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UNITRIANGULAR BASIC SETS, BRAUER CHARACTERS AND

COPRIME ACTIONS

ZHICHENG FENG AND BRITTA SPÄTH

Abstract. We show that the decomposition matrix of a given group G is
unitriangular, whenever G has a normal subgroup N such that the decompo-
sition matrix of N is unitriangular, G/N is abelian and certain characters of
N extend to their stabilizer in G. Using the recent result by Brunat–Dudas–
Taylor establishing that unipotent blocks have a unitriangular decomposition
matrix, this allows us to prove that blocks of groups of quasi-simple groups
of Lie type have a unitriangular decomposition matrix whenever they are re-
lated via Bonnafé–Dat–Rouquier’s equivalence to a unipotent block. This is

then applied to study the action of automorphisms on Brauer characters of
finite quasi-simple groups. We use it to verify the so-called inductive Brauer–
Glauberman condition that aims to establish a Glauberman correspondence
for Brauer characters, given a coprime action.

1. Introduction

Irreducible representations of finite groups over fields of positive characteristic
� make a quite difficult subject. Many important questions can nevertheless be
studied via the (�-)decomposition matrix relating for a given finite group G the
set IBr(G) of irreducible characters in characteristic � to the set Irr(G) of better
understood ordinary characters over C. The entries of the decomposition matrix
are indexed by Irr(G)×IBr(G). Many decomposition matrices of finite groups enjoy
the property of so-called unitriangularity. Unitriangularity implies the existence of
an injective map

IBr(G) ↪→ Irr(G)

whose image B ⊆ Irr(G) is a so-called basic set (see Definition 3.8) and such that
the square submatrix of the �-decomposition matrix corresponding to B × IBr(G)
is lower unitriangular for some ordering of the rows and columns. This property
seems to be shared by most finite simple groups and their central extensions except
possibly groups of Lie type of characteristic �. Unitriangularity of �-decomposition
matrices has been known for a long time for symmetric groups (see [JK81, §7.1]),
general linear groups of characteristic �= � (Dipper, [D85a] and [D85b]), unitary
groups (Geck [G91]), and many other finite groups of Lie type for certain primes �.
Geck (see [G90, p. 5]) made Conjecture 1.
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Conjecture 1 ([G90]). Let � be a prime. If G is a finite group of Lie type of
characteristic �= �, then its �-decomposition matrix is unitriangular.

This question can of course be split into the various �-blocks of G. A recent
breakthrough was the proof by Brunat–Dudas–Taylor of the unitriangularity of the
unipotent �-blocks of finite groups of Lie type under mild restrictions on �, see
[BDT20, Thm. A]. The basic set is provided in that case by the set of unipotent
characters.

Suppose that G is a connected reductive group with an Fq-structure given by a
Steinberg endomorphism F : G → G where � � q. According to a result of Bonnafé–
Dat–Rouquier [BDR17, Thm. 1.1], most �-blocks of GF are Morita equivalent to
a block of a group NF which covers a unipotent block of a normal subgroup LF ,
where L is an F -stable Levi subgroup of G normal in some F -stable subgroup N,
with abelian quotient group NF /LF .

Since Morita equivalences over an adequate local ring preserve decomposition
matrices, this leads naturally to the question of extending the unitriangularity
property of decomposition matrices from LF to NF . Our Theorem 3.1 shows such
a “going-up” property for unitriangular basic sets in the general situation of a
normal inclusion of finite groups L � N with abelian quotient. Applying this in
connection with the result of Bonnafé–Dat–Rouquier, we can show that the unitri-
angularity of unipotent blocks proven by Brunat–Dudas–Taylor implies that many
more non-unipotent blocks of finite reductive groups have a unitriangular decompo-
sition matrix. For good primes �, this essentially reduces the question to so-called
isolated non-unipotent �-blocks.

Unitriangularity of basic sets is a key asset to study the action of automorphisms
and subsequent questions of extendibility of elements of IBr(G) for G an abstract
finite group. These are crucial questions to tackle counting conjectures on modular
characters through the recent reduction theorems leading to related questions on
finite quasi-simple groups. We focus in this paper on a conjecture due to Gabriel
Navarro (see [N94]). If A is a finite group acting coprimely onG (i.e., gcd(|A|, |G|) =
1) via automorphisms, the Glauberman–Isaacs correspondence is a bijection

IrrA(G) → Irr(CG(A))

between the set of irreducible A-invariant characters of G and the set of irreducible
characters of the subgroup CG(A), see [I76, §13]. Navarro’s question asks for re-
placing Irr by IBr in the above.

Conjecture 2 ([N94]). Let � be a prime. Suppose that A acts coprimely via auto-
morphisms on G. Then

| IBrA(G)| = | IBr(CG(A))|,

where IBrA(G) is the set of irreducible �-Brauer characters of G fixed by A.

Brauer’s argument on the character table implies Conjecture 2 whenever A acts
by a cyclic group (see for instance [NST17, Thm. 3.1]). Using the classification of
the finite simple groups we then get that Conjecture 2 holds for any quasi-simple
group G.

In 2016, the second author and Vallejo [SV16] reduced Conjecture 2 to a prob-
lem on quasi-simple groups, proving that if A acts coprimely on G, and every
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non-abelian simple group involved in G satisfies the so-called inductive Brauer–
Glauberman (iBG) condition (see Definition 4.4), then G and A satisfy Conjec-
ture 2. The (iBG) condition was verified by Navarro, the second author and
Tiep [NST17] for certain families of simple groups, including simple groups not
of Lie type, simple groups of Lie type in defining characteristic and simple groups
with cyclic outer automorphism groups. In addition, Farrell and Ruhstorfer [F1]
proved a part of the (iBG) condition, called the fake Galois actions, for all simple
groups.

In this paper, we consider the (iBG) condition for simple groups of Lie type in
non-defining characteristic and prove the following. Suppose that G is a simple
simply connected algebraic group and F : G → G a Steinberg endomorphism

endowing G with an Fq-structure. Let G̃ be a regular embedding of G and we

extend F to be a Steinberg endomorphism of G̃ (see [GM20, 1.7.5]).

Theorem 3. If both G̃F and GF satisfy Conjecture 1 for any prime � � q through
maps compatible with linear characters and field automorphisms (see Hypothesis 5.5)
whenever Out(GF ) is non-cyclic, then Conjecture 2 is true.

Therefore, we verify the (iBG) condition assuming Conjecture 1. As a con-
sequence, we prove (iBG) for simple groups of Lie type A and any prime � (see
Theorem 5.8). We also obtain the (iBG) condition for simple groups of type C and
the prime 2 (see Theorem 6.1), leading also to

Corollary 4. If G has abelian Sylow 3-subgroups, then Conjecture 2 holds for any
A acting coprimely on G and any prime �.

The structure of this paper is as follows. In §2 we give some notation and prelim-
inaries, recalling some basic statements on coprime actions and Brauer characters.
In §3 we establish several “going-up” properties for unitriangular basic sets. Then
we recall the definition of the (iBG) condition from [SV16] and give a criterion for
the (iBG) condition in §4. The (iBG) condition for simple groups of Lie type in
non-defining characteristic is reduced to a question on unitriangular basic sets in
§5 and Theorems 3 and 5.8 are also proven there. In §6, we give an application of
Theorem 3 and prove Corollary 4. Finally, in §7 we show that a lot more blocks of
finite reductive groups than the ones treated in [BDT20] satisfy Conjecture 1 (see
Theorem 7.2).

2. Preliminaries

2.1. Some notation. The notation for ordinary characters mostly follows [I76]
while the notation for Brauer characters mostly follows [N98]. All Brauer characters
are considered for the fixed prime �. For a given finite group G, we denote by
IBr(G) the set of irreducible (�-)Brauer characters of G seen as G-central C-valued
functions on the set G�′ of �-regular elements of G. We denote the restriction
of χ ∈ Irr(G) ∪ IBr(G) to a subgroup H ≤ G by ResGH(χ). The set of irreducible

components of ResGH(χ) is denoted by Irr(H | χ) or IBr(H | χ) according to χ being
an ordinary or a Brauer character. Whenever ψ ∈ Irr(H) ∪ IBr(H), one denotes

by IndGH(ψ) the induced character. Similarly its set of irreducible components is
denoted by Irr(G | ψ) or IBr(G | ψ) according to ψ ∈ Irr(H) or ψ ∈ IBr(H).

Assume now N � G. We sometimes identify the (Brauer) characters of G/N
with the (Brauer) characters of G whose kernel contains N .
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For subsets N ⊆ IBr(N) and G ⊆ IBr(G), we define

IBr(G | N ) :=
⋃
χ∈N

IBr(G | χ) and IBr(N | G) :=
⋃
ψ∈G

IBr(N | ψ).

Similarly, if N ⊆ Irr(N) and G ⊆ Irr(G), then we also define the set Irr(G | N ) and
Irr(N | G) analogously.

If a group A acts on a finite set X, we denote by Ax the stabilizer of x ∈ X
in A. If A acts on a finite group G via automorphisms, there is a natural action

of A on Irr(G) (or IBr(G), resp.) given by a−1

χ(g) = χa(g) = χ(ag) for every
g ∈ G, a ∈ A and χ ∈ Irr(G) (or χ ∈ IBr(G), resp.). For B ≤ A, we denote by
IBrB(G) the set of B-invariant irreducible Brauer characters of G. For χ ∈ IBr(G)
and ψ ∈ IBr(N), we define IBrB(N | χ) = IBr(N | χ) ∩ IBrB(N), and IBrB(G |
ψ) = IBr(G | ψ) ∩ IBrB(G). Similarly, we denote by IrrB(G) the set of B-invariant
irreducible characters of G. Suppose that N � G is stable under the action of B.
For χ ∈ Irr(G) and ψ ∈ Irr(N), we define IrrB(N | χ) = Irr(N | χ) ∩ IrrB(N), and
IrrB(G | ψ) = Irr(G | ψ) ∩ IrrB(G).

2.2. Clifford theory with abelian quotient. Suppose N � G are finite groups
with abelian G/N . Let χ ∈ Irr(G) (or χ ∈ IBr(G), resp.) and θ ∈ Irr(N | χ)
(or θ ∈ IBr(N | χ), resp.). In the case where θ ∈ Irr(N), then Irr(G/N) acts on
Irr(G | θ) by multiplication and Irr(G | θ) is an Irr(G/N)-orbit. Moreover, if θ
extends to Gθ then

(2.1) Gθ =
⋂

{λ∈Irr(G/N) | χλ=χ}
ker(λ),

as can be seen from Gallagher’s theorem [I76, 6.17] and the uniqueness in Clifford
correspondence. In the case when θ ∈ IBr(N) extends to Gθ, then IBr(G/N) acts
transitively on IBr(G | θ) by multiplication (this is Problem 6.2 of [I76] for Brauer

characters). We define JGN (χ) as the smallest subgroup of G containing Gθ and

such that G/ JGN (χ) is an �-group. According to [BS22, Lemma 2.14]

(2.2) Gθ =

( ⋂
{λ∈IBr(G/N) | χλ=χ}

ker(λ)

)
∩ JGN (χ).

In this paper we will mainly be concerned with normal inclusions N � G such
that G/N is abelian and all elements of Irr(N) ∪ IBr(N) extend to their stabilizer
in G. It is easy to see from Clifford theory that this last hypothesis is equivalent
to ResGN (χ) being multiplicity-free for every χ ∈ Irr(G) ∪ IBr(G).

2.3. Coprime actions. We gather here some more technical statements related
with the representation theory of a finite group acted upon by another finite group
when the two groups have coprime orders.

Proposition 2.3. Let A act coprimely via automorphisms on G, where A and G
are finite groups, and let N �G be A-stable. Let C = CG(A).

(i) Let χ ∈ IBrA(G). Then ResGN (χ) has an A-invariant irreducible constituent
and C acts transitively on IBrA(N | χ).

Now assume further that G/N is abelian. Then the following statements
hold.

(ii) Let ψ ∈ IBrA(N). Then IndGN (ψ) has an A-invariant irreducible constituent
and IBrA(G/N) acts transitively on IBrA(G | ψ).
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(iii) If G = CN , then IBrA(G) = IBr(G | IBrA(N)) and IBrA(N) = IBr(N |
IBrA(G)).

(iv) Assume that for every χ ∈ IBr(G), ResGN (χ) is multiplicity-free. Then for
χ ∈ IBrA(G), the set IBrA(CN | χ) is a singleton. If we write IBrA(CN |
χ) = {Ω(χ)}, then χ 	→ Ω(χ) gives a bijection between IBrA(G) and

IBrA(CN). In addition, Ω(χλ) = Ω(χ) ResGCN (λ) for every χ ∈ IBrA(G)
and every λ ∈ IBrA(G/N).

Proof. Part (i) is similar to [I76, Thm. 13.27] for Brauer characters. By Clifford
theory, the group G acts transitively on IBr(N | χ). Now A acts on both G and
IBr(N | χ). Note that by Feit–Thompson odd-order theorem, at least one of A
and G is solvable. Then (i) follows by a result of Glauberman on coprime actions
(cf. [G64]), for which we also refer the reader to [I08, Lemma 3.24].

Part (ii) is similar to [I76, Thm. 13.28] for Brauer characters. Since G/N is
abelian, as mentioned before, the group IBr(G/N) acts transitively on IBr(G | ψ).
Also A acts on both IBr(G/N) and IBr(G | ψ) and thus we can prove (ii) as above.
Part (iii) is similar to Lemma 1.2 (iii) and Lemma 1.3 (iii) of [U83] for Brauer
characters and follows from (i) and (ii) immediately.

