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REALIZATIONS OF A
(1)
1 -MODULES IN CATEGORY Õ

FULIN CHEN, YUN GAO, AND SHAOBIN TAN

Abstract. In this paper, we give an explicit realization of all irreducible

modules in Chari’s category ˜O for the affine Kac-Moody algebra A
(1)
1 by using

the idea of free fields. We work on a much more general setting which also gives
us explicit realizations of all simple weight modules for certain current algebra
of sl2(C) with finite weight multiplicities, including the polynomial current
algebra sl2(C) ⊗ C[t], the loop algebra sl2(C) ⊗ C[t, t−1] and the three-point
Lie algebra sl2(C)⊗C[t, t−1, (t−1)−1] arisen in the work by Kazhdan-Lusztig.

1. Introduction

Let S be any multiplicatively closed subset of the polynomial ring C[t] in one
variable, and let C[t]S be the localization of C[t] at S. We will construct represen-
tations for the current Lie algebra sl2(C)⊗C[t]S and the affine Kac-Moody algebra

A
(1)
1 . By specializing S, this gives us representations for the polynomial current

algebra sl2(C) ⊗ C[t], the loop algebra sl2(C) ⊗ C[t, t−1] and the three-point Lie
algebra sl2(C) ⊗ C[t, t−1, (t − 1)−1] appearing in the study of the tensor structure
of affine Kac-Moody algebras by Kazhdan-Lusztig [34].

The purpose of this paper is two-fold. The first one is to present an explicit

realization of all irreducible A
(1)
1 -modules in the category Õ. The category Õ,

introduced by Chari [8], is an analog of the BGG category O [3] corresponding

to the natural Borel subalgebra of A
(1)
1 . The category Õ appeared naturally in

the study of level 0 modules for affine Kac-Moody Lie algebras [8, 10, 14]. The

irreducible integrable objects in the category Õ for A
(1)
1 were classified in [8] and

then realized in [13], which exhaust all irreducible level 0 integrable A
(1)
1 -modules

with finite weight multiplicities. Moreover, it was proved in [30, 31] that any level

0 unitarizable highest weight module for A
(1)
1 (without derivations) must be an

irreducible module induced from the natural Borel subalgebra. In contrast to the

irreducible highest weight modules in the category O of A
(1)
1 [32], the irreducible

modules in the category Õ have both finite and infinite weight multiplicities and
much more complicated structure [8, 26]. A character formula for the irreducible

A
(1)
1 -modules in the category Õ with finite weight multiplicities was obtained in
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[40]. In Section 6 of this paper, we give a free field(-like) realization of all (non-

integrable) irreducible A
(1)
1 -modules in the category Õ.

Free field realization of modules for affine Kac-Moody algebras plays an impor-
tant role in representation theory and conformal field theory. In [30], Jakobsen-Kac

gave a free field construction for certain level 0 Verma type A
(1)
1 -modules, which is

referred as imaginary Verma modules [25]. The free field realization of the imagi-

nary Verma A
(1)
1 -modules at an arbitrary level was given by Bernard-Felder in [2]

and then extended in [15] to the case of A
(1)
n . To prove the Kac-Kazhdan conjecture

on the characters of irreducible highest weight A
(1)
1 -modules at the critical level,

Wakimoto gave in [39] a remarkable free field construction of A
(1)
1 -modules at an

arbitrary level. Since then, the Wakimoto modules for general affine Lie algebras
have been extensively studied [17, 19, 20, 22, 23, 27–29, 33, 36, 38]. In this paper,

for the purpose of realizing the irreducible A
(1)
1 -modules in the category Õ with

finite weight multiplicities, we introduce a free field(-like) construction of level 0

A
(1)
1 -modules.

The free field constructions of A
(1)
1 -modules given in [2, 30, 39] are all realized

on the polynomial rings in infinitely many variables, in terms of infinite sums of
partial differential operators. In contrast to the constructions given in [2,30,39], in
this paper we realize a class of sl2(C) ⊗ C[t, t−1]-modules on the polynomial rings
in finitely many variables, in terms of finite sums of partial differential operators
that are glued together by certain Lagrange interpolation polynomials. Explicitly,
for any f(t) ∈ C[t], λ ∈ C× and r ∈ N with r ≥ deg f(t), we prove in Section 4.2
that the map

f ⊗ tn �→
r∑

i=0

λn �i,r(n) yi,

h⊗ tn �→ f(n)λn − 2

r∑
i,j=0

λn �j,r(n+ i) yj
∂

∂yi
,

e⊗ tn �→
r∑

i=0

⎛⎝λn f(n+ i)−
r∑

j,k=0

λn �k,r(n+ i+ j) yk
∂

∂yj

⎞⎠ ∂

∂yi

(1.1)

defines an sl2(C) ⊗ C[t, t−1]-module structure on the polynomial ring Pr =
C[y0, y1, · · · , yr], where �j,r(t) stand for the fundamental Lagrange interpolation
polynomials of degree r at the points j = 0, 1, · · · , r, and

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.(1.2)

Especially, by applying Chari-Pressley’s loop module construction [13,21], we con-
struct in this way an inverse system

· · · � Pr+1 ⊗ C[t, t−1] � Pr ⊗ C[t, t−1] � · · · � Pdeg f(t) ⊗ C[t, t−1](1.3)

of level 0 A
(1)
1 -modules in the category Õ with finite weight multiplicities. We

emphasize that if deg f(t) ≥ 1, then the last term in (1.3) is irreducible.

Besides the algebra A
(1)
1 , the free field constructions for A

(1)
n with n ≥ 1 have

been given in [15] (see also [17]). By combining the above construction with that
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given in [15], one can also realize a class of irreducible A
(1)
n -modules in the category

Õ with finite weight multiplicities. In particular, the character formula of such

A
(1)
n -modules will be obtained, which are not known in general. Details for general

A
(1)
n will be given in another paper.
The second goal of this paper is to provide an explicit realization of all Harish-

Chandra modules for the current algebra sl2(C)⊗C[t]S. An sl2(C)⊗C[t]S-module is
said to be Harish-Chandra if it is irreducible and decomposes into finite dimensional
common eigenspaces with respect to Ch⊗ 1. Recently, Lau gave in [37] the classifi-
cation of Harish-Chandra modules for the general current algebra g⊗R, where g is a
reductive Lie algebra and R is a finitely generated commutative algebra. In Section
7, we give a free field realization of all Harish-Chandra sl2(C)⊗C[t]S-modules. By
taking S = {tn | n ∈ N}, this leads to a free field realization of all Harish-Chandra
sl2(C) ⊗ C[t, t−1]-modules. Besides the loop algebras which appeared naturally
in the affine Kac-Moody algebra theory, there are some other current algebras of
particular importance, including the polynomial current algebras and the (N + 1)-
point Lie algebras. Motivated by its relationship with the representation theory
of affine and quantum affine algebras, the representation theory of the polynomial
current algebra g ⊗ C[t] is now extensively studied [1, 9, 11, 12, 24]. By choosing
S = {1}, we obtain a realization of all Harish-Chandra sl2(C)⊗ C[t]-modules. On
the other hand, by taking S = {(t − a1)

m1 · · · (t − aN )mN | m1, · · · ,mN ∈ N},
we obtain a realization of all Harish-Chandra modules for the (N + 1)-point Lie
algebras sl2(C) ⊗ C[t, (t − a1)

−1, · · · , (t − aN )−1] [5, 6]. The three and four point
Lie algebras appeared naturally in the work of Kazhdan-Lusztig [34] on the tensor
structure of modules over affine Kac-Moody algebras. And, by generalizing Waki-
moto’s construction, the free field realizations of modules for the three and four
point Lie algebras were given respectively in [18] and [16].

We now outline the structure of the paper. In Sections 2 and 3, we collect some
elementary facts on the highest weight sl2(C) ⊗ C[t]S-modules. In Section 4, we
give a free field realization of certain quasi-finite highest weight sl2(C) ⊗ C[t]S-
modules. Using this and a result of Jakobsen-Kac, we give an explicit realization of
all irreducible highest weight sl2(C)⊗C[t]S-modules in Section 5. As applications,

in Section 6 we present an explicit realization of all irreducible A
(1)
1 -modules in

Chari’s category Õ, and in Section 7 we give an explicit realization of all Harish-
Chandra sl2(C)⊗ C[t]S-modules.

In this paper, let C, C×, Z, N and Z+ be the set of complex numbers, nonzero
complex numbers, integers, nonnegative integers and positive integers, respectively.

2. Highest weight theory for current algebras of sl2(C)

Throughout this section, let R be a unital commutative associative algebra over
C and let χ : R → C be a C-valued linear function on R.

2.1. Highest weight g⊗R-modules. For any Lie algebra a over C, let a⊗R be
the current algebra of a, with the commutator relations given by

[x⊗ r, y ⊗ r′] = [x, y]⊗ rr′,

where x, y ∈ a and r, r′ ∈ R. Let

g = sl2(C)
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be the Lie algebra of traceless 2 × 2-matrices over C. We fix a basis {e, h, f} of g
as in (1.2). Let g = n+ ⊕ h ⊕ n− be the standard triangular decomposition of g,
where n+ = Ce, h = Ch and n− = Cf. Then we have the triangular decomposition:

g⊗R = (n+ ⊗R)⊕ (h⊗R)⊕ (n− ⊗R).

A g ⊗R-module V is said to be a weight module if V = ⊕β∈h∗Vβ , where Vβ =
{v ∈ V | h · v = β(h)v}. For a weight g⊗R-module V , we denote by

P(V ) = {β ∈ h∗ | Vβ �= 0}
the set of weights on V .

Definition 2.1.
(i) A weight g ⊗ R-module V is called quasi-finite if dimVβ < ∞ for every

β ∈ P(V ), and is called Harish-Chandra if V is in addition irreducible.
(ii) A g⊗R-module V is called a highest weight module with highest weight χ

if there exists a nonzero vector v ∈ V , called the highest weight vector, such that

U(g⊗R)v = V, (n+ ⊗R)v = 0 and (h⊗ r)v = χ(r)v, r ∈ R.

