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FAMILY OF 2-MODULES AND REPRESENTATIONS WITH A
BOUNDEDNESS PROPERTY

MASATOSHI KITAGAWA

ABSTRACT. In the representation theory of real reductive Lie groups, many
objects have finiteness properties. For example, the lengths of Verma modules
and principal series representations are finite, and more precisely, they are
bounded. In this paper, we introduce a notion of uniformly bounded families
of holonomic Z-modules to explain and find such boundedness properties.

A uniform bounded family has good properties. For instance, the lengths of
modules in the family are bounded and the uniform boundedness is preserved
by direct images and inverse images. By the Beilinson—Bernstein correspon-
dence, we deduce several boundedness results about the representation the-
ory of complex reductive Lie algebras from corresponding results of uniformly
bounded families of Z-modules. In this paper, we concentrate on proving
fundamental properties of uniformly bounded families, and preparing abstract
results for applications to the branching problem and harmonic analysis.

1. INTRODUCTION

In this paper, we introduce a notion of uniformly bounded families of Z-modules,
which are good families of holonomic Z-modules with bounded lengths. We show
that the uniform boundedness is preserved by fundamental operations of Z-modules
such as direct images, inverse images and taking subquotients. By the Beilinson—
Bernstein correspondence [5], we deduce several boundedness results about the
representation theory of complex reductive Lie algebras from corresponding results
of uniformly bounded families of Z-modules.

In the representation theory of real reductive Lie groups, finiteness results about
lengths of modules and multiplicities in branching laws are fundamental and enable
us to study Harish-Chandra modules and unitary representations. We list typical
examples of the results: finiteness of the lengths of Verma modules and principal
series representations, Harish-Chandra’s admissibility theorem [I7], irreducibility
of U(g)®-actions on K-isotypic components, and finiteness of multiplicities in the
Plancherel formula of symmetric spaces [35,[47].

Our main concern is that the finiteness is uniform. The length of a Verma
module is bounded by some constant independent of its highest weight, and a
similar result holds for principal series representations. The former is an easy

Received by the editors May 27, 2022, and, in revised form, November 5, 2022, December 17,
2022, and December 26, 2022.

2020 Mathematics Subject Classification. Primary 22E46; Secondary 32C38.

Key words and phrases. Representation theory, algebraic group, lie group, Z-module, harmonic
analysis, branching problem.

The author was partially supported by Waseda University Grants for Special Research Projects
(No. 2019C-528).

(©2023 American Mathematical Society

292


https://www.ams.org/ert/
https://www.ams.org/ert/
https://doi.org/10.1090/ert/641

FAMILY OF MODULES WITH A BOUNDEDNESS PROPERTY 293

consequence of Soergel’s theorem [43] (see also Remark [[.14]), and the latter is
proved by Kobayashi-Oshima in [35].

In [35], T. Kobayashi and T. Oshima give criteria for the finiteness and the uni-
form boundedness of multiplicities in the branching problem and harmonic analysis
of real reductive Lie groups. The criteria are given by conditions on the existence
of open orbits in flag varieties, and proved by using hyperfunction boundary value
maps. A. Aizenbud, D. Gourevitch and A. Minchenko give similar results using fam-
ilies of holonomic Z-modules and Schwartz distributions in [2]. T. Tauchi proves
similar results based on the finiteness of hyperfunction solutions in [44]. Their
results are one of our motivations.

In this paper, we do not deal with concrete applications to the branching problem
and harmonic analysis. We concentrate on providing fundamental properties of
uniformly bounded families, and preparing abstract results for such applications.
See Proposition and Remark for an easy application to the estimate of
multiplicities.

Let us state the definition of uniformly bounded families and their properties.
Our definition is based on Bernstein’s work [6]. In the paper, he has introduced
the multiplicity m (M) of a module M of the Weyl algebra D¢r, and proved that
the multiplicity is well-behaved for direct images, inverse images and taking sub-
quotients. We denote by Mod,(Zx) the category of holonomic Z-modules on a
smooth variety X. Let f: C* — C™ be a morphism of algebraic varieties of degree
d'" and set d = max(1,d’). Let Df; (resp. Lf*) denote the direct (resp. inverse)
image functor. Then we have

d_m(D (M) < d™ " m(M) and Y m(Lif*(N)) < d" " m(N),
for any M € Mody(Zcn) and N € Mody(Zcm) (see Fact ). Here we put
m(M) := m(I'(M)). The key point is that the coefficient d"™™ is independent
of M (or NV). In other words, the estimates of the multiplicities are uniform with
respect to M (or N). This is the starting point of our definition.

Let @7x a 1= (@x A)ren be a family of algebras of twisted differential operators
on a smooth variety X over C. We say that (U, ¢, @) is a trivialization of @/x A if
¢: U — X is a surjective étale morphism and ®y: p#.o/x \ — Py is an isomor-
phism. Here ¢ is the pull-back of algebras of twisted differential operators by .
Take a trivialization (U, ¢, ®) with affine U and a closed embedding ¢: U — C™.
Then for a family M € [], ., Mod;(2/x ), we can consider a function

(1.0.1) A3 A= mep (9" (M) €N

The boundedness of the function does not depend on ¢ (see Proposition [£7]), and
does depend on the isomorphisms ®.

We introduce a relation ~ of trivializations. For two trivializations (U, ¢, ®) and
(V,, 0), we write (U, @, ®) ~ (V, 1, ¥) if the set

{a#% o (PF®y) LN e A} C AU Duxyv) ~ Z(U xx V)

spans a finite-dimensional subspace of the space Z(U x x V') of closed 1-forms. Here
p: UxxV =V and J: U xx V — U are the projections of the fiber product. See
Definition TT1

We say that a trivialization T is bounded if T ~ T. Although the relation
is not an equivalence relation of trivializations, it is an equivalence relation of
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bounded trivializations. Moreover, if two bounded trivializations T' = (U, ¢, ®) and
S = (V,9, V) with affine V and U are equivalent, the boundedness of the function
([COT) defined for T is equivalent to that for S. An equivalence class of bounded
trivializations is called a bornology of </x 5 (see Definition [L.16]).

For a bornology B of o/x x, we say that M € [],., Mody(#x x) is a uniformly
bounded family with respect to B if the function (O] defined for any/some T' € B
is  bounded. We denote by Mody,(e/xa,B) the full subcategory of
[1,ca Mody(#7x,x) whose objects are uniformly bounded. Similarly, we define a
derived category version D%, (Z/x A, B). See Definition for the details.

Corresponding to operations of @7x A, we define operations of bornologies by nat-
ural ways: pull-back f# B, external tensor product BX B, twisting by an invertible
sheaf BX and opposite B°P. Theorem [[1lis a fundamental result about uniformly
bounded families. See Propositions and [£3T] and Theorems and

Theorem 1.1. The uniform boundedness is preserved by direct images, inverse
images, external tensor products, twisting by an invertible sheaf and taking subquo-
tients.

For example, for a morphism f: Y — X of smooth varieties, we can define a
direct image functor

Dfy: Dby (xn,B) = Dby (f#atx a, f#B)

via Dfy(M) = (Dfi(Mx))ren, which is the restriction of the direct product
of the direct image functors on D} (/x ) (A € A). Here f#.o/x 5 is the family
(f#x 2\)ren.

The proofs for the last three operations in Theorem [[. ] are easy by the definition
of uniformly bounded families. The proofs for the others are essentially the same
as a proof of preserving holonomicity (see e.g. [12, VIIL. §12] and [21] 3.2]).

When each @/x ) is G-equivariant, we can define a notion of G-equivariant
bornologies by a natural way (Definition [5.6)). The G-equivariance is preserved by
the pull-back by a G-equivariant morphism. It is important for the representation
theory that if X is a homogeneous variety G/H, there exists a unique G-equivariant
bornology of a family of G-equivariant algebras of twisted differential operators (see
Proposition GI0]).

In Beilinson-Bernstein’s paper [5], they give a way to classify equivariant Z-
modules. Combining the classification and the notion of G-equivariant bornologies,
we obtain

Theorem 1.2 (Theorem [5.I5). Let B be a bornology of &/x a. Suppose that X is a
G-variety of an affine algebraic group G, and B and 2/x 5 are G-equivariant. If G
has finitely many orbits in X, then any family of (x x, G)-modules with bounded
lengths is uniformly bounded with respect to B.

In Section Bl we give several methods to construct bornologies and uniformly
bounded families from algebraic group actions. In particular, we will see that there
are many uniformly bounded families.

Let us state applications of uniformly bounded families to the representation
theory. Let G be a connected reductive algebraic group over C and B a Borel
subgroup of GG. By the Beilinson-Bernstein correspondence, any g-module with
an infinitesimal character is isomorphic to I'(M) for some twisted Z-module on
G/B. We always choose the twist of & such that I' is exact on the category of



FAMILY OF MODULES WITH A BOUNDEDNESS PROPERTY 295

quasi-coherent twisted Z-modules. We say that a family (M;);e; of g-modules is
uniformly bounded if the lengths of M; are bounded and the localization of the
family of all composition factors of all M; is a uniformly bounded family on G/B.

The uniform boundedness is preserved by several operations of g-modules such as
taking subquotients, tensoring with finite-dimensional modules and cohomological
parabolic inductions. This follows from corresponding results for Z-modules in
Theorem [Tl By Theorem [[2] any family of Harish-Chandra modules (or objects
in the BGG category O) with bounded lengths is uniformly bounded. This implies
that many families in the representation theory of real reductive Lie groups are
uniformly bounded.

We shall state the preservation result for cohomological parabolic inductions.
Let P be a parabolic subgroup of G and L a Levi subgroup of P. Let (g, K) be a
pair (see Definition 25)). Take a reductive subgroup K C K such that ¢, C €N
and K normalizes [ and p.

Theorem 1.3 (Theorem [TIH). Let (M;);er be a uniformly bounded family of
(I, K)-modules. Then the family (DT (U(9) @u(p) Mi))ier, jez is uniformly boun-
ded, where DjFﬁL is the j-th Zuckerman derived functor.

As mentioned before, the lengths of Verma modules (or principal series repre-
sentations) are bounded, which is a special case of Theorem [[3] It is well-known
that the length of a cohomologically induced module is finite (see e.g. [32, Theorem
0.46]).

For the proof of Theorem [[.3] we need the localization of the Zuckerman derived
functor. In this paper, we construct the localization following F. Bien [10]. A
conceptual treatment of the localization using the equivariant derived category is
given by S. N. Kitchen [3I]. See also [39]. We do not treat the equivariant derived
category in this paper.

The algebra of invariant differential operators plays an important role in the
representation theory of real reductive Lie groups such as the Schur-Weyl duality
and the compact Howe duality [22], a characterization of compact Gelfand pair
[45], and Harish-Chandra’s study of (g, K)-modules [T7l[18]. If (g, K) is a pair with
connected reductive group K, then the U(g)®-action on a non-zero K-isotypic
component of an irreducible (g, K')-module is irreducible. This is a classical result
that follows from the Jacobson density theorem and complete reducibility of the K-
action (see e.g. [16] Section 4.2]). Theorem[I.4]can be considered as a generalization
of the result.

Let G’ be a reductive subgroup of G and (g’, K’) a subpair of (g, K). Suppose
that K’ is a reductive subgroup of K and Adg(K’) is contained in Adg4(G’).

Theorem 1.4 (Theorem[T.22). Let (V;);cr and (V/)ier be uniformly bounded fami-
lies of (g, K)-modules and (g', K')-modules, respectively (e.g. families of irreducible
Harish-Chandra modules). Then there exists a constant C' such that for any i € I
and j € Z, we have

Leny e (H; (8, K, Vi @ V) < C,
where Len(-) means the length of a module.

One of our motivations of Theorem [[.4]is to study multiplicities in the branching
problem and harmonic analysis of real reductive Lie groups. Theorem [[.4] asserts
that the multiplicities are roughly controlled by U (g)“ . We can give criteria for the
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uniform boundedness of the multiplicities by a ring-theoretic invariant of a quotient
of U(g)¢". See [29] for this kind of applications.

Another motivation of Theorem [[4lis the Howe duality [23]. If V is the Segal-
Weil-Shale representation and (G’, H') is a reductive dual pair of G (i.e. Zg(G') =
H',Zg(H') = G’), then Theorem [[4] asserts that (higher) theta lifts ©;(V’) =
Hi(g/,K';V@V') are of finite length as §’-modules and the lengths are bounded.
By our method, we cannot prove one of important parts of Howe’s theorem that the
theta lift (V') has a unique irreducible quotient. However our theorem enables
us to define the Euler—Poincaré characteristic of the higher theta lifts. See Theorem
We remark that the Euler-Poincaré characteristic of the theta lifting for p-adic
groups is studied in [I].

Let G be a connected reductive algebraic group over C and K its connected
reductive subgroup. I. Penkov and G. Zuckerman call a g-module M a generalized
Harish-Chandra module if M is locally finite, completely reducible and admissible as
a t-module (see e.g. [40]). A relation between generalized Harish-Chandra modules
and supports of Z-modules on G/B is studied by A. V. Petukhov [41].

A motivation of our study of the category of generalized Harish-Chandra modules
is to study the category of U(g)*-modules. By Lepowsky-McCollum’s result [37],
the category of U(g)*-modules can be embedded in the category of (g ® €, A(K))-
modules. Hence this relates the branching problem and harmonic analysis to the
study of (g€, A(K))-modules. As an application of uniformly bounded families, we
prove fundamental results of the category of generalized Harish-Chandra modules:
finiteness of equivalence classes of irreducible objects (Corollary [[30]), boundedness
of the Loewy lengths of modules (Theorem [[4]]), and existence of projective objects
(Proposition [7.43)).

This paper is organized as follows. In Section[2] we review the notions of general-
ized pairs, pairs (g, K), relative Lie algebra cohomologies and truncation functors.
In Section Bl we recall the definition of algebras of twisted differential operators
and their operations. At the end of the section, we study the direct image functors
with respect to the projections of principal G-bundles. The definition of uniformly
bounded families of Z-modules is in Section @ Theorem [l is proved here. Sec-
tion [l is devoted to constructions of bornologies and uniformly bounded families.
The proof of Theorem is given here. In Section [ we review the localization of
the Zuckerman derived functor following [I0]. Applications to the representation
theory are given in Section [1

Notation and convention. In this paper, any algebraic variety is assumed to
be quasi-projective and defined over C. Let Ox and O(X) denote the structure
sheaf of a variety X and the algebra of its global sections, respectively. Let Cx
denote the constant sheaf on X. Suppose that X is smooth. We write Zx for
the algebra of non-twisted (local) differential operators. We express algebras of
twisted differential operators and the spaces of their global sections by script letters
and calligraphic letters, respectively. For example, the spaces of global sections of
algebras oy, #x, and Zx are denoted as Ax,Bx ) and Dx, respectively.

Any representation and module in this paper are assumed to be defined over
C. We express affine algebraic groups and their Lie algebras by Roman alphabets
and corresponding German letters. For example, the Lie algebras of affine algebraic
groups G, K and H are denoted as g, and h. For a complex Lie algebra g, we write
U(g) and Z(g) for the universal enveloping algebra and its center, respectively. For
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an affine algebraic group G, let Gy denote the identity component of G. For a G-
module (resp. a g-module) V, we write V& (resp. V?) for the space of all invariant
vectors in V.

We denote by Mod(#Zx), Mod(A, G), Mod(g, K) and Mod(g) the categories of
(left) modules of a sheaf o7x of algebras, a generalized pair (A, G), a pair (g, K) and
a Lie algebra g, respectively. We write Leng (V') for the length of an R-module V/
in each category, e.g. Lengy, (V), Leng ¢(V), Leng (V') and Leng(V'). We denote
by Mod,.(#7x) (resp. Mody,(#7x)) the category of quasi-coherent modules (resp.
holonomic modules) of an algebra «/x of twisted differential operators. We use
the same notation for categories of equivariant modules such as Mody.(<x, G) and
Modh(ﬁfx, G)

For an algebra o7x of twisted differential operators on a smooth variety X,
let D}.(/x) (vesp. D} («/x)) denote the full subcategory of the derived category
D(Mod(#x)) consisting of objects M*® whose cohomologies H’"(M?*) are quasi-
coherent (resp. holonomic) and vanish for any || > 0. We list operations of sheaves:

e L£V: the dual of an invertible sheaf £

e ') RT": the global section functor and its right derived functor of sheaves

e f~!: the inverse image functor of sheaves

o f.,Rf,: the direct image functor and its right derived functor of sheaves

o f* Lf*: the inverse image functor and its left derived functor of Oy-
modules (or twisted Z-modules)

e Df,: the direct image functor of twisted Z-modules.

Here f: X — Y is a morphism of smooth varieties. We denote by R’ f,, L_;f* and
Dif, the compositions H' o Rf,, H' o Lf* and H’ o Df,, respectively.

Let (1) ® (+) (without subscript) denote the tensor product over C. For an R-
module M and an S-module N, we write M X N for the external tensor product
of M and N.

2. PRELIMINARY

In this section, we prepare several known results and definitions. We deal with
generalized pairs, Lie algebra cohomology groups and truncation functors.

2.1. Generalized pair. In this subsection, we recall the definitions of generalized
pairs and (A, G)-modules, and show easy propositions related to generalized pairs.
We refer the reader to [32] p.96].

In this paper, any algebraic group is affine and defined over C, and any C-
algebra is associative and unital without Lie algebras. For a representation V' of
an affine algebraic group G as an abstract group, we say that V' is a G-module or
G acts rationally on V' if the G-action is locally finite and any finite-dimensional
G-subrepresentation of V' is a representation of an algebraic group.

Definition 2.1. Let A be a C-algebra and G an affine algebraic group over C acting
rationally on A by algebra automorphisms. We say that the pair (A, G) equipped
with a G-equivariant algebra homomorphism ¢: U(g) — A is a generalized pair if
the adjoint action of g on A determined by ¢ coincides with the differential of the
action of G on A.

For a generalized pair (A, G), we denote by Ad4 (or Ad) the action of G on
A. For example, if G’ is a closed subgroup of G, then (U(g),G’) is a generalized
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pair. For a G-equivariant algebra 7x of twisted differential operators on a smooth
variety X, (I'(#x), G) forms a generalized pair.

Definition 2.2. Let (A, G) be a generalized pair. We say that an .A-module V
equipped with a rational G-action is an (A, G)-module if the following two condi-
tions hold.

(i) The differential of the G-action on V coincides with the g-action via the
composition g = A — Endc (V) and
(ii) gXv = Ad(g)(X)gv holds for any g € G, X € Aandv € V.
We denote by Mod(A, G) the category of (A, G)-modules.

If G is reductive, any (A, G)-module is completely reducible as a G-module.
Hence the functor Mod(A,G) 3 V = V& € Mod(AY) is exact, where V¢ is the
space of all G-invariant vectors in V. Moreover, it is easy to see that the functor
sends an irreducible object to zero or irreducible one. See e.g. [16, Theorem 4.2.1].
Hence we have Proposition 2.3

Proposition 2.3. Let (A, G) be a generalized pair with reductive G. Then for any
(A, G)-module V, we have

Len 4o (VY) < Leng ¢(V),
where Len means the length of a module.

We will reduce some propositions about (A, G)-modules to those for (A, Go)-
module. To do this, we need the following easy lemma.

Lemma 2.4. Let (A, G) be a generalized pair and V an (A, G)-module. Then we
have

Leng,g(V) < Lena g, (V) <|G/Go|Lena a(V).

Proof. The first inequality is trivial. It is enough to show the second inequality
when V is an irreducible (A, G)-module.

By Zorn’s lemma, we can take a proper (A, Gy)-submodule W such that any non-
zero (A, Gp)-submodule of V/W contains a unique irreducible (A, Gg)-submodule.
Take a maximal subset S C G/Gq such that Wg := ﬂqes gW is non-zero. Since V
is irreducible as an (A, G)-module, S is a proper subset of G/Gy. Fix g € G/Gy—S.
Since Wg N gW = 0, the composition Wg < V — V/gW is injective. Hence Wg
contains an irreducible (A, Gp)-submodule V.

Since V' is an irreducible (A,G)-module, we have V' = 37 . o gVo. This
implies that V' is completely reducible as an (A, Gg)-module, and hence the length
as an (A, Gp)-module is less than or equal to |G/Gy|. O

2.2. (g, K)-module. We review the notion of pairs (g, K) and the relative Lie
algebra cohomology groups. We refer the reader to [32) Chapters I, IV] and [13]
Chapter I].

Definition 2.5. Let g be a complex Lie algebra and K an affine algebraic group
with Lie algebra ¢ C g. We say that (g, K) is a pair if the following two conditions
hold.

(i) A rational K-action on g by Lie algebra automorphisms is given, whose
restriction to £ is equal to the adjoint action of K on &.
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(ii) The differential of the K-action on g coincides with the adjoint action of £
on g.

We denote by Ady (or simply Ad) the action of K on g.
If (g, K) is a pair, then (U(g), K) forms a generalized pair. A (U(g), K)-module

is called a (g, K)-module.

For a complex Lie algebra g, the functor Tor?(g)(-, -) can be computed by an

explicit complex called the Chevalley—Eilenberg chain complex. We recall the com-
plex in the relative setting. Let (g, K) be a pair. Remark that the following results
also hold if K is replaced with its Lie algebra ¢. The relative Chevalley—Eilenberg
chain complex is a sequence

O CR(g, K) 25 CEyy (g, K) 275 - 25 CRo(g, K) — 0,
where CEy (g, K) := U(g) @u(e) AE(g/€). The differential dy is given by
B0 ® X1 A+ A Xy)
=D DTX @ X A AXG A A X
D (D)Mo (X, X ]+ O AX A AKX A AXG A A X,
i<J

where each X; is in g/¢ and each X;isa representative of X; in g. For a (g, K)-
module V', we set

Hi(g, K; V) := Hy((V ®u(g) CEa(g, K))™) = Hi((V @uey A°(9/8)"),
Hi(g,K;V) = H"(Hom%K(CE.(g,K),V)) ~ Hi(HomK(/V(g/B),V)).

We call them the relative Lie algebra homology and cohomology of V', respectively.

If K is reductive, the complex (CE4(g, K),Jds) is a projective resolution of C
in Mod(g, K). Hence we can compute Tor and Ext by the complex. See [32]
Proposition 2.117] and [36, Lemma 3.1.9].

Fact 2.6. Let V and W be (g, K)-modules. If K is reductive, then we have natural
isomorphisms

Hi(g, K;V @ W) ~ Tord™ (V, W),
H'(g, K; Home (V, W) =~ Exty o (V,W).
The following result is called the Poincaré duality. See [32] Corollary 3.6].

Fact 2.7. Let V be a (g, K)-module. Put n = dimc(g/¥). If K is reductive, then
we have a natural isomorphism

H'(g, K;V @ A" (g/%) ~ Hn_i(g, K; V),

where A"(g/%) is a (g, K)-module with the natural K-action and the g-action given
by the character X — tr(Adg(X)).
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2.3. Truncation functor. In many places, we reduce assertions about a complex
to those about a single object. To do so, we need the truncation functors. We refer
the reader to [27, Definitions 11.3.11 and 12.3.1].

Let A be an abelian category and C(A) the category of complexes in A. For a
complex (C*,d*) € C(A), we set

ke = . 5 CF 2 5 0P S Ker(dF) 050 = -
PECS e 50— 0 Tm(db) = O 02
rShet = o2 s ch 5050
R0t i=.. 505050 CFL S OFF2

7=k and 7>F are called truncation functors, and 7=F and 7% are called stupid

truncation functors. Then we have distinguished triangles

rShCt o 00 - 77ROt B,

rShCt 5 0 s r2het B
Lemma 2.8. Let A and B be abelian categories and m a C-valued additive function
on the Grothendieck group of A. Assume m(M) >0 for any M € A.

(i) For any distinguished triangle (N® — M*® — L*® il—)) in D°(A) and i € Z,
we have

m(H'(M*)) <m(H'(N®)) +m(H'(L*)).

(ii) For any functor F: D*(B) — D®(A) of triangulated categories, complex
M?* € D*(B) and i € Z, we have

m(H'(F(M*))) < Zm(Hi_j(F(Hj(M'))))~

(iii) For any functor F: D*(B) — DY(A) of triangulated categories, bounded
complex M* € C(B) and i € Z, we have

m(H'(F(M*®))) < Zm(Hi’j(F(Mj)))

Proof. (i) is clear by the long exact sequence associated to the distinguished triangle
(N* - M* = L* +—1>) Set I(M*®) := |{n€Z: H"(M*) # 0}|. By induction on
[(M?®) and the truncation functors, we can reduce the assertion (ii) to the case
M?® ~ Nin| for some N € B and n € Z. In fact, we can take k € Z such that
I(T=kC*),1(77kC*) < 1(C*®). Applying (i) to the following distinguished triangle
iteratively, we obtain (ii):

F(r<FM®) — F(M®) — F(r>*Mm*) 15

Similarly, using the stupid truncation functors, we obtain (iii). |

3. 9-MODULE AND ITS OPERATIONS

The purpose of this section is to summarize fundamental results about Z-
modules.
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3.1. Twisted Z-module. We review algebras of twisted differential operators and
their operations. We refer to [4], [28], Section 1], [26] Sections 3 and 4] and [25] for
(G-equivariant) algebras of twisted differential operators. In this paper, we denote
by Zx the algebra of non-twisted (local) differential operators on a smooth variety
X. Any variety in this paper is assumed to be quasi-projective.

Let X be a (quasi-projective) smooth variety over C. Let ix be the standard
homomorphism Ox — Zx. There are several definitions of algebras of twisted
differential operators on X. We adopt a definition in which the algebras are locally
trivial in the étale topology. We refer to [28, 1.1] for the general case, and to
[20, A.1] for the locally trivial case in the Zariski topology.

Let Tx be the tangent sheaf of X and p: 7*X — X the natural projection from
the cotangent bundle T* X to X.

Definition 3.1. We say that a sheaf o/ of C-algebras on X is an algebra of twisted
differential operators if <7 is equipped with a C-algebra homomorphism i: Ox — &/
and an increasing filtration {F;(2/)},., satisfying
(i) Fi(«/) =0 for any i <0,
(i) & = Uiez Fi(o),
(i) Fi() - (/) C Fyss(af) and [Fy(), Fy()] C Fipyr (/) for any i, €
Z,
(iv) Im(i) = Fo(«/), and Ox is isomorphic to Fy(<) by i,
(v) the morphism o: Fy(&)/Fo(e/) — Tx given by o(T)(f) = [T, f] (T €
Fi (), f € Ox) is an isomorphism,
(vi) the Ox-algebra homomorphism p,Or-x — grf’ (/) induced from i @ o~ !:
Ox ® Tx — grf’ (&) is an isomorphism.
In addition to these conditions, we assume that & is locally trivial in the étale
topology, i.e. there exists an étale surjective morphism 7: X — X such that the
pull-back 7# .47 (defined below) is isomorphic to (Z5,i5).

We identify Ox with {(Ox) = Fy(«/). The filtration F' is called the order
filtration of <.

Let f: X — Y be a morphism of smooth varieties and <% an algebra of twisted
differential operators on Y. We set

Qf = f_lﬂ¥ ®f—1OY Qx,

Ay x = [Tty @10, QU

Hx_y = 0x @10, [y,
where Qx (resp. {2y) denotes the canonical sheaf of X (resp. Y). f#.a% denotes the
sheaf of all differential endomorphisms of the O x-module &/x _,y that commute with
the right f~'aA -action. Then f#.a% is an algebra of twisted differential operators
on X and @4 . x is an (f 1oy, f7 .o/ )-bimodule.

The direct image of M® € Dgc(f#mfy) is defined by
Dfy(M®) = Rfu( ey x ®Fs, M) € Db(Hy),
and the inverse image of N'* € Db () is defined by
LF*(N®) = oy @ 1, £ (N®) € Dh(fE).

It is well-known that the functors Df, and Lf* are local for Y, and preserve
holonomicity.
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Lemma 3.2. Let </x be an algebra of twisted differential operators on X. Let
M € Mody (") and N € Mody(x). Suppose that f : X — Y is an affine
morphism and N is flat. Then M Qg N is fe-acyclic and there exists a canonical
isomorphism of Cy -modules

FoM) &5, () +N) = ful(M @7 N).
Moreover, f.(N) is a flat f.(o/x)-module.

Proof. Let M and N be as in the assertion. For any open subset U C Y, there is
a canonical morphism

L(f~HU), M) @r(p-1(0),0x) T THU),N) = D(f7HU), M @7 N)

by the definition of the tensor product ®.,. By the universality of the sheafifica-
tion, this induces a morphism f, (M) ®, () fx(N) = fu(M @4 N). We shall
show the morphism is an isomorphism. Since the assertions are local for Y and f
is affine, we can assume that X and Y are affine.

Since X is affine, M has a free resolution --- — F; — F5 — M — 0. Then we
obtain an exact sequence

3 FQuy N =5 Fo Q@ N > M Qe N =0

of Cx-modules because N is flat. Since F; @, N admits a quasi-coherent Ox-
module structure, F; ® 7, N is fi-acyclic for any i. Hence M ® 4, N is fi-acyclic
and we obtain an exact sequence

v fo(FL Qe N) = fu(Fo @y N) = fu(M @y N) — 0

of Cy-modules. Here we used that f. : Mod(Cx) — Mod(Cy) has finite coho-
mological dimension, i.e. R'f, = 0 for any i > 0 [19, III, Theorem 2.7, Lemma
2.].

For £ € Modg.(#x), set T(L) = fu(L) ®@f. (arc) [+(N). Since Fj is free,
J+«(Fi @z N) is canonically isomorphic to T(F;). Then we have a commutative
diagram

0

T(F1) T(Fo) (M)

Fu(F1 Qury N) —— fu(Fo Qupyy N) —— fou(M Qpr, N) — 0.

We have seen that the lower sequence is exact. The upper sequence is exact since
[«(0) @5, (ary) f«(N) is right exact. Hence we obtain the desired isomorphism

We shall show that f.(N) is flat. Let y € Y. For any L € Mod(f (")), the
canonical homomorphism

L = [ ®r(aory L)y(= f(Ox @rox) L)y)

is an isomorphism since X is affine. Hence the functor fi(-)y: Modg. (/") —
Mod(f.(<#y"),) is essentially surjective, and similarly, full. Therefore f.(N), is
flat and hence f.(N) is flat. O
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Proposition 3.3. Suppose that f: X — Y is an affine morphism. Then Df,
is isomorphic to the left derived functor of f.(@yx) @y, f#up, f«(-), which is

fely —x) ®J€*f#dy fo ().

Proof. Let M*® € Dgc(f#,;zfy). Then M?* has a locally free resolution F* by [21,
Corollary 1.4.20]. By Lemma B.2] @« x ®f# o, F'is f.-acyclic and we have

Dfy(M®) = ful @y e x @ppor, T°)
> [y o x) Op, pray [+(F7)
~ fu( e x) OF g [(M®).
Note that f.(F*®) is a flat resolution of f.(M?*) by Lemma This shows the

proposition. O

Facts 3.4] and are fundamental. See [28, Lemma 1.1.7, Propositions 1.2.3
and 1.2.6], and see [2I] Propositions 1.5.11 and 1.5.21, and Theorem 1.7.3] for the
non-twisted case.

Fact 3.4. Let f: X — Y and ¢g: Y — Z be morphisms of smooth varieties and
/7 an algebra of twisted differential operators on Z. Then we have (go f)#.a/; =

f#g# .ty and
(i) DgyoDfy =D(go f)4,
(ii) Lf*o Lg* = L(go f)*.
To state the base change theorem, we need the shifted inverse image functor

fT. For a morphism f: X — Y of smooth varieties and an algebra 2% of twisted
differential operators, we set

FHF®) = L (F*)ldim(X) — dim(Y)]  (F* € Dg (o).

Fact 3.5 (Base change theorem). Suppose that we have the following cartesian
square of smooth varieties:

Yxx 725y

b,k

Let «/x be an algebra of twisted differential operators. Then there exists an iso-
morphism gt o Df, ~ Df, og' of functors.

In this paper, the shift of f is not important. When we use the base change
theorem, we will say that Lg* o D fy is isomorphic to D fy o Lg* up to shift.

3.2. Picard algebroid. We review the notion of Picard algebroids and describe
the action of f#.a% on @4 . x using Picard algebroids. We refer the reader to

[ §2].

Let Z be a smooth variety and 7z the tangent sheaf of Z.
Definition 3.6 (J4 1.2 and 2.1.3]). Let T be a quasi-coherent Oz-module on Z.
T is called a Lie algebroid on Z if T is a sheaf of complex Lie algebras equipped
with an Oz-module homomorphism o: 7 — 7z such that

T, fT'] = (o(T)))T" + f[T.T']
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for any local sections T,T" € T and fe€e0z.

A Lie algebroid T on Z is called a Picard algebroid if o: T = Ty is epimorphic
and there is an isomorphism i: Oz — ker(o) of Oz-modules such that [T,i(f)] =
o(T) f for any local sections T' € T and fe0Oz.

The isomorphism ¢ in Definition is unique. We identify Ox with i(Ox).

For an algebra (7z,1) of twisted differential operators on a smooth variety Z,
we denote by P(«fz) the sheaf of sections in o7z with the order less than or equal
to 1. Then P(7z) is a Picard algebroid on Z equipped with the homomorphism
i: Oz — P(4z). Since o/ is generated by P(2z), to define an action of o7y, it is
enough to define an action of P(&z) such that i(1) acts by the identity morphism
[4 Lemma 2.1.4].

We describe the action f#.o/4 on o4 x. Let X,Y,f and 94 be as in the
previous subsection. We denote by f#P (%) the fiber product f*P (e ) X 7, Tx
of

PPt L0 Ty Tx.

Then f#P(a# ) is a Picard algebroid on X equipped with i: Ox — f#P (%)
(h+— (h®1,0)). We can define an action of f#P (o) on &x_y via

O fieT,T) gosS=TgeS+Y_ fige TS

for (3, fi @ T3, T") € f#*P(e) and g ® S € