) of
(G, T, F ) (all choices are isomorphic), in the sense that (G∗, T ∗, F ∗) is defined
over Fq and is obtained by assigning its character group (resp. cocharacter group,
resp. set of roots, resp. set of coroots) as Y (T ) (resp. X(T ), resp. R∨, resp. R). In
particular, we have the identifications X(T ∗) = Y (T ) and Y (T ∗) = X(T ), both of
which are compatible with the Frobenius actions. Again, we write G∗(Fq) simply
as G∗.

Let G∗F∗

ss be the set of semisimple elements of G∗F∗
, and let G∗F∗

ss / ∼ be the
set of G∗F∗

-conjugacy classes in G∗F∗

ss ; for each x ∈ G∗F∗

ss , we shall denote by
[x] ∈ G∗F∗

ss /∼ its G∗F∗
-conjugacy class.

Finite group representation theory [Se1], [DeLu], [DiMi]. Let Λ be a com-
mutative ring and let H be a finite group. The group ring Λ[H] will often be
written as ΛH; an element f : H −→ Λ of ΛH is identified with the formal
sum

∑
h∈H f(h)h. Let RepΛ(H) be the category of finite-dimensional represen-

tations of H over Λ, and let IrrΛ(H) be the set of isomorphism classes of simple
objects in RepΛ(H). For V1, V2 ∈ Rep

Q
(H) whose characters are χ1, χ2 respec-

tively, their canonical pairings 〈V1, V2〉H := dimQ HomQH(V1, V2) and 〈χ1, χ2〉H :=



ENDOMORPHISM ALGEBRAS OF GELFAND-GRAEV 85

|H|−1
∑

h∈H χ1(h
−1)χ2(h) coincide. Ordinary induction functors like IndG

F

UF , ordi-

nary restriction functors like ResG
∗F∗

T∗F∗ , and Deligne-Lusztig induction functors like
RG

T are defined in the usual way.

Dualities of tori [DiMi]. We fix a group isomorphism ι : Fq
× ∼−−→ (Q/Z)p′

(choices of roots of unity) and an injective group homomorphism j : (Q/Z)p′ ↪→ Q
×
.

Then κ := j ◦ ι : Fq
×
↪→ Q

×
enables us to identify Fq

×
as a subgroup of Q

×
. For

an F -stable maximal torus S of G, we choose an F ∗-stable maximal torus S∗ of
G∗ which is dual to S (all choices of S∗ are G∗F∗

-conjugate). Then ι identifies

IrrFq
(SF ) � S∗F∗

, and (ι, κ) identifies IrrQ(S
F ) � S∗F∗

.

1. Endomorphism algebras of Gelfand-Graev representations

The Gelfand-Graev representation ΓG,ψ.

1.1. Regular linear characters. [DLM, Sec. 2] Let U be the unipotent radical
of the chosen F -stable Borel subgroup B of G, so that U itself is also F -stable.
Denote by U• the subgroup of U generated by the root subgroups of non-simple
roots (roots in R −Δ); note that U• = [U,U ]. Let Δ/F be the set of F -orbits in
Δ. For each i ∈ Δ/F , let Ui be the product of root subgroups of (simple) roots
in i. The quotient group U/U• is canonically isomorphic to the product group∏

i∈Δ/F Ui, and this isomorphism is F -stable, so that UF/UF
• �

∏
i∈Δ/F UF

i as

abelian groups. Then a linear character ψ on UF is called regular if ψ is trivial
(= 1) on UF

• and is non-trivial on every UF
i (i ∈ Δ/F ).

Let Ψ be the set of Z
×
-valued regular linear characters of UF ; the group TF acts

on Ψ by adjoint action (for t ∈ TF and ψ ∈ Ψ, tψ := ψ(t
−1

(·)) = ψ(t−1(·)t) ∈ Ψ).
Let Z be the center of G, so the adjoint group of G is Gad = G/Z. Let Tad = T/Z
be the image of T in Gad; the group TF

ad also acts on Ψ by adjoint action (for x ∈ TF
ad

and ψ ∈ Ψ, choose a t ∈ T such that x = tZ, and set xψ := tψ), and this TF
ad-action

on Ψ is regular (= free and transitive). Hence the first Galois cohomology group
H1(F,Z), identified with TF

ad/T
F , acts regularly on Ψ/TF (the set of TF -orbits in

Ψ) by adjoint action.

1.2. Gelfand-Graev representations. [DiMi, Ch. 14] Let ψ : UF −→ Z
×

be
a regular linear character (so ψ ∈ Ψ in the notation of §1.1), and consider the
primitive central idempotent

(1.2.1) eψ :=
1

|UF |
∑

u∈UF

ψ(u−1)u ∈ Z[ 1p ]U
F

of ψ (|UF | is a power of p). Let (Z[ 1p ])ψ be the Z[ 1p ]U
F -module Z[ 1p ] on which UF

acts by ψ; we have (Z[ 1p ])ψ � Z[ 1p ]U
F eψ = Z[ 1p ]eψ as Z[ 1p ]U

F -modules. Then

(1.2.2) ΓG,ψ := IndG
F

UF ((Z[ 1p ])ψ) � Z[ 1p ]G
F eψ ∈ RepZ[ 1p ]

(GF )

is called a Gelfand-Graev representation of G; the character of ΓG,ψ is IndG
F

UF ψ.
All ΓG,ψ (ψ ∈ Ψ) are conjugate by elements of TF

ad: indeed, for any ψ, ψ′ ∈ Ψ,
there is a unique x ∈ TF

ad such that ψ′ = xψ (§1.1); then eψ′ = x(eψ), and thus,

upon identifying ΓG,ψ = Z[ 1p ]G
F eψ via (1.2.2),

(1.2.3) ΓG,ψ′ = Z[ 1p ]G
F eψ′ = x(Z[ 1p ]G

F eψ) =
x(ΓG,ψ).
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If the center Z ofG is connected (that is, ifH1(F,Z) = 0), then TF
ad = TF /ZF , so all

ΓG,ψ are conjugate by elements of TF and are thus all isomorphic in RepZ[ 1p ]
(GF ).

Theorem 1.1 ([DiMi, Thm. 14.49]). Let ψ ∈ Ψ. Then the QGF -module QΓG,ψ is

multiplicity-free; more precisely, we have a QGF -module decomposition

QΓG,ψ =
⊕

[x]∈G∗F∗
ss /∼

ρψ,[x],

where for each [x] ∈ G∗F∗

ss /∼, ρψ,[x] is an irreducible QGF -module whose character

χψ,[x] lies in the rational Lusztig series E(GF , [x]).

Lemma 1.2. Let ψ, ψ′ ∈ Ψ, and suppose that χ ∈ IrrQ(G
F ) is a common irreducible

character of the QGF -modules QΓG,ψ and QΓG,ψ′ . Then for the unique y ∈ TF
ad

such that ψ′ = yψ (§1.1), we have yχ = χ.

Proof. By Theorem 1.1, χ lies in some rational Lusztig series E(GF , [x]); in other
words, there is an F -stable maximal torus S and a θ ∈ IrrQ(S

F ) such that θ

corresponds to [x] under the chosen duality IrrQ(S
F ) � S∗F∗

(§0.7), and such that

〈χ,RG
S (θ)〉GF �= 0.

Let us show that y(RG
S (θ)) = RG

S (θ). Indeed, as y ∈ TF
ad, if we choose a t ∈ T

such that y = tZ, then t−1F (t) ∈ Z ⊂ S, so the Lang-Steinberg theorem enables
us to write t−1F (t) = sF (s)−1 for some s ∈ S; thus, upon setting x := ts ∈ GF ,

y(RG
S (θ)) =

t(RG
S (θ)) = RG

tS(
tθ) = RG

xS(
xθ) = x(RG

S (θ)) = RG
S (θ).

By the above discussion, we have

〈yχ,RG
S (θ)〉GF = 〈yχ, y(RG

S (θ))〉GF = 〈χ,RG
S (θ)〉GF �= 0.

On the other hand, with the help of (1.2.3),

〈yχ,QΓG,ψ′〉GF = 〈yχ, y(QΓG,ψ)〉GF = 〈χ,QΓG,ψ〉GF �= 0.

Therefore, γ = χ and γ = yχ both verify 〈γ,RG
S (θ)〉GF �= 0 and 〈γ,QΓG,ψ′〉GF �= 0;

but Theorem 1.1 tells us that there is at most one such γ ∈ IrrQ(G
F ), so yχ and χ

must coincide. �
The endomorphism algebra of ΓG,ψ and its Z-model EG.

1.3. The endomorphism algebras Z[ 1p ]EG,ψ and QEG,ψ. By §1.2, all endomor-

phism algebras
Z[ 1p ]EG,ψ := End

Z[ 1p ]G
F (ΓG,ψ) (ψ ∈ Ψ)

are isomorphic as Z[ 1p ]-algebras. Later in §1.5, we shall introduce a Z-algebra EG

which is independent of ψ and is such that Z[ 1p ]EG � Z[ 1p ]EG,ψ for all ψ ∈ Ψ.

Let QEG,ψ := Q ⊗Z[ 1p ]
Z[ 1p ]EG,ψ. By Theorem 1.1 and Schur’s lemma, we may

decompose the Q-algebra QEG,ψ as:

(1.3.1) QEG,ψ = EndQGF (QΓG,ψ) �
∏

[x]∈G∗F∗
ss /∼

EndQGF (ρψ,[x]) � Q
G∗F∗

ss /∼
.

Thus QEG,ψ and Z[ 1p ]EG,ψ are commutative reduced rings. In terms of algebraic

varieties, (1.3.1) identifies Specm(QEG) (consisting of maximal ideals of QEG) with
G∗F∗

ss /∼.



ENDOMORPHISM ALGEBRAS OF GELFAND-GRAEV 87

1.4. Structures of Z[ 1p ]EG,ψ and QEG,ψ via idempotents. Using the identifi-

cation ΓG,ψ = Z[ 1p ]G
F eψ in (1.2.2), we shall identify

Z[ 1p ]EG,ψ = eψZ[
1
p ]G

F eψ ⊂ Z[ 1p ]G
F

as Z[ 1p ]-algebras: indeed, there is a Z[ 1p ]-algebra anti-isomorphism

(1.4.1) Z[ 1p ]EG,ψ = EndZ[ 1p ]GF (Z[ 1p ]G
F eψ)

∼−−−→ eψZ[
1
p ]G

F eψ, θ �−→ θ(eψ),

but Z[ 1p ]EG,ψ is a commutative ring (§1.3), so (1.4.1) is also an isomorphism.

(a) By [CuRe, Prop. 11.30], Z[ 1p ]EG,ψ = eψZ[
1
p ]G

F eψ is a free Z[ 1p ]-module

with the following Z[ 1p ]-linear basis: let {x1, · · · , xr} ⊂ GF be a set of

representatives of UF \GF/UF (so GF is the disjoint union of {UFxiU
F :

i = 1, · · · , r}), and let

J = {j : 1 ≤ j ≤ r, xjψ = ψ on UF ∩ xj (UF )};
then {eψxjeψ : j ∈ J} is a Z[ 1p ]-linear basis of Z[

1
p ]EG,ψ.

(b) By [Cu, Sec. 3], QEG,ψ may be described via idempotents: for [x] ∈ G∗F∗

ss /∼,
set

eGψ,[x] :=
χψ,[x](1)

|GF |
∑

g∈GF

χψ,[x](g
−1)g ∈ QGF and eEψ,[x] := eGψ,[x]eψ ∈ QEG,ψ,

which are respectively primitive central idempotents of QGF and of QEG,ψ;

then the inclusions QeEψ,[x] ⊂ QEG,ψ induce a Q-algebra isomorphism

(1.4.2) QEG,ψ =
∏

[x]∈G∗F∗
ss /∼

QeEψ,[x].

Combining (1.3.1) and (1.4.2), we obtain Q-algebra isomorphisms

(1.4.3) QEG,ψ �
∏

[x]∈G∗F∗
ss /∼

QeEψ,[x] � Q
G∗F∗

ss /∼
,

where each eEψ,[x] corresponds to the characteristic function 1{[x]} onG∗F∗

ss /∼.