For (iv), we note that CG/N (A) = CN/N and CG/CN (A) = 1 by [I08, Cor. 3.28].
Let χ ∈ IBrA(G). Then by (i) there exists φ ∈ IBrA(CN | χ) and ψ ∈ IBrA(N | φ).
According to the assumption that ResGN (χ) is multiplicity-free, one knows that
ψ �∈ IBr(N | φ′) for any φ′ ∈ IBr(CN | χ) with φ′ �= φ. On the other hand,
since C acts transitively on IBrA(N | χ), we see that IBrA(N | χ) = IBr(N | φ).
Also, if φ′ ∈ IBr(CN | χ) with φ′ �= φ, then φ′ is not A-invariant. Thus the set
IBrA(CN | χ) is a singleton and the map Ω is well-defined and injective. By (i)
and (ii), Ω is also surjective and thus (iv) holds. �

By Proposition 2.3(iv) we have the following which can also be seen as a direct
consequence of Glauberman’s result.

Corollary 2.4. Let G be a finite abelian group and A a finite group acting coprimely
on G via automorphisms. Let C = CG(A). Then ResGC : IBrA(G) → IBr(C) is a
bijection.

The following takes care of Brauer characters of central products (see [N18, §10.3]
about the analogue for ordinary characters) and extendibility.

Lemma 2.5. Let the finite group G = G′G′′ be a central product of two subgroups
G′, G′′ over Z = G′ ∩ G′′ ≤ Z(G). Let χ′ ∈ IBr(G′) and χ′′ ∈ IBr(G′′) with
IBr(Z | χ′) = IBr(Z | χ′′). Then the following holds.

(i) The function χ := χ′.χ′′ : G�′ → C, such that χ(x) = χ′(x′)χ′′(x′′) for
x = x′x′′ with x′ ∈ G′

�′ and x′′ ∈ G′′
�′ , is an irreducible Brauer character of

G. Conversely, every irreducible Brauer character of G has this form.
(ii) Let D be a finite group acting on G via automorphisms such that G′ and

G′′ are D-stable and D = Dχ′ = Dχ′′ . If χ′ extends to G′ � D and χ′′

extends to G′′ �D, then χ extends to G�D.

Proof. The easy proof is left to the reader, noting that it will be applied only to
cases where G′′ ≤ Z(G). �
Proposition 2.6. Let A act coprimely via automorphisms on G, where A and G
are finite groups. Assume that G = CZ, where C = CG(A) and Z ≤ Z(G) is
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A-stable. Let D ≤ Aut(G) such that Z is D-stable and D commutes with A/CA(G)
in Aut(G). Then we have the following.

(i) ResGC : IBrA(G) → IBr(C) is bijective and D-equivariant.

(ii) Let χ ∈ IBrA(G) and ψ = ResGC(χ). Then χ extends to G�Dχ if and only
if ψ extends to C �Dψ.

(iii) ResGC(IBrA(G | ν)) = IBr(C | ResZZ∩C(ν)) for every ν ∈ IBrA(Z).
(iv) Let N be an A-stable normal subgroup of G such that Z ⊆ N and G/N is

abelian. Let M = C∩N = CN (A). Then JGN (χ) = JCM (ResGC(χ)).Z (central
product) for every χ ∈ IBrA(G).

Proof. Let Y = [Z,A]. It is A-stable but also D-stable since the actions of D and A
on Z commute. According to a theorem of Fitting (see e.g. [I08, Thm. 4.34]), Z =
(C∩Z)×Y and thus G = C×Y . By [I08, Cor. 3.28], CG/C(A) = 1 and so CY (A) =
1. Therefore, the trivial Brauer character 1Y�′ is the unique A-invariant irreducible

Brauer character of Y . From this ResGC : IBrA(G) → IBr(C) is a bijection with
inverse IBr(C) → IBrA(G), ψ 	→ ψ × 1Y�′ . These two bijections are automatically
D-equivariant, hence part (i) holds. Part (ii) follows by Lemma 2.5(ii).

For ν ∈ IBrA(Z), one has ν = ν′ × 1Y�′ , where ν′ ∈ IBrA(C ∩ Z). So part (iii)
follows from the construction. Finally, we prove (iv). Note that N = CZ∩N = MZ
and C ∩ Z = M ∩ Z. Thus as above, N = M × Y . Therefore, we can see that
JGN (χ) = JCM (ψ).Y = JCM (ψ).Z (central products), which proves (iv). �

3. Decomposition matrices, unitriangularity and Clifford theory

Let H be a finite group. For χ ∈ Irr(H), we denote the restriction of χ to H�′

by χ0. The (�-)decomposition matrix is (dχ,φ)χ∈Irr(H),φ∈IBr(H) defined by

χ0 =
∑

φ∈IBr(H)

dχ,φφ

as class function on H�′ for any χ ∈ Irr(H). For B ⊆ Irr(H) and C ⊆ IBr(H) we
set

DecB,C := (dχ,φ)χ∈B,φ∈C

and call it unitriangular if it is square lower unitriangular with respect to some
orderings of B and C (necessarily, |B| = |C|).

In this section, we prove the following “going-up” property.

Theorem 3.1. Let N � G be finite groups with abelian quotient G/N . Let B ⊆
Irr(N) and C ⊆ IBr(N), such that both sets are G-stable, |B| = |C| and DecB,C is
unitriangular. Assume that every element of B extends to its stabilizer in G.

For C̃ = IBr(G | C) there is some B̃ ⊆ Irr(G | B) with |B̃| = |C̃| such that Dec
˜B,˜C

is unitriangular.

The choice of orderings in the proof of Theorem 3.1 makes essential use of Lemma
3.2.

Lemma 3.2. Let n ≥ 1. Let u ∈ GLn(C) be lower unitriangular and let S ≤
GLn(C) be a group of permutation matrices commuting with u. Then there is a
permutation matrix σ such that σuσ−1 is lower unitriangular and the orbits of
σSσ−1 on {1, 2, . . . , n} are (consecutive) intervals [ai, bi].
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Proof. Let e1, . . . , en be the canonical (ordered) basis of Cn, viewing the latter as
the n-dimensional space of column vectors. Our claim is that this basis can be
reordered so that the orbits of S correspond to intervals in the new basis and u is
still lower unitriangular. We use induction on n, the case n = 1 being trivial.

The hypothesis on u is that u(ei) ∈ ei + Cei+1 + · · ·+ Cen for any i = 1, . . . , n.
We have u(en) = en. Letting O = {i1 < i2 < · · · < it = n} be the S-orbit of n with
respect to its action on {1, 2, . . . , n}, we also have u(ei) = ei for any i ∈ O since u
and S commute. Let O′ := {1, 2, . . . , n} \ O = {i′1 < i′2 < · · · < i′t′}. Let us define
the new ordered basis

(ei′1 , ei′2 , . . . , ei′t′ , ei1 , ei2 , . . . , eit).

Note that u is still lower unitriangular with respect to this basis because u(ei) = ei
for each i ∈ O while for i ∈ O′ the elements of {1, 2, . . . , n} after i in the old order

are still after i in the new one. In the new basis u writes as
(
u′ 0
∗ It

)
with lower

unitriangular u′ and where the last t basis vectors form an orbit under S. The
induction hypothesis then gives our claim. �

Lemma 3.3. Let H ≤ H̃ be finite groups. If χ̃ ∈ Irr(H̃) and φ̃ ∈ IBr(H̃) are such

that dχ̃,˜φ �= 0 then for all φ ∈ IBr(H | φ̃) there exists χ ∈ Irr(H | χ̃) such that

dχ,φ �= 0.

Proof. Recall χ̃0 =
∑

˜ψ∈IBr( ˜H) dχ̃, ˜ψψ̃ and Res
˜H
H χ̃ =

∑
χ∈Irr(H|χ̃) mχχ for some

integers mχ ≥ 1. Restricting to H we see∑
χ∈Irr(H|χ̃)

mχ

∑
ψ∈IBr(H)

dχ,ψψ =
∑

˜ψ∈IBr( ˜H)

dχ̃, ˜ψ Res
˜H
H ψ̃.

This gives our claim since all decomposition numbers are non-negative integers. �
For the proof of Theorem 3.1 we use the so-called extension maps, see for instance

[CS13, Definition 2.9]. For N �G and B ⊆ Irr(N), an extension map with respect
to N �G for B is a map

Π : B −→
∐

N≤I≤G

Irr(I)

such that every χ ∈ B extends to Π(χ) ∈ Irr(Gχ). If B is G-stable and every
character χ ∈ B extends to its stabilizer Gχ in G, such a map Π exists and can be
assumed to be G-equivariant by choosing representatives for the right cosets of Gχ

for every χ ∈ B, and a fixed extension of χ.
In connection with Theorem 3.1 we now prove the following “inductive” state-

ment:

Proposition 3.4. Let N � M be finite groups such that |M/N | is a prime. Let
B ⊆ Irr(N) and C ⊆ IBr(N) both M -stable, such that |B| = |C| and DecB,C is
unitriangular. Then:

(i) there is a subset BM ⊆ Irr(M | B) such that |BM | = | IBr(M | C)| and
DecBM ,IBr(M |C) is unitriangular.

(ii) If moreover � � |M/N | then BM = Irr(M | B).
(iii) Assume that |M/N | = � and let Λ be an M -equivariant extension map with

respect to N�M for B. Then one can choose BM = {IndMMθ
(Λ(θ)) | θ ∈ B}.

If moreover N and M are both normal in some group G stabilizing B and
Λ is G-equivariant, then the set BM just defined is G-stable.
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Proof. First observe that since M/N is cyclic, any element of Irr(N) ∪ IBr(N)
extends to its stabilizer in M .

By a classical argument on permutation and triangular matrices (see for instance
the proof of [CS13, 7.5]) the unitriangularity hypothesis defines a unique bijection

f : B 1−1−→ C

making DecB,C unitriangular for some total ordering ≤ on B and C. Since those
sets are M -stable, the bijection f is M -equivariant by uniqueness and the fact
that dσχ,σφ = dχ,φ for any χ ∈ Irr(N), φ ∈ IBr(N) and σ ∈ Aut(N) (see also
[D17, 2.3]). According to Lemma 3.2 the ordering ≤ can be chosen so that the
M -orbits B1,B2, . . . ,Bm in B satisfy χi < χj for any χi ∈ Bi, χj ∈ Bj with i < j.
The same is of course true for the M -orbits Ci = f(Bi) on C.

Let r := |M/N |.
Assume first that r �= �. Define B̃i = Irr(M | Bi) and C̃i = IBr(M | Ci), so

that Clifford theory implies Irr(M | B) =
∐m

i=1 B̃i and IBr(M | C) =
∐m

i=1 C̃i with
|B̃i| = |C̃i| = r|Bi|−1 for any i.

We define a total ordering � on Irr(M | B) as follows: We choose an arbitrary

total ordering � on each B̃i and impose χ̃i ≺ χ̃j for any χ̃i ∈ B̃i, χ̃j ∈ B̃j with i < j.

We will choose a total ordering � on Irr(M | C) but impose already φ̃i ≺ φ̃j for any

φ̃i ∈ C̃i, φ̃j ∈ C̃j with i < j and will check unitriangularity of the decomposition
matrix.

According to Lemma 3.3 the unitriangularity of DecB,C implies dχ̃,˜φ = 0 when-

ever χ̃ ∈ B̃i, φ̃ ∈ C̃j with i < j.
Let us now show that

(3.5)

for every χ̃ ∈ B̃i there is a unique φ̃ ∈ C̃i such that dχ̃,˜φ �= 0 and then dχ̃,˜φ = 1.

We fix i and χ̃ ∈ B̃i. Note first that there is always some φ̃ ∈ C̃i such that dχ̃,˜φ �=
0. Indeed since χ̃ ∈ Irr(M | χ) for some χ ∈ Bi and dχ,f(χ) = 1, we can write

ResMN χ̃0 =
∑

˜φ∈IBr(M) dχ̃,˜φ Res
M
N φ̃ ∈ f(χ) + N IBr(N). But for f(χ) to appear in

the first sum, there has to be some φ̃ ∈ IBr(M | f(χ)) ⊆ C̃i such that dχ̃,˜φ �= 0. We

now proceed to prove the rest of (3.5).

Assume now |B̃i| = |C̃i| = 1 and |Bi| = |Ci| = r. Then χ̃ = IndMN χ for some

(in fact every) χ ∈ Bi and φ̃ = IndMN φ for every φ ∈ Ci. Take χ ∈ Bi the smallest

element for ≤, then f(χ) is also ≤-minimal in Ci. We have φ̃ = IndMN f(χ) and the
lower unitriangularity of DecB,C via f and ≤ implies

χ̃0 = IndMN χ0 ∈ φ̃+
∑

ψ∈C,ψ<f(χ)

C IndMN ψ + IndMN Ψ,

where Ψ ∈ C(IBr(N) \ C). For every χ, one sees easily that some IndMN ψ can have

the irreducible character φ̃ = IndMN f(χ) as a constituent only if ψ is in the M -orbit
of f(χ), that is, in Ci. But the choice made of χ ∈ Bi implies that f(χ) is the
smallest element of Ci for ≤. So we indeed get dχ̃,˜φ = 1 as claimed.

Assume that |B̃i| = |C̃i| = r and |Bi| = |Ci| = 1, so that Bi = {θ} and B̃i is the

set of r different extensions of θ to M . Let χ̃ ∈ B̃i and assume there are φ̃ and φ̃′
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in C̃i such that

χ̃0 = φ̃+ φ̃′ +
∑

ρ∈IBr(M)

dρρ

for non-negative integers dρ’s. Restricting to N , we see that θ0 has the unique

element of C̃i = {f(θ)} with multiplicity ≥ 2, which contradicts our assumption
that dθ,f(θ) = 1. So we get both claims of (3.5).