Note that any highest weight g ⊗ R-module with highest weight χ is a weight
module and the weights have the form χ(1)α/2 − nα, where n ∈ N and α ∈ h∗ is
the root of g defined by α(h) = 2.

Remark 2.2. We define a notion of lowest weight g⊗R-module with lowest weight
χ by replacing n+ with n− in Definition 2.1(ii). Extend the Chevalley involution

ω : g → g, e �→ f, f �→ e, h �→ −h

to an involution of g ⊗ R, still denoted as ω, such that ω(x ⊗ r) = ω(x) ⊗ r for
x ∈ g, r ∈ R. Let V be a highest weight g⊗R-module with highest weight χ. By
twisting the involution ω, one obtains a new g⊗R-module structure on V , denoted
as V ω. One can check that V ω is a lowest weight g⊗R-module with lowest weight
−χ, and is irreducible provided that V is irreducible.

2.2. Verma type highest weight g ⊗R-modules. Let Cvχ be the one dimen-
sional h⊗R-module defined by (h⊗r)vχ = χ(r)vχ for r ∈ R. We extend Cvχ to an
((n+⊕h)⊗R)-module with n+⊗R acting trivially. Form the induced g⊗R-module

M(R, χ) = U(g⊗R)⊗U((n+⊕h)⊗R) Cvχ.

Note that any highest weight g⊗R-module with highest weight χ is a quotient of
M(R, χ), and the g⊗R-module M(R, χ) is quasi-finite if and only if dimR < ∞.
Thus, if dimR < ∞, then every highest weight g⊗R-module is quasi-finite.

We view the dual space R∗ of R as an R-module under the natural action

r · ϕ(r′) = ϕ(r′ r) for r, r′ ∈ R, ϕ ∈ R∗.

For any ϕ ∈ R∗, denote by

Annϕ(R) = {r ∈ R | r · ϕ = 0}
the annihilator ideal of R associated to ϕ. Set

ψR,χ : R → M(R, χ)χ(1)α/2−α, r �→ (f ⊗ r).vχ (r ∈ R),

a linear isomorphism of vector spaces.



FOCK REPRESENTATION OF A
(1)
1 -MODULES 153

Remark 2.3. Since M(R, χ)χ(1)α/2 = Cvχ and M(R, χ) is generated by vχ, it
follows that any proper g⊗R-submodule of M(R, χ) must intersect Cvχ trivially.

Thus, there is a unique maximal proper g⊗R-submodule, denoted as M(R, χ), of
M(R, χ).

We have:

Lemma 2.4. One has that

Annχ(R) = ψ−1
R,χ(M(R, χ)χ(1)α/2−α).

Proof. Let v ∈ M(R, χ)χ(1)α/2−α. It is obvious that v ∈ M(R, χ) if and only if
(n+ ⊗R)v = 0. Moreover, for any r, r′ ∈ R, one has

(e⊗ r) · ψR,χ(r
′) = (e⊗ r)(f ⊗ r′) · vχ = (h⊗ r r′) · vχ = χ(r r′) = (r′ · χ)(r).

Thus we have ψR,χ(r
′) ∈ M(R, χ)χ(1)α/2−α if and only if r′ ∈ Annχ(R). �

2.3. Irreducible quasi-finite highest weight g⊗R-modules. We denote by

V (R, χ) = M(R, χ)/M(R, χ)

the irreducible quotient of the Verma type g⊗R-module M(R, χ). In this subsec-
tion, we give a sufficient and necessary condition for V (R, χ) to be quasi-finite.

Let R′ be another commutative associative algebra, and let ρ : R → R′ be an
algebra homomorphism. For any g ⊗ R′-module W , the pull back of ρ yields a
natural g⊗R-module structure on W with

(x⊗ r) · w = (x⊗ ρ(r)) · w, x ∈ g, r ∈ R, w ∈ W.(2.1)

We denote by ρ−1(W ) the resulting g⊗R-module. The following result is obvious.

Lemma 2.5. Let W be a highest weight g ⊗ R′-module with highest weight χ′.
Assume that the homomorphism ρ : R → R′ is surjective. Then ρ−1(W ) is a
highest weight g⊗R-module with highest weight

ρ−1(χ′) : R → C, r �→ χ′(ρ(r)).

Set Rχ = R/Annχ(R). Since χ vanishes on Annχ(R), it induces a linear map

χ̄ : Rχ → C, r +Annχ(R) �→ χ(r).(2.2)

In view of Lemma 2.5, one has the following g⊗R-module isomorphism

V (R, χ) ∼= ρ−1
R,χ(V (Rχ, χ̄)),(2.3)

where ρR,χ : R → Rχ is the quotient map. We denote by

E(R) = {χ ∈ R∗ | dimRχ < ∞}.(2.4)

Proposition 2.6. The irreducible highest weight g ⊗R-module V (R, χ) is quasi-
finite if and only if χ ∈ E(R).

Proof. If χ ∈ E(R), then the g ⊗ Rχ-module V (Rχ, χ̄) is quasi-finite and so is
the g⊗R-module V (R, χ) (see (2.3)). Conversely, if the g⊗R-module V (R, χ) is
quasi-finite, then one can conclude from Lemma 2.4 that

dimRχ = dimR/Annχ(R) = dimM(R, χ)χ(1)α/2−α/M(R, χ)χ(1)α/2−α

= dimV (R, χ)χ(1)α/2−α < ∞.

This finishes the proof of the proposition. �
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3. The space E(CS)
In the rest of this paper, let S be a multiplicatively closed subset of the poly-

nomial ring C = C[t], and let CS be the localization of C at S. Recall that S is a
subset of C such that 1 ∈ S, 0 /∈ S and for any f(t), g(t) ∈ C, the product f(t)g(t)
is also in S. In this section we give a description of the space E(CS) (see (2.4)).

3.1. Basics on the algebra CS. Set

CS = {μ ∈ C | t− μ divides f(t) for some f(t) ∈ S} and CS = C \ CS .

Notice that if the set CS is empty, then S ⊂ C× (the set of units in C) and CS = C.
And if the set CS is nonempty, then for any μ ∈ CS , the element t − μ has an
inverse in CS . The following result is elementary (see [5] for example).

Lemma 3.1. The elements

tn, (t− μ)−m, n ∈ N, m ∈ Z+, μ ∈ CS(3.1)

form a basis of CS . Moreover, for k ∈ N, l ∈ Z+ and μ ∈ CS, we have

tk (t− μ)−l =

l∑
m=1

(
k

l −m

)
μk−l+m(t− μ)−m +

k−l∑
n=0

(
k − n− 1

l − 1

)
μk−l−ntn,

and, for k, l ∈ Z+, μ �= μ′ ∈ CS, we have

(t− μ)−k(t− μ′)−l =
k∑

m=1

(−1)l
(
k + l −m− 1

l − 1

)
(μ′ − μ)m−k−l(t− μ)−m

+

l∑
m=1

(−1)l+m

(
k + l −m− 1

k − 1

)
(μ′ − μ)m−k−l(t− μ′)−m.

We note that if CS = {a1, a2, · · · , aN} is a finite set, then

CS = C[t, (t− a1)
−1, (t− an)

−1, · · · , (t− aN )−1].

In this case, g ⊗ CS is called the (N + 1)-point Lie algebra [5, 6]. In particular,
if N = 1 and a1 = 0, then CS = C[t, t−1] is the ring of Laurent polynomials and
g⊗ CS is the usual loop algebra of g. For convenience, we will also write

L = C[t, t−1].

On the other hand, if CS = {a} consists of a single point, then S = C[t]\ (t−a)C[t]
and CS is the local ring associated to the maximal ideal (t− a)C[t].

Given a linear function χ on CS . Since CS is a principal ideal domain, there is
a unique monic polynomial pχ(t) of minimal degree such that pχ(t) generates the
annihilator ideal Annχ(CS). We call pχ(t) the characteristic polynomial associated

to the function χ, which lies in 〈t − λ | λ ∈ CS〉, the subalgebra of C generated by
the polynomials t− λ, λ ∈ CS .

Note that the natural inclusion

C = C[t] → CS , f(t) �→ f(t)

1

induces an injective homomorphism

C[t]/pχ(t)C[t] → CS,χ = CS/Annχ(CS) = CS/pχ(t)CS .(3.2)
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Given an element f(t)
g(t) ∈ CS . If pχ(t) �= 0, then there exist suitable polynomials

a(t), b(t) such that g(t)a(t)+pχ(t)b(t) = 1. Let c(t), d(t) ∈ C[t] such that deg d(t) <
deg pχ(t) and f(t)a(t) = pχ(t)c(t) + d(t). Then we have

f(t)

g(t)
= f(t)a(t) + pχ(t)

f(t)b(t)

g(t)
= d(t) + pχ(t)

(
c(t) +

f(t)b(t)

g(t)

)
.

Thus, if pχ(t) �= 0, then the map (3.2) is an isomorphism (of finite dimensional
algebras). This together with Proposition 2.6 gives the following result.

Lemma 3.2. Let χ ∈ C∗
S . Then the following conditions are equivalent:

(1) the irreducible highest weight g⊗ CS-module V (CS , χ) is quasi-finite;
(2) the annihilator ideal Annχ(CS) of CS is nonzero;
(3) the characteristic polynomial pχ(t) of χ is nonzero.

3.2. Solving linear recurrence relations. Before describing the space E(CS),
here we recall the general solution of homogeneous linear recurrence relations with
constant coefficients for later use.