1.5. Definition of the Z-algebra EG. The decomposition UF /UF
• =

∏
i∈Δ/F UF

i

(§1.1) identifies each UF
i as a subgroup of UF /UF

• . Consider the (left) ZUF -module

F0 = {f : UF /UF
• −→ Z :

∑
x∈UF

i

f(x) = 0 for each i ∈ Δ/F}

on which UF acts by left translation: u · f := f(u−1(·)) (u ∈ UF , f ∈ F0). The
groups TF and TF

ad both act on each UF
i (i ∈ Δ/F ) by left adjoint action; this in-

duces left TF -actions and left TF
ad-actions on F0, IndG

F

UF (F0) and

EndZGF (IndG
F

UF (F0)). The center of the Z-algebra EndZGF (IndG
F

UF (F0)), denoted

by Z
(
EndZGF (IndG

F

UF (F0))
)
, is fixed by the TF -action on EndZGF (IndG

F

UF (F0)) and

thus admits an H1(F,Z)-action (recall that H1(F,Z) � TF
ad/T

F ); we then set

(1.5.1) EG := Z
(
EndZGF (IndG

F

UF (F0))
)H1(F,Z)

,
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which consists of elements of Z
(
EndZGF (IndG

F

UF (F0))
)

fixed by the H1(F,Z)-

action. This EG is a Z-algebra and is also a free Z-module of finite rank.

After describing the Z[ 1p ]G
F -module IndG

F

UF (Z[ 1p ]F0) in Lemma 1.3, we shall show

in Lemma 1.4 that the Z-algebra EG in (1.5.1) is consistent with the definition of
Z[ 1p ]EG,ψ in §1.3.

Lemma 1.3. The natural inclusion F0 ⊂ ZUF induces an embedding of rings

IndG
F

UF (Z[ 1p ]F0)⊂Z[ 1p ]G
F , under which the actions of TF and TF

ad on IndG
F

UF (Z[ 1p ]F0)

are exactly the restrictions of their respective adjoint actions on Z[ 1p ]G
F . Moreover,

we have a decomposition of Z[ 1p ]G
F -modules:

IndG
F

UF (Z[ 1p ]F0) =
⊕
ψ∈Ψ

Z[ 1p ]G
F eψ =

⊕
ψ∈Ψ

ΓG,ψ ∈ RepZ[ 1p ]
(GF ).

Proof. The description of the actions of TF and TF
ad on IndG

F

UF (Z[ 1p ]F0) is clear from

construction, so let us prove the decomposition formula directly.
(1) (Compare [DLM, (2.4.8)].) Each linear character ψ : UF /UF

• =
∏

i∈Δ/F UF
i

−→ Z× is decomposed as ψ =
∏

i∈Δ/F ψi with ψi = ψ|UF
i

(i ∈ Δ/F ); such

a ψ gives an element in Ψ if and only if each ψi is non-trivial.

(2) For each ψ ∈ Ψ, let eψ be its primitive central idempotent of Z[ 1p ]U
F as in

(1.2.1). Using (1) and the orthogonality of characters, one can check that
{eψ |ψ ∈ Ψ} is a Q-linearly independent subset of QF0. By definition of
F0 and (1), we have

dimQ(QF0) =
∏

i∈Δ/F

(|UF
i | − 1) = |Ψ|,

so {eψ |ψ ∈ Ψ} is in fact a Q-linear basis of QF0; identifying QF0 ⊂ QUF ,

we have the following decomposition of QF0:

(1.5.2) QF0 =
⊕
ψ∈Ψ

Qeψ; for f ∈ QF0, f =
∑
ψ∈Ψ

feψ with each feψ ∈ Qeψ.

As all eψ (ψ ∈ Ψ) lie in Z[ 1p ]U
F , the decomposition (1.5.2) also holds in

Z[ 1p ]-coefficients, from which the desired decomposition of IndG
F

UF (Z[ 1p ]F0)

follows.
�

Lemma 1.4. For each ψ ∈ Ψ, Z[ 1p ]EG � Z[ 1p ]EG,ψ as Z[ 1p ]-algebras. Explicitly:

upon identifying Z[ 1p ]EG,ψ = eψZ[
1
p ]G

F eψ via (1.4.1) and identifying analogously

End
Z[ 1p ]G

F (Ind
GF

UF (Z[ 1p ]F0)) =
⊕

ψ,ψ′∈Ψ

eψ′Z[ 1p ]G
F eψ ⊂ Z[ 1p ]G

F ,

we have a Z[ 1p ]-algebra isomorphism

Z[ 1p ]EG,ψ
∼−−−→ Z[ 1p ]EG, eψfeψ �−→

∑
y∈TF

ad

eyψ · yf · eyψ (f ∈ Z[ 1p ]G
F ).
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Proof. (1) An element in the center of EndZ[ 1p ]GF (Ind
GF

UF (Z[ 1p ]F0)) commutes

with all eψ (ψ ∈ Ψ), so the orthogonality of idempotents implies that

(1.5.3) Z
(
EndZ[ 1p ]GF (Ind

GF

UF (Z[ 1p ]F0))
)
⊂
⊕
ψ∈Ψ

eψZ[
1
p ]G

F eψ.

(2) Let y ∈ TF
ad. For θ ∈ EndZ[ 1p ]GF (Ind

GF

UF (Z[ 1p ]F0)), its image y · θ under the

action of y on EndZ[ 1p ]GF (Ind
GF

UF (Z[ 1p ]F0)) is given by (y ·θ)(ϕ) = y(θ(y
−1

ϕ))

(ϕ ∈ IndG
F

UF (Z[ 1p ]F0)). Then the subring
⊕

ψ∈Ψ eψZ[
1
p ]G

F eψ is stable under

this action of y: indeed, let θ ∈
⊕

ψ∈Ψ eψZ[
1
p ]G

F eψ and write θ =
∑

ψ∈Ψ θψ

where each θψ = eψθeψ ∈ eψZ[
1
p ]G

F eψ; then it can be checked that y · θ =∑
ψ∈Ψ(y · θ)ψ with each (y · θ)ψ = y · (θy−1ψ) =

y(θy−1ψ) ∈ eψZ[
1
p ]G

F eψ.

We thus deduce from (1.5.3) that

(1.5.4) Z[ 1p ]EG ⊂

⎛⎝⊕
ψ∈Ψ

eψZ[
1
p ]G

F eψ

⎞⎠TF
ad

=: A.

(3) For each θ ∈ A, if we write θ =
∑

ψ∈Ψ θψ with each θψ ∈ eψZ[
1
p ]G

F eψ as in

(2), then θψ = y(θy−1ψ) for all y ∈ TF
ad; as TF

ad acts regularly on Ψ (§1.1),
we see that for every ψ ∈ Ψ we have a ring isomorphism

(1.5.5) Z[ 1p ]EG,ψ
∼−−−→ A, eψfeψ �−→

∑
y∈TF

ad

eyψ · yf · eyψ (f ∈ Z[ 1p ]G
F ).

(4) By virtue of (1.5.4) and (1.5.5), in order to complete the proof of lemma,
it remains to establish the inclusion

(1.5.6) QA =

⎛⎝⊕
ψ∈Ψ

eψQGF eψ

⎞⎠TF
ad

⊂ Z

⎛⎝ ⊕
ψ,ψ′∈Ψ

eψ′QGF eψ

⎞⎠ .

For each ψ, ψ′ ∈ Ψ, Theorem 1.1 (with notations in §1.4) tells us that the
space eψ′QGF eψ is the direct sum of eψ′QGF eGψ,[x]eψ for [x] ranging over

a (possibly empty) subset of G∗F∗

ss /∼. To show (1.5.6), it then suffices to
show that

(1.5.7) eyψfe
G
ψ,[x′]eψ · eψeGψ,[x]eψ = eyψ(

yeGψ,[x])eyψ · eyψfe
G
ψ,[x′]eψ

for every ψ ∈ Ψ, y ∈ TF
ad, [x], [x

′] ∈ G∗F∗

ss /∼ and f ∈ QGF .

To prove (1.5.7), suppose that the element eyψfe
G
ψ,[x′]eψ ∈ HomQGF (QΓyψ, ρψ,[x′])

is not zero (as the opposite case is trivial). Then χψ,[x′] is a common irreducible

character of QΓyψ and QΓψ, so Lemma 1.2 gives us y(χψ,[x′]) = χψ,[x′] and then
yeGψ,[x′] = eGψ,[x′]. We may also suppose that [x] = [x′], for otherwise both sides of

(1.5.7) are zero because the idempotents eGψ,[x] are central and orthogonal in QGF .

Under the above assumptions, the two sides of (1.5.7) are both eyψfe
G
ψ,[x′]eψ; this

justifies (1.5.7).
The equality (1.5.7) being proved, we obtain the inclusion (1.5.6) as well as the

equality Z[ 1p ]EG = A; thus (1.5.5) gives the desired Z[ 1p ]-algebra isomorphism. �
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1.6. The Galois action on QEG. The Galois group Gal(Q/Q) acts on the Q-
coefficient of QEG; this induces an action of Gal(Q/Q) on QEG, and this action
coincides with that induced by the identification

QEG = Z
(
EndQGF (Ind

GF

UF (QF0))
)H1(F,Z)

and by the action of Gal(Q/Q) on the Q-coefficient of QF0.
In terms of idempotents, the above Galois action on QEG is, upon fixing a ψ ∈ Ψ

and identifying QEG = QEG,ψ = eψQGF eψ (Lemma 1.4):

σ ∈ Gal(Q/Q), eψfeψ ∈ QEG,ψ (f ∈ QGF ) =⇒ σ · (eψfeψ) = eψ · σ(y−1
σ f) · eψ,

where yσ is the unique element in TF
ad such that σ · ψ = yσψ ∈ Ψ (σ acts on Z

×

and hence on Ψ; then recall from §1.1 that TF
ad acts regularly on Ψ), and where, for

each h ∈ QGF , σ(h) denotes its image under the action of σ on the Q-coefficient of
QGF .

Curtis homomorphisms.

1.7. The Curtis homomorphism CurGS [Cu, Sec. 4]. Hereafter, fix a ψ ∈ Ψ. For
S an F -stable maximal torus of G, Curtis has constructed a Q-algebra homomor-
phism

CurGS : QEG,ψ −→ QSF

(which he called fS in his paper), which is the unique Q-algebra homomorphism
from QEG,ψ to QSF such that, for every irreducible character θ ∈ IrrQ(S

F ) corre-

sponding to [x] ∈ G∗F∗

ss /∼ under the chosen duality Irr
Q
(SF ) � S∗F∗

(§0.7), the
following diagram of Q-algebras commutes:

(1.7.1)

QEG,ψ Q

QSF

χψ,[x]|QEG,ψ

CurGS θ

The homomorphism CurGS is determined by §1.4(a) and by the following formula:

Curtis’ formula. For all n ∈ GF , CurGS (eψneψ) =
∑

s∈SF CurGS (eψneψ)(s)s ∈
QSF with

CurGS (eψneψ)(s)

=
1

〈QG
S ,ΓG,ψ〉GF

1

|UF |
1

|(CG(s)◦)F |
∑

g∈GF , u∈UF

(gung−1)ss=s

ψ(u−1)Q
CG(s)◦

S ((gung−1)u).

In the above formula, QG
S : GF −→ Z is the Green function, which is the function

supported on the set of unipotent elements of GF defined by QG
S (u) = RG

S (Id)(u)
for unipotent elements u of GF (see [DeLu, Def. 4.1]); CG(s)

◦ means the connected
identity component of the centralizer of s in G; for g ∈ GF , gss (resp. gu) denotes
its semisimple part (resp. unipotent part).

Lemma 1.5. Let S be an F -stable maximal torus of G.
(a) (Compare [BoKe, Thm. 2.7(b)].) CurGS is defined over Z[ 1p ] in the sense

that CurGS (Z[
1
p ]EG,ψ) ⊂ Z[ 1p ]S

F .
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(b) Identify Z[ 1p ]EG = Z[ 1p ]EG,ψ (Lemma 1.4). Then CurGS : QEG −→ QSF is

equivariant under the action of Gal(Q/Q) (§1.6). Thus (with the help of

(a)) CurGS is defined over Z[ 1p ]: CurGS (Z[
1
p ]EG) ⊂ Z[ 1p ]S

F .