From (3.5) we obtain a bijection B̃i → C̃i and via this map a total ordering �
on C̃i corresponding to the one on B̃i. This extends into a total ordering � on

IBr(M | C̃) by setting φ̃ ≺ φ̃′ whenever φ̃ ∈ C̃i and φ̃′ ∈ C̃j with i < j as said
before. Let us show that Dec

˜B,˜C is unitriangular with respect to the given ordering.

By (3.5) the decomposition matrix is the identity matrix on each B̃i × C̃i. We

have seen before that dχ̃,˜φ = 0 whenever χ̃ ∈ B̃i and φ̃ ∈ C̃j with i < j. Defining

BM = Irr(M | B) finishes our proof of (i) and (ii) in the cases where r �= �.
It remains to consider the case where r = �.
Recall that Λ denotes an M -equivariant extension map with respect to N �M

for B. It always exists since M/N is cyclic. Let Bi be an M -orbit in B, θ ∈ Bi its
≤-smallest element and set

B′
i := {IndMMθ

(Λ(θ))}

and C̃i = IBr(M | Ci). The latter is a singleton since Ci is an M -orbit and, as said
at the beginning of §2, IBr(M | φ) is an IBr(M/N)-orbit for any φ ∈ IBr(N). Note

that in (iii) the set BM := ∪iB′
i = {IndMMθ

(Λ(θ)) | θ ∈ B} is G-stable whenever Λ

is G-equivariant. Again we define an ordering � on BM and C̃ := ∪iC̃i by χi ≺ χj ,
whenever χi ∈ B′

i and χj ∈ B′
j for i < j, and we set analogously φi ≺ φj , whenever

φi ∈ C̃i and φj ∈ C̃j for i < j. Since the sets B′
i and C̃i are singletons, this gives

a total ordering on BM and C̃. The corresponding decomposition matrix is lower
triangular by that choice thanks to Lemma 3.3. With the arguments above proving

(3.5) we see easily that dχ̃,˜φ = 1 whenever χ̃ ∈ B′
i and φ̃ ∈ C̃i. This finishes the

proof of (i) and (iii), the last statement of (iii) being clear from the rest. �

Now we are ready to prove our Theorem 3.1.

Proof of Theorem 3.1. Let Λ be a G-equivariant extension map with respect to
N �G for B. This map exists by our assumption.

We use induction on |G/N |. The case G = N is trivial. Otherwise, since G/N is
abelian, there is N ≤ M ≤ G with prime index |M/N | and we apply Proposition
3.4. Now let us ensure that for M ≤ G all the hypotheses of Theorem 3.1 are
satisfied with respect to BM ⊆ Irr(M), and IBr(M | C) ⊆ IBr(M). According to
Proposition 3.4 it remains only to prove that every χ ∈ BM extends to Gχ. Since
BM ⊆ Irr(M | B) there is θ ∈ B ∩ Irr(N | χ). Clifford theory implies that

χ = IndMM∩Gθ
(ResGθ

M∩Gθ
(Λ(θ))λ),

where Λ is the extension map introduced before and λ ∈ Irr(M ∩Gθ | 1N ), a linear
character. Let’s note that Gχ = GθM . Indeed Gθ ≤ Gχ by the above formula for χ,

while the inclusion Gχ ≤ GθM results from ResMN χ =
∑

m∈M/Mθ

mθ. Since G/N

is abelian, λ extends to some λ̃ ∈ Irr(Gθ | 1N ). Then Ind
Gχ

Gθ
(Λ(θ)λ̃) is an extension

of χ as can be seen from the Mackey formula. This proves that the assumptions of
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Theorem 3.1 are satisfied by M ≤ G and the sets BM ⊆ Irr(M) and IBr(M | C).
This obviously gives our claim by induction. �

The proof of Theorem 3.1 allows for a generalization, since when G/N is an �′-
group the proof does not use that G/N is abelian or the existence of an extension
map. Recall that we consider here �-Brauer characters.

Corollary 3.6. Let N � G, B ⊆ Irr(N) and C ⊆ IBr(N) such that |B| = |C| and
DecB,C is unitriangular. If B and C are both G-stable and G/N is a solvable �′-

group, then B̃ := Irr(G | B) and C̃ := IBr(G | C) have same cardinality and Dec
˜B,˜C

is unitriangular.

Proof. We use induction on |G/N |, the case N = G being trivial. Assume now
G/N is a solvable non-trivial �′-group, so there exists N ≤ K � G with G/K of
prime order �= �. Induction tells us that B′ := Irr(K | B) and C′ := IBr(K | C) have
same cardinality and DecB′,C′ is unitriangular. Note also that from their definition
B′ and C′ are clearly G-stable. We may then apply Proposition 3.4(i) and (ii) to the
inclusion K�G and the sets B′ and C′. We get that Irr(G | B′) and IBr(G | C′) have
same cardinality and that the associated decomposition matrix is unitriangular.
This gives our claim since clearly Irr(G | B′) = Irr(G | Irr(K,B)) = Irr(G | B) and
IBr(G | C′) = IBr(G | IBr(K, C)) = IBr(G | C). �

Corollary 3.7. Let N � G be finite groups with solvable quotient G/N and Z ≤
Z(G) such that � � |G/NZ| and � � |Z ∩ N |. Let B ⊆ Irr(N) and C ⊆ IBr(N)
such that |B| = |C| and DecB,C is unitriangular. Assume that B and C are both

G-stable, and let B̃ = Irr(G | B) ∩ Irr(G | 1Z�
) and C̃ = IBr(G | C). Then Dec

˜B,˜C is

unitriangular.

Proof. By the assumption, G1 := NZ� = N × Z� is a direct product. So C can
be also regarded as a subset of IBr(G1). Let B1 = {χ × 1Z�

| χ ∈ B}. Then B1

is G-stable and DecB1,C = DecB,C is unitriangular. By Corollary 3.6, Dec
˜B,˜C is

unitriangular for B̃ = Irr(G | B1) and C̃ = IBr(G | C) since G/G1 is a solvable

�′-group. Here, B̃ = Irr(G | B) ∩ Irr(G | 1Z�
), and this completes the proof. �

Definition 3.8. If � is a prime, H is a finite group and I ⊆ Irr(H), a subset B ⊆ I
is called basic if (χ0)χ∈B is a basis for the Z-lattice generated by {χ0 | χ ∈ I}. If
B is a union of �-blocks of H, a basic set for B is a basic subset of Irr(B). Such a
basic set B is called unitriangular whenever the decomposition matrix DecB,IBr(B)

is unitriangular for some ordering of the rows and columns. Conversely, note that
if B is a subset of Irr(B) such that DecB,IBr(B) is square unitriangular then B is a
basic set for B.

Here are some comments on Theorem 3.1 and Proposition 3.4.

Remark 3.9.

(i) Theorem 3.1 should be compared with Denoncin’s “going-down” statement
[D17, Thm. 2.5]. For N � G with cyclic quotient G/N a unitriangular

IBr(G/N)-stable basic set B̃ ⊆ Irr(G) allows to construct one for N if

the underlying bijection f̃ : B̃ → IBr(G) satisfies Gχ = Gφ whenever

χ ∈ Irr(N | χ̃), φ ∈ IBr(N | f̃(χ̃)) for some χ̃ ∈ B̃.
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In the situation of Theorem 3.1 the given unitriangular basic set B is
G-stable and hence Gχ = Gf(χ) for every χ ∈ B, where f : B → C is the
bijection defined by the unitriangular shape of the decomposition matrix.

(ii) In the situation of Theorem 3.1, if G/N is an �-group, then one can take B̃ =

{IndGGθ
(Λ(θ)) | θ ∈ B}, where Λ is the G-equivariant extension map with

respect to N �G for B. The set B̃ is obtained by iterating the construction
in Proposition 3.4(iii). Let N ≤ M ≤ G with prime index |M/N |. We
use as an extension map Λ1 with respect to N � M for B the map given
by θ 	→ ResGθ

Mθ
(Λ(θ)). Then BM = {IndMMθ

(Λ1(θ)) | θ ∈ B}. Assuming

that M �G, which is possible since G/N is an �-group, one may use as a
G-equivariant extension map Λ2 with respect to M � G for BM the map
given by IndMMθ

(Λ1(θ)) 	→ IndGθM
Gθ

(Λ(θ)) for θ ∈ B. Note that Λ2 is a well-
defined extension map since Λ is G-equivariant. Now by composing the two

constructions we get B̃ = {IndGGφ
(Λ2(φ)) | φ ∈ BM} and this coincides with

{IndGGθ
(Λ(θ)) | θ ∈ B} by the definition of Λ1 and Λ2.

(iii) At least when the quotient G/N is an �-group the assumption in Theo-
rem 3.1 that every element of B extends to its stabilizer in G seems indeed
necessary. Let for instance G be a non-abelian �-group and N its derived
subgroup, so that [N,G] � N � G. Then N has a non-trivial linear char-
acter χ ∈ Irr(N) with [N,G] in its kernel. Now χ is G-invariant and we

take B := {χ}, while C and C̃ are forced to be reduced to the trivial Brauer
character. One has dχ,10N = χ(1) = 1. But for every χ̃ of Irr(G | χ) one

has χ̃(1) �= 1 since otherwise N would be in the kernel of χ̃ and there-
fore χ = 1N . Then dχ̃,10G = χ̃(1) �= 1 which makes impossible to find

B̃ ⊆ Irr(G | B) such that Dec
˜B,˜C is unitriangular.

4. The inductive Brauer–Glauberman condition

In this section, we recall the (iBG) condition from [SV16] (see Definition 4.4)
and give a new criterion to check it.

Let R be the ring of algebraic integers in C and I be a maximal ideal of R with
�R ⊆ I. Then the quotient F = R/I is an algebraically closed field of characteristic
�, see [N98, §2]. Let ∗ : R → F be the natural ring homomorphism.

4.1. Modular character triples. The notion of character triples and isomor-
phisms between them is well-known and has important applications. A more re-
strictive relation, the central isomorphisms of character triples, which was first
introduced in [NS14], is useful in the context of reduction theorems. Here we refer
to the exposition given in [N18] and [S18]. We will recall a similar notion for mod-
ular representations, the central isomorphisms of modular character triples, which
were used in [SV16] for constructing the (iBG) condition.

Let us start by recalling some facts on modular character triples from [N98, §8].
If N�G and θ ∈ IBr(N) is G-invariant, then the triple (G,N, θ) is called a modular
character triple. Let D be an F-representation affording the Brauer character θ.
According to [N98, Thm. 8.14], there is a projective F-representation P of G such
that P|N = D. Moreover, P can be chosen such that its factor set α satisfies
α(g, n) = α(n, g) = 1 for every g ∈ G and n ∈ N . In this situation, we say that P
is a projective representation of G associated to θ. It follows that α can be seen as
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a map on G/N × G/N . Furthermore, if c ∈ CG(N), then P(c) is a scalar matrix
by Schur’s Lemma.

Now we recall the definition of a central isomorphism between modular character
triples from [SV16, Def. 3.3] or [S18, Def. 4.19].

Definition 4.1. Let (G,N, θ) and (H,M,ϕ) be modular character triples satisfying
the following conditions.

(i) G = NH, M = N ∩H and CG(N) ≤ H.
(ii) There exist a projective representation P of G associated to θ with factor

set α and a projective representation P ′ of H associated to ϕ with factor
set α′ such that
(ii1) α′ = α|H×H , and
(ii2) for every c ∈ CG(N) the scalar matrices P(c) and P ′(c) are associated

with the same scalar.

Then we say the modular character triples (G,N, θ) and (H,M,ϕ) are central iso-
morphic and write (G,N, θ) c (H,M,ϕ).

4.2. On central isomorphisms. We will make use of the following results on
central isomorphisms between modular character triples.

Let L be a finite group. For ψ ∈ IBr(L), we let D be an F-linear representation
of L affording ψ. If we define ψ∗(g) = ψ(g�′)

∗ for every g ∈ L, then by [N98,
Lemma 2.4], ψ∗ is the trace function of D.

Lemma 4.2 is similar to [S12, Lemma 2.11] for the case of Brauer characters. See
[F1, 2.7] for the proof.

Lemma 4.2. Let L ≤ L̃�X be finite groups with L�X and abelian quotient L̃/L,

ψ ∈ IBr(L) with Xψ = X and ψ̃ ∈ IBr(L̃) an extension of ψ to L̃. Assume that

there exists a group C ≤ X with L̃ ∩ C = L and X = L̃C, such that ψ extends to
C. Then there exists a projective representation P associated to the character triple
(X,L, ψ) such that the factor set α of P satisfies α(lcL, l′c′L) = λ∗

c(l
′), for c, c′ ∈ C,

and l, l′ ∈ L̃, where for every c ∈ C, the linear Brauer character λc ∈ IBr(L̃/L) is

determined by ψ̃ = λcψ̃
c.

We use the above through the following consequence.

Proposition 4.3. Let A be a finite group and B ≤ A, N � A, M = N ∩ B such
that A = NB. Let θ ∈ IBr(N) and ϕ ∈ IBr(M). Assume that we have the following
conditions.

(i) X is a normal subgroup of A such that N ≤ X and X/N is abelian. Y
is a normal subgroup of B such that M ≤ Y ≤ X ∩ B. Assume further
CA(N) ⊆ Y .

(ii) There exist subgroups H ≤ A and L ≤ B ∩ H satisfying N = X ∩H and
M = Y ∩ L.

(iii) Aθ = XθHθ, Bϕ = YϕLϕ and Bϕ = Bθ.
(iv) θ extends to Xθ and Hθ while ϕ extends to Yϕ and Lϕ.
(v) There exist characters χ ∈ IBr(X | θ) and ψ ∈ IBr(Y | ϕ) satisfying

• IBr(CA(N) | χ) = IBr(CA(N) | ψ), and
• for any l ∈ Lϕ, if χ = λχl for some λ ∈ IBr(X/N), then ψ =

ResXY (λ)ψl.

Then (Aθ, N, θ) c (Bϕ,M, ϕ).
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Proof. First we have Aθ = BϕN and M = Bϕ ∩N since Bϕ = Bθ. Also Yϕ = Yθ,

Lϕ = Lθ and CAθ
(N) ≤ Bϕ and then condition (i) of Definition 4.1 holds. Let θ̃

be the extension of θ to Xθ with IndXXθ
(θ̃) = χ and ϕ̃ be the extension of ϕ to Yϕ

with IndYYϕ
(ϕ̃) = ψ. Then

IBr(CA(N) | θ̃) = IBr(CA(N) | χ) = IBr(CA(N) | ψ) = IBr(CA(N) | ϕ̃) = {ε}

for some linear Brauer character ε ∈ IBr(CA(N)). So we only need to prove the
condition (ii1) of Definition 4.1 now.

By Lemma 4.2 we have a projective representation P associated to (Aθ, N, θ),
such that the factor set α of P satisfies (a) P(z) = ε∗(z)Iθ(1) for z ∈ CA(N), (b)
α(x1x2, x

′
1x

′
2) = μ∗

x2
(x′

1), for x1, x
′
1 ∈ Xθ, and x2, x

′
2 ∈ Hθ, where for every x2 ∈ Hθ,

the linear Brauer character μx2
∈ IBr(Xθ/N) is determined by θ̃ = μx2

θ̃x2 .
Analogously, we have a projective representation P ′ associated to (Bϕ,M, ϕ),

such that the factor set α′ of P ′ satisfies (a) P ′(z) = ε∗(z)Iϕ(1) for z ∈ CA(N), (b)
α′(x1x2, x

′
1x

′
2) = μ′∗

x2
(x′

1), for x1, x
′
1 ∈ Yϕ, and x2, x

′
2 ∈ Lϕ, where for every x2 ∈

Lϕ, the linear Brauer character μ′
x2

∈ IBr(Yϕ/M) is determined by ϕ̃ = μ′
x2
ϕ̃x2 .
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For some l ∈ Lϕ, and λ ∈ IBr(Xθ/N), we have θ̃ = λθ̃l. Then χ = λ̃χl, where

λ̃ ∈ IBr(X/N) is some extension of λ. By the hypothesis, ψ = ResXY (λ̃)ψl. So

ϕ̃ = ResXYϕ
(λ̃)ϕ̃l. It is obvious that ResXYϕ

(λ̃) = ResXθ

Yϕ
(λ). Hence ϕ̃ = ResXθ

Yϕ
(λ)ϕ̃l,

and then ResXθ

Yϕ
(μx2

) = μ′
x2
. That is α|Bϕ×Bϕ

= α′, which completes the proof. �

4.3. The inductive Brauer–Glauberman condition. Using the definition ab-
ove, the inductive Brauer–Glauberman condition from [SV16, Def. 6.1] can be
written in the following way. For the definition of fake m-th Galois action,
see [SV16, §4].

Definition 4.4. Let S be a non-abelian finite simple group, G the universal cov-
ering group of S and � a prime number dividing |S|. We say that S satisfies
the inductive Brauer–Glauberman (iBG) condition for � (or we say the inductive
Brauer–Glauberman condition holds for S and �) if for every B ≤ Aut(G), with
gcd(|G|, |B|) = 1 the following conditions are satisfied:

(I) For Z := Z(G), Γ := CAut(G)(B) and C := CG(B) there exists a Γ-
equivariant bijection

ΩB : IBrB(G) → IBrB(CZ),

such that for every θ ∈ IBrB(G),

(4.5) (G� Γθ, G, θ) c (CZ � Γθ, CZ,ΩB(θ)).

(II) For every non-negative integer m with (|G|,m) = 1, there exists a fake
m-th Galois action on IBr(C) with respect to C � Γ.

We say the (iBG) condition holds for simple group S if the (iBG) condition holds
for S and any prime � dividing |S|.

Due to Theorem 4.6 by the second author and Vallejo there is considerable
interest in verifying the (iBG) condition for all finite non-abelian simple groups:

Theorem 4.6 ([SV16, Thm. A]). Let G, A be finite groups and let � be a prime.
Suppose that A acts coprimely on G via automorphisms. Suppose that all finite
non-abelian simple groups involved in G satisfy the (iBG) condition for �. Then
Conjecture 2 is true for G, A and the prime �.

By [SV16, Rmk. 6.2], for any simple group S, the (iBG) condition in Defini-
tion 4.4 is equivalent to its weaker version, in which B is taken to be the trivial
group in condition (II) of Definition 4.4. Recently, Farrell and Ruhstorfer proved
the condition (II) of the (iBG) condition and we state this as follows.

Theorem 4.7 ([F1, Thm. A]). Let S be a non-abelian simple group and let G be
the universal covering group of S. Then for all non-negative integers m such that
gcd(|G|,m) = 1, there exists a fake m-th Galois action on IBr(G) with respect to
G�G�Aut(G).

From this, when considering the (iBG) condition, we only need to establish
Definition 4.4(I), a central isomorphism between modular character triples.

Corollary 4.8. Let S be a non-abelian simple group and let G be the universal
covering group of S. If G is an exceptional covering group of a simple group of Lie
type, then S satisfies the (iBG) condition.
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Proof. By the assumption, S is one of the simple groups of Lie type in [GLS98,
Table 6.1.3]. Case by case calculations show that the set of primes dividing |G| and
|Aut(G)| are the same. Then the group B in Definition 4.4 should be trivial and
thus condition (I) holds. Therefore, S satisfies the (iBG) condition by Theorem 4.7.

�

4.4. A criterion for the inductive Brauer–Glauberman condition. We will
state a technical result which may be useful for the verification of the (iBG) condi-
tion for simple groups of Lie type. It is a generalization of [NST17, Prop. 5.9].

Theorem 4.9. Let S be a finite non-abelian simple group, G the universal covering
group of S and � a prime number dividing |S|. Suppose that there exist a finite

group G̃ with G� G̃ and a finite group D such that G̃�D is defined, G is D-stable,

G̃/G is abelian, C
˜G�D(G) = Z(G̃), and G̃ � D induces on G all automorphisms

of G. Assume that for every B ≤ D with gcd(|G|, |B|) = 1, and C := CG(B),

C̃ := C
˜G(B), the following conditions are satisfied.

(i) (a) B ≤ Z(D), gcd(|G̃|, |B|) = 1,

(b) every χ ∈ IBr(G) extends to its stabilizer G̃χ, and

(c) every ψ ∈ IBr(C) extends to its stabilizer C̃ψ.

(ii) For every χ̃ ∈ IBrB(G̃) there exists some χ0 ∈ IBr(G | χ̃) such that

(a) (G̃�D)χ0
= G̃χ0

�Dχ0
, and

(b) χ0 extends to G�Dχ0
.

(iii) For every ψ̃ ∈ IBrB(C̃) there exists some ψ0 ∈ IBr(C | ψ̃) such that

(a) (C̃ �D)ψ0
= C̃ψ0

�Dψ0
, and

(b) ψ0 extends to C �Dψ0
.

(iv) There exists a D-equivariant bijection Ω̃B : IBrB(G̃) → IBr(C̃) between

IBrB(G̃) and IBr(C̃) with

(a) C̃G∩ J
˜G
G(χ̃) = G. J

˜C
C(Ω̃B(χ̃)) (central product) for every χ̃ ∈ IBrB(G̃),

(b) Ω̃B(IBrB(G̃ | ν)) = IBrB(C̃ | ν) for every ν ∈ IBr(Z(G̃) ∩ C̃), and

(c) Ω̃B(χ̃λ) = Ω̃B(χ̃) Res
˜G
˜C
(λ) for every χ̃ ∈ IBrB(G̃) and λ ∈ IBrB(G̃/G).

Then the (iBG) condition holds for S and �.

Proof. Thanks to Theorem 4.7, it suffices to show condition (I) of Definition 4.4.

First by [I08, Cor. 3.28], we have CAut(G)(B)=C
˜G�D/Z( ˜G)(B)=(C̃�D) Z(G̃)/Z(G̃),

which implies that C̃ �D induces on G all CAut(G)(B). Let Z := Z(G).
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C̃G�D

		
		

		
		

		
		

		

���
���

���
���

���
���

���
���

��

G�D C̃G

G

�����������������������






















C̃Z �D

		
		

		
		

		
		

		

���
���

���
���

���
���

���
���

��

CZ �D C̃Z

CZ

����������������������





















By [SV16, Thm. 3.7] or [S17, Thm. 3.5], it now suffices to prove that for every

B ≤ D with (|G|, |B|) = 1, there exists a (C̃ � D)-equivariant bijection ΩB :
IBrB(G) → IBrB(CZ), such that

(4.10) ((C̃G�D)χ, G, χ) c ((C̃Z �D)χ, CZ,ΩB(χ))

for every χ ∈ IBrB(G).
By Corollary 2.4, we know that the restriction

Res
(Z( ˜G)∩ ˜C)Z

Z( ˜G)∩ ˜C
: IBrB((Z(G̃) ∩ C̃)Z) → IBr(Z(G̃) ∩ C̃)

is bijective. According to Proposition 2.6, we also have a D-equivariant bijection

Res
˜CZ
˜C

: IBrB(C̃Z) → IBr(C̃).

Furthermore,

• J
˜CZ
CZ(ψ̃) = J

˜C
C(Res

˜CZ
˜C

(ψ̃)).Z (central product) for every ψ̃ ∈ IBrB(C̃Z), and

• Res
˜CZ
˜C

(IBrB(C̃Z |ν))=IBr(C̃ |Res(Z( ˜G)∩ ˜C)Z

Z( ˜G)∩ ˜C
(ν)) for every ν ∈ IBrB((Z(G̃)∩

C̃)Z).

Using again Proposition 2.6, we know from (iii) that for every ψ̃ ∈ IBrB(C̃Z) there

exists some ψ0 ∈ IBr(CZ | ψ) such that (C̃Z � D)ψ0
= (C̃Z)ψ0

� Dψ0
and ψ0

extends to CZ �Dψ0
.
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By Proposition 2.3(iv), we have a bijection Ω̃′′
B between IBrB(G̃) and IBrB(C̃G)

which is automatically D-equivariant. Also from the construction of Ω̃′′
B, we have

• Ω̃′′
B(IBrB(G̃ | ν)) = IBrB(C̃G | ν) for every ν ∈ IBr(Z(C̃G)), and

• Ω̃′′
B(χ̃λ) = Ω̃′′

B(χ̃) Res
˜G
˜CG

(λ) for every χ̃ ∈ IBrB(G̃), and λ ∈ IBrB(G̃/G).

In addition, it is easy to check that J
˜CG
G (Ω̃′′

B(χ̃)) = C̃G ∩ J
˜G
G(χ̃) for every χ̃ ∈

IBrB(G̃).

By [I08, Cor. 3.28], C
˜G/G(B) = C̃G/G. Then applying Corollary 2.4, we know

that

Res
˜G/G
˜CG/G

: IBrB(G̃/G) → IBr(C̃G/G)

is bijective. By (iv) we obtain a D-equivariant bijection Ω̃′
B : IBrB(C̃G) →

IBrB(C̃Z) with

• J
˜CG
G (χ̃) = G. J

˜CZ
CZ(Ω̃

′
B(χ̃)) (central product) for every χ̃ ∈ IBrB(C̃G),

• Ω̃′
B(IBrB(C̃G | ν)) = IBrB(C̃Z | ν) for every ν ∈ IBr(Z(C̃G)), and

• Ω̃′
B(χ̃λ) = Ω̃′

B(χ̃) Res
˜CG
˜CZ

(λ) for every χ̃ ∈ IBrB(C̃G), and λ ∈ IBr(C̃G/G).

Also by Proposition 2.3(iii), IBrB(C̃G) = IBr(C̃G | IBrB(G)) and IBrB(G) =

IBr(G | IBrB(C̃G)).

On IBrB(C̃G) the group C̃G � D acts by conjugation and the group of lin-

ear Brauer characters IBr(C̃G/G) by multiplication. Let G̃ be a transversal in

IBrB(C̃G) with respect to these combined actions. For every χ̃ ∈ G̃ we let χ̃′ ∈
IBr(G̃ | χ̃) and we fix a Brauer character χ0 ∈ IBr(G | χ̃′) with the properties

from (ii) (then we have χ0 ∈ IBrB(G) automatically) and let G := {χ0 | χ̃ ∈ G̃} ⊆
IBrB(G) be the set formed by them. Then G is a (C̃G�D)-transversal in IBrB(G).

Since Ω̃′
B is C̃�D-equivariant, the set C̃ := Ω̃′

B(G̃) is a transversal in IBrB(C̃Z)

with respect to the combined actions of IBr(C̃Z/CZ) and C̃�D. As before we can

associate to every ψ̃ ∈ C̃ a Brauer character ψ0 ∈ IBr(CZ | ψ̃) with the properties
from (iii) (then ψ0 ∈ IBrB(CZ) automatically holds). Let these Brauer characters

form the set C , which is a (C̃ �D)-transversal in IBrB(CZ).