Let Z = Z or N, and let

y : Z → C, n �→ y(n)

be a C-valued function on Z. An order r (r ≥ 1) homogeneous linear recurrence
relation with constant coefficients is an equation of the form

c0 y(n) + c1 y(n+ 1) + · · ·+ cr−1 y(n+ r − 1) + y(n+ r) = 0, n ∈ Z,(3.3)

where the coefficients ci are all constants and c0 �= 0 if Z = Z. We denote by

p(t) = c0 + c1 t+ · · ·+ cr−1 t
r−1 + tr

the characteristic polynomial of equation (3.3), and let λ1, · · · , λν be the distinct
roots of p(t) with multiplicities r1+1, · · · , rν+1, respectively. Note that λ1, · · · , λν

are all nonzero if Z = Z. For i ∈ N and λ ∈ C (λ �= 0 when Z = Z), set

εi,λ : Z → C, n �→
{
δi,n, if λ = 0;

λn ni, if λ �= 0.

The following result is elementary.

Lemma 3.3. The general solution of the recurrence relation (3.3) is

y =
ν∑

j=1

rj∑
i=0

cij εi,λj
, cij ∈ C.(3.4)

Following [4], we say that a C-valued function on Z is exp-polynomial if it is a
linear combination of the basic exp-polynomials εi,λ for some i ∈ N and λ ∈ C×.
When Z = Z, it follows from Lemma 3.3 that y is a solution of the recurrence
relation (3.3) if and only if it is an exp-polynomial function. However, when Z = N,
there exist some additional discrete solutions.
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3.3. Some exp-polynomials on Z. For n, k ∈ N, we denote by{
n
k

}
=

1

k!

k∑
i=0

(
k

i

)
(−1)k−i in(3.5)

the Stirling number of the second kind, which is the number of ways to partition a
set of n labelled objects into k unlabelled subsets. The Stirling number can be char-
acterized as the numbers that arise when one expresses powers of an indeterminate
t in terms of the falling factorials t(k) = t (t− 1) · · · (t− k + 1), i.e.,

tn =

n∑
k=0

{
n
k

}
t(k).(3.6)

Similar to the number of binomial coefficients, the following holds true{
n
0

}
= δn,0,

{
n
n

}
= 1 and

{
n
k

}
= 0 if n < k.(3.7)

For each i ∈ N and λ, μ ∈ C with λ �= μ, we define an exp-polynomial function
on Z as follows:

(3.8) εi,λ,μ : Z → C, n �→

⎧⎪⎪⎨⎪⎪⎩
(−μ)n ·

(
n(i)

i! (−μ)−i
)
, if λ = 0,

(λ− μ)n ·
(∑i

j=0

(
λ

λ−μ

)j
{
i

j

}
n(j)

)
, if λ �= 0,

where n(i) = t(i)|t=n. By definition, εi,λ,μ is a linear combination of the basic
exp-polynomials εj,λ−μ, j = 0, · · · , i with a nonzero coefficient of εi,λ−μ.

Remark 3.4. If μ = 0 (and so λ �= 0), then it follows from (3.6) that the function
εi,λ,0 is just the basic exp-polynomial function εi,λ.

3.4. The space E(CS). Recall that the basis elements of CS are given in (3.1). For
each i ∈ N and λ ∈ CS , we define a linear function θi,λ on CS by

θi,λ(t
n) =

{
δi,n, if λ = 0,

ni λn, if λ �= 0,
θi,λ((t− μ)−m) = εi,λ,μ(−m),

where n ∈ N, m ∈ Z+ and μ ∈ CS .

Lemma 3.5. For i ∈ N, λ ∈ CS and μ ∈ CS, we have

θi,λ((t− μ)n) = εi,λ,μ(n), n ∈ N.(3.9)

Proof. Let i, λ, μ be as in lemma. The assertion is obvious when λ = 0. Assume
now that λ �= 0. Then it follows from (3.5) that for any j ∈ N,

θi,λ((t− λ)j) = λj

j∑
k=0

(
j

k

)
(−1)j−kki = λj j!

{
i
j

}
.(3.10)
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Using this and the last equality in (3.7), one gets that for any n ∈ N,

θi,λ((t− μ)n)

= θi,λ(((t− λ) + (λ− μ))n) = θi,λ

⎛⎝ n∑
j=0

(
n

j

)
(t− λ)j (λ− μ)n−j

⎞⎠
=

n∑
j=0

(
n

j

)
θi,λ((t− λ)j) (λ− μ)n−j =

n∑
j=0

(
n

j

)
λj j!

{
i
j

}
(λ− μ)n−j

= (λ− μ)n

⎛⎝ i∑
j=0

n(j)

{
i
j

} (
λ

λ− μ

)j
⎞⎠ = εi,λ,μ(n).

�
Proposition 3.6. The elements θi,λ, i ∈ N, λ ∈ CS form a basis of E(CS).

Proof. Let χ ∈ C∗
S be fixed, which induces a family

{χ+ : N → C, χμ : Z → C | μ ∈ CS}(3.11)

of C-valued functions on Z (= N or Z), where

χ+(n) = χ(tn), n ∈ N, and χμ(m) = χ((t− μ)m), m ∈ Z, μ ∈ CS .

Note that these functions satisfy the following compatible conditions

χμ(n) =
n∑

j=0

(
n

j

)
(−μ)n−jχ+(j),(3.12)

for n ∈ N, μ ∈ CS . Moreover, due to Lemma 3.5, one has

(θi,λ)+ = εi,λ and (θi,λ)μ = εi,λ,μ,(3.13)

where i ∈ N, λ ∈ CS and μ ∈ CS .
Let r ∈ Z+, and let f(t) = c0 + c1 t+ · · ·+ cr−1 t

r−1 + tr be a monic polynomial
in 〈t− λ | λ ∈ CS〉 with degree r. For each μ ∈ CS , set

fμ(t) = f(t+ μ) = c0,μ + c1,μ t+ · · ·+ cr−1,μ t
r−1 + tr.

Note that the constant coefficient c0,μ �= 0. Furthermore, we have

(f(t) · χ)(tn) = c0 χ(t
n) + c1 χ(t

n+1) + · · ·+ χ(tn+r),

(f(t) · χ)((t− μ)m) = c0,μ χ((t− μ)m) + c1,μ χ((t− μ)m+1) + · · ·+ χ((t− μ)m+r),

for n ∈ N, μ ∈ CS and m ∈ Z. This implies that the polynomial f(t) ∈ Annχ(CS)
if and only if the family (3.11) satisfies the following linear recurrence relations

c0 χ+(n) + c1 χ+(n+ 1) + · · ·+ χ+(n+ r) = 0, n ∈ N,(3.14)

c0,μ χμ(m) + c1,μ χμ(m+ 1) + · · ·+ χμ(m+ r) = 0, μ ∈ CS , m ∈ Z.(3.15)

Now, for each i ∈ N and λ ∈ CS , one can conclude from Lemma 3.3 and (3.13)
that the family {(θi,λ)+, (θi,λ)μ | μ ∈ CS} satisfies the relations (3.14) and (3.15)
with f(t) = (t− λ)i+1. So we have

(t− λ)i+1 ∈ Annθi,λ(CS).(3.16)

This together with Lemma 3.2 gives that θi,λ ∈ E(CS). Therefore, it remains to
prove that any χ ∈ E(CS) is a linear combination of the θi,λ’s. Indeed, recall from
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Lemma 3.2 that in this case the characteristic polynomial pχ(t) of χ is nonzero.
Observe that if pχ(t) = 1, then χ = 0. Thus, in what follows, we assume that pχ(t)
has degree r ≥ 1.

In this case, one notices that the family (3.11) satisfies the relations (3.14)
and (3.15) (with f(t) = pχ(t)). By applying Lemma 3.3 to the relation (3.14),

we get that χ+ =
∑ν

i=1

∑ri
j=0 cij εi,λj

for some λj ∈ CS , ri ∈ N and cij ∈ C.
Moreover, for any μ ∈ CS , χμ is the unique solution of the linear recurrence re-
lation (3.15) with the initial condition (3.12). Therefore, one easily checks that
χμ =

∑ν
i=1

∑ri
j=0 cij εi,λj ,μ. In summary, χ has the following desired expression

χ =

ν∑
i=1

ri∑
j=0

cij θi,λj
.(3.17)

�

Remark 3.7. When CS = L, Proposition 3.6 was proved in [40] (see also [4]). In
this case, it follows from Remark 3.4 that the elements

θi,λ : L → C, tn �→ ni λn (i ∈ N, λ ∈ C
×)

form a basis of E(L).

Remark 3.8. For i ∈ N and λ ∈ CS , by using (3.10) and the second equality in
(3.7), one obtains that θi,λ((t− λ)i) = λi i! �= 0. This together with (3.16) implies
that the characteristic polynomial pθi,λ(t) of θi,λ is (t− λ)i+1. In general, if χ is as

in (3.17), then pχ(t) = (t− λ1)
r1+1(t− λ2)

r2+1 · · · (t− λν)
rν+1.

4. New realization of g⊗ CS-modules
For r ∈ N, let Pr = C[y0, y1, · · · , yr] be the polynomial ring in the variables

y0, y1, · · · , yr. In this section, by using the idea of free fields, we realize a class of
quasi-finite highest weight g⊗ CS-modules on the Fock space Pr.

4.1. The main construction. Throughout this section, we fix a triple

(f(t), λ, r) ∈ C × CS × N with r ≥ deg f(t).(4.1)

We will first construct a Fock g ⊗ CS-module associated to the triple (4.1) (see
Theorem 4.1) and then give a characterization of this g⊗CS-module (see Theorem
4.2). The proof of Theorems 4.1 and 4.2 will be given in next three subsections.

We start with some notations. Firstly, as in Section 1, let

�j,r(t) =
∏

0≤i �=j≤r

t− i

j − i
, j = 0, 1, · · · , r,(4.2)

stand for the fundamental Lagrange interpolation polynomials of degree r at the
points j = 0, 1, · · · , r. Next, for n, j ∈ N with j ≤ r, we define

(4.3) �λ,nj,r : N → C, m �→
{
δn+m,j , if λ = 0,

λn · �j,r(n+m), if λ �= 0.