Proof. (a) Using the Z[ 1p ]-linear basis of Z[
1
p ]EG,ψ in §1.4(a), it suffices to show

that CurGS (eψneψ) ∈ Z[ 1p ]S
F for every n ∈ GF . In Curtis’ formula for

CurGS (eψneψ) (§1.7), observe that 〈QG
S ,ΓG,ψ〉GF = 〈RG

S (Id),ΓG,ψ〉GF = ±1
(Theorem 1.1) and that |UF | is a power of p, so to prove this lemma it
remains to show that the number

C(s) :=
1

|(CG(s)◦)F |
∑

g∈GF , u∈UF

(gung−1)ss=s

ψ(u−1)Q
CG(s)◦

S ((gung−1)u)

lies in Z[ 1p ] for all s ∈ SF . If (gung−1)ss = s (g, n ∈ GF , u ∈ UF ), for

every c ∈ CG(s)
◦ we have ((cg)un(cg)−1)ss = s and ((cg)un(cg)−1)u =

c.(gung−1)u.c
−1, so

C(s) =
∑

g∈(CG(s)◦)F \GF , u∈UF

(gung−1)ss=s

ψ(u−1)Q
CG(s)◦

S ((gung−1)u) ∈ Z[ 1p ].

(b) We have to show that

(1.7.2) σ(CurGS (eψneψ)(s)) = CurGS (σ · (eψneψ))(s)

for every n ∈ GF , σ ∈ Gal(Q/Q) and s ∈ SF . Again, we apply Curtis’
formula: using §1.6 and the notation therein, we have σ · ψ = yσψ with
yσ ∈ TF

ad; choose a t ∈ T such that yσ = tZ, and choose a c ∈ S such that
x := t−1c ∈ GF (see the proof of Lemma 1.2); then

〈QG
S ,ΓG,ψ〉GF |UF ||(CG(s)

◦)F | · σ(CurGS (eψneψ)(s))

=
∑

g∈GF , u∈UF

(gung−1)ss=s

σ(ψ(u−1))Q
CG(s)◦

S ((gung−1)u)

=
∑

g∈GF , u∈UF

(gung−1)ss=s

(yσψ)(u−1)Q
CG(s)◦

S ((gung−1)u)

=
∑

g∈GF , u∈UF

(gu.y
−1
σ n.g−1)ss=

y−1
σ s

ψ(u−1)Q
CG(s)◦

S (yσ ((gu.y
−1
σ n.g−1)u))

(where we have performed u �→ yσu and g �→ yσg)

=
∑

g∈GF , u∈UF

x((gu.y
−1
σ n.g−1)ss)=

t−1
s

ψ(u−1)Q
CG(s)◦

S (yσx((gu.y
−1
σ n.g−1)u))
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(where we have performed g �→ xg)

=
∑

g∈GF , u∈UF

(gu.y
−1
σ n.g−1)ss=s

ψ(u−1)Q
CG(s)◦

S ((gu.y
−1
σ n.g−1)u)

(where we have used x−1y−1
σ (Q

CG(s)◦

S ) = Q
CG(s)◦

S ; see the proof of Lemma
1.2)

= 〈QG
S ,ΓG,ψ〉GF |UF ||(CG(s)

◦)F | · CurGS (σ · (eψneψ))(s).
�

Lemma 1.6 ([BoKe, Prop. 2.1]). Let S be an F -stable maximal torus of G. For
z ∈ S∗F∗

, let ẑ : SF −→ Q be its corresponding irreducible character of SF obtained
from the duality S∗F∗ � IrrQ(S

F ) (§0.7), and let eSẑ := 1
|SF |

∑
t∈SF ẑ(t−1)t ∈ QSF

be the primitive central idempotent associated to ẑ. Then

(1.7.3) CurGS (e
E
ψ,[x]) =

∑
z∈[x]∩S∗F∗

eSẑ ∈ QSF for every [x] ∈ G∗F∗

ss /∼ .

As a consequence, CurGS may be interpreted as a restriction map: using the identi-

fication QEG,ψ � Q
G∗F∗

ss /∼
(§1.4) as well as a similar identification QSF = Q

S∗F∗

(such that eSẑ corresponds to the characteristic function 1{z} on S∗F∗
), we have the

following commutative diagram of Q-algebras (“Res” means the restriction map):

(1.7.4)

QEG,ψ Q
G∗F∗

ss /∼

QSF Q
S∗F∗

∼

CurGS
Res

∼

The formula (1.7.3), or equivalently the commutativity of (1.7.4), gives an al-

ternative definition of CurGS . Note that the two horizontal isomorphisms in (1.7.4)
are not compatible with obvious Q-structures (the Q-structure of QEG is given by
§1.6); the two vertical maps in (1.7.4), however, are defined over Q (see Lemma
1.5(b)).

Corollary 1.7 (of Lemma 1.6; compare [BoKe, Prop. 3.2]). If for each w ∈ W
we choose an F -stable maximal torus Tw of G whose GF -conjugacy class corre-
sponds to w (recall that the GF -conjugacy classes of F -stable maximal tori of G are
parametrized by F -conjugacy classes of W ; see §0.6), then the product map

CurG := (CurGTw
)w∈W : QEG,ψ −→

∏
w∈W

QTF
w

is an injective Q-algebra homomorphism.

1.8. Symmetric algebras and symmetrizing forms. [Br, Sec. 2] Let Λ be a
commutative ring with unity. By symmetric Λ-algebra, we mean a pair (A, τ )
where:

(i) A is a Λ-algebra which is finitely generated and projective as a Λ-module;
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(ii) τ : A −→ Λ is a central Λ-module homomorphism (“central” means that
τ (ab) = τ (ba) for all a, b ∈ A) such that the map

τ̂ : A −→ HomΛ(A,Λ), a �−→ [τ̂ (a) : A −→ Λ, b �−→ τ (ab)]

is a Λ-module isomorphism.
In this case, τ is called a symmetrizing form on A over Λ.

Now let (A, τ ) be a symmetric algebra, let P be a finitely generated projective
A-module and let E = EndA(P ) be its endomorphism ring. Then τ induces a

symmetrizing form τE : E −→ Λ via τE = [E � HomA(P,A)⊗A P
natural pairing−−−−−−−−−−→

A
τ−→ Λ], so that (E, τE) is a symmetric Λ-algebra.
Application to ΛEG,ψ. Let Λ be an integral domain containing Z[ 1p ]. The

evaluation at identity ev1 : ΛGF −→ Λ is a symmetrizing form on ΛGF ; the
Gelfand-Graev representation ΓG,ψ = ΛGF eψ being a projective ΛGF -module, the
previous discussion implies that ev1 induces a symmetrizing form τ on ΛEG,ψ =
EndΛGF (ΓG,ψ); under the identification ΛEG,ψ = eψΛG

F eψ ⊂ ΛGF , the form
τ : ΛEG,ψ −→ Λ is just the restriction of ev1 on ΛEG,ψ .

Lemma 1.8 ([BoKe, Lem. 3.8]). Let Λ1 ⊂ Λ2 be an inclusion of commutative rings
with unity. Let (A, τ ) be a symmetric Λ1-algebra which is free as a Λ1-module, and
denote the Λ2-linear extension of τ to Λ2A again by τ . Let A′ be a Λ1-algebra which
is free as Λ1-module, such that A ⊂ A′ ⊂ Λ2A and τ (A′) ⊂ Λ1. Then A = A′.

Theorem 1.9 ([BoKe, Thm. 3.7]). Recall the injective Curtis homomorphism

CurG = (CurGTw
)w∈W : QEG,ψ ↪→

∏
w∈W

QTF
w

in Corollary 1.7. The map CurG is saturated over Z[ 1
p|W | ] (with respect to its field

of fractions Q) in the sense that

CurG(Z[ 1
p|W | ]EG,ψ) = CurG(QEG,ψ) ∩

( ∏
w∈W

Z[ 1
p|W | ]T

F
w

)
.

Remark. There are examples of G making CurG not saturated over Z[ 1p ], such as

G = SL2(Fq) with q odd (see [BoKe, Rmk. 3.9]).

For later use, let us sketch a proof of this theorem. Consider the two Z[ 1
p|W | ]-

algebras A := CurG(Z[ 1
p|W | ]EG,ψ) and A′ := CurG(QEG,ψ) ∩

(∏
w∈W Z[ 1

p|W | ]T
F
w

)
;

to prove that A = A′, the idea is to construct a symmetrizing form on A and then
apply Lemma 1.8.

We have A ⊂A′ as each CurGTw
is defined over Z[ 1p ] (Lemma 1.5). As QA =

CurG(QEG,ψ), we get the inclusions A ⊂ A′ ⊂ QA. Consider

τE := |UF |ev1GF
: Z[ 1p ]EG,ψ −→ Z[ 1p ] (Z[ 1p ]EG,ψ = eψZ[

1
p ]G

F eψ),

so that (Z[ 1p ]EG,ψ , τ
E) is a symmetric Z[ 1p ]-algebra (§1.8). Denote the Q-linear

extension of τE again by τE : QEG,ψ −→ Q, and set

τW :=
1

|W |
∑
w∈W

ev1TF
w
◦ prQTF

w
:
∏

w∈W

QTF
w −→ Q



94 TZU-JAN LI

which is a symmetrizing form on
∏

w∈W QTF
w and verifies the relation τE = τW ◦

CurG on QEG (see [BoKe, Sec. 3.B]).

The last relation and the injectivity of CurG together imply that (A, τW |A) is a
symmetric Z[ 1

p|W | ]-algebra; on the other hand, since |W | is invertible in Z[ 1
p|W | ], the

map τW is defined over Z[ 1
p|W | ] and then we have τW (A′) ⊂ Z[ 1

p|W | ]. So Lemma

1.8 implies that A = A′, and this completes the proof of the theorem.

Corollary 1.10 (of Theorem 1.9 and Lemma 1.5(b)). Identify Z[ 1p ]EG = Z[ 1p ]EG,ψ

(Lemma 1.4). Then the map CurG is saturated over Z[ 1
p|W | ] (with respect to its

field of fractions Q):

CurG(Z[ 1
p|W | ]EG) = CurG(QEG) ∩

(∏
w∈W Z[ 1

p|W | ]T
F
w

)
.

2. Grothendieck groups of representations over defining

characteristic

The Grothendieck group KG∗ .

2.1. The p-regular elements. Let G∗F∗

p′ be the set of p-regular elements of G∗F∗
;

recall that an element of G∗F∗
is called p-regular if its order in G∗F∗

is not divisible
by p. We have G∗F∗

p′ = G∗F∗

ss by the Jordan decomposition. Denote by G∗F∗

p′ /∼ the

set of G∗F∗
-conjugacy classes in G∗F∗

p′ ; thus (G∗F∗

p′ /∼) = (G∗F∗

ss /∼).

2.2. Definition of the algebra KG∗ . Consider RepFq
(G∗F∗

), the category of

finite-dimensional representations of the finite group G∗F∗
over the field Fq, or

equivalently the category of finitely generated FqG
∗F∗

-modules. We define KG∗

to be the Grothendieck group of the category RepFq
(G∗F∗

). The tensor product

on RepFq
(G∗F∗

) induces a multiplication ⊗ on KG∗ , and then we shall consider

KG∗ = (KG∗ ,+,⊗) as a Z-algebra.
Denote by [·] : RepFq

(G∗F∗
) −→ KG∗ the natural map, which descends to a map

[·] on the set of isomorphism classes in RepFq
(G∗F∗

). Let IrrFq
(G∗F∗

) be the set of

isomorphism classes of simple objects in RepFq
(G∗F∗

). Then KG∗ is a free Z-module

having the set {[M ] ∈ KG∗ : M ∈ IrrFq
(G∗F∗

)} as a basis (see [Se1, Sec. 14.1]).

2.3. The Brauer character. [Se1, Sec. 18] Recall that we have fixed an inclusion

of multiplicative groups κ : Fq
×
↪→ Q

×
(§0.7). Let M ∈ RepFq

(G∗F∗
) and g ∈ G∗F∗

p′

(a p-regular element, see §2.1). Then the action g : M −→ M (considered as an

Fq-linear map) is diagonalizable with eigenvalues λ1, · · · , λN ∈ Fq
×

(here N :=

dimFq
M), and we set (brM)(g) := κ(λ1) + · · · + κ(λN ) ∈ Q. We thus get a map

brM : G∗F∗

p′ −→ Q (the Brauer character of M), which descends to an element

brM ∈ Q
G∗F∗

p′ /∼
.

The map M �−→ brM then induces a ring homomorphism

br : KG∗ −→ Q
G∗F∗

p′ /∼
.

The unique Q-linear extension of the map br(·) is a Q-algebra isomorphism:

br : QKG∗
∼−−→ Q

G∗F∗
p′ /∼

.
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Thus the rank of the free Z-module KG∗ is

rankZ KG∗ = |IrrFq
(G∗F∗

)| = |G∗F∗

p′ /∼ | = |G∗F∗

ss /∼ |.

The above Brauer isomorphism and the canonical inclusion KG∗ ⊂ QKG∗ show that

KG∗ is reduced and is embedded into Q
G∗F∗

p′ /∼
by the Brauer map br(·).

2.4. Projective objects in RepFq
(G∗F∗

)[Se1, IIIe partie]. Let ProjFq
(G∗F∗

) be

the category of projective FqG
∗F∗

-modules of finite dimension over Fq, and let PG∗

be the Grothendieck group of the category ProjFq
(G∗F∗

). For M ∈ RepFq
(G∗F∗

),

denote by PM ∈ ProjFq
(G∗F∗

) the projective cover of M (which is unique up to

isomorphism). Then PG∗ is a free Z-module having {[PM ] : M ∈ IrrFq
(G∗F∗

)} as a

basis (the image of P ∈ ProjFq
(G∗F∗

) in PG∗ is denoted by [P ]). Two objects P and

P ′ of ProjFq
(G∗F∗

) are isomorphic if and only if [P ] = [P ′] in PG∗ . Furthermore:

(a) The pairing

〈·, ·〉P,K : ProjFq
(G∗F∗

)× RepFq
(G∗F∗

) −→ Z, (P, π) �−→ dimFq
HomFqG∗F∗ (P, π)

descends to a Z-bilinear perfect pairing 〈·, ·〉P,K : PG∗ × KG∗ −→ Z with

{[PM ] : M ∈ IrrFq
(G∗F∗

)} and {[M ] : M ∈ IrrFq
(G∗F∗

)} being dual bases

with each other.

(b) Let c : PG∗ −→ KG∗ be the Cartan homomorphism, which is the nat-
ural map induced by the inclusion ProjFq

(G∗F∗
) ⊂ RepFq

(G∗F∗
). Then

c(PG∗) ⊃ |G∗F∗ |pKG∗ , the cokernel coker(c) = KG∗/c(PG∗) is a finite p-
group, and c is an injective map. We shall use this map c to identify PG∗

as an ideal of the ring KG∗ .

Comparison between Z[ 1
p|W | ]KG∗ and Z[ 1

p|W | ]EG.

2.5. The identification QEG � QKG∗ . From now on, let us fix a ψ ∈ Ψ and then
identify Z[ 1p ]EG = Z[ 1p ]EG,ψ (Lemma 1.4). We shall then write the idempotent

eEψ,[x] (see §1.4(b)) simply as eE[x].

Using the Brauer isomorphism in §2.3, the equality G∗F∗

p′ = G∗F∗

ss and (1.4.3),

we obtain the following identifications of Q-algebras:{
QEG � Q

G∗F∗
ss /∼

= Q
G∗F∗

p′ /∼ � QKG∗

eE[x] ↔ 1{[x]} = 1{[x]} ↔ br−1(1{[x]})

}
.

When G = S is a torus, the identification QES � QKS∗ is already true over Z:
indeed, we have ES � ZSF , and the chosen duality SF � IrrFq

(S∗F∗
) (§0.7) induces

an identification ZSF � KS∗ .
In the general case, we first consider the coefficients Z[ 1p ] for the sake of the

structure theory of Z[ 1p ]EG, and it is expected that we still have a Z[ 1p ]-algebra

isomorphism Z[ 1p ]EG � Z[ 1p ]KG∗ . The first idea is to reconstruct the expected

isomorphism from the above toric case via the following commutative diagram of
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rings (where S is an F -stable maximal torus of G):

QEG QKG∗

QSF QKS∗

∼

CurGS ResG
∗F∗

S∗F∗

∼

Proposition 2.1. Let τK : QKG∗ −→ Q be the Q-linear form induced by the
symmetrizing form τE = |UF |ev1GF

: QEG −→ Q (Theorem 1.9) via the canonical

identification QEG � QKG∗ . Then, with the perfect pairing 〈·, ·〉P,K from §2.4(a),

τK(π) =
1

|W |
∑
w∈W

〈1,ResG
∗F∗

T∗F∗
w

π〉P,K (π ∈ KG∗),

where 1 is the trivial representation over Fq.

Note that, as T ∗F∗

w has order coprime to p, each pairing 〈1,ResG
∗F∗

T∗F∗
w

π〉P,K above is

simply the usual inner product of the characters for 1 and ResG
∗F∗

T∗F∗
w

π. (Nevertheless,

the above expression of τK(π) in terms of 〈·, ·〉P,K will be essential in Proposition
2.2.)

Proof of proposition. Under the canonical identification QKG∗ = QEG, π ∈ KG∗

corresponds to
∑

x∈G∗F∗
ss /∼(brπ)(x)e

E
[x] ∈ QEG. With the help of the formula τE =

τW ◦ CurG (Theorem 1.9) as well as Lemma 1.6, we have

τE(eE[x]) =
1

|W |
∑
w∈W

CurGTw
(eE[x])(1) =

1

|W |
∑
w∈W

∑
z∈[x]∩T∗F∗

w

1

|TF
w | ,

so that

τK(π) =
∑

x∈G∗F∗
ss /∼

(brπ)(x) · τE(eE[x]) =
1

|W |
∑

x∈G∗F∗
ss /∼

∑
w∈W

∑
z∈[x]∩T∗F∗

w

(brπ)(x)

|TF
w |

=
1

|W |
∑
w∈W

1

|TF
w |

∑
x∈G∗F∗

ss /∼

∑
z∈[x]∩T∗F∗

w

(brπ)(z)

=
1

|W |
∑
w∈W

1

|TF
w |

∑
z∈T∗F∗

w

(brπ)(z) =
1

|W |
∑
w∈W

〈1,ResG
∗F∗

T∗F∗
w

π〉P,K.

�
2.6. The Steinberg character. Let StG∗ ∈ RepQp

(G∗F∗
) be the Steinberg char-

acter of G∗F∗
, and let StG∗ be its reduction modulo p. Recall that StG∗ is an

irreducible projective FqG
∗F∗

-module and is isomorphic to its dual representation

St
∨
G∗ . In addition:
(a) [DeLu, Cor. 7.15] In Z[ 1

|W | ]KG∗ , we have:

[StG∗ ] =
1

|W |
∑
w∈W

(−1)�(w)
[
IndG

∗F∗

T∗F∗
w

1
]
;

[StG∗ ]⊗ [StG∗ ] =
1

|W |
∑
w∈W

[
IndG

∗F∗

T∗F∗
w

1
]
.

(Here �(w) ∈ N is the length of w ∈ W .)
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(b) [Lu] The map (·)⊗ [StG∗ ] : KG∗ −→ PG∗ is a Z-module isomorphism.

Proposition 2.2. Let τK : QKG∗ −→ Q be the Q-linear form in Proposition 2.1.
(a) For every π ∈ KG∗ we have τK(π) = 〈[StG∗ ] ⊗ [StG∗ ], π〉P,K ∈ Z. Thus τK

is defined over Z, and we shall still denote the restriction of τK to KG∗ by
τK : KG∗ −→ Z.

(b) The Z-linear form τK : KG∗ −→ Z obtained in (a) induces a Z-bilinear form

bK : KG∗ × KG∗ −→ Z, bK(x, y) := τK(x⊗ y) (x, y ∈ KG∗).

The discriminant disc bK of bK is then an integer and satisfies∣∣disc bK∣∣ = ∣∣det [(·)⊗ [StG∗ ] : KG∗ −→ KG∗
]∣∣ = [KG∗ : c(PG∗)] = pm

for some m ∈ N. (Here c : PG∗ −→ KG∗ is the Cartan homomorphism in
§2.4(b).)

(c) τK : Z[ 1p ]KG∗ −→ Z[ 1p ] (well-defined by (a)) is a symmetrizing form on

Z[ 1p ]KG∗ , so (Z[ 1p ]KG∗ , τK) is a symmetric Z[ 1p ]-algebra.

Proof of proposition. (a) The formula of τK(π) follows from Proposition 2.1
and Frobenius reciprocity (we extend 〈·, ·〉P,K Q-bilinearly):

τK(π) =
1

|W |
∑
w∈W

〈1,ResG
∗F∗

T∗F∗
w

π〉P,K =
1

|W |
∑
w∈W

〈IndG
∗F∗

T∗F∗
w

1, π〉P,K

=

〈
1

|W |
∑
w∈W

[
IndG

∗F∗

T∗F∗
w

1
]
, π

〉
P,K

= 〈[StG∗ ]⊗ [StG∗ ], π〉P,K.

(b) By (a) and adjunction for all x, y ∈ KG∗ we have

bK(x, y) = τK(x⊗ y) = 〈[StG∗ ]⊗ [StG∗ ], x⊗ y〉P,K = 〈x∨ ⊗ [StG∗ ], y ⊗ [StG∗ ]〉P,K.
Consider the basis β := {[x] : x ∈ IrrFq

(G∗F∗
)} (resp. Pβ := {[Px] : x ∈

IrrFq
(G∗F∗

)}) for the free Z-module KG∗ (resp. PG∗); see §2.4). Using the

matrices associated to (bi-)linear forms, we have the decomposition[
bK
]
β×β

= tX · Y · Z,
where:

X :=
[
(·)∨ ⊗ [StG∗ ] : KG∗ −→ PG∗

]Pβ

β
;

Y := [〈·, ·〉P,K : PG∗ × KG∗ −→ Z]Pβ ,β
;

Z :=
[
(·)⊗ [StG∗ ] : KG∗ −→ KG∗

]β
β
.

We have seen that (·)∨ ⊗ [StG∗ ] : KG∗ −→ PG∗ is invertible, so detX ∈
Z× = {±1}; by §2.4(a), detY = 1. We thus obtain:

disc bK = det
([

bK
]
β×β

)
= ± detZ = ± det

[
(·)⊗ [StG∗ ] : KG∗ −→ KG∗

]
.

Recall that for a free Z-module A of finite rank and for a Z-module homo-
morphism ϕ : A −→ A, we have | detϕ| = [A : ϕ(A)] (this can be deduced
via the Smith normal form of ϕ). Using this fact and §2.4(b), we get, for
some m ∈ N,∣∣det [(·)⊗ [StG∗ ] : KG∗ −→ KG∗

]∣∣ = [KG∗ : c(PG∗)] = pm.



98 TZU-JAN LI

(c) By (b), disc bK = ±pm is invertible in Z[ 1p ], and this is equivalent to saying

that τK : Z[ 1p ]KG∗ −→ Z[ 1p ] is a symmetrizing form on Z[ 1p ]KG∗ .

�

Remark. The equality

det
[
(·)⊗ [StG∗ ] : KG∗ −→ KG∗

]
= ±pm

(a weaker version of (b) but will be sufficient for the proof of Theorem 2.3) can be
directly verified as follows: the map (·)⊗ [StG∗ ] : KG∗ −→ KG∗ corresponds, under

the Brauer isomorphism br : QKG∗
∼−−→ Q

G∗F∗
p′ /∼

(§2.3), to the diagonalizable
endomorphism

Q
G∗F∗

p′ /∼ −→ Q
G∗F∗

p′ /∼
, f �−→ f · (br StG∗),

whose eigenvalues are all of the form (br StG∗)(x) = StG∗(x) = ±|(CG(x)
◦)F |p with

x ∈ G∗F∗

ss ; the desired equality then follows.

Theorem 2.3. Consider the following commutative diagram of Q-algebras intro-
duced in §2.5:

(2.6.1)

QEG QKG∗

∏
w∈W

QTF
w

∏
w∈W

QKT∗
w

∼

CurG =
(
CurGTw

)
w∈W

Res :=
(
ResG

∗F∗

T∗F∗
w

)
w∈W

∼

This diagram restricts itself to the following commutative diagram of Z[ 1
p|W | ]-

algebras:

(2.6.2)

Z[ 1
p|W | ]EG Z[ 1

p|W | ]KG∗

∏
w∈W

Z[ 1
p|W | ]T

F
w

∏
w∈W

Z[ 1
p|W | ]KT∗

w

∼

CurG Res

∼

(By Lemma 1.5, CurG is defined over Z[ 1p ].) Moreover, the map

Res : QKG∗ −→
∏

w∈W

QKT∗
w

is saturated over Z[ 1
p|W | ]:

Res(Z[ 1
p|W | ]KG∗) = Res(QKG∗) ∩

( ∏
w∈W

Z[ 1
p|W | ]KT∗

w

)
.

In order to display the symmetry between the E-side and the K-side, we shall give
two proofs of this theorem, in both of which the main idea is to use the symmetrizing
form Lemma 1.8.



ENDOMORPHISM ALGEBRAS OF GELFAND-GRAEV 99

First proof. We first show that the map Res : QKG∗ −→
∏

w∈W QKT∗
w
is saturated

over Z[ 1
p|W | ]. So consider the map

i :=
1

|W |
∑
w∈W

(−1)�(w)IndG
∗F∗

T∗F∗
w

:

( ∏
w∈W

Z[ 1
p|W | ]KT∗

w

)
−→ Z[ 1

p|W | ]KG∗ ,

which is well-defined because |W | is invertible in Z[ 1
p|W | ]. Then the composition

Z[ 1
p|W | ]KG∗

Res−−−→
( ∏

w∈W

Z[ 1
p|W | ]KT∗

w

)
i−−→ Z[ 1

p|W | ]KG∗

coincides with [StG∗ ] ⊗ (·) : Z[ 1
p|W | ]KG∗ −→ Z[ 1

p|W | ]KG∗ , since for π ∈ Z[ 1
p|W | ]KG∗

we have

(i ◦ Res)(π) = 1

|W |
∑
w∈W

(−1)�(w)IndG
∗F∗

T∗F∗
w

ResG
∗F∗

T∗F∗
w

π

=
1

|W |
∑
w∈W

(−1)�(w)
(
IndG

∗F∗

T∗F∗
w

1
)
⊗ π = [StG∗ ]⊗ π.

Proposition 2.2(b) (or the remark of Proposition 2.2) then implies: for some m ∈ N,

det(i ◦ Res) = det
[
[StG∗ ]⊗ (·) : Z[ 1p ]KG∗ −→ Z[ 1p ]KG∗

]
= ±pm;

thus det(i◦Res) ∈ Z[ 1
p|W | ]

×
. Hence Res : QKG∗ −→

∏
w∈W QKT∗

w
is saturated over

Z[ 1
p|W | ].

The diagram (2.6.1) gives the following commutative diagram:

Z[ 1
p|W | ]EG QKG∗

∏
w∈W

Z[ 1
p|W | ]T

F
w

∏
w∈W

Z[ 1
p|W | ]KT∗

w

∏
w∈W

QKT∗
w

CurG Res

∼

The injective map Z[ 1
p|W | ]EG ↪→ QKG∗ in this diagram identifies Z[ 1

p|W | ]EG ⊂
QKG∗ . Using the commutativity of the same diagram as well as the fact that the
injective map Res : QKG∗ −→

∏
w∈W QKT∗

w
is saturated, we have Z[ 1

p|W | ]EG ⊂
Z[ 1

p|W | ]KG∗ . Therefore:

(i) we have the inclusions of rings Z[ 1
p|W | ]EG ⊂ Z[ 1

p|W | ]KG∗ ⊂ QEG;

(ii) (Z[ 1
p|W | ]EG, τ

E) in the proof of Theorem 1.9 is a symmetric Z[ 1
p|W | ]-algebra;

(iii) τE(Z[ 1
p|W | ]KG∗) ⊂ Z[ 1

p|W | ] (Proposition 2.2(a)).

Thus Lemma 1.8 implies that Z[ 1
p|W | ]EG = Z[ 1

p|W | ]KG∗ (under QEG = QKG∗). �
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Second proof. This time we prove the Z[ 1
p|W | ]-algebra isomorphism Z[ 1

p|W | ]EG �
Z[ 1

p|W | ]KG∗ first. The diagram (2.6.1) gives the following commutative diagram:

QEG Z[ 1
p|W | ]KG∗

∏
w∈W

QTF
w

∏
w∈W

Z[ 1
p|W | ]T

F
w

∏
w∈W

Z[ 1
p|W | ]KT∗

w

CurG Res

∼

We then identify Z[ 1
p|W | ]KG∗ ⊂ QEG. As the map CurG is saturated over Z[ 1

p|W | ]

(Theorem 1.9), the above diagram gives Z[ 1
p|W | ]KG∗ ⊂ Z[ 1

p|W | ]EG. Therefore:

(i) we have the inclusions of rings Z[ 1
p|W | ]KG∗ ⊂ Z[ 1

p|W | ]EG ⊂ QKG∗ ;

(ii) (Z[ 1
p|W | ]KG∗ , τK) is a symmetric Z[ 1

p|W | ]-algebra (Proposition 2.2(c));

(iii) τK(Z[ 1
p|W | ]EG) = τE(Z[ 1

p|W | ]EG) ⊂ Z[ 1
p|W | ].

Thus Lemma 1.8 implies that Z[ 1
p|W | ]EG = Z[ 1

p|W | ]KG∗ (under QEG = QKG∗),

and we also obtain the commutativity of (2.6.2). Using the saturatedness of CurG

(Theorem 1.9) and the Z[ 1
p|W | ]-algebra isomorphism Z[ 1

p|W | ]EG � Z[ 1
p|W | ]KG∗ , we

see that the map Res : QKG∗ −→
∏

w∈W QKT∗
w
is saturated over Z[ 1

p|W | ]. �

Corollary 2.4 (of Proposition 2.3 and Lemma 1.5(b)). The commutative diagram
(2.6.1) is equivariant under the action of Gal(Q/Q) and induces by restriction the
following commutative diagram of Z[ 1

p|W | ]-algebras:

Z[ 1
p|W | ]EG Z[ 1

p|W | ]KG∗

∏
w∈W

Z[ 1
p|W | ]T

F
w

∏
w∈W

Z[ 1
p|W | ]KT∗

w

∼

CurG Res

∼

Moreover, the map Res : QKG∗ −→
∏

w∈W QKT∗
w
is saturated over Z[ 1

p|W | ]:

Res(Z[ 1
p|W | ]KG∗) = Res(QKG∗) ∩

(∏
w∈W Z[ 1

p|W | ]KT∗
w

)
.

3. Algebras from the invariant theory

Langlands dual groups.

3.1. The Langlands dual. Recall the data (G, T, F ) and (X(T ), R, Y (T ), R∨)
from §0.7. By definition, a Langlands dual of (G, T ) is a pair (G∨, T∨) defined and
split over Z and obtained by assigning its character group (resp. cocharacter group,
resp. set of roots, resp. set of coroots) as Y (T ) (resp. X(T ), resp. R∨, resp. R).
From now on, we fix such a Langlands dual (G∨, T∨) (all choices are isomorphic).

Note that the Deligne-Lusztig dual pair (G∗, T ∗) (§0.7) may be obtained from
(G∨, T∨) through the base change Spec(Fq) −→ Spec(Z). We have the identifica-
tions X(T∨) = X(T ∗) = Y (T ) and Y (T∨) = Y (T ∗) = X(T ); moreover, the Weyl
groups of (G∨, T∨) and of (G∗, T ∗) are both identified with the Weyl group W of
(G, T ).
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3.2. The automorphism τ∨ and the endomorphism F∨. Let τ∗ be the auto-
morphism on X(T ∗) = Homalg(T

∗,Gm) induced by the arithmetic Frobenius en-
domorphisms ϕ on T ∗ and Gm; more precisely, τ∗(λ) := ϕ−1 ◦λ ◦ϕ for λ ∈ X(T ∗).
Via the identification X(T∨) = X(T ∗) we obtain an automorphism τ∨ on X(T∨)
and hence on T∨. Using the same identification X(T∨) = X(T ∗), the Frobenius
endomorphism F ∗ on X(T ∗) induces an endomorphism F∨ on X(T∨) and then on
T∨. We have the following properties (compare [DiMi, Ch. 3 & 8]):

(a) On both X(T∨) and T∨, the endomorphisms τ∨◦F∨ and F∨◦τ∨ are equal;
these endomorphisms are the multiplication by q on X(T∨) and are (·)q on
T∨.

(b) The following statements are equivalent: (i) G is split over Fq; (ii) G∗ is
split over Fq; (iii) τ

∨ = id on X(T∨); (iv) F∨ = q on X(T∨); (v) F∨ = (·)q
on T∨.

The algebra BG∨ of the Z-scheme (T∨ � W )F
∨
.

3.3. Definition of the algebra BG∨ . As X(T∨) is an abelian group of finite
rank, the group ring Z[X(T∨)] is a finitely generated commutative Z-algebra, and
we know that T∨ = Spec(Z[X(T∨)]). The Weyl group W � NG∨(T∨)/T∨ acts
on T∨ by conjugation and hence on Z[X(T∨)] (by adjoint action). The Z-algebra
Z[X(T∨)]W , consisting of elements of Z[X(T∨)] fixed by the W -action, is also
finitely generated (see [Se2, pf. of Prop. III.18]). We then consider the categorical
quotient T∨�W := Spec(Z[X(T∨)]W ), which is an affine Z-scheme.

The endomorphism F∨ on X(T∨) induces an endomorphism F∨ on Z[X(T∨)]W

(because F∨(W ) = W ) and thus an F∨-action on T∨�W , so we have the fixed-

point subscheme (T∨ � W )F
∨
, which is also an affine Z-scheme. We define BG∨ as

the ring of functions of the affine scheme (T∨ � W )F
∨
, so that

(T∨ � W )F
∨
= Spec(BG∨) and BG∨ = Z[X(T∨)]W /I,

where I is the ideal of Z[X(T∨)]W generated by the subset {F∨f − f : f ∈
Z[X(T∨)]W }; then BG∨ is a finitely generated commutative Z-algebra.

3.4. A reducedness problem and the algebra BG∨, red. In the algebro-geometric

viewpoint, we wish to know whether the scheme (T∨�W )F
∨
is reduced or not; that

is, whether the Z-algebra BG∨ is reduced or not. We shall see later (Theorem 3.9)
that BG∨ is reduced when the derived subgroup G∨

der of G
∨ is simply-connected.

Beyond the case of simply-connected G∨
der, so far we haven’t developed a general

theory to determine if BG∨ is reduced or not, though we have verified directly
that BG∨ is reduced when G = SO2n(Fq) for q odd (using combinatorics of the

root system of SO2n), when G = SL2(Fq) for all q (simple computation), or when

G = SL3(Fq) for q ∈ {2, 3} (direct calculation via Gröbner basis) — it is thus hoped

that a uniform approach can be found even just for all G = SL3(Fq)!
At the moment, let us denote by BG∨, red the reduced ring derived from BG∨ ;

we have BG∨,red = Z[X(T∨)]W /
√
I, where

√
I = {f ∈ Z[X(T∨)]W : fm ∈

I for some m ∈ N∗} is the radical of I. So BG∨ is reduced if and only if BG∨, red is
equal to BG∨ . Besides, BG∨, red is also a finitely generated commutative Z-algebra
(see §3.3).
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3.5. Decompositions of the algebras kBG∨ and kBG∨, red. Let k be an alge-

braically closed field. The set of k-points of (T∨ � W )F
∨

= Spec(BG∨) may be
identified as:

(T∨ � W )F
∨
(k) = Specm(kBG∨) = (T∨(k)/W )F

∨
=

( ⋃
w∈W

T∨(k)wF∨

)/
W.

(Notation: when a set X is equipped with a (left) W -action, we denote by X/W the

set of W -orbits in X.) Each T∨(k)wF∨
may be identified as T ∗wF∗ � T ∗F∗

w (with

respect to an embedding Fq
×
↪→ k×) and is thus a finite set (compare Lemma 3.1);

the set Specm(kBG∨) is thus finite, so kBG∨ is a finite-dimensional vector space
over k and in particular an Artinian k-algebra. Therefore, if we denote by (kBG∨)m
the localization of kBG∨ at the maximal ideal m ∈ (T∨�W )F

∨
(k) = Specm(kBG∨),

then the map

kBG∨ −→
∏

m∈(T∨�W )F∨ (k)

(kBG∨)m, f �−→ (f)m∈(T∨�W )F∨ (k)

is a k-algebra isomorphism, where each (kBG∨)m � (kBG∨)/mN as k-algebras for
some N ∈ N∗ depending on m. We have the following equivalent conditions:

kBG∨ is reduced ⇐⇒ each (kBG∨)m � (kBG∨)/m = k as k-algebras

⇐⇒ kBG∨ � k(T
∨�W )F

∨
(k) as k-algebras

⇐⇒ dimk(kBG∨) = |(T∨ � W )F
∨
(k)|.

The above discussion also applies to the reduced version (T∨ � W )F
∨

red =

Spec(BG∨, red). When k = Q (or other fields of characteristic zero), the reducedness

of BG∨, red implies that of QBG∨, red, so that:

(a) QBG∨, red � Q
(T∨�W )F

∨
(Q)

as Q-algebras;

(b) dimQ(QBG∨, red) = |(T∨ � W )F
∨
(Q)|.

Remark. In general, kBG∨, red need not be reduced. For example, let G∨ = T∨ =
Gm with F∨ = (·)q, so BG∨ = Z[X±1]/(Xq−1−1) = BG∨, red (X an indeterminate);

if � is a prime number dividing q − 1, then F�BG∨, red = F�[X
±1]/((X

q−1
� − 1)�) is

not reduced.

Lemma 3.1. Denote by G∗
ss/ ∼ the set of G∗-conjugacy classes of semisimple

elements of G∗, and define G∨(Q)ss/∼ in a similar way. Then

|(T∨�W )F
∨
(Q)| = |(T ∗�W )F

∗
(Fq)| = |(G∨(Q)ss/∼)F

∨ | = |(G∗
ss/∼)F

∗ |.

Proof. These equalities come from the chosen embedding κ : Fq
×
↪→ Q

×
(§0.7) and

the following observations (stated for G∗ but also valid for G∨(Q)): (i) G∗
ss is the

union of all maximal tori of G∗; (ii) for z ∈ T ∗, Wz ∈ (T ∗�W )F
∗
(Fq) if and only if

z ∈ T ∗wF∗
for some w ∈ W ; (iii) elements of each T ∗wF∗

are of finite order prime to
p; (iv) The canonical bijection (G∗

ss/∼) � T ∗ � W induced by the diagonalization
is compatible with respect to F ∗ (compare [La, Sec. 3.1 & App. B]). �

Lemma 3.2. The Z-module BG∨, red has no non-zero Z-torsion elements.
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Proof. Let 0 �= f ∈ BG∨, red. As BG∨, red is a finitely generated Z-algebra (§3.4),
it is a Jacobson ring, so its Jacobson radical (intersection of maximal ideals) is
equal to its nilradical (intersection of prime ideals), which is zero because BG∨, red

is reduced. Thus there is a maximal ideal m of BG∨, red such that f �∈ m. Consider
the field k = BG∨, red/m, which is a finite field because BG∨, red is a finitely-generated
Z-algebra; for the canonical quotient map t : BG∨, red −→ k which represents a k-
point of Spec(BG∨, red), we then have f(t) = t(f) �= 0 ∈ k. We may and we shall

replace k by its algebraic closure, so we shall write k = Fd for some prime number
d.

Let us show that the Fd-point t : BG∨, red −→ Fd can be canonically lifted to

a Zd-point t′ : BG∨, red −→ Zd. As t ∈ Specm(FdBG∨, red) = (T∨ � W )F
∨
(Fd),

we may write t = Ws where s ∈ T∨(Fd)
wF∨

for some w ∈ W . Using the

canonical lifting i : Fd
×

↪→ Zd
×

of d′-th roots of unity (Hensel’s lemma), our

s ∈ T∨(Fd) = Hom(X(T∨),Fd
×
) can be canonically lifted to some s′ ∈ T∨(Zd) =

Hom(X(T∨),Zd
×
), and it can be checked that s′ ∈ T∨(Zd)

wF∨
, so t′ := Ws′ ∈

(T∨ �W )F
∨
(Zd); this t

′ is a Zd-point t
′ : BG∨, red −→ Zd which lifts the Fd-point t,

in the sense that the following diagram is commutative (where rd is the standard
reduction map):

Zd

BG∨, red Fd

rdt′

t

Now, for our non-zero element f ∈ BG∨, red at the beginning of the proof, we

have seen that t(f) �= 0 ∈ Fd, so t′(f) �= 0 ∈ Zd thanks to the above lifting diagram.
Suppose that n ·f = 0 ∈ BG∨, red for some n ∈ Z. Then n · t′(f) = t′(n ·f) = 0 ∈ Zd

while t′(f) �= 0, whence n = 0. This shows that f is not a Z-torsion element of
BG∨, red. �

Corollary 3.3 (of Lemma 3.2). The natural map BG∨, red −→ QBG∨, red is injec-

tive; combining this with the identification QBG∨, red = Q
(T∨�W )F

∨
(Q)

, we obtain a

canonical injection of BG∨, red into Q
(T∨�W )F

∨
(Q)

.

Proposition 3.4. The Z-module BG∨, red is free of rank

rankZ BG∨, red = |(T∨ � W )F
∨
(Q)| = |(G∗

ss/∼)F
∗ |.

Remark. Having just seen that BG∨, red is without non-zero Z-torsion (Lemma 3.2),
the proposition will be proved once we have the finite-generacy of BG∨, red as a
Z-module; however, it seems difficult to prove this finite-generacy directly.

Proof of proposition, admitting Theorem 3.9. Let us admit for the moment the re-
sults in Theorem 3.9, which say that this proposition is true when the derived group
G∨

der of G∨ is simply-connected. By general theories of algebraic groups, G∗ fits
into an F ∗-equivariant exact sequence of reductive groups,

1 −→ S∗ −→ H∗ −→ G∗ −→ 1,

such that H∗
der is simply-connected and that S∗ is central in H∗. This exact se-

quence induces an F -equivariant exact sequence of reductive groups,

1 −→ G −→ H −→ S −→ 1,
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which induces finally an exact sequence of reductive groups over Z,

1 −→ S∨ −→ H∨ −→ G∨ −→ 1,

with H∨
der simply-connected and with S∨ a torus central in H∨; then the Weyl

group of H∨ is also W . Let T∨
H denote the F∨-stable maximal torus of H∨

der

which maps onto T∨. We then have a surjective morphism of reduced Z-schemes,
(T∨

H � W )F
∨

red −→ (T∨ � W )F
∨

red, so that in the level of ring we obtain an inclusion
of rings BG∨,red ⊂ BH∨,red. As H∨

der is simply-connected, Theorem 3.9 tells us that
BH∨,red is a free Z-module of finite rank; thus its Z-submodule BG∨,red is also free
of finite rank. This obtained, the rank of BG∨,red may be calculated from Lemma
3.1. �

On the reducedness of BG∨ .

3.6. The derived group Gder. compare [Her, App.] Denote by Gder = [G,G] the
derived subgroup of G. We shall freely use the following properties of Gder:

(a) we have G = R(G).Gder with R(G) ∩Gder being a finite set (here R(G) is
the reductive radical of G; it is the connected identity component of the
center of G);

(b) Tder := T ∩ Gder is a maximal torus of Gder, and T := G/Gder is a torus
on which the Weyl group W = NG(T )/T acts trivially; the Weyl group of
(Gder, Tder) is identified with W ;

(c) we have a canonical exact sequence of tori 1 −→ Tder −→ T −→ T −→ 1,
which induces the following exact sequences of groups:

1 −→ (Tder)
wF −→ TwF −→ T

wF
(= T

F
) −→ 1 (w ∈ W );

0 −→ X(T ) −→ X(T ) −→ X(Tder) −→ 0;

the last exact sequence gives the identifications X(T ) = X(T )W = X0(T )
where X0(T ) := {λ ∈ X(T ) : 〈λ, α∨〉 = 0 for all α ∈ Δ}.

We shall mainly apply these results on the dual sides G∗
der := (G∗)der and G∨

der :=
(G∨)der. Observe that G∗

der is simply-connected if and only if G∨
der is.

Theorem 3.5. [St1, pf. of Lem. 3.9], [St2, Cor. 8.5] If Gder is simply-connected,
then the centralizer CG(x) of every semisimple element x of G is connected.

The citations here address the case whereG is simply-connected, while the case of
simply-connected Gder can be deduced as a corollary via the following observation:
for every semisimple element x = zy ∈ G with z ∈ R(G) and y ∈ Gder, we have
CG(x) = R(G).CGder

(y).

Lemma 3.6. Recall that G∗
ss/∼ denotes the set of G∗-conjugacy classes of semisim-

ple elements of G∗ (Lemma 3.1). Then:
(a) [DiMi, Cor. 3.12] the map (G∗F∗

ss / ∼) −→ (G∗
ss/ ∼)F

∗
induced by the set

inclusion G∗F∗

ss ⊂ G∗
ss is surjective.

(b) [Ca, Prop. 3.7.3 & Thm. 3.7.6] If G∗
der is simply-connected, then the map

in (a) is a bijection (G∗F∗

ss /∼)
∼−−−→ (G∗

ss/∼)F
∗
, and |(T ∗ � W )F

∗
(Fq)| =

qrankG∗
der · |T ∗F∗

|.
Similar results hold for the Langlands dual side (G∨(Q), T∨(Q)).
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3.7. Combinatorics of root data. Elements of X(T∨) are also called weights;
inside X(T∨), we shall need the following two subsets:

X+(T∨) := {λ ∈ X(T∨) : 〈λ, α∨〉 ≥ 0 for all α ∈ Δ∨} (dominant weights);

X+
q (T∨) := {λ ∈ X(T∨) : 0 ≤ 〈λ, α∨〉 < q for all α ∈ Δ∨} (q-restricted weights).

Note that X+(T∨) is identified with the space X(T∨)/W of W -orbits in X(T∨),
in the way that every W -orbit in X(T∨) contains exactly one element of X+(T∨).

When G∨ is semisimple, Δ∨ is a Q-linear basis of X(T∨)Q := X(T∨)⊗ZQ, from
which we introduce two additional notions:

(a) let {ωα : α ∈ Δ∨} ⊂ X(T∨)Q be the set of fundamental weights of

(G∨, T∨, B∨), characterised by the relations 〈ωα, β
∨〉 =

{
1 if α = β
0 if α �= β

}
for all α, β ∈ Δ∨;

(b) let ht : X(T∨) −→ Q be the height function with respect to Δ∨, defined
for every λ ∈ X(T∨) by ht(λ) =

∑
α∈Δ∨ mα where λ =

∑
α∈Δ∨ mαα with

all mα ∈ Q.

Lemma 3.7. Suppose that G∨ is semisimple, so that we have the height function
ht : X(T∨) −→ Q with respect to Δ∨. Then:

(a) for λ ∈ X+(T∨), we have ht(λ′) < ht(λ) for every λ �= λ′ ∈ Wλ;

(b) for every 0 �= λ ∈ X+(T∨), we have ht(λ) > 0.

Proof. (a) Choose a W -invariant inner product (·|·) on the R-vector space

X(T∨)R = X(T∨) ⊗Z R. Set ρ̃ :=
∑

α∈Δ∨
2ωα

(α|α) ∈ X(T∨)R. Then one

can show that ht(μ) = (μ|ρ̃) for every μ ∈ X(T∨). For every μ ∈ X(T∨),
fix a σμ ∈ W such that ht(σμμ) = maxσ∈W ht(σμ). Then σμμ ∈ X+(T∨):
for every α ∈ Δ∨, we have 〈σμμ, α

∨〉 ≥ 0 because

(σμμ|ρ̃) ≥ (sασμμ|ρ̃) = (σμμ|sαρ̃) =
(
σμμ

∣∣∣∣ρ̃− 2α

(α|α)

)
= (σμμ|ρ̃)− 〈σμμ, α

∨〉.

Now let λ ∈ X+(T∨) and suppose that w ∈ W is such that λ′ := wλ �= λ.
The previous discussion tells us that ht(λ′) ≤ ht(σλλ) and that σλλ ∈
X+(T∨) ∩Wλ = {λ}, so σλλ = λ and ht(λ′) ≤ ht(λ). But ht(λ′) �= ht(λ),
for otherwise the last paragraph (with (μ, σμ) therein replaced by (λ,w))
would show that λ′ ∈ X+(T∨)∩Wλ = {λ} and then λ′ = λ, contradicting
our hypothesis. Thus ht(λ′) < ht(λ) as desired.

(b) Recall that {sα : α ∈ Δ∨} determines a length function W → N. Let w◦ be
the longest element of W (which maximize the length function); then it is a
fact that the action −w◦ : X(T∨) −→ X(T∨) permutes the elements of Δ∨,
so that for every λ ∈ X(T∨) we have ht(λ) = ht(−w◦λ) = −ht(w◦λ). Now
let 0 �= λ ∈ X+(T∨), so w◦λ �= λ and hence (a) implies that ht(w◦λ) <
ht(λ). But by the last paragraph we have ht(λ) = −ht(w◦λ), whence
ht(λ) > 0.

�

3.8. The canonical Z-basis of Z[X(T∨)]W . For each λ ∈ X(T∨), denote by
e(λ) its image in the group algebra Z[X(T∨)]; thus e(λ) is identified with the
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characteristic function 1{λ} : X(T∨) −→ Z, and {e(λ) : λ ∈ X(T∨)} is a Z-
linear basis for Z[X(T∨)]. For λ ∈ X(T∨), let Wλ ⊂ X(T∨) be the W -orbit
of λ, let Wλ ⊂ W be the stabilizer of λ under the W -action on X(T∨), and set
r(λ) := 1

|Wλ|
∑

w∈W e(wλ) =
∑

μ∈Wλ e(μ); then each r(λ) lies in Z[X(T∨)]W . The

identification X(T∨)/W = X+(T∨) implies that {r(λ) : λ ∈ X+(T∨)} is a Z-linear
basis for Z[X(T∨)]W .

Observe also that F∨(r(λ)) = r(F∨λ) for every λ ∈ X(T∨) (because F∨(W ) =
W ).

Lemma 3.8. Let π : X(T∨) � X(T∨
der) be the canonical surjection (§3.6), and let

ht : X(T∨
der) −→ Q be the height function with respect to Δ∨ (recall that G∨

der is
semisimple, and that Δ∨ is a set of simple roots for the root system of (G∨

der, T
∨
der)).

(a) For every λ ∈ X(T∨), the restriction of π to Wλ is injective.

(b) For every λ1, λ2 ∈ X+(T∨), in Z[X(T∨)]W we have

r(λ1) · r(λ2) = r(λ1 + λ2) +
∑

μ∈Ω(λ1,λ2)
μ 	=λ1+λ2

cμr(μ),

where Ω(λ1, λ2) = (Wλ1+Wλ2)∩X+(T∨) and cμ ∈ N∗ for all μ. Moreover,
for every μ ∈ Ω(λ1, λ2) with μ �= λ1+λ2, we have ht(π(μ)) < ht(π(λ1+λ2)).

Proof. (a) If w1, w2 ∈ W are such that π(w1λ) = π(w2λ), then ν := w1λ−w2λ
lies in ker(π); as ker(π) = X(T∨)W (§3.6), we have

ν =
1

|W |
∑
w∈W

wν =
1

|W |

(∑
w∈W

ww1λ−
∑
w∈W

ww2λ

)
= 0,

whence w1λ = w2λ.

(b) By definition of r(λ), it is clear that

r(λ1) · r(λ2) =
∑

μ∈Ω(λ1,λ2)

cμr(μ)

with all coefficients cμ ∈ N∗. For each μ ∈ Ω(λ1, λ2), we have μ = μ1 + μ2

where (μ1, μ2) ∈ Wλ1 ×Wλ2; if μ �= λ1 + λ2, then (μ1, μ2) �= (λ1, λ2), so
(a) implies that (π(μ1), π(μ2)) �= (π(λ1), π(λ2)) in W.π(λ1)×W.π(λ2), and
hence Lemma 3.7(a) shows that

ht(π(μ)) = ht(π(μ1)) + ht(π(μ2)) < ht(π(λ1)) + ht(π(λ2)) = ht(π(λ1 + λ2)).

It then remains to prove that cλ1+λ2
= 1. Indeed, cλ1+λ2

is the number
of pairs (μ1, μ2) in Wλ1 ×Wλ2 such that μ1 + μ2 = λ1 + λ2. For such a
pair (μ1, μ2), we have

ht(π(μ1)) + ht(π(μ2)) = ht(π(λ1)) + ht(π(λ2)),

so the argument of the last paragraph tells us that (μ1, μ2) = (λ1, λ2). This
proves the equality cλ1+λ2

= 1 and completes the proof of the lemma.
�

Theorem 3.9. Suppose that G∨
der is simply-connected, so that the fundamental

weights ω′
α (α ∈ Δ∨) of G∨

der all lie in X+(T∨
der). Let π : X+(T∨) � X+(T∨

der) be

the canonical surjection, and identify X(T
∨
) ⊂ X(T∨) (§3.6). For each α ∈ Δ∨,

choose a lifting of ω′
α to ωα ∈ X+(T∨) via π, so that π(ωα) = ω′

α. Let also
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A ⊂ X(T
∨
) be a set of representatives of the Z-module X(T

∨
)/(F∨ − id)X(T

∨
).

Then BG∨ = Z[X(T∨)]W /I is a free Z-module having the set

F :=

{
r

(
μ+

∑
α∈Δ∨

bαωα

)
+ I : μ ∈ A, bα ∈ {0, 1, · · · , q − 1} (α ∈ Δ∨)

}
as its basis, and the rank of BG∨ over Z is

rankZ BG∨ = |F| = qrankG∨
der · |T∨

(Q)F
∨ | = |(T∨ � W )F

∨
(Q)| = |G∗F∗

ss /∼ |.

Moreover, BG∨ is a reduced ring, so I =
√
I and BG∨ = BG∨, red.

Remark. In the special case where G∨ is simply-connected (so that G∨
der = G∨),

we have π = id, T
∨
= 1 and X(T

∨
) = 0; we may choose ωα = ω′

α, so {ωα}α∈Δ∨ is
a Z-basis of X(T∨); thus BG∨ is a reduced ring and is also a free Z-module having

F = {r(λ) + I : λ ∈ X+
q (T∨)} as its Z-linear basis; the Z-rank of BG∨ is qrankG∨

.

Proof of theorem (Compare [Hu, Sec. 5.6–5.7]). Let us consider the height function
ht : X(T∨

der) −→ Q as in Lemma 3.8. For each f ∈ Z[X(T∨)]W , write f := f + I ∈
BG∨ , so that {r(λ) : λ ∈ X+(T∨)} generates BG∨ as a Z-module. In BG∨ , we have
(using the relation q = F∨ ◦ τ∨ from §3.2(a))

r(F∨λ) = r(λ) and r(qλ) = r(τ∨λ) for every λ ∈ X(T∨).

(1) We first prove that BG∨ is generated by {r(λ) : λ ∈ X+
q (T∨)} as a Z-

module. Suppose that λ ∈ X+(T∨) but λ �∈ X+
q (T∨). Then there exists

an α ∈ Δ∨ such that 〈λ, α∨〉 ≥ q. Consider λ′ := λ − qωα ∈ X(T∨); by
hypothesis on λ, we have in fact λ′ ∈ X+(T∨). We may then use Lemma
3.8(b) to expand the product r(λ′)r(qωα) as

r(λ′)r(qωα) = r(λ) +
∑

λ 	=μ∈Ω(λ′,qωα)

cμr(μ) ∈ Z[X(T∨)]W ,

with cμ ∈ N∗ and ht(π(μ)) < ht(π(λ)) for all λ �= μ ∈ Ω(λ′, qωα). Passing

this expansion into BG∨ and using the relation r(qωα) = r(τ∨ωα) in BG∨ ,
we get

r(λ′) r(τ∨ωα) = r(λ) +
∑

λ 	=μ∈Ω(λ′,qωα)

cμr(μ) ∈ BG∨ .

As τ∨ωα ∈ X+(T∨) (T is contained in the F -stable Borel subgroup B, so
X+(T∨) is τ∨-invariant), we may use Lemma 3.8(b) again to expand the
product r(λ′)r(τ∨ωα) as

r(λ′)r(τ∨ωα) = r(λ′ + τ∨ωα) +
∑

λ′+τ∨ωα 	=ν∈Ω(λ′,τ∨ωα)

c′νr(ν) ∈ Z[X(T∨)]W ,

with c′ν ∈ N∗ and ht(π(ν)) < ht(π(λ′ + τ∨ωα)) for all λ′ + τ∨ωα �= ν ∈
Ω(λ′, τ∨ωα). Moreover, as τ∨ preserves the height function on X(T∨

der) (τ
∨

permutes elements of Δ∨), we have ht(π(τ∨ωα)) = ht(τ∨ω′
α) = ht(ω′

α) =
ht(π(ωα)), so by Lemma 3.7(b) we have

ht(π(λ′ + τ∨ωα)) < ht(π(λ′ + qωα)) = ht(π(λ)).
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We thus obtain the relation

r(λ) = r(λ′ + τ∨ωα) +
∑

λ′+τ∨ωα 	=ν∈Ω(λ′,τ∨ωα)

c′νr(ν)−
∑

λ 	=μ∈Ω(λ′,qωα)

cμr(μ) ∈ BG∨ ,

which expresses r(λ) in terms of a Z-linear combination of some r(γ) where
γ ∈ X+(T∨) with ht(π(γ)) < ht(π(λ)). On the other hand, as X(T∨)
is a free Z-module of finite rank, we see that ht(π(X+(T∨))) ⊂ h−1N for

some h ∈ N∗. We can thus repeat the above reduction process of r(λ), so

that for every λ ∈ X+(T∨) we can eventually express r(λ) as a Z-linear

combination of those r(μ) with μ ∈ X+
q (T∨).

(2) Let us use (1) to prove that BG∨ is generated by F as a Z-module. From

the canonical exact sequence 0 −→ X(T
∨
) −→ X(T∨) −→ X(T∨

der) −→
0 (§3.6), each λ ∈ X+

q (T∨) may be expressed as λ = μ +
∑

α∈Δ∨ bαωα

where μ ∈ X(T
∨
) and each bα ∈ {0, 1, · · · , q − 1}. Furthermore, for each

μ ∈ X(T
∨
) ⊂ X(T∨), we have r(μ) = e(μ) ∈ Z[X(T∨)]W and therefore

e((F∨− id)μ)− 1 = e(−μ)(e(F∨μ)− e(μ)) ∈ I. These observations and (1)
together imply that the Z-module is BG∨ is generated by F.

(3) Let us now prove that BG∨ is a free Z-module having F as its basis and
having the desired rank formulae. In (2) we have seen that F generates the
Z-module BG∨ , so that F also generates the Q-linear vector space QBG∨ .
By §3.5, we have

dimQ QBG∨ ≥ |(T∨� W )F
∨
(Q)|;

on the other hand, we have (compare the part of duality of tori in §0.7)
|A| = [X(T

∨
) : (F∨ − id)X(T

∨
)] = |IrrQ(T

∨
(Q)F

∨
)| = |T∨

(Q)F
∨ |,

which implies, together with Lemma 3.6 and Lemma 3.1, that

dimQ QBG∨ ≤ |F| = qrankG∨
der · |T∨

(Q)F
∨ | = |(T∨ � W )F

∨
(Q)| = |G∗F∗

ss /∼ |.

Therefore, dimQ QBG∨ = |(T∨� W )F
∨
(Q)|, and F is in fact a basis for the

Q-linear vector space QBG∨ ; it follows that BG∨ is a free Z-module of basis
F.

(4) Finally, let us prove the reducedness of BG∨ . We have just proved in (3)
that BG∨ is a free Z-module, and this implies that the natural map BG∨ −→
QBG∨ is injective. In (3) we have also shown that dimQ QBG∨ = |(T∨�

W )F
∨
(Q)|, so the discussion in §3.5 implies that QBG∨ is a reduced ring.

Hence BG∨ is also reduced.
�
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Comparison between BG∨ and KG∗ .

3.9. Algebraic representations and formal characters[Ja, Ch. I.2]. Denote
by Repalg(G

∗) the category of G∗-modules of finite dimension (over the defining

field Fq of G∗); an object of Repalg(G
∗) is called an algebraic (or rational) repre-

sentation of G∗. Let Irralg(G
∗) be the set of isomorphism classes of simple objects in

Repalg(G
∗). Denote also by K(Repalg(G

∗)) the Grothendieck group of Repalg(G
∗);

K(Repalg(G
∗)) is in fact a ring with multiplication given by the tensor product.

For M ∈ Repalg(G
∗), its formal character chM is defined as follows: M has a

weight space decomposition (relative to T ∗) M =
⊕

λ∈X(T∗) Mλ where the weight

spaces Mλ := {m ∈ M : zm = λ(z)m for all z ∈ T ∗} (we call λ ∈ X(T ∗) a weight
of M if Mλ �= {0}); then set chM :=

∑
λ∈X(T∗) dimFq

Mλ ·e(λ) ∈ Z[X(T ∗)]W . (We

have Mwλ = wMλ for every w ∈ W , whence the W -invariance of chM .)

3.10. Highest weights. [Ja, Ch. II.2] Identify X(T ∗) = X(T∨), so for λ ∈ X(T ∗)
we may define r(λ) ∈ Z[X(T ∗)]W as in §3.8. Let ≤ be the standard partial ordering
on X(T ∗) = X(T∨) determined by Δ∨. Then:

(a) every M ∈ Irralg(G
∗) admits a unique highest weight λM with respect

to the partial ordering ≤; we have λM ∈ X+(T ∗) and dim
Fq

MλM
= 1;

also, every weight λ ∈ X(T ∗) of M satisfies λ ≤ λM ; as a result, for each
M ∈ Irralg(G

∗), we have chM ∈ r(λM ) +
∑

λ∈X+(T∗), λ<λM
Z.r(λ);

(b) for every λ ∈ X+(T ∗), there is a unique M ∈ Irralg(G
∗) which admits λ

as its highest weight in the sense of (a); we shall denote this unique M by
L(λ);

(c) the map M �−→ chM introduced in §3.9 induces a Z-algebra isomorphism

ch : K(Repalg(G
∗))

∼−−→ Z[X(T ∗)]W .

Lemma 3.10. Let λ ∈ X+(T ∗). Consider the Frobenius twist L(λ)[F
∗]: it is

the G∗-module whose underlying set is L(λ) and whose G∗-action is given by the

composition G∗ F∗
−−−→ G∗ ρ−→ GL(L(λ)) where ρ denotes the G∗-action on L(λ).

Then L(F ∗λ) � L(λ)[F
∗] in Repalg(G

∗).

Proof. The G∗-module L(λ)[F
∗] is irreducible by [St1, Thm. 5.1]. As the highest

weight of L(λ)[F
∗] is F ∗λ, we see that L(F ∗λ) � L(λ)[F

∗] as G∗-modules. �
Lemma 3.11 ([St1, Thm. 7.4], [Her, Thm. 3.10]). If G∗

der is simply-connected, then

every M ∈ IrrFq
(G∗F∗

) comes from the restriction of some L(λ) ∈ Irralg(G
∗) with

λ ∈ X+
q (T ∗), so the restriction map ResG

∗

G∗F∗ : K(Repalg(G
∗)) −→ KG∗ is surjective.

The first reference establishes the case where G∗ is simply-connected, which is
generalized in the second reference to the case where G∗

der is simply-connected.

Proposition 3.12. Identify X(T ∗) = X(T∨) and let π : Z[X(T ∗)]W � BG∨, red be
the induced quotient map. Observe that the maps

(T∨�W )F
∨
(Q) (G∗

ss/∼)F
∗

(G∗F∗

ss /∼) (G∗F∗

p′ /∼)∼
Lemma 3.1 Lemma 3.6 §2.1

induce an injection of Q-algebras

j : Q
(T∨�W )F

∨
(Q)

↪→ Q
G∗F∗

p′ /∼
.
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Then there is an injective Z-algebra homomorphism γ : BG∨, red ↪→ KG∗ making
the following diagram commutative:

(3.10.1)

K(Repalg(G
∗)) Z[X(T ∗)]W

KG∗ BG∨, red

Q
G∗F∗

p′ /∼
Q

(T∨�W )F
∨
(Q)

ch
∼

ResG
∗

G∗F∗ π

γ

(§2.3) br Corollary 3.3

j

Proof. (1) Let λ ∈ X+(T ∗). Then L(F ∗λ) � L(λ)[F
∗] in Repalg(G

∗) (Lemma

3.10). As F ∗ acts trivially on G∗F∗
, we have

ResG
∗

G∗F∗ (L(λ)[F
∗]) = ResG

∗

G∗F∗ (L(λ))

in RepFq
(G∗F∗

), so ResG
∗

G∗F∗L(F ∗λ)=ResG
∗

G∗F∗L(λ) in RepFq
(G∗F∗

). There-

fore, if we denote by J the ideal of Z[X(T ∗)]W generated by {chL(F ∗λ)−
chL(λ) : λ ∈ X+(T ∗)}, then J lies in the kernel of the composition

γ := ResG
∗

G∗F∗ ◦ ch−1 : Z[X(T ∗)]W −→ KG∗ . As KG∗ is reduced (§2.3),
γ descends to γ : Z[X(T ∗)]W /

√
J −→ KG∗ , and we obtain the following

commutative diagram of Z-algebras:

(3.10.2)

K(Repalg(G
∗)) Z[X(T ∗)]W

KG∗ Z[X(T ∗)]W /
√
J

ch
∼

ResG
∗

G∗F∗ π

γ

(2) We now show that under the identification Z[X(T ∗)]W = Z[X(T∨)]W (in-
duced by the identification X(T ∗) = X(T∨)), the ideal J ⊂ Z[X(T ∗)]W

corresponds to the ideal I ⊂ Z[X(T∨)]W appearing in the definition of

BG∨, red = Z[X(T∨)]W /
√
I (§3.4). By §3.3 and §3.8, the ideal I is gener-

ated by {r(F∨λ) − r(λ) : λ ∈ X+(T∨)}. For λ ∈ X+(T ∗), we may write
chL(λ) = r(λ)+

∑
μ∈X+(T∗), μ<λ cμr(μ) where only a finite number of cμ is

not zero. Then chL(F ∗λ) = r(F ∗λ) +
∑

μ∈X+(T∗), μ<λ cμr(F
∗μ): in fact,

again by Lemma 3.10 we have L(F ∗λ) � L(λ)[F
∗] in Repalg(G

∗), thus all
the weights of L(F ∗λ) are of the form F ∗μ where μ is a weight of L(λ),
and moreover L(F ∗λ)F∗μ � L(λ)μ for all μ ∈ X(T ∗), whence the desired
expression for chL(F ∗λ). We thus have:

chL(F ∗λ)− chL(λ) =

(r(F ∗λ)− r(λ)) +
∑

μ∈X+(T∗), μ<λ

cμ.(r(F
∗μ)− r(μ)) (λ ∈ X+(T ∗)).

This implies that the transition matrix from {chL(F ∗λ) − chL(λ) : λ ∈
X+(T ∗)} to {r(F ∗λ) − r(λ) : λ ∈ X+(T ∗)} is triangular with all diago-
nal elements being 1 (with respect to the partial ordering ≤ on X+(T ∗)),
whence J = I.
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(3) The equality J = I established in (2) implies that Z[X(T ∗)]W /
√
J =

BG∨, red under the identification X(T ∗) = X(T∨), so (3.10.2) is exactly
the upper part of (3.10.1), where we still need to show the injectivity of γ.

(4) To establish (3.10.1) (in particular the injectivity of γ), it remains to prove
that the outermost rectangle diagram in (3.10.1) commutes, that is, to
prove the following diagram commutes:

(3.10.3)

K(Repalg(G
∗)) Z[X(T ∗)]W

Q
G∗F∗

p′ /∼
Q

(T∗�W )F
∗
(Fq)

ch
∼

br ◦ ResG
∗

G∗F∗ canonical

j

(∗) :

(We have identified (T∨ � W )F
∨
(Q) = (T ∗ � W )F

∗
(Fq).) To do this, we

need the help of the following properties:
(i) G∗F∗

p′ = G∗F∗

ss is the union of all S∗F∗
where S∗ runs through elements

of T ∗ := {F ∗-stable maximal tori of G∗};
(ii) (T ∗ � W )F

∗
(Fq) is the set of W -orbits in

⋃
w∈W T ∗wF∗

;

(iii) For each F ∗-stable maximal torus S∗ of G∗, we can find a g∗ ∈ G∗ such
that g∗S∗(g∗)−1 = T ∗, so that the map x∗ �−→ g∗x∗(g∗)−1 establishes

an isomorphism S∗F∗ ∼−−−→ T ∗wF∗
where w ∈ W is the quotient image

of g∗F ∗(g∗)−1 ∈ NG∗(T ∗).
These properties enable us to integrate (3.10.3) into the following cubic
diagram: ∏

S∗∈T ∗

K(Repalg(S
∗))

∏
S∗∈T ∗

Z[X(S∗)]

K(Repalg(G
∗)) Z[X(T ∗)]W

∏
S∗∈T ∗

Q
S∗F∗ ∏

S∗∈T ∗

Q
S∗F∗

Q
G∗F∗

p′ /∼
Q

(T∗�W )F
∗
(Fq)

br ◦ Res

ch
∼

canonical
ch
∼

br ◦ ResG
∗

G∗F∗

Res
(iii)

j

Res

(iii)

canonical

(Here “Res” means the natural restriction maps, and the maps “(iii)” on
the right face are the natural maps induced by the bijection in (iii) above.)
In the above cubic diagram, it can be checked that all the five faces other
than the front face (3.10.3) are commutative diagrams; thus the front face
(3.10.3) is also commutative.

�

Theorem 3.13. If G∗
der is simply-connected, then the formal character isomor-

phism ch : K(Repalg(G
∗))

∼−−→ Z[X(T ∗)]W and the bijection of finite sets (G∗F∗

p′ /∼
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) � (T∨�W )F
∨
(Q) (§2.1, Lemma 3.1 and Lemma 3.6) both induce, via the commu-

tative diagram in Proposition 3.12, the same Z-algebra isomorphism BG∨ � KG∗ .

Proof. The simple-connectedness of G∗
der has two consequences: (i) the restriction

map ResG
∗

G∗F∗ : K(Repalg(G
∗)) −→ KG∗ is surjective (Lemma 3.11), so the injective

map γ : BG∨, red −→ KG∗ in Proposition 3.12 is also surjective and is therefore
a Z-algebra isomorphism; (ii) BG∨ = BG∨, red (Theorem 3.9). Thus the map γ,
coming from the formal character map, establishes a Z-algebra isomorphism BG∨ �
KG∗ . �
Corollary 3.14 (of Corollary 2.4 and Theorem 3.13). The maps

(G∗F∗

ss /∼) (G∗F∗

p′ /∼) (T∨ � W )F
∨
(Q)Lemma 3.1

Lemma 3.6

induce Q-algebra homomorphisms

QEG QKG∗ (QBG∨)red QBG∨, red QBG∨
∼ §3.5

which descend to Z[ 1
p|W | ]-algebra homomorphisms:

(3.10.4)

Z[ 1
p|W | ]EG Z[ 1

p|W | ]KG∗ Z[ 1
p|W | ]BG∨, red Z[ 1

p|W | ]BG∨ .∼

If G∗
der is simply-connected, all maps in (3.10.4) are Z[ 1

p|W | ]-algebra isomorphisms:

Z[ 1
p|W | ]EG � Z[ 1

p|W | ]KG∗ � Z[ 1
p|W | ]BG∨, red = Z[ 1

p|W | ]BG∨ .

3.11. Remark on toric graduations. For a general connected reductive group
G∨ (over Z), use the proof of Proposition 3.4 to integrate G∨ into an exact sequence
of reductive groups over Z,

1 −→ S∨ −→ H∨ −→ G∨ −→ 1,

with H∨
der simply-connected and with S∨ a torus central in H∨. Denote by G∨�G∨

the categorical quotient induced by the adjoint action of G∨ on itself; note that G∨�

G∨ � T∨�W by Chevalley’s restriction theorem. The multiplication action of S∨F∨

on (H∨ � H∨)F
∨
= Spec(BH∨) induces an S∨F∨

-action on BH∨ , from which the

ring BH∨ admits an X(S∨F∨
)-graded decomposition BH∨ =

⊕
λ∈X(S∨F∨ )(BH∨)λ.

Observe that (BH∨)0 = (BH∨)S
∨F∨

, so the canonical surjection (H∨ � H∨)F
∨

�

S∨F∨ � (G∨ � G∨)F
∨
induces an inclusion of rings BG∨, red ↪→ (BH∨)0.

We have analogous discussion on the K-side: as S∗F∗
lies in the center of

H∗F∗
, the map associating a character of H∗F∗

to its central character induces
an X(S∗F∗

)-graded decomposition KH∗ =
⊕

λ∈X(S∗F∗ )(KH∗)λ, while this time

we have canonical ring isomorphisms (KH∗)0 � KG∗ . With the identification

X(S∨F∨
) � X(S∗F∗

), the ring isomorphism BH∨ � KH∗ established in Theorem
3.13 respects the above graded structures and restricts itself to a ring isomorphism
(BH∨)0 � (KH∗)0.

In summary, we have the following commutative diagram of rings:

BG∨ red (BH∨)0 BH∨

KG∗ (KH∗)0 KH∗

Proposition 3.12 ∼ ∼ graded (Theorem 3.13)

∼



ENDOMORPHISM ALGEBRAS OF GELFAND-GRAEV 113

Acknowledgments

I would like to thank Professor Jean-François Dat for introducing me to this
subject and for having many stimulating discussions with me. I would also like to
thank the anonymous referee for helpful suggestions on this article.

References
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