For χ̃ ∈ G̃ and χ0 ∈ G ∩ IBrB(G | χ̃), we define ΩB(χ0) := ψ0 to be the

unique element in C ∩ IBrB(CZ | ψ̃), where ψ̃ = Ω̃′
B(χ̃) ∈ C̃ . Now we prove that

(C̃Z �D)ψ0
= (C̃Z �D)χ0

.
By (2.2) we have

(C̃G)χ0
=

( ⋂
{λ∈IBr( ˜CG/G) | χ̃λ=χ̃}

ker(λ)

)⋂
J
˜CG
G (χ̃)

and

(C̃Z)ψ0
=

( ⋂
{λ∈IBr( ˜CZ/CZ) | ˜ψλ= ˜ψ}

ker(λ)

)⋂
J
˜CZ
CZ(ψ̃).

Also,

Dχ0
= {d ∈ D | χ̃d = χ̃λ for some λ ∈ IBr(C̃G/G)}

and
Dψ0

= {d ∈ D | ψ̃d = ψ̃λ for some λ ∈ IBr(C̃Z/CZ)}.
Thus (C̃G)χ0

= C̃ψ0
G, Dχ0

= Dψ0
. So (C̃ �D)ψ0

= (C̃ �D)χ0
.
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Hence we can define a C̃ �D-equivariant bijection ΩB : IBrB(G) → IBrB(CZ)
by

ΩB(χ
x
0) := ΩB(χ0)

x for every x ∈ C̃ �D and χ0 ∈ G.
Now we prove (4.10). By [SV16, Lem 3.8], it suffices to let χ ∈ G. Then we can
establish a central isomorphism (4.10) by Proposition 4.3 by taking A, B, N , M ,

X, Y , H, L, θ, ϕ to be C̃G �D, C̃Z �D, G, CZ, C̃G, C̃Z, G �D, CZ �D, χ,
ΩB(χ) respectively, and this completes the proof. �

5. Simple groups of Lie type in non-defining characteristic

Let G be a simple linear algebraic group of simply connected type over an
algebraic closure of Fp (where p is a prime). Let B be a Borel subgroup of G
with maximal torus T. Let Φ, Δ denote the set of roots and simple roots of G
determined by B and T. For a description of the Frobenius endomorphisms, we
use the Chevalley generators xα(t) (t ∈ Fq, α ∈ Φ) as in [GLS98, Thm. 1.12.1].

We recall the automorphisms of G described as in [MS16, §2]. Let F0 : G → G
be the field endomorphism of G given by F0(xα(t)) = xα(t

p) for every t ∈ Fp and
α ∈ Φ. Any length-preserving automorphism τ of the Dynkin diagram associated
to Δ and hence automorphism of Φ determines a graph automorphism γ of G given
by γ(xα(t)) = xτ(α)(t) for every t ∈ Fp and α ∈ ±Δ. Note that such γ commutes
with F0.

Let r be the rank of Z(G) (as finite abelian group) and Z ∼= (F
×
p )

r a torus of

that rank with an embedding of Z(G). We set G̃ := G×Z(G)Z the central product

of G with Z over Z(G). Then G̃ is a connected reductive group such that the

natural map G ↪→ G̃ is a regular embedding (see [GM20, §1.7]). From this, we can

extend F0 to a Frobenius endomorphism of G̃ and γ to an automorphism of G̃ as
in [MS16, p. 874].

Let us consider a Frobenius endomorphism F := F f
0 γ, with γ a (possibly trivial)

graph automorphism of G, leaving aside the case of types 2B2,
2G2 and

2F4. Then F

defines an Fq-structure on G̃, where q = pf . The group of rational points G = GF

and G̃ = G̃F are finite (see [MT11, Thm. 21.5]). Note by construction that the
order of F0 as automorphism of G coincides with that of F0 as automorphism of

G̃. The analogous statement also holds for any graph automorphism γ and the

automorphisms of G̃ associated with it.
Let D be the subgroup of Aut(G) generated by F0 (here we identify F0 with

F0|G) and the graph automorphisms commuting with F . Then G̃ � D is well-
defined and induces all automorphisms of G, see [GLS98, Thm. 2.5.1]. Concerning
coprime action, note that automorphisms of G of order prime to |G| are therefore
restrictions to G of Frobenius endomorphisms of G.

The following was introduced in [S12] in relation with the inductive McKay con-
dition. We just saw the similar statement for Brauer characters in Theorem 4.9(ii).

Definition 5.1. When G is simple simply connected, one says that GF satisfies
the A(∞) condition if and only if

A(∞) every character χ ∈ Irr(GF ) has a G̃F -conjugate χ0 such that (G̃F �

D)χ0
= G̃F

χ0
�Dχ0

and χ0 extends to GF �Dχ0
.

This was proved recently to be satisfied in all types.
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Theorem 5.2. Any group GF with G simple simply connected satisfies A(∞).

Proof. This is proved in [CS17a, Thm. 4.1], [CS17b, Thm. 3.1], [CS19, Thm. B]
and [S22, Thm. A]. �

We denote by G∗ and G̃∗ the dual groups of G and G̃ respectively with cor-
responding Frobenius endomorphisms also denoted by F . Many constructions
for algebraic groups have a convenient formulation in terms of generic groups.
Suppose that G is a complete root datum of (G, F ) (in the sense of [BM92,
§2]) so that G = GF = G(q). Then we have a complete root datum G∗ for

(G∗, F ) (see [BMM93, §1]). Also, G∗F = G∗(q).
Let B ≤ Aut(G) such that gcd(|G|, |B|) = 1, then by [MNS15, §2], B is Aut(G)-

conjugate to some subgroup of the field automorphisms of G. By [SV16, Rmk. 6.2],
when considering the (iBG) condition, we can assume that B is generated by some
power of F0 and then B is cyclic. Then a bijection as required in Definition 4.4(I)
has been given in [NST17, Thm. 3.1]. However, it seems hard to construct the
central isomorphism (4.5) in general then. Therefore, we start with considering the

irreducible ordinary characters. Let C = CG(B) and C̃ = C
˜G(B).

Theorem 5.3. Suppose that G is not of type 3D4. Let B = 〈F e
0 〉 such that

gcd(|G̃|, |B|) = 1, and let C = CG(B), C̃ = C
˜G(B). Then there is a D-equivariant

bijection Ξ̃B : IrrB(G̃) → Irr(C̃) such that

(i) Ξ̃B(IrrB(G̃ | ν)) = Irr(C̃ | ν) for every ν ∈ Irr(Z(G̃) ∩ C̃), and

(ii) Ξ̃B(χ̃λ) = Ξ̃B(χ̃) Res
˜G
˜C
(λ) for every χ̃ ∈ IrrB(G̃) and λ ∈ IrrB(G̃/G).

Proof. Since (G, F ) is not of type 3D4, γ is of order 1 or 2. We recall that, as an

automorphism of G (or G̃), F0 is of order f if γ is of order 1 while F0 is of order
2f if γ is of order 2.

First assume that γ is trivial. Let q0 = pe and F1 := F e
0 . Then C̃ = G̃F1 and

C = GF1 = G(q0). Here we have F = F
f/e
1 . Of course B is generated by F1.

Now let γ be of order 2. Then γ = F f
0 as automorphisms of G̃. From gcd(|G|, |B|)

= 1 we know that 2f
e is odd and then e is even. So for g ∈ G̃, one has g ∈ C̃ ⇔

g = F e
0 (g) = (F

e
2
0 )2(g) ⇔ γ(g) = F f

0 (g) = (F
e
2
0 )

2f
e (g) = F

e
2
0 (g) ⇔ γF

e
2
0 (g) = g. Let

q0 = p
e
2 and F1 := F

e
2
0 γ. Then C̃ = G̃F1 and C = GF1 = G(q0). It can be checked

that F = F
2f
e

1 . As automorphisms of G̃F , we have F1 = F
e
2
0 F f

0 = (F e
0 )

2f
e

+1

2 . Recall

that F e
0 has order 2f

e , which is coprime with
2f
e +1

2 . Therefore, F1 generates B.

In both cases, C = GF1 = G(q0) and C̃ = G̃F1 so that q is a power of q0 and F
is a power of F1. In addition, B is generated by F1. Thus an irreducible character

of G̃F is B-invariant if and only if it is F1-invariant.

The required bijection Ξ̃B is indeed constructed in the proof of [CS19, Thm. 3.7].

But for convenience, we recall some details. First note that G∗F = G∗(q) and

G∗F1 = G∗(q0). By the Jordan decomposition, there is a bijection Ψ
˜G,F from the

set of (G̃∗)F -conjugacy classes of pairs (s, φ) with s ∈ (G̃∗)Fss and φ ∈ E(C
˜G∗(s)

F , 1)

to Irr(G̃F ). Here (G̃∗)Fss denotes the set of semisimple elements of G̃∗ which are
F -invariant. In addition, we choose Ψ

˜G,F as in [DM90, Thm. 7.1], and then Ψ
˜G,F

is F1-equivariant (see also [CS13, Thm. 3.1]). Similarly we have the bijection Ψ
˜G,F1

for the parametrization of irreducible characters of G̃F1 .
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Since centralizers of semisimple elements of G̃∗ are connected by [DM20,
Rmk. 11.2.2 (ii)], there are well-known bijections

(G̃∗)Fss/ ∼(˜G∗)F←→ (G̃∗)Fss/ ∼
˜G∗←→ (G̃∗

ss/ ∼
˜G∗)

F

(see [G03, 4.3.6]). Here, ∼
˜G∗ (or ∼(˜G∗)F , resp.) denotes the relation on G̃∗ (or

(G̃∗)F , resp.) of conjugacy. They are F1-equivariant and hence

(G̃∗)F1
ss / ∼(˜G∗)F1

∼−→ ((G̃∗)Fss/ ∼(˜G∗)F )
F1

by the obvious map. Using [CS19, Cor. 3.6], there is a D-equivariant bijection

Υ : E(C
˜G∗(s)

F1 , 1) −→ E(C
˜G∗(s)

F , 1)F1 ,

which is equivariant for algebraic automorphisms of G̃∗ commuting with F1. There-

fore F1-stable (G̃∗)F -classes of pairs (s, φ) correspond to (G̃∗)F1-classes of pairs

(s,Υ−1(φ)) with s ∈ (G̃∗)F1
ss and φ ∈ E(C

˜G∗(s)
F , 1)F1 .

Therefore, we have a bijection Ω̃B : IrrB(G̃
F ) → Irr(G̃F1) such that

Ω̃−1
B (Ψ

˜G,F1
(s, φ)) = Ψ

˜G,F (s,Υ(φ)).

For σ ∈ D, we can define a dual σ∗ ∈ Aut(G∗F ) in the sense of [CS13, Def. 2.1].
Note that the dual of field (or graph) automorphisms is also field (or graph) au-
tomorphisms and they have similar forms. By [DM90, Thm. 7.1 (vi)] (or [CS13,

Thm. 3.1]), Ψ
˜G,F (s, φ)

σ−1

= Ψ
˜G,F (σ

∗(s), σ∗(φ)). From this, Ω̃B is D-equivariant.

Furthermore, (i) follows by choosing suitable ŝ (see [CE04, (8.14)]), since all the

characters in the Lusztig series E(G̃F , s) lie over the same character of Z(G̃F ) which
is the restriction of ŝ.

Now we prove (ii). Let ẑF := Ψ
˜G,F (z, 1(˜G∗)F ) for z ∈ Z(G̃∗)F and ẑF1

:=

Ψ
˜G,F1

(z, 1(˜G∗)F1
) for z ∈ Z(G̃∗)F1 . Then Irr(G̃F /GF ) = {ẑF | z ∈ Z(G̃∗)F } and

Irr(G̃F1/GF1) = {ẑF1
| z ∈ Z(G̃∗)F1}. Note that IrrB(G̃

F /GF ) = {ẑF | z ∈
Z(G̃∗)F1} and ResG

F

GF1 (ẑF ) = ẑF1
. So (ii) follows by [DM90, Thm. 7.1 (iii)]. �

From now on we assume that � �= p. According to Conjecture 1 recalled in §1 it is
expected that all �-blocks of a (quasi-simple) group of Lie type have a unitriangular
decomposition matrix. Moreover, we expect that the corresponding basic set can
be chosen stable under the action of the automorphism group (see for example
[D17, Thm. 2.5] and [M17, 4.7 and 4.8]).

Definition 5.4. Let H be a finite group. An injective map Θ : IBr(H) → Irr(H) is
called a unitriangular map if there exists a suitable ordering ≤ of IBr(H) such that
DecΘ(IBr(H)),IBr(H) is unitriangular with respect to≤ and the ordering of Θ(IBr(H))
corresponding to ≤ via Θ.

We propose Hypothesis 5.5.

Hypothesis 5.5. Let F : G → G be a Frobenius endomorphism endowing G
with an Fq-structure so that G is the complete root datum of (G, F ) (which implies

GF = G(q)). Suppose that there is a unitriangular map Θ̃q : IBr(G̃F ) → Irr(G̃F )
such that

(i) Θ̃q(IBr(G̃
F )) is Irr(G̃F /GF )�′-stable (note that Irr(G̃F /GF ) acts on

Irr(G̃F ) by multiplication) and D-stable,
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(ii) there is a unitriangular map Θq : IBr(GF ) → Irr(GF ) such that Θq(IBr(G
F

| χ̃)) = Irr(GF | Θ̃q(χ̃)) for every χ̃ ∈ IBr(G̃F ), and

(iii) Θ̃q is compatible with Frobenius endomorphisms, i.e., for q0 | q with q = qe0
satisfying gcd(e, |GF |) = 1, we have

Ξ̃(Θ̃q(IBr(G̃
F ))F (q0)) = Θ̃q0(IBr(G̃

F (q0))),

where F (q0) : G → G is a Frobenius endomorphism endowing G with an
Fq0-structure so that G is also the complete root datum of (G, F (q0)), F is

a power of F (q0) and Ξ̃ is as in Theorem 5.3.

We say Hypothesis 5.5 holds for G if it is true for any q.

Remark 5.6. According to [D17, Thm. 2.5], condition (ii) of Hypothesis 5.5 can be

replaced by the following: | IBr(GF | χ̃)|� = | Irr(GF | Θ̃q(χ̃))|� (which implies that

| IBr(GF | χ̃)| = | Irr(GF | Θ̃q(χ̃))| in the situation of Hypothesis 5.5(i)) for every

χ̃ ∈ IBr(G̃F ).

Recall that according to [GM20, Thm. 1.7.15], Res
˜GF

GF (χ̃) is multiplicity-free for

every χ̃ ∈ Irr(G̃F ) ∪ IBr(G̃F ). Then as said in §2.2 every χ ∈ Irr(GF ) ∪ IBr(GF )

extends to its stabilizer in G̃F .

Theorem 5.7. Keep the setup of Theorem 5.3, let � � q, and assume further that
Hypothesis 5.5 holds for G. If S = GF /Z(GF ) is simple, then the (iBG) condition
(see Definition 4.4) holds for S and the prime �.

Proof. Keep the notation occurring in Theorem 5.3. To verify the (iBG) condition,
we use Theorem 4.9. For Hypothesis 5.5, one can apply [D17, 2.3] to both the

action of D and of Irr(G̃F /GF )�′ , and get that

(i) Θ̃q(λ
0χ̃) = λΘ̃q(χ̃) for every χ̃ ∈ IBr(G̃F ) and λ ∈ Irr(G̃F /GF )�′ ,

(ii) Θ̃q : IBr(G̃F ) → B̃ is a D-equivariant bijection where B̃ = Θ̃(IBr(G̃F )),

(iii) Θq : IBr(GF ) → Irr(GF | B̃) a D-equivariant bijection.

Similar properties hold for groups GF1 = G(q0) and G̃F1 . From this, to verify the
conditions of Theorem 4.9, we can transfer to ordinary characters.

Condition (i)(a) of Theorem 4.9 can be checked case by case while (i)(b) and (c)
follow by Clifford theory and [G93, Thm. B] (or [GM20, Thm. 1.7.15]). By A(∞)
which is ensured by Theorem 5.2, Hypothesis 5.5, and the arguments of Remark
7.4, conditions (ii) and (iii) of Theorem 4.9 are satisfied. Applying Theorem 5.3
and by Hypothesis 5.5 again, we can deduce Theorem 4.9(iv). Here, (b) and (c)
are obvious. Condition (a) can be deduced by computing the stabilizers of the
corresponding characters in the basic sets from Hypothesis 5.5. Analogously as in

the proof of Theorem 4.9, the map Res
˜G/G
˜CG/G

: IrrB(G̃/G) → Irr(C̃G/G) is bijective.

Then (a) follows by (2.1), Theorem 5.3(ii) and a similar argument as in the proof
of Theorem 4.9. �

As an application of Theorem 5.7, we establish the (iBG) condition for simple
groups of types A and 2A now, using the unitriangular basic sets of SLn(q) and
SUn(q) given in [D17].

Theorem 5.8. The simple groups PSLn(q) and PSUn(q) satisfy the (iBG) condi-
tion.
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Proof. By [NST17, Thm. 5.1], it suffices to consider the non-defining characteristic.
Thanks to Corollary 4.8, we assume that SLn(±q) is the universal covering group
of PSLn(±q). This theorem follows by Theorems 5.2 and 5.7 while Hypothesis 5.5
can be verified as follows. We use the notation from Theorem 5.3 and its proof.
First, Hypothesis 5.5(i) and (ii) hold by the construction of basic sets in [D17]
immediately. For (iii), we should recall the details of the construction.

Let G̃ = GLn(εq), where ε = ±1. As usual, GLn(−q) denotes the general

unitary group. The parametrization of IBr(G̃) is given in [KT09] for ε = 1, called
the admissible symbols, while the case ε = −1 was considered in [D17]. Note that
an exposition can be found in [F19, Rmk. 3.4]. We will use the admissible symbols
to parametrize the irreducible characters and then give a parametrization for the
basic set constructed in [D17].

For a partition μ = (μ1, μ2, . . .), denote |μ| = μ1 + μ2 + · · · and write μ′ for
the transposed partition. Set Δ(μ) = gcd(μ1, μ2, . . .). Let h | Δ(μ′). We rewrite

μi = (μt1
1 , μt2

2 , . . .) and then we set μ/h = (μ
t1/h
1 , μ

t2/h
2 , . . .).

For σ ∈ F
×
p , we set

[σ]εq = { σ, σεq, σ(εq)2 , . . . , σ(εq)degεq(σ)−1

},

where degεq(σ) is the minimal integer d such that σ(εq)d−1 = 1.
An (n, εq)-admissible tuple is a tuple

(5.9) (([σ1]εq, μ
(1)), . . . , ([σa]εq, μ

(a)))

of pairs, where a ≥ 1, σ1, . . . , σa ∈ F
×
p , and μ(1), . . . , μ(a) are partitions such that

• [σi]εq �= [σj ]εq for all i �= j, and

•
∑a

i=1 degεq(σi)|μ(i)| = n.

The equivalence class of an (n, εq)-admissible tuple (5.9) up to permutations of
the pairs

([σ1]εq, μ
(1)), . . . , ([σa]εq, μ

(a))

is called an (n, εq)-admissible symbol and is denoted as

(5.10) s = [([σ1]εq, μ
(1)), . . . , ([σa]εq, μ

(a))].

This is clearly in bijection with G̃-classes of pairs (s, φ) where s ∈ G̃ss and φ ∈
E(C

˜G(s), 1) thanks to the parametrization of unipotent characters of GLd(±q) by
partitions of d. Then Jordan decomposition of characters as recalled in the proof of

Theorem 5.3 implies that (n, εq)-admissible symbol is a labelling set for Irr(G̃). De-

note by χ
˜G
s the irreducible character corresponding to the (n, εq)-admissible symbol

s.
For the (n, εq)-admissible symbol (5.10) we define

s
k = [([σk

1 ]εq, μ
(1)), . . . , ([σk

a ]εq, μ
(a))],

if k = −1 or k is a power of p. Thus by [D17, Prop. 3.5], (χ
˜G
s )

F0 = χ
˜G
sp and χ

˜G
s−1 is

the image of the character χ
˜G
s under a certain graph automorphism. Moreover each

linear character of G̃/G acts by the associated scalar multiplication on the σi’s.
Let B = 〈F e

0 〉 such that gcd(|B|, |G|) = 1. We let q0 and F1 be as in the

proof of Theorem 5.3. Then C̃ = GLn(εq0). In addition, χ
˜G
s is B-invariant if
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and only if it is F1-invariant, and if and only if for any 1 ≤ i ≤ a, there ex-

ists some 1 ≤ j ≤ a such that σεq0
i = σj and μ(i) = μ(j). From this, if χ

˜G
s is

B-invariant, one may assume that s is the class of the (n, εq)-admissible sym-

bol of pairs ([σ1]εq, μ
(1)), ([σεq0

1 ]εq, μ
(1)), . . . , ([σ

(εq0)
l1

1 ]εq, μ
(1)), . . . , ([σs]εq, μ

(s)),

([σεq0
s ]εq, μ

(s)), . . . , ([σ
(εq0)

ls

s ]εq, μ
(s)) for some integers s, l1, . . . , ls all ≥ 1. Then

by the construction of Ξ in the proof of Theorem 5.3, ΞB(χ
˜G
s ) = χ

˜C
s0
, where s0 is

the (n, εq0)-admissible symbol of pairs ([σ1]εq0 , μ
(1)), . . . , ([σs]εq0 , μ

(s)).
Now we describe the basic set constructed in [D17, §4.4] in our notation above.

Let Ẽεq be the set consisting of (n, εq)-admissible symbols (5.10) such that σ1, . . . ,

σa are �′-elements. For s ∈ Ẽεq we go through the following steps

• if �d = gcd
(
q − ε,Δ((μ(1))′), . . . ,Δ((μ(a))′)

)
�
�= 1 then take w to be an

element in F
×
p having order �d,

• let s′ be the (n, εq)-admissible symbol of pairs

([σ1]εq, μ
(1)/�d), ([σ1w]εq, μ

(1)/�d), . . . , ([σ1w
�a−1]εq, μ

(1)/�d), . . . ,

([σa]εq, μ
(a)/�d), ([σaw]εq, μ

(a)/�d), . . . , ([σaw
�a−1]εq, μ

(a)/�d),

and
• replace s by s′ in Ẽεq.

From this we obtain a new set Ẽ ′
εq consisting of (n, εq)-admissible symbols. Then

Ĩ ′
εq := {χ ˜G

s | s ∈ Ẽ ′
εq} forms a basic set for G̃ with a unitriangular decomposition

matrix while I ′
εq := Irr(G | Ĩ ′

εq) has the same properties for G. We then get

bijections Θ̃q : IBr(G̃) → Ĩ ′
εq and Θq : IBr(G) → I ′

εq. Now Hypothesis 5.5(i) as a

property of Ĩ ′
εq is an easy consequence of what we have recalled about action of linear

characters and automorphisms, while Hypothesis 5.5(ii) is the main unitriangularity

property of [D17]. Finally, ΞB((Ĩ ′
εq)

B) = Ĩ ′
εq0 can be checked directly and this is

Hypothesis 5.5(iii). Thus we have completed the proof. �

We can now restate Theorem 3 as follows.

Theorem 5.11. If Hypothesis 5.5 holds for types Bn, Cn, Dn,
2Dn, E6,

2E6 and
E7 whenever � � q, then Conjecture 2 is true.

Proof. It was proved that the (iBG) condition holds for every finite simple group
with cyclic outer automorphism group by [NST17, Thm. 4.4], for every finite simple
group not of Lie type by [NST17, Cor. 4.6 and Prop. 4.7], and for every finite simple
group of Lie type in defining characteristic by [NST17, Thm. 5.1]. By Theorem 5.8
and the structure of the automorphism groups of finite simple groups (see, for exam-
ple, [GLS98, Thm. 2.5.12]), it remains to consider the simple groups of Lie types Bn,
Cn, Dn,

2Dn, E6,
2E6 and E7 in non-defining characteristic. Also, the exceptional

covering groups are verified to satisfy the (iBG) condition by Corollary 4.8.
Thanks to Theorem 5.7, we can apply Theorem 4.6 now and this implies our

theorem. �

6. More results on the inductive Brauer–Glauberman condition

First we give an application of Theorem 4.9.
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Theorem 6.1. The (iBG) condition holds for simple groups PSp2n(q) (n ≥ 2) and
the prime 2.

Proof. Thanks to [NST17, Thm. 5.1], we can assume q to be odd. Let S =

PSp2n(q). Let G = Sp2n(Fq) and G̃ = CSp2n(Fq). Keep the notation preced-

ing Theorem 5.3. Let q = pf and we take F = F f
0 , then G = GF = Sp2n(q) and

G̃ = G̃F = CSp2n(q). Also, G is the universal covering group of S. Chaneb [C21]
has proved that there is a unitriangular basic set for the unipotent 2-block (princi-
pal) of G. Based on this result, the paper [FM22] gives a labelling set for IBr(G),
together with the action of automorphisms. Now we recall that labelling set.

Let F be the set defined in [FS89, §1] consisting of the polynomials serving as
elementary divisors for all semisimple elements of G∗. Note that G∗ = SO2n+1(q).
For Γ ∈ F , let δΓ = 1 if Γ = x− 1 or x+ 1, and δΓ be the half of the degree of Γ if
Γ /∈ {x− 1, x+1}. Also, we define εΓ as in [FS89, (1.9)]. For a semisimple element
s of G∗, if Γ ∈ F is an elementary divisor, then we denote by mΓ(s) the multiplicity
of Γ in s. For convenience, if Γ ∈ F is not an elementary divisor of s, then we let
mΓ(s) = 0. If s is of 2′-order, we also let wx−1(s) be the integer such thatmx−1(s) =
2wx−1(x) + 1. Then CG∗(s)∗ ∼= Sp2wx−1(s)(q)×

∏
Γ GLmΓ(s)(εΓq

δΓ), where Γ runs

through the elementary divisors of s in F \{x−1, x+1}. By [FM22, 3.1], for every

semisimple 2′-element s̃ ∈ G̃∗ (s ∈ G∗), E2(G̃, s̃) (resp. E2(G, s)) is a 2-block of G̃
(resp. G).

We recall the parametrization from [FM22] on the unipotent Brauer charac-
ters of G as follows. Let U (n) be the set of maps m : Z≥1 → Z≥0 such that∑

j≥1 jm(j) = 2n and m(j) is even if j is odd. Here, m is counted 2km-times,

where km = |{j | j is even and m(j) �= 0}|. Then U (n) is a parametrization of
unipotent classes of G. By [FM22, Prop. 4.2], there is an Aut(G)-equivariant bijec-
tion between the unipotent classes of G and IBr(E2(G, 1)). So U (n) is a labelling set
for IBr(E2(G, 1)). Let U1(n) be the subset of U (n) consisting of those m such that
m(j) is even for all j. Again, an element m ∈ U1(n) is counted 2km-times in U1(n).
Let U2(n) = U (n)\U1(n). We let P(n) be the set of partitions of n. For a semisim-
ple 2′-element s of G∗, we define Υ(s) := U (wx−1(s))×

∏
Γ∈F\{x−1,x+1} P(mΓ(s)).

Then Υ(s) is a labelling set for the irreducible 2-Brauer characters in the unipotent
block of CG∗(s)∗, and then by [FM22, Prop. 4.5], a labelling set for IBr(E2(G, s)).
Let Υ(G) be the set of G∗-conjugacy classes of pairs (s, μ), where s is a semisimple
2′-element of G∗ and μ ∈ Υ(s). Then Υ(G) is a labelling set for IBr(G).

The actions of automorphisms on IBr(G) are given in [FM22, Cor. 4.3 and
Prop. 4.5] and we recall them as follows. Let

Υ1(s) = U1(wx−1(s))×
∏

Γ∈F\{x−1,x+1}
P(mΓ(s))

be the subset of Υ(s). Then a Brauer character χ ∈ IBr(G) corresponding to

(s, μ) ∈ Υ(G) is G̃-invariant if and only if μ ∈ Υ1(s). If μ /∈ Υ1(s) and χg

corresponds to (s′, μ′), then s′ is G∗-conjugate to s, s′Γ = sΓ for Γ �= x − 1 and
μx−1 and μ′

x−1 are labelled by the same element in U2(wx−1(s)). Define F ∗
0 as

in [CS13, Def. 2.1]. It is a field automorphism of G̃∗. We note that F ∗
0
−1 acts

on F , see for instance [FM22, Prop. 5.5]. Thus χF0 corresponds to (s′, μ′), where
s′ = F ∗

0
−1(s) and μ′

F∗
0

−1(Γ)
= μΓ. We denote by F ∗

0
−1(μ) this μ′. Thus the action

of F0 on IBr(G) is induced by the action on elementary divisors.
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We write π : G̃∗ → G∗ for the surjection induced by the regular embedding

G ↪→ G̃. Here, G̃∗ = (G̃∗)F is a special Clifford group over Fq. Let Ũ (n), Ũ1(n),

Ũ2(n) be the same as U (n) U1(n), U2(n) when regarded as the set of maps. In

Ũ (n), an element m is counted 2km-times if m ∈ Ũ1(n) and m is counted 2km−1-

times if m ∈ Ũ2(n). For a semisimple 2′-element s of G∗, we define Υ̃(s) :=

Ũ (wx−1(s)) ×
∏

Γ∈F\{x−1,x+1} P(mΓ(π(s))). By the proof of [FM22, Prop. 3.4],

Υ̃(s) is the labelling set for IBr(E2(G̃, s̃)). Let Υ(G̃) be the set of G̃∗-conjugacy

classes of pairs (s̃, μ), where s̃ is a semisimple 2′-element of G̃∗ and μ ∈ Υ̃(π(s̃)).

Then Υ(G̃) is a labelling set for IBr(G̃).

If z ∈ Z(G̃∗)2′ , then we may regard ẑ as a linear Brauer character of G̃. If

χ̃ ∈ IBr(G̃) corresponds to (s̃, μ), then by the proof of [FM22, Prop. 3.4], ẑχ̃
corresponds to (zs̃, μ) and χ̃F0 corresponds to (F ∗

0
−1(s̃), F ∗

0
−1(μ)); i.e., the action

of F0 on IBr(G̃) is induced by the action on elementary divisors.

Let B = 〈F1〉 with F1 = F e
0 and q0 = pe. Then C̃ = G̃F1 = CSp2n(q0)

and C = GF1 = Sp2n(q0). The conditions (ii) and (iii) of Theorem 4.9 follow
by [FM22, Cor. 4.6], while (i) is obvious. Now we consider (iv). As in the proof

of Theorem 5.3, the F1-stable conjugacy classes of semisimple elements of G̃ are in

bijection with the conjugacy classes of semisimple elements of C̃. Using the above
combinatorial description, the proof is similar to the one of Theorem 5.8. �

Now we consider good primes for groups of Lie type and define Hypothesis 6.2
which is stronger than Hypothesis 5.5.

Hypothesis 6.2. Let G be a simply-connected simple algebraic group in character-
istic p and F : G → G a Frobenius endomorphism endowing G with an Fq-structure
so that G is also the complete root datum of (G, F ). Let � be a prime good for G,
� �= p and not dividing the order of (Z(G)/Z◦(G))F .

(i) With a suitable ordering, the decomposition matrix of GF associated with
the basic set E(GF , �′) is unitriangular.

(ii) With a suitable ordering, the decomposition matrix of G̃F associated with

the basic set E(G̃F , �′) is unitriangular.

Note that in Hypothesis 6.2, by a theorem of Geck–Hiss the union of series

corresponding to �-regular semisimple elements E(GF , �′) (resp. E(G̃F , �′)) is a

basic set of GF (resp. G̃F ); see [CE04, Thm. 14.4].
We have

Proposition 6.3. Hypothesis 6.2(i) is equivalent to Hypothesis 6.2(ii).

Proof. Note that � � |G̃F /GF Z(G̃F )|. If the basic set E(G̃F , �′) is unitriangular,
then by [D17, Thm. 2.5], the basic set E(GF , �′) is unitriangular.

Conversely, if the basic set E := E(GF , �′) is unitriangular, then according to

Corollary 3.7, it suffices to show that E(G̃F , �′) = Irr(G̃F | E) ∩ Irr(G̃F | 1Z(˜GF )�
).

Denote by ι : G ↪→ G̃ the regular embedding, which induces the surjective en-

domorphism ι∗ : G̃∗ → G∗. Let s ∈ G∗F be a semisimple �′-element and

s̃ ∈ (G̃∗)F be the semisimple �′-element such that s = ι∗(s̃). Then Irr(G̃F |
E(GF , s)) =

⋃
z∈Z((˜G∗)F ) E(G̃F , zs̃). Note that E(G̃F , s̃) ⊆ Irr(G̃F | 1Z(˜GF )�

).

Recall that ẑ = Ψ
˜G,F (z, 1(˜G∗)F ) ∈ Irr(G̃F /GF ), then by [DM90, Thm. 7.1],
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E(G̃F , zs̃) = ẑ ⊗ E(G̃F , s̃). Hence E(G̃F , zs̃) ∩ Irr(G̃F | 1Z(˜GF )�
) �= ∅ if and only if

z is of �′-order. So Irr(G̃F | E(GF , s))∩ Irr(G̃F | 1Z(˜GF )�
) =

⋃
z∈Z(˜G∗)F

�′
E(G̃F , zs̃).

Thus we complete the proof. �
We say Hypothesis 6.2 holds for G if it is true for any q.
Since Hypothesis 6.2 clearly implies Hypothesis 5.5, we have Corollary 6.4 as an

immediate consequence of Theorem 5.7.

Corollary 6.4. Keep the setup of Theorem 5.3. Let � be a prime good for G, � � q
and not dividing the order of (Z(G)/Z◦(G))F . Assume that Hypothesis 6.2 holds
for G. If S := GF /Z(GF ) is simple, then the (iBG) condition (see Definition 4.4)
holds for S and �.

By [GH97], Hypothesis 6.2 holds when G is of classical type and � is a lin-
ear prime. Recently, the unitriangularity of decomposition matrix was proven for
unipotent blocks and good primes [BDT20]. But for general cases, this is still open.

We remark that if G is not of type A and � is good for G, then � does not divide
the order of (Z(G)/Z◦(G))F .

Next, we will prove Corollary 4. Groups PSp4(q) are a class of simple groups
with abelian Sylow 3-subgroups.

Lemma 6.5. If both � and q are odd and � � q, then E(Sp4(q), �′) forms a unitri-
angular basic set of Sp4(q) in the sense of Definition 3.8.

Proof. Using the notation of §5, we have G = Sp4(Fq) and F = F f
0 , where f

satisfies q = pf . The irreducible characters of G = GF were computed by [S68]
and we will use the parametrizations of characters there. The semisimple labels in
the Jordan decomposition of characters of G are given in Table A1 of [W90b].

Assume that � divides the order of G. Note that |G| = q4(q−1)2(q+1)2(q2+1).
Thus � divides exactly one of q − 1, q + 1 or q2 + 1. By [W90a], any block of G is
either of cyclic defect group or of maximal defect if � | (q ± 1) and any block of G
is of cyclic defect group if � | (q2 + 1). The decomposition matrices of blocks of G
of maximal defect were studied in [W90a], while the Brauer trees for cyclic blocks
were given in [W92]. If � | (q − 1), then � is a linear prime and then the assertion
follows from [GH97]. So in the following we assume that � | (q + 1) or � | (q2 + 1).

If � | (q+1), then using the notation of [W90a], we choose basic sets {1G, θ10, θ11,
θ12, }, {Φ1,Φ2,Φ3,Φ4}, {θ3, θ4,Φ1, θ1, θ2}, {ξ1(s), ξ′1(s)}, {ξ21(s), ξ′22(s)}, {χ6(s),
χ7(s)}, {χ4(s, t)} for the blocks of maximal defect b0, b1, b2, b1(s), b21(s), b67(s),
b4(s, t) respectively. Under the notation of [W92, §2], we choose basic sets {χ2(s)},
{χ5(s, l)}, {ξ21(s)}, {ξ22(s)}, {χ8(l), χ9(l)}, {ξ3(l), ξ′3(l)}, {ξ′41(l), ξ′42(l)}, {Φ5, φ7},
{Φ6, φ8}, {θ5, θ8}, {θ6, θ7} for the blocks of cyclic defect groups B2(s), B5(s, l),
B21(s), B22(s), B89(l), B53(l), B54(l), B57, B68, B58, B67 respectively. If � | (q2 +
1) then using the notation of [W92, §3], we choose basic sets {1G, θ9, θ10, θ13},
{θ5, θ6, θ7, θ8}, {χ1(s)} for the blocks B0, B

∗
0 , B1(s) respectively.

We denote by E0 the union of the basic sets of blocks of G in both cases of the
above paragraph. By [W90a] and [W92], the decomposition matrix associated with
E0 is unitriangular. Note that by the Brauer tree given in [W92], the basic sets of
cyclic blocks above consist of the non-exceptional characters and then the unitri-
angular shape is well-known (see, e.g., [C19, Thm. 5.1.2]). Using the semisimple
labels given in Table A1 of [W90b], we can check directly that E0 = E(GF , �′), as
desired. �
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Corollary 6.6. The (iBG) condition holds for the simple group PSp4(q).

Proof. Thanks to Theorem 6.1, we only need to consider odd primes �. If q is
even, then by [GLS98, Thm. 2.5.12], Out(S) is cyclic and the corollary follows
from [NST17, Thm. 4.4]. Thus we assume further that q is odd. Also by [NST17,
Thm. 5.1], we can assume � � q.

The universal covering group of the simple group S = PSp4(q) (q �= 2) is G =

Sp4(q). Using the notation of §5, we set G = Sp4(Fq) and G̃ = CSp4(Fq). If �
is odd, then Hypothesis 6.2 holds by Lemma 6.5. Thus the assertion follows from
Corollary 6.4. �

As an application, we prove Corollary 4.

Proof of Corollary 4. By Theorem 4.6, it suffices to prove that any non-abelian
simple group S involved in G satisfies the (iBG) condition. If S is not of Lie type,
then S satisfies the (iBG) condition for any prime by [NST17, Cor. 4.6].

So we assume that S is of Lie type and then by [FLL17, Lemma 2.2], S is a simple
group of type A, a Suzuki group, or PSp4(q) (q �= 2, 3 � q). Then S satisfies the
(iBG) condition by Theorem 5.8, [NST17, Cor. 4.6] and Corollary 6.6, respectively.
This completes the proof. �

7. Unitriangular basic sets of finite reductive groups

In this section, we discuss the existence of unitriangular basic sets of finite re-
ductive groups. Decomposition matrices can be computed blockwise. As explained
before, we view Theorem 3.1 as a missing link between Bonnafé–Dat–Rouquier’s re-
sults relating blocks of finite reductive groups GF to (essentially) unipotent blocks
of certain non-connected groups NF (see [BDR17, Thm. 1.1]) on one hand and
Brunat–Dudas–Taylor’s theorem about decomposition matrices of unipotent blocks
of connected groups (see [BDT20, Thm. A]) on the other hand. In order to apply
it to more primes we make use of Denoncin’s stronger results from [D17] on the
groups SLn(q) and SUn(q).

Proposition 7.1. Let G be a simply-connected simple algebraic group with Frobe-
nius endomorphism F : G → G defining it over a finite field of characteristic p.
Assume that � and p are distinct and both good for G. Let B1 be the sum of unipo-
tent �-blocks of GF . Then the decomposition matrix of B1 is lower unitriangular
with respect to a suitable Aut(GF )-stable basic set and some ordering of its rows
and columns.

Proof. If G is of type A this follows from [D17, Thm. A].
In other types Theorem A of [BDT20] applies since the fact that � is good for

G also implies that it does not divide the order of Z(G)/Z◦(G), hence � is very
good in the sense of [BDT20]. The basic set there is the set of unipotent characters
which is stable under automorphisms (see for instance [CS13, Prop. 2.6]). �

In the following statement we apply the above result on unitriangular basic sets
for unipotent blocks and obtain that many non-unipotent blocks have analogously
such a basic set as well. For an analogous statement applying to all �-blocks it would
be needed to know that every isolated �-block has a sufficiently stable unitriangular
basic set (see Proposition 7.5).
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Theorem 7.2. Let G be a simple simply-connected algebraic group with Frobenius
endomorphism F : G → G defining it over a finite field of characteristic p. Assume
that � and p are distinct and both good for G. Let (G∗, F ) be dual to (G, F ) and
s ∈ (G∗)F a semisimple �′-element such that C◦

G∗(s) is a Levi subgroup of G∗.
Assume moreover that CG∗(s)/C◦

G∗(s) is cyclic or that � � (q2 − 1). Let Bs be the
sum of �-blocks of GF associated to s as in [CE04, Thm. 9.12].

Then the �-decomposition matrix of Bs is lower unitriangular with respect to a
suitable basic set.

Proof. We apply [BDR17, 1.1] and [R20] and get that Bs is Morita equivalent to
some bs, a sum of blocks of a group NF

s covering the sum of unipotent blocks
of LF

s where Ls is an F -stable Levi subgroup G dual to C◦
G∗(s) and Ns/Ls

∼=
CG∗(s)/C◦

G∗(s) by duality. Note that since s is an element of �′-order the group
Ns/Ls is an �′-group, see [CE04, 13.16 (i)]. Moreover the decomposition matrices
of Bs and bs coincide via the character bijections given by the Morita equivalence,
see [B91, §2.2, Ex. 3]. So there remains to check that bs has a unitriangular basic
set in the sense of Definition 3.8.

For later we first ensure that every character of a unipotent block of LF
s extends

to its stabilizer in NF
s . It is sufficient to consider the case where NF

s /L
F
s is non-

cyclic and our character is stable under the whole Ns, since otherwise extendibility
is ensured by the cyclicity of the inertial quotient. We may then apply [R20,
Prop. 16] to a module where LF

s acts on the right and GF acts trivially on the left.
We get that every NF

s -stable character of LF
s in a unipotent block extends to NF

s .
Let L0 = [Ls,Ls] and L0 = LF

0 . According to [MT11, 12.14] the group L0 is
the direct product of simply-connected simple groups and hence L0 is the direct
product of groups HF ′

, where H is a simply-connected simple algebraic group and
F ′ : H → H is a Frobenius endomorphism. We can apply Proposition 7.1 to the
unipotent �-blocks of thoseHF ′

. The unipotent characters of LF
s and L0 correspond

by restriction, so the unipotent blocks of LF
s are covering only unipotent blocks of

HF ′
. Being good forG, the prime � is also good for Ls (see [CE04, 13.10]) and hence

for eachH. Accordingly the sum of unipotent blocks of eachHF ′
has a unitriangular

Aut(HF ′
)-stable basic set by Proposition 7.1. Thanks to the description in terms of

roots and Weyl group one sees easily that the action of CG∗(s) on C◦
G∗(s) permutes

the irreducible components of its root system, so dually Ns permutes only factors of
L0 that are of the same type. This implies thatNF

s -conjugacy permutes factorsHF ′

of L0 of the same type, hence permutes the basic sets chosen by applying Proposition
7.1. Consequently there exists an NF

s -stable unitriangular basic set B0 for the sum
of unipotent blocks of L0. The quotient LF

s /L0 being abelian there exists a unique
subgroup L1 with L0 ≤ L1 ≤ LF

s such that |LF
s /L0|� = |LF

s /L1|. According to
Theorem 3.1 the set B1 := Irr(L1 | B0) forms an NF

s -stable unitriangular basic set
of the sum of blocks of L1 covering a unipotent block of L0. Note that maximal
extendibility holds with respect to L0 � LF

s , see [CE04, 15.11]. Let Λ be now
an extension map with respect to L1 � LF

s for B1. This extension map can be
chosen to be NF

s -equivariant by an application of [I76, 11.31], since |NF
s /L

F
s | is

coprime to |LF
s /L1| and hence every character of L1 extends to its stabilizer in

NF
s . By another application of Theorem 3.1 (see Remark 3.9(ii)) we see that

{IndL
F
s

(LF
s )χ

(Λ(χ)) | χ ∈ B1} is a unitriangular basic set of LF
s . It is clearly NF

s -

stable, since Λ is NF
s -equivariant and B1 is NF

s -stable. Via Theorem 3.1 we obtain
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a unitriangular basic set of NF
s for all blocks covering a unipotent block of L0.

In particular we see that bs has a unitriangular basic set. As said before, this
completes our proof. �

Note that the basic set obtained by the above construction might not be
Aut(GF )Bs

-stable in general. For several specific groups another construction is
possible and provides an Aut(GF )Bs

-stable basic set as explained in Proposition
7.3.

Proposition 7.3. Let G be a simply-connected simple algebraic group defined
over a finite field of good characteristic p with associated Frobenius endomorphism
F : G → G. Let � be an odd prime, � �= p. Let (G∗, F ) be dual to (G, F ) and
assume s ∈ G∗F is a semisimple �′-element such that C◦

G∗(s) is a Levi subgroup
of G∗. Let Bs be the sum of �-blocks of GF associated with s. Assume moreover
one of the following hypotheses.

(i) G has type B, C or D.
(ii) G has type E7 or E8, and � ≥ 11.
(iii) G has type E6 or F4, and � ≥ 7.
(iv) G has type G2 and � ≥ 5.

Then the rational series E(GF , s) is a unitriangular basic set for Bs that is
Aut(GF )Bs

-stable.

Proof. Note that automorphisms of GF stabilize the set E(GF , �′) as can be seen
from the action on generalized characters RG

T (θ) (see [DM90, 9.2]). It is then clear
that automorphisms of GF that stabilize Irr(Bs) will also preserve E(GF , �′) ∩
Irr(Bs) = E(GF , s). So we now concentrate on the first part of our claim.

Recall Ls from the above proof, a Levi subgroup of G dual to C◦
G∗(s). We

abbreviate L = Ls.
Let us start with the case of type C where GF is a symplectic group Sp2n(q)

(n ≥ 2). Thanks to standard calculations (see for instance [FS89, p. 126]) LF is a
direct product of groups Hi where each Hi is either isomorphic to some GLni

(qi),
GUni

(qi) or to some Sp2n′(q) for qi a power of q and ni, n
′ ≤ n. Every unipotent

block of LF is hence the direct product of unipotent blocks of these factors.
The unipotent characters of Hi form an Aut(Hi)-stable unitriangular basic set

by [G91, Cor. B] for the groups GLni
(qi), GUni

(qi) and by Proposition 7.1 in the
other case. Hence the unipotent characters E(LF , 1) of LF form a unitriangular
basic set for B1(L

F ) the sum of unipotent blocks of LF . Recall from the proof of
Theorem 7.2 the sum bs of blocks of NF

s covering B1(L
F ). Since bs is NF

s -stable,
one has Irr(bs) = Irr(NF

s | Irr(B1(L
F ))), IBr(bs) = IBr(NF

s | IBr(B1(L
F ))) and

Corollary 3.6 implies that Irr(NF
s | E(LF , 1)) forms a unitriangular basic set for

bs. The Bonnafé–Dat–Rouquier Morita equivalence (cf. Example 7.9 of [BDR17])
maps the rational Lusztig series E(GF , s) to Irr(NF

s | E(LF , 1)). This completes
our proof in that case.

Let us assume now that G has type B or D, so that GF = Spin(V ) for V

an orthogonal space over Fq. Let G̃ := G̃F be the corresponding special Clifford

group over V . If ι : G ↪→ G̃′ is the regular embedding, then G̃ ≤ G̃′; and G̃ = G̃′

unless G is of type D. Using [BDR17, Thm. 1.1] as in the above proof for type
C, it suffices to show that E(LF , 1) forms a unitriangular basic set for the sum of

unipotent blocks of LF . Let L̃ = LZ(G̃). Note that ι induces a surjective morphism
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ι∗0 : G̃∗ → G∗ and we let s̃ ∈ (G̃∗)F be a semisimple �′-element such that ι∗0(s̃) = s

and s̃ ∈ L̃∗. By Corollary 3.7 (which is similar to the proof of Proposition 6.3),

E(LF , 1) is a unitriangular basic set if and only if E(L̃F , 1) is a unitriangular basic

set since |L̃F /LF Z(G̃F )| ≤ 2.

Let G̃0 := SO(V ). Then there is a natural epimorphism π : G̃ → G̃0. Let

L̃0 = π(L̃F ). Note that each unipotent character of L̃F has Z(G̃) in its kernel.

Therefore, E(L̃F , 1) can be identified with E(L̃0, 1), which is a basic set of the sum

of unipotent blocks of L̃F (and of L̃0). So it suffices to show that E(L̃0, 1) form a

unitriangular basic set for the sum of unipotent blocks of L̃0.

Through easy calculations (see also [FS89, §3]) we see that L̃0 is a direct product
of groups Hi where each Hi is either isomorphic to some general linear or unitary
groups over Fqi (with Fqi ⊇ Fq) and a special orthogonal group over Fq. Every

unipotent block of L̃0 is hence the direct product of unipotent blocks of these
factors. Thus our claim holds by the same argument as in the case of type C. This
finishes the proof for the whole case (i).

We now turn to the exceptional types under assumptions (ii)–(iv). As above, we
content ourselves with showing that E(LF , 1) forms a unitriangular basic set for the
sum of the unipotent blocks of LF . As observed in the proof of Theorem 7.2 the
group [L,L] is the direct product of simply-connected simple groups and the Dynkin
diagram of [L,L] is a subdiagram of the Dynkin diagram of G. Then as before

L0 = [L,L]F is the direct product of groups HF ′
, where H is of simply connected

type for which � is good under our assumptions. In addition, if H is of type A,
then � > rank(H) + 1 and thus � � |Z(HF ′

)|. So E(L0, 1) forms a unitriangular
basic set for the sum of the unipotent blocks of L0 by [BDT20, Thm. A]. Since
� � |LF /L0 Z(L

F )|, Corollary 3.7 implies that E(LF , 1) forms a unitriangular basic
set for the sum of the unipotent blocks of LF .

This completes our proof. �

Remark 7.4. In view of the criterion from [BS22] of the inductive blockwise Alperin
weight condition from [S13] the above shows that, for many blocks B of finite quasi-
simple groups G of Lie type, IBr(B) is Aut(G)B-permutation isomorphic to a subset
of Irr(G). This is needed in [FLZ22] and [L21] in the verification of the inductive
blockwise Alperin weight condition for types B and C.

More generally, with the assumptions of Proposition 7.3, it is easy to see that
IBr(Bs(G)) satisfies assumption (ii) of Theorem 4.9. Indeed for φ ∈ IBr(Bs(G))
there is some f−1(φ) in our basic set associated through an Aut(G)Bs(G)-equivariant
bijection f . The stabilizer property of Theorem 4.9(ii) is then a consequence of the

same property satisfied by χ := f−1(φ). After a suitable G̃-conjugation we may

now assume that φ and χ satisfy (G̃D)φ = G̃φDφ = (G̃D)χ = G̃χDχ, and we
have to check that φ extends to GDφ = GDχ. We know that χ extends into
χ̃ ∈ Irr(GDφ) while χ0 has φ as an irreducible component with multiplicity 1 by

the unitriangularity property. Then χ̃0 has a constituent φ̃ ∈ IBr(GDφ) whose
restriction to G has φ as constituent with multiplicity 1. But then by Clifford

theorem Res
˜G
G φ̃ = φ since φ is GDφ-invariant. Note that this is in fact used in the

proof of [FLZ21, Prop. 8.1].

As Conjecture 1 we have recalled Geck’s conjecture that all �-blocks of (quasi-
simple) groups of Lie type of characteristic �= � have a unitriangular decomposition
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matrix. We consider the following weaker conjecture. Recall that a semisimple
element s of a reductive group K is called isolated if C◦

K(s) is included in no proper
Levi subgroup of K, or equivalently Z◦(C◦

K(s)) ⊆ Z(K).
We keep a prime number �.

Conjecture 3. For every simply-connected simple group G in characteristic �= �
with Frobenius endomorphism F and every semisimple isolated element t ∈ (G∗)F�′ ,
the sum of �-blocks Bt of G

F associated to t has an Aut(GF )Bt
-stable unitriangular

basic set.

With the considerations of the proof of Theorem 7.2 we show that this conjecture
implies Geck’s more general conjecture in the cases where [BDR17] and [R20] apply.

Proposition 7.5. Assume Conjecture 3. Let G be a simply-connected simple al-
gebraic group with Frobenius endomorphism F : G → G defining an Fq-structure
on G and s ∈ (G∗)F be a semisimple �′-element. If CG∗(s)/C◦

G∗(s) is cyclic or
� � (q2 − 1), then the sum of blocks of GF associated to s has a unitriangular basic
set.

Proof. The proof of Theorem 7.2 can be adapted to the sum of blocks associated
to s. We recall the Levi subgroup L∗

s = CG∗(Z◦(C◦
G∗(s))) where the element

s is isolated. We still denote by Ls a dual and L0 := [Ls,Ls]. Let c0 be the
block of LF

0 covered by cs, the sum of blocks of LF
s associated to s. Let π be the

corresponding epimorphism L∗
s → L∗

0. We denote by Hi the product of simply-
connected simple groups that are permuted transitively by F . The decomposition
of L0 into a direct product of simply-connected groups implies that analogously a
quotient of L∗

s is a central product of adjoint groups. The element π(s) accordingly
decomposes along those factors and can be written as product of the elements ti ∈
H∗

i
F . The block c0 is the product of blocks ci ofH

F
i that corresponds to elements ti.

Each ti is isolated in H∗
i since connected centralizers correspond through π (see for

instance [CE04, 13.13(iii)]). Hence by our assumption ci has an Aut(HF
i )ci -stable

unitriangular basic set.
The rest of the proof of Theorem 7.2 applies without altering and thereby shows

the statement. �
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