Finally, for j = 0, 1, · · · , r and μ ∈ CS , we set

(4.4) yj,μ = yλj,μ =

{∑j
k=0

(
j
k

)
(−μ)−kyk, if λ = 0,∑j

k=0

(
j
k

)λk(−μ)j−k

(λ−μ)j yk, if λ �= 0.
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By definition, for any μ ∈ CS , the elements yj,μ also form a basis of Pr. That is,

C[y0,μ, y1,μ, · · · , yr,μ] = C[y0, y1, · · · , yr].
We define a linear map θf(t),λ : CS → C by

θf(t),λ = c0 θ0,λ + c1 θ1,λ + · · ·+ cs θs,λ if f(t) = c0 + c1 t+ · · ·+ cs t
s.(4.5)

Using Remark 3.8, one knows that the characteristic polynomial of θf(t),λ is

pθf(t),λ
(t) = (t− λ)deg(f(t))+1.(4.6)

Let (t − λ)r+1CS be the ideal of CS generated by (t − λ)r+1, CS,λ,r the quotient
algebra of CS modulo the ideal (t − λ)r+1CS , and ρλ,r : CS → CS,λ,r the quotient
map. From (4.6), it follows that θf(t),λ vanishes on (t − λ)r+1CS . So, it induces a
linear function

θ̄f(t),λ,r : CS,λ,r → C, x+ (t− λ)r+1CS �→ θf(t),λ(x), x ∈ CS .(4.7)

Furthermore, we define a linear map

φf(t),λ : g⊗ CS → End(Pr)(4.8)

by the rules

φf(t),λ(f ⊗ tn) =
r∑

j=0

�λ,nj,r (0) yj ,

φf(t),λ(h⊗ tn) = θf(t),λ(t
n)− 2

r∑
j=0

r∑
j′=0

�λ,nj′,r(j) yj′
∂

∂yj
,

φf(t),λ(e⊗ tn) =
r∑

j=0

⎛⎝θf(t),λ(tn+j)−
r∑

j′=0

r∑
j′′=0

�λ,nj′′,r(j+j′)yj′′
∂

∂yj′

⎞⎠ ∂

∂yj
,

φf(t),λ(f ⊗ (t− μ)m) =
r∑

j=0

(λ− μ)m �j,r(m) yj,μ,

φf(t),λ(h⊗ (t− μ)m) = θf(t),λ((t− μ)m)−2
r∑

j=0

r∑
j′=0

(λ−μ)m�j′,r(m+j)yj′,μ
∂

∂yj,μ
,

φf(t),λ(e⊗ (t− μ)m) =
r∑

j=0

θf(t),λ((t− μ)m+j)
∂

∂yj,μ

−
r∑

j=0

r∑
j′=0

r∑
j′′=0

(λ− μ)m �j′′,r(m+ j + j′) yj′′,μ
∂

∂yj′,μ

∂

∂yj,μ
,

where n ∈ N, −m ∈ Z+ and μ ∈ CS . Then we have the following result.

Theorem 4.1. Let f(t) ∈ C, λ ∈ CS and r ∈ N with r ≥ deg(f(t)). Then the
linear map φf(t),λ : g⊗ CS → End(Pr) is a Lie algebra homomorphism.

Denote by
W (CS , f(t), λ, r) = (φf(t),λ,Pr)

the resulting g⊗CS-module given in Theorem 4.1. Recall from Lemma 2.5 that the
pull back ρ−1

λ,r(M(CS,λ,r, θ̄f(t),λ,r)) of the Verma type g ⊗ CS,λ,r-module

M(CS,λ,r, θ̄f(t),λ,r) is a highest weight g ⊗ CS-module with highest weight θf(t),λ.
Then we have the following characterization of the g⊗CS-module W (CS , f(t), λ, r).
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Theorem 4.2. Let f(t) ∈ C, λ ∈ CS and r ∈ N with r ≥ deg(f(t)). Then the
g⊗ CS-module W (CS , f(t), λ, r) is isomorphic to ρ−1

λ,r(M(CS,λ,r, θ̄f(t),λ,r)).
Remark 4.3. By specifying CS to C, we have the quotient algebra

Cλ,r = C[t]/(t− λ)r+1
C[t]

of C. Note that the inclusion C ↪→ CS induces a canonical algebra isomorphism
Cλ,r ∼= CS,λ,r. Moreover, under this isomorphism, the function θ̄f(t),λ,r on CS,λ,r
coincides with that on Cλ,r. In view of this, we have the g⊗C-module isomorphism

Resg⊗CS

g⊗C ρ−1
λ,r(M(CS,λ,r, θ̄f(t),λ,r)) ∼= ρ−1

λ,r(M(Cλ,r, θ̄f(t),λ,r)),(4.9)

where the notation Resg⊗CS

g⊗C stands for the restriction functor from the category of
g⊗ CS-modules to the category of g⊗ C-modules.

4.2. The case CS = L. Here we give the proof of Theorems 4.1 and 4.2 for the
case that CS = L. So, throughout this subsection, we assume that CS = L. Note
that in this case λ ∈ CS = C× is nonzero and μ ∈ CS is zero. Furthermore,
by definition one has yj,0 = yj for all j = 0, 1, · · · , r. This gives that the map
φf(t),λ : g⊗ L → End(Pr) coincides with that defined in (1.1).

In what follows we are going to prove that the action (1.1) indeed gives a g⊗L-
module structure on Pr. We would use the following simple result frequently.

Lemma 4.4. Let g(t) be any polynomial of degree ≤ r. Then one has that

g(m+ n) =

r∑
j=0

g(m+ j) �j,r(n), m, n ∈ Z.(4.10)

Proof. It is well-known that for any polynomial h(t) of degree ≤ r, one can decom-
pose h(t) as a linear combination of the Lagrange polynomials �j,r(t) as follows

h(t) =
r∑

j=0

h(j) �j,r(t).(4.11)

By taking h(t) = g(m+ t), m ∈ Z in (4.11), we obtain the formula (4.10). �
For n ∈ Z, we set

A(n) =

r∑
i=0

�i,r(n) yi, B(n) =

r∑
i,j=0

�j,r(n+ i) yj
∂

∂yi
,

C(n) =

r∑
i,j,k=0

�k,r(n+ j + i) yk
∂

∂yj

∂

∂yi
, D(n) =

r∑
i=0

f(n+ i)
∂

∂yi
.

The following result is about the commutator relations of these operators.

Lemma 4.5. For m,n ∈ Z, one has that

[A(m), A(n)] = 0, [D(m), D(n)] = 0, [B(m), A(n)] = A(m+ n),(4.12)

[C(m), A(n)] = 2B(m+ n), [D(m), A(n)] = f(m+ n),(4.13)

[B(m), B(n)] = 0, [C(m), B(n)] = C(m+ n),(4.14)

[C(m), C(n)] = 0, [D(m), B(n)] = D(m+ n),(4.15)

[D(m), C(n)] =
r∑

i,j=0

f(m+ n+ i+ j)
∂

∂yj

∂

∂yi
.(4.16)
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Proof. The first two equalities in (4.12) are trivial and for the third one, we have

[B(m), A(n)] = [

r∑
i,j=0

�j,r(m+ i) yj
∂

∂yi
,

r∑
k=0

�k,r(n) yk]

=
r∑

i,j,k=0

�j,r(m+ i) �k,r(n) yj [
∂

∂yi
, yk] =

r∑
i,j=0

�j,r(m+ i) �i,r(n) yj

=
r∑

j=0

(
r∑

i=0

�j,r(m+ i) �i,r(n)

)
yj =

r∑
j=0

�j,r(m+ n) yj = A(m+ n),

where in the second last equality we used the formula (4.10) with g(t) = �j,r(t).
The second equality in (4.13) is implied by (4.10) and the assumption that

deg(f(t)) ≤ r. For the first one, we have

[C(m), A(n)] = [

r∑
j,k=0

�k,r(m+ i+ j) yk
∂

∂yj

∂

∂yi
,

r∑
l=0

�l,r(n) yl]

=
r∑

i,j,k=0

�k,r(m+ i+ j) yk

(
�i,r(n)

∂

∂yj
+ �j,r(n)

∂

∂yi

)

=

r∑
j,k=0

�k,r(m+ n+ j) yk
∂

∂yj
+

r∑
i,k=0

�k,r(m+ n+ i) yk
∂

∂yi
= 2B(m+ n),

where in the second last equality we used the formula (4.10) with g(t) = �k,r(t+ j)
and �k,r(t+ i), respectively.

For the second equality in (4.14), one has

[C(m), B(n)] = [

r∑
i,j,k=0

�k,r(m+ i+ j) yk
∂

∂yj

∂

∂yi
,

r∑
i′,j′=0

�j′,r(n+ i′) yj′
∂

∂yi′
]

=
r∑

i′,j′,i,j,k=0

�k,r(m+ i+ j) �j′,r(n+ i′)
(
yk [

∂

∂yj
, yj′ ]

∂

∂yi

∂

∂yi′

+ yk
∂

∂yj
[
∂

∂yi
, yj′ ]

∂

∂yi′
+ yj′ [yk,

∂

∂yi′
]

∂

∂yj

∂

∂yi

)
=

r∑
i′,i,j,k=0

�k,r(m+ i+ j)

(
�j,r(n+ i′) yk

∂

∂yi′

∂

∂yi
+ �i,r(n+ i′) yk

∂

∂yj

∂

∂yi′

)

−
r∑

j′,i,j,k=0

�j′,r(n+ k) �k,r(m+ i+ j)yj′
∂

∂yj

∂

∂yi

=
r∑

i′,i,k=0

�k,r(n+m+ i+ i′)yk
∂

∂yi′

∂

∂yi
= C(m+ n),

where in the second last equality we used the formula (4.10) with g(t) = �k,r(t +
i), �k,r(t + j) and �j′,r(t), respectively. The remaining equalities in lemma can be
checked in a similar way, and we omit the details. �

Now, by using the commutator relations given in Lemma 4.5, one can verify that
(φf(t),λ,Pr) is a representation of g ⊗ L. This finishes the proof of Theorem 4.1
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with CS = L. By specifying CS to L, we have the quotient algebra Lλ,r of L and

the g⊗ L-module ρ−1
λ,r(M(Lλ,r, θ̄f(t),λ,r)).

Lemma 4.6. W (L, f(t), λ, r) is a highest weight g⊗L-module with highest weight
θf(t),λ and highest weight vector 1.

Proof. The lemma is implied by the facts that

e⊗ tn.1 = 0, h⊗ tn.1 = θf(t),λ(t
n)1, n ∈ Z,

and that

f ⊗ tj .1 = λj yj , j = 0, 1, · · · , r.(4.17)

�

Lemma 4.7. One has that kerφf(t),λ = g⊗ ((t− λ)r+1).

Proof. Note that kerφf(t),λ is an ideal of g ⊗ L and so it has the form g ⊗ I for
some ideal I of L. From (4.17), one knows that the elements 1, t, · · · , tr are not
contained in I. Thus, we now only need to prove that (t− λ)r+1 ∈ I.

Observe that one can conclude from (3.5) and (3.7) that

n∑
k=0

(
n

k

)
(−1)n−k km = 0, ∀ m,n ∈ N with n > m.

This implies that for any polynomial g(t) with degree < n, one has

n∑
k=0

(
n

k

)
(−1)n−k g(k) = 0.(4.18)

Using this formula, we obtain

φf(t),λ(f ⊗ (t− λ)r+1) =

r+1∑
k=0

(
r + 1

k

)
(φf(t),λ(f ⊗ tk))(−λ)r+1−k

= λr+1
r∑

i=0

(
r+1∑
k=0

(
r + 1

k

)
(−1)r+1−k �i,r(k)

)
yi = 0.

Similarly, one easily checks that

φf(t),λ(h⊗ (t− λ)r+1) = 0 and φf(t),λ(e⊗ (t− λ)r+1) = 0,

by applying (4.18) with g(t) = f(t), �j,r(t+ i) and f(t+ i), �k,r(t+ i+ j) (i, j, k =
0, 1, · · · , r), respectively. We omit the details. �

Now we are ready to complete the proof of Theorem 4.2 with CS = L. In view of
Lemma 4.6 and Lemma 4.7, the g ⊗ L-module W (L, f(t), λ, r) becomes a highest
weight g ⊗ Lλ,r-module with highest weight θ̄f(t),λ,r and highest weight vector 1.
So we have a surjective g⊗ Lλ,r-module homomorphism

M(Lλ,r, θ̄f(t),λ,r) → W (L, f(t), λ, r), vθ̄f(t),λ,r
�→ 1.(4.19)

Notice that U(n−⊗Lλ,r) ∼= Pr as commutative algebras. This leads to the fact that
the g⊗Lλ,r-module homomorphism (4.19) is an isomorphism. Furthermore, one can
check that this g⊗Lλ,r-module isomorphism induces a g⊗L-module isomorphism

from ρ−1
λ,r(M(Lλ,r, θ̄f(t),λ,r)) to W (L, f(t), λ, r). This completes the proof.
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4.3. The case CS = C. In this subsection, we give the proof of Theorems 4.1 and
4.2 for the case that CS = C. From now on, in this subsection we assume that
CS = C and so λ ∈ CS = C. Assume first that λ �= 0. In this case, we have

W (C, f(t), λ, r) = Resg⊗L
g⊗C W (L, f(t), λ, r).

Moreover, it follows from (4.9) that

ρ−1
λ,r(M(Cλ,r, θ̄f(t),λ,r)) ∼= Resg⊗L

g⊗C ρ−1
λ,r(M(Lλ,r, θ̄f(t),λ,r)).

Thus, when λ �= 0, the proof of Theorems 4.1 and 4.2 can be reduced to the case
that CS = L. So we only need to consider the case that λ = 0. Note that in this
case the linear map φf(t),λ : g⊗ C → End(Pr) is given as follows

φf(t),0(f ⊗ tn) =
r∑

i=0

δn,i yi,

φf(t),0(h⊗ tn) = θf(t),0(t
n)− 2

r∑
i=0

r∑
j=0

δn+i,j yj
∂

∂yi
,

φf(t),0(e⊗ tn) =
r∑

i=0

⎛⎝θf(t),0(t
n)−

r∑
j=0

r∑
k=0

δn+i+j,k yk
∂

∂yj

⎞⎠ ∂

∂yi
,

(4.20)

where n ∈ N.
In order to verify that the action (4.20) determines a g⊗C-module structure on

Pr, we need the following analog of Lemma 4.4.

Lemma 4.8. For k, r ∈ N with k ≤ r, one has

δm+n,k =

r∑
j=0

δm+j,k δn,j , m, n ∈ N.(4.21)

Proof. The equality (4.21) is trivial when r ≥ n. And, for the case that r < n, one
only needs to notice that both sides of the equality (4.21) are zero. �

Similar to the proof of Lemma 4.5, by using Lemma 4.8, one can compute the
commutator relations of those operators that appeared in (4.20). According to these
commutator relations, one can verify that (φf(t),0,Pr) is indeed a representation of
g ⊗ C and we omit the details. Moreover, it is easy to see that the g ⊗ C-module
W (C, f(t), 0, r) is a highest weight g ⊗ C-module with highest weight θf(t),0 and
highest weight vector 1.

Now, by definition, we have

φf(t),0(f ⊗ tn) = φf(t),0(h⊗ tn) = φf(t),0(e⊗ tn) = 0 for n ≥ r + 1.

This implies that kerφf(t),0 = g⊗(tr+1C) and so W (C, f(t), 0, r) becomes a g⊗C0,r-
module, which is isomorphic to the Verma type module M(C0,r, θ̄f(t),0,r). Finally,
we can extend this g ⊗ C0,r-module isomorphism to a g ⊗ C-module isomorphism

from W (C, f(t), 0, r) to ρ−1
0,r(M(C0,r, θ̄f(t),0,r)). This finishes the proof of Theorems

4.1 and 4.2 with CS = C.
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4.4. The general case. Based on the special cases proved in last two subsections,
in this subsection we will complete the proof of Theorems 4.1 and 4.2.

Recall from (4.9) and Section 4.3 that

Resg⊗CS

g⊗C ρ−1
λ,r(M(CS,λ,r, θ̄f(t),λ,r)) ∼= ρ−1

λ,r(M(Cλ,r, θ̄f(t),λ,r)) ∼= W (C, f(t), λ, r).

This implies that there is a g ⊗ CS-module structure on Pr, denoted as
P(CS , f(t), λ, r), transferring from ρ−1

λ,r(M(CS,λ,r, θ̄f(t),λ,r)) such that

Resg⊗CS

g⊗C P(CS , f(t), λ, r) = W (C, f(t), λ, r).(4.22)

In what follows, we will prove that for x ∈ g, μ ∈ CS and −m ∈ Z+,

(∗) the action of x⊗ (t− μ)m on P(CS , f(t), λ, r) is given by

φf(t),λ(x⊗ (t− μ)m).

Note that Theorems 4.1 and 4.2 are implied by this assertion.
Firstly, we fix a μ ∈ CS and introduce an algebra embedding

ζμ : L ↪→ CS , tm �→ (t− μ)m, m ∈ Z.(4.23)

Associated to (f(t), μ), we define a polynomial fμ(t) as follows: if f(t) =
∑s

i=0 ci t
i,

then fμ(t) =
∑s

i=0 ci,μ t
i with the coefficients ci,μ defined by the rule

s∑
i=0

ci,μ εi,λ−μ =

s∑
i=0

ci εi,λ,μ (see (3.8)).

Note that the degree of fμ(t) equals the degree of f(t), and the diagram

CS
θf(t),λ

���
��

��
�

C

L

ζμ

��

θfμ(t),λ−μ

���������

(4.24)

commutes.
Now the algebra homomorphism ρλ,r ◦ ζμ : L ↪→ CS → CS,λ,r factors through the

ideal (t− (λ− μ))rL of L. Therefore, it yields a surjective algebra homomorphism
ζμ,λ,r : Lλ−μ,r → CS,λ,r. Moreover, using this homomorphism, the diagram (4.24)
can be extended to the following commutating diagram:

CS
ρλ,r ��

θf(t),λ

����
���

���
���

�� CS,λ,r
θ̄f(t),λ,r

�����
���

���
���

��

C

L

ζμ

��

θfμ(t),λ−μ

���������������
ρλ−μ,r

�� Lλ−μ,r .

θ̄fμ(t),λ−μ,r

		��������������

ζμ,λ,r

��

Since dim CS,λ,r = r + 1 = dimLλ−μ,r, the surjective homomorphism ζμ,λ,r is in
fact an isomorphism. This together with the above commutating diagram gives the
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following g⊗ L-module isomorphisms:

ζ−1
μ (P(CS , f(t), λ, r)) ∼= ζ−1

μ (ρ−1
λ,r(M(CS,λ,r, θ̄f(t),λ,r)))

∼=(ρλ,r ◦ ζμ)−1(M(CS,λ,r, θ̄f(t),λ,r)) ∼= ρ−1
λ−μ,r(M(Lλ−μ,r, θ̄fμ(t),λ−μ,r)).

(4.25)

Since deg fμ(t) ≤ r and λ − μ �= 0, it follows from Section 4.2 that there
is a g ⊗ L-module structure W (L, fμ(t), λ − μ, r) on Pr that is isomorphic to

ρ−1
λ−μ,r(M(Lλ−μ,r, θ̄fμ(t),λ−μ,r)). By (4.25), this gives us a g ⊗ L-module isomor-

phism

ψμ : ζ−1
μ (P(CS , f(t), λ, r)) → W (L, fμ(t), λ− μ, r)

such that ψμ(1) = 1. We claim that

ψμ(y
n1
j1,μ

· · · ynk
jk,μ

) = yn1
j1

· · · ynk
jk

for 0 ≤ j1, · · · , jk ≤ r, n1, · · · , nk ∈ N.(4.26)

Indeed, for each j = 0, 1, · · · , r, let us set

fj = (λ− μ)−j(f ⊗ tj) ∈ g⊗ L.

Then the element fj acts on W (L, fμ(t), λ− μ, r) as the operator yj . On the other
hand, as ζμ(t

j) = (t − μ)j ∈ C, it follows from (4.22) that the element fj acts on
ζ−1
μ (P(CS , f(t), λ, r)) as the operator

(λ− μ)−jφf(t),λ(f ⊗ (t− μ)j) =

{∑j
k=0

(
j
k

)
(−μ)−kyk, if λ = 0,∑j

k=0

(
j
k

)λk(−μ)j−k

(λ−μ)j yk, if λ �= 0.

So fj acts on ζ−1
μ (P(CS , f(t), λ, r)) as the operator yj,μ, which implies

ψμ(y
n1
j1,μ

· · · ynk
jk,μ

) = ψμ(f
n1
j1

· · · fnk
jk

.1) = fn1
j1

· · · fnk
jk

.ψμ(1) = fn1
j1

· · · fnk
jk

.1

= yn1
j1

· · · ynk
jk

.

This proves the claim (4.26).
Finally, by using the claim (4.26) and the g ⊗ L-module action (1.1) on

W (L, fμ(t), λ− μ, r), we see that the g⊗L-module action on ζ−1
μ (P(CS , f(t), λ, r))

is given as follows:

f ⊗ tm �→
r∑

i=0

(λ− μ)m �i,r(m) yi,μ,

h⊗ tm �→ θfμ(t),λ−μ(t
m)− 2

r∑
i=0

r∑
j=0

(λ− μ)m �j,r(m+ i) yj,μ
∂

∂yi,μ
,

e⊗ tm �→
r∑

i=0

⎛⎝θfμ(t),λ−μ(t
m+i)−

r∑
j,k=0

(λ− μ)m �k,r(m+ i+ j) yk,μ
∂

∂yj,μ

⎞⎠ ∂

∂yi,μ
,

where m ∈ Z. Thus, for each x ∈ g and m ∈ Z, the action of x ⊗ (t − μ)m =
ζμ(x ⊗ tm) on P(CS , f(t), λ, r) is given as above, which by definition is just the
operator φf(t),λ(x⊗ (t− μ)m). This proves the assertion (∗), as desired.

5. Realization of irreducible highest weight g⊗ CS-modules
Here we give a realization of all irreducible highest weight g⊗ CS-modules.
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5.1. The quasi-finite case. Given a χ ∈ E(CS). From Proposition 3.6, we may
assume that χ has the following expression

χ =
ν∑

i=1

ri∑
j=0

aij θj,λi
,(5.1)

where λ1, · · · , λν are some distinct complex numbers in CS , r1, · · · , rν ∈ N and aij
are some constants with airi �= 0 for all i. For each i = 1, · · · , ν, set

χi =

ri∑
j=0

aij θj,λi
and fi(t) =

ri∑
j=0

aij t
j(5.2)

so that χ =
∑ν

i=1 χi and χi = θfi(t),λi
(see (4.5)).

We form the Fock space

C[Y, χ] = C[yij ; i = 1, · · · , ν, j = 0, · · · , ri],(5.3)

and define a linear map φχ : g⊗ CS → End(C[Y, χ]) in the following way:

φχ(f ⊗ tn) =

ν∑
i=1

ri∑
j=0

�λ,nj,ri
(0) yij ,

φχ(h⊗ tn) = χ(tn)− 2
ν∑

i=1

ri∑
j=0

ri∑
j′=0

�λ,nj′,ri
(j) yij′

∂

∂yij
,

φχ(e⊗ tn) =

ν∑
i=1

ri∑
j=0

⎛⎝χi(t
n+j)−

ri∑
j′=0

ri∑
j′′=0

�λ,nj′′,ri
(j + j′) yij′′

∂

∂yij′

⎞⎠ ∂

∂yij
,

φχ(f ⊗ (t− μ)m) =

ν∑
i=1

ri∑
j=0

(λi − μ)m �j,ri(m) yij,μ,

φχ(h⊗ (t− μ)m) = χ((t− μ)m)− 2
ν∑

i=1

ri∑
j=0

ri∑
j′=0

(λi − μ)m �j′,ri(m+ j) yij′,μ
∂

∂yij,μ
,

φχ(e⊗ (t− μ)m) =
ν∑

i=1

ri∑
j=0

χi((t− μ)m+j)
∂

∂yij,μ

−
ν∑

i=1

ri∑
j=0

ri∑
j′=0

ri∑
j′′=0

(λi − μ)m �j′′,ri(m+ j + j′) yij′′,μ
∂

∂yij′,μ

∂

∂yij,μ
,

for n ∈ N, −m ∈ Z+ and μ ∈ CS , where the notations �j,ri , �
λi,n
j,ri

, are as in (4.2),

(4.3), and yij,μ = yλi
ij,μ is a linear combination of yi0, · · · , yij as in (4.4).

Set

Iχ = {i = 1, · · · , ν | ri = 0 and ai0 ∈ N}.
For the case that Iχ �= ∅, we write C[Y, Iχ] for the ideal of C[Y, χ] generated by the

elements yai0+1
i0 , i ∈ Iχ, and write

(5.4) W (CS , χ) =
{
C[Y, χ], if Iχ = ∅,
C[Y, χ]/C[Y, Iχ], if Iχ �= ∅.
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Note that if Iχ �= ∅, then

W (CS , χ) ∼=

⎛⎝⊗
i∈Iχ

C[yi0]/y
ai0+1
i0 C[yi0]

⎞⎠⊗⎛⎝⊗
i/∈Iχ

C[yij | j = 0, · · · , ri]

⎞⎠ .(5.5)

Moreover, in this case, the operators φχ(g ⊗ CS) stabilize the ideal C[Y, Iχ] and
hence φχ induces a linear map, still called φχ, from g⊗ CS to End(W (CS , χ)).
Theorem 5.1. Let χ ∈ E(CS) be as in (5.1). Then, under the action of φχ,
W (CS , χ) is an irreducible highest weight g⊗ CS-module with highest weight χ.

Proof. Using Theorem 4.1, we know that

C[Y, χ] ∼= W (CS , f1(t), λ1, r1)⊗ · · · ⊗W (CS , fν(t), λν , rν)

is a g ⊗ CS-module with the module action given by φχ. Moreover, Theorem 4.2
implies that the g⊗ CS-module C[Y, χ] is isomorphic to

ρ−1
f1(t),λ1

(M(CS,λ1,r1 , θ̄f1(t),λ1,r1))⊗ · · · ⊗ ρ−1
fν(t),λν

(M(CS,λν ,rν , θ̄fν(t),λν ,rν ))

= ρ−1
CS ,χ1

(M(CS,χ1
, χ̄1))⊗ · · · ⊗ ρ−1

CS ,χν
(M(CS,χν

, χ̄ν)).

(5.6)

One may see (2.2), (4.7) and (5.2) for the notations used in (5.6). From Remark
3.8, it follows that

pχ(t) =

ν∏
i=1

(t− λi)
ri+1 and pχi

(t) = (t− λi)
ri+1, i = 1, · · · , ν.

So, by the Chinese Remainder Theorem, we have

CS,χ ∼= CS,χ1
⊕ CS,χ2

⊕ · · · ⊕ CS,χν
.

This implies that, for any g⊗CS,χi
-module Wi, the tensor product space W1⊗· · ·⊗

Wν is a g⊗ CS,χ-module. Moreover, one has the g⊗ CS-module isomorphism

ρ−1
CS ,χ(W1 ⊗ · · · ⊗Wν) ∼= ρ−1

CS ,χ1
(W1)⊗ · · · ⊗ ρ−1

CS ,χν
(Wν).(5.7)

Now, since the algebras g⊗ CS,χi
are finite dimensional, from Schur’s lemma, it

follows that the tensor product g ⊗ CS,χ-module V (CS,χ1
, χ̄1) ⊗ · · · ⊗ V (CS,χν

, χ̄ν)
is still irreducible. One easily checks that this tensor g ⊗ CS,χ-module is a highest
weight module with highest weight χ and hence is isomorphic to V (CS,χ, χ̄). This
together with (2.3) and (5.7) gives the following g⊗ CS-module isomorphisms

V (CS , χ) ∼= ρ−1
CS ,χ(V (CS,χ, χ̄))

∼= ρ−1
CS ,χ

(V (CS,χ1
, χ̄1)⊗ · · · ⊗ V (CS,χν

, χ̄ν))

∼= ρ−1
CS ,χ1

(V (CS,χ1
, χ̄1))⊗ · · · ⊗ ρ−1

CS ,χν
(V (CS,χν

, χ̄ν)).

By comparing the above isomorphisms with those given in (5.6) and (5.5), now we
only need to show that for each i, V (CS,χi

, χ̄i) = M(CS,χi
, χ̄i) unless i ∈ Iχ, in

which case dimV (CS,χi
, χ̄i) = ai0 + 1.

Indeed, note that g ⊗ CS,χi
is isomorphic to the truncated current algebra g ⊗

C/tri+1C. Moreover, via this isomorphism, χ̄i induces a linear function on C/tri+1C
whose value at tri +tri+1C is airi �= 0. If i ∈ Iχ, then g⊗CS,χi

∼= g and the assertion
is obvious. If i /∈ Iχ, then the assertion is implied by the irreducibility of Verma
type highest weight g⊗C/tri+1C-modules given in [41, Proposition A1]. Therefore,
we complete the proof of Theorem 5.1. �
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5.2. The general case. In this subsection, we let χ be an arbitrary C-valued
function on CS . Set

IS = {n, (m,μ) | n ∈ N, m ∈ Z+, μ ∈ CS}
and for each i ∈ IS , set

ti =

{
tn, if i = n,

(t− μ)−m, if i = (m,μ).

Then by Lemma 3.1, {ti | i ∈ IS} form a basis of CS . For each i, j ∈ IS , define
cki,j , k ∈ IS to be the structure constants of CS relative to this basis. Namely,

ti tj =
∑
k∈IS

cki,j tk, i, j ∈ IS .

We remark that the nontrivial structure constants are given in Lemma 3.1.
Let

P (CS , χ) = C[xi; i ∈ IS ]

be the polynomial algebra in the variables xi, i ∈ IS . Set

πχ(f ⊗ ti) = xi,

πχ(h⊗ ti) = χ(ti)− 2
∑
j∈IS

∑
k∈IS

ckij xk
∂

∂xj
,

πχ(e⊗ ti) =
∑
j∈IS

⎛⎝χ(ti tj)−
∑
k∈IS

∑
j′∈IS

∑
k′∈IS

cj
′

jk c
k′

ij′ xk′
∂

∂xk

⎞⎠ ∂

∂xj
,

for i ∈ IS . It was shown in [30, § 5, Remark 2] that the Verma type g⊗ CS-module
M(CS , χ) can be realized on the Fock space P (CS , χ) with the action πχ.

Remark 5.2. When CS = L, we will often identify P (L, χ) with the Fock space
C[xi; i ∈ Z] so that for each i ∈ Z [30],

πχ(f ⊗ ti) = xi, πχ(h⊗ ti) = χ(ti)− 2
∑
j∈Z

xi+j
∂

∂xj
,

πχ(e⊗ ti) =
∑
j∈Z

(
χ(ti+j)−

∑
k∈Z

xi+j+k
∂

∂xk

)
∂

∂xj
.

The following result is also due to Jakobsen-Kac.

Proposition 5.3 ([30]). Let χ be a linear function on CS . Then the g⊗CS-module
P (CS, χ)-module is irreducible if and only if χ �∈ E(CS).

Proof. It suffices to show that the Verma type g⊗CS-module M(CS , χ) is irreducible
when χ /∈ E(CS). Note that the algebra CS contains no finite dimensional nonzero
ideals, and χ ∈ E(CS) if and only if χ vanishes on some nonzero ideal of CS . Thus,
if χ /∈ E(CS), then the pair (CS , χ) satisfies the conditions (6.3a) and (6.3b) stated
in [30, § 6]. Then the assertion is implied by [30, Proposition 6.2]. �

We now summarize the free field realizations of irreducible highest weight g⊗CS-
modules given in this section in Theorem 5.4.
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Theorem 5.4. For any χ ∈ C∗
S , one has the g⊗ CS-module isomorphism

V (CS , χ) ∼=
{
P (CS , χ), if χ /∈ E(CS),
W (CS , χ), if χ ∈ E(CS).

6. Realization of irreducible objects in Chari’s category Õ
As an application of Theorem 5.4, here we present an explicit realization of all

irreducible objects in Chari’s category Õ for the affine Kac-Moody algebra A
(1)
1 .

6.1. Chari’s category Õ for g̃. Let

g̃ = (g⊗ L)⊕ Cd

be the centerless affine Kac-Moody algebra associated to g with the remaining Lie
bracket given by

[d, x⊗ tm] = mx⊗ tm,

for x ∈ g and m ∈ Z. Let h̃ = Ch⊕ Cd and define α, δ ∈ h̃∗ by letting

α(h) = 2, α(d) = 0, δ(d) = 1, δ(h) = 0.

A g̃-module V is called a weight module if it admits a weight spaces decompo-

sition V = ⊕β∈˜h∗Vβ, where Vβ = {v ∈ V | h.v = β(h)v for h ∈ h̃}. Set

P(V ) = {β ∈ h̃ | Vβ �= 0},

the set of weights in V . The category Õ introduced by Chari [8] is defined as

follows: an object V ∈ Õ if and only if V is a weight g̃-module and there exist

finitely many β1, · · · , βr ∈ h̃∗ such that

P(V ) ⊂ {βi −mα+ nδ | 1 ≤ i ≤ r,m ∈ N, n ∈ Z}.

The morphisms of the category Õ are the homomorphisms of g̃-modules.
Set

ĥ = (h⊗ L)⊕ Cd.

Following [10], we say that a g̃-module V is an l-highest weight g̃-module if there
is a nonzero vector v ∈ V such that

U(g̃)v = V , (n+ ⊗ L)v = 0 and U(ĥ)v is an irreducible weight ĥ-module.

The notation “l-highest weight g̃-module” is used to distinguish the usual highest
weight g̃-module in the category O (cf. [32]). It is obvious that any l-highest weight

g̃-module belongs to the category Õ. Conversely, it was shown in [8] that any

irreducible object in the category Õ is an l-highest weight g̃-module.

6.2. Irreducible l-highest weight g̃-modules. For any χ ∈ L∗ and b ∈ C, we

define an ĥ-module structure on L = C[t, t−1] with

(h⊗ tm) · tn = χ(tn) tm+n, d · tn = (n+ b) tn,(6.1)

for m,n ∈ Z. We denote this ĥ-module by L(χ, b). Let Lχ,b be the ĥ-submodule of
L(χ, b) generated by 1. Note that, as vector spaces, Lχ,b = Lχ,0 for all b ∈ C.
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For each s ∈ N, we set

Ls =

{
C1, if s = 0,

C[ts, t−s], if s > 0,
and L∗(s) = {χ ∈ L∗ | Lχ,0 = Ls}.

We also set

L∗
> =

⊎
s>0

L∗(s) and L∗
≥ = L∗(0) � L∗

>.

The following result is straightforward.

Lemma 6.1. Let χ ∈ L∗ and b ∈ C. Then

(i) The ĥ-module Lχ,b is irreducible if and only if χ ∈ L∗
≥;

(ii) χ ∈ L∗(0) if and only if χ(tn) = 0 for all n �= 0;
(iii) χ ∈ L∗

> if and only if there exist n1 > 0 and n2 < 0 such that both χ(tn1)
and χ(tn2) are nonzero.

It view of Lemma 6.1, for any χ ∈ L∗
≥ and b ∈ C, Lχ,b is an irreducible weight

ĥ-module. Conversely, it was proved in [8] that any irreducible weight ĥ-module
has such a form. We remark that if χ ∈ E(L) \ {0}, then χ ∈ L∗

>. For χ ∈ L∗
≥ and

b ∈ C, let us form the induced g̃-module

M̃(χ, b) = U(g̃)⊗U(̂h⊕(n+⊗L)) Lχ,b,

where Lχ,b is viewed as an ĥ ⊕ (n+ ⊗ L)-module by letting n+ ⊗ L acts trivially.

Write Ṽ (χ, b) for the irreducible quotient of M̃(χ, b).

Proposition 6.2 ([8]). Let V be an irreducible object in the category Õ. Then V

is isomorphic to Ṽ (χ, b) for some χ ∈ L∗
≥ and b ∈ C.

6.3. Realization of Ṽ (χ, b). Given a pair (χ, b) ∈ L∗
≥ × C. In this subsection we

will provide an explicit realization of the g̃-module Ṽ (χ, b).
We first consider the case that χ ∈ L∗(0). If χ = 0, then it is clear that the

g ⊗ L-module Ṽ (0, b) is isomorphic to W̃ (0, b), the one dimensional g̃-module on
which g⊗ L acts trivially and d acts as the scalar b. If χ �= 0, then it follows from
Lemma 6.1(ii) that there is a γ ∈ C× such that χ(tn) = γ δn,0 for n ∈ Z. This
implies that the g⊗L-module P (L, χ) (see Remark 5.2) can be lifted to a g̃-module
with the remaining action given by

d �→ b Id +
∑
n∈Z

nxn
∂

∂xn
.

This irreducible g̃-module, denoted as P̃ (χ, b), is isomorphic to Ṽ (χ, b).
In what follows, we assume that χ ∈ L∗(s) for a fixed s ∈ Z+. For a g⊗L-module

W , we define a g̃-module structure on the loop space W ⊗ L by [13]

(x⊗ tn) · w ⊗ tm = ((x⊗ tn) · w)⊗ tm+n, d · w ⊗ tm = (m+ b)⊗ tm,

where x ∈ g, m,n ∈ Z and w ∈ W . We denote the resulting g̃-module by L(W, b).
Recall that vχ denotes the highest weight vector in the g ⊗ L-module V (L, χ).

For i ∈ Z, let L(V (L, χ), b)i be the g̃-submodule of L(V (L, χ), b) generated by
vχ ⊗ ti. The following result is standard, one may see [13] or [10] for a proof.
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Lemma 6.3. For each i ∈ Z, the g̃-module L(V (L, χ), b)i is isomorphic to the

irreducible l-highest weight g̃-module Ṽ (χ, b+ i). Moreover, one has

L(V (L, χ), b) =
s−1⊕
i=0

L(V (L, χ), b)i ∼=
s−1⊕
i=0

Ṽ (χ, b+ i).

In view of Lemma 6.3 and Theorem 5.4, we now only need to determine the
structure of the g̃-module L(P (L, χ), b)0 (if χ /∈ E(L)) or L(W (L, χ), b)0 (if χ ∈
E(L)). Consider first the case that χ /∈ E(L). Note that we have

U(ĥ) · 1⊗ 1 = 1⊗ Ls ⊂ L(P (L, χ), b).

Using this, one can check that

P̃ (χ, b) = SpanC{xi1 · · ·xin ⊗ tm | i1, · · · , in ∈ Z, i1 + · · ·+ in −m ∈ sZ}

is the g̃-submodule of L(P (L, χ), b) generated by 1⊗ 1, and hence is isomorphic to

the l-highest weight g̃-module Ṽ (χ, b).
Next, for the case that χ ∈ E(L), we may assume that χ is as in (5.1). It

was shown in [40] (see also [13]) that ν ≡ 0 (mod s). Moreover, there exist a
permutation τ of {1, 2, · · · , ν} and complex numbers λ̄0, · · · , λ̄p−1 such that

fτ(si+1)(t) = fτ(si+2)(t) = · · · = fτ((i+1)s)(t), (see (5.2)),

λτ(si+1) = ελ̄i, λτ(si+2) = ε2λ̄i, · · · , λτ((i+1)s) = εsλ̄i,

for i = 0, 1, · · · , p − 1, where p = ν/s, and ε is a primitive s-th root of unity. For
convenience, up to a permutation, we may assume that

f1(t) = · · · = fs(t), fs+1(t) = · · · = f2s(t), · · · , fν−s+1(t) = · · · = fν(t).

Let σ be the following permutation:

σ = (1, 2, · · · , s)(s+ 1, s+ 2, · · · , 2s) · · · (ν − s+ 1, ν − s+ 2, · · · , ν).

Then the assignment

yij �→ yσ(i)j , 1 ≤ i ≤ ν, 1 ≤ j ≤ ri,(6.2)

determines a (unique) algebra automorphism σ̃ of C[Y, χ] (see (5.3)). If Iχ �= ∅,
this automorphism stabilizes the ideal C[Y, Iχ] and hence induces an automorphism,
still called σ̃, of the corresponding quotient algebra W (L, χ) of C[Y, χ] (see (5.4)).

For any i ∈ Zs = Z/sZ, let

W (L, χ)(i) = SpanC{v(i) =
∑

0≤q≤s−1

ε−iq σ̃q(v) | v ∈ W (L, χ)}

be the σ̃-eigenvector subspace of W (L, χ) with eigenvalue εi. Notice that in this
case the actions of f ⊗ tn, n ∈ Z on W (L, χ) are given by

φχ(f ⊗ tn) =

p−1∑
i=0

rsi+1∑
j=1

λ̄n
i �j,rsi+1

(n) yij(n),

where n ∈ Zs is the image of n under the homomorphism Z → Zs. This implies

φχ(f ⊗ tn)(W (L, χ)(m)) = W (L, χ)(m+n)
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for m,n ∈ Z. It then follows that

W̃ (χ, b) =
⊕
m∈Z

W (L, χ)(m) ⊗ C tm

is the submodule of L(W (L, χ), b) generated by 1 ⊗ 1, and hence is isomorphic to

the l-highest weight g̃-module Ṽ (χ, b).
We summarize the above realization of irreducible l-highest weight g̃-modules in

Theorem 6.4. Due to Proposition 6.2, this in turn gives an explicit realization of

all irreducible objects in the category Õ.

Theorem 6.4. For any χ ∈ L∗
≥ and b ∈ C, one has the g̃-module isomorphism

Ṽ (χ, b) ∼=
{
P̃ (χ, b), if χ /∈ E ,
W̃ (χ, b), if χ ∈ E .

7. Realization of Harish-Chandra g⊗ CS-modules
In this section, as an application of Theorem 5.4, we give an explicit realization

of all Harish-Chandra g⊗ CS-modules.

7.1. Classification of Harish-Chandra g ⊗ CS-modules. For λ ∈ CS and u ∈
CS , we denote by Mλ the maximal ideal of CS generated by t − λ, and denote by
uλ ∈ C the residue of u modulo Mλ. Namely, uλ = u + Mλ as an element of
M/Mλ

∼= C. In particular, we have

(tn)λ = λn, ((t− μ)m)λ = (λ− μ)m, n ∈ N, −m ∈ Z+, μ ∈ CS .(7.1)

Let λ = (λ1, · · · , λν) be a ν-tuple of distinct elements in CS . Then we have the
following evaluation map

evλ : g⊗ CS → g
⊕ν , x⊗ u �→ (uλ1

x, · · · , uλν
x).

Following [7], we call the pull back ev−1
λ (V1⊗· · ·⊗Vν) of the g

⊕ν-module V1⊗· · ·⊗Vν

an evaluation (weight) g⊗CS-module, where V1, · · · , Vν are some Harish-Chandra g-
modules. Recall the notion of “lowest weight g⊗CS-module” introduced in Remark
2.2. Then we have

Proposition 7.1. Let V be a Harish-Chandra g ⊗ CS-module. Then either V is
isomorphic to an evaluation g⊗CS-module with bounded weight multiplicities or V
is isomorphic to an irreducible quasi-finite highest/lowest weight g⊗ CS-module.

Proof. This classification result was proved in [37] for any current algebra g ⊗ R
with the assumption that R is finitely generated. Since the commutative algebra
CS is not necessary finitely generated, here we give a sketch of the proof for this
proposition. Let V be a Harish-Chandra g ⊗ CS-module with the action given by
φ : g⊗CS → End(V ). Then kerφ = g⊗ I for some ideal I of CS . By the same proof
as that in [7, Proposition 4.3], one finds that I is nonzero (or equivalently, cofinite)
in CS . Thus, there exists a nonzero monic polynomial p(t) ∈ 〈t − λ | λ ∈ CS〉 that
generates I.

Now V descends to a faithful Harish-Chandra module for the truncated current
algebra g ⊗ CS/I ∼= g ⊗ C/p(t)C. By [37, Theorem 4.3], as a g ⊗ CS/I-module, V
is either a highest/lowest weight module, or an evaluation module with bounded
weight multiplicities. In the former case, one immediate gets that V must be a
highest/lowest weight g ⊗ CS-module. For the latter case, notice that a faithful



FOCK REPRESENTATION OF A
(1)
1 -MODULES 173

evaluation module for the algebra g ⊗ CS/I exists only when p(t) =
∏ν

i=1(t − λi)

for some distinct λi ∈ CS . Thus we have a natural Lie algebra isomorphism

g⊗ CS/I = ⊕ν
i=1g⊗ CS/Mλi

→ g
⊕ν .(7.2)

This implies that V is a simple weight g⊕ν-module (with respect to h⊕ν). By
[7, Proposition 3.4], as g⊕ν-modules, V is isomorphic to V1 ⊗ · · · ⊗ Vν for some
Harish-Chandra g-modules V1, · · · , Vν . This gives that V is an evaluation g ⊗ CS-
module with bounded weight multiplicities, which completes the proof. �

7.2. Realization of Harish-Chandra g⊗ CS-modules. For any pair

(a,λ) = ((a′1, a1, a2, · · · , aν), (λ1, · · · , λν)) ∈ C
ν+1 × (CS)

ν ,(7.3)

we define certain operators on the Fock space C[y1, y
−1
1 , y2, y3, · · · , yν ] as follows

ϕa,λ(f ⊗ tn) =
ν∑

i=1

λn
i

(
δi,1

a′1
y1

− ∂

∂yi

)
,

ϕa,λ(h⊗ tn) =

ν∑
i=1

λn
i

(
ai − δi,1a

′
1 + 2yi

∂

∂yi

)
,

ϕa,λ(e⊗ tn) =

ν∑
i=1

λn
i

(
y2i

∂

∂yi
+ aiyi

)
,

ϕa,λ(f ⊗ (t− μ)m) =

ν∑
i=1

(λi − μ)m
(
δi,1

a′1
y1

− ∂

∂yi

)
,

ϕa,λ(h⊗ (t− μ)m) =

ν∑
i=1

(λi − μ)m
(
ai − δi,1a

′
1 + 2yi

∂

∂yi

)
,

ϕa,λ(e⊗ (t− μ)m) =
ν∑

i=1

(λi − μ)m
(
y2i

∂

∂yi
+ aiyi

)
,

where n ∈ N, −m ∈ Z+ and μ ∈ CS . Using Lemma 3.1, it is straightforward to see
that C[y1, y

−1
1 , y2, y3, · · · , yν ] is a g⊗ CS-module under the action of ϕa,λ.

Assume now that the pair (λ,a) satisfies the following condition

a1, a
′
1 /∈ Z, a2, . . . , aν ∈ N and λ1, . . . , λν are distinct.(7.4)

Then one can check that

W (CS ,a,λ) = SpanC{yi11 yi22 · · · yiνν | i1 ∈ Z, 0 ≤ ij ≤ aj , 2 ≤ j ≤ ν}(7.5)

is a g ⊗ CS-submodule of C[y1, y
−1
1 , y2, . . . , yν ]. Moreover, W (CS ,a,λ) is an eval-

uation weight g ⊗ CS-module with bounded weight multiplicities (see (7.1)). We
remark that W (CS ,a,λ) is not a highest/lowest weight g⊗ CS-module.

In literature, a Harish-Chandra g-module is called cuspidal if it is not a highest
weight g-module. It was known that (see [35, Section 4] for example) any cuspidal
g-module can be realized on the Fock space C[y1, y

−1
1 ] with

f �→ a′1
y1

− ∂

∂y1
, h �→ a1 − a′1 + 2y1

∂

∂y1
, e �→ y21

∂

∂y1
+ a1y1,(7.6)

for some a1, a
′
1 ∈ C \ Z. From [7, Proposition 3.13], it follows that an evaluation

g ⊗ CS-module ev−1
λ (V1 ⊗ · · · ⊗ Vν) has bounded weight multiplicities if and only

if at most one of the Vi is infinite dimensional. Moreover, if the g ⊗ CS-module
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ev−1
λ (V1 ⊗ · · · ⊗ Vν) is in addition not a highest/lowest weight g⊗CS-module, then

exactly one of the g-modules Vi is cuspidal. This together with (7.6), Proposition
7.1, Theorem 5.1 and Remark 2.2 gives the following realization theorem.

Theorem 7.2. Let V be a Harish-Chandra g⊗ CS-module. Then V is isomorphic
to one of the following g⊗ CS-modules:

(1) W (CS ,a,λ) for some (a,λ) satisfies the condition (7.4);
(2) W (CS , χ) for some χ ∈ E(CS);
(3) W (CS , χ)ω for some χ ∈ E(CS).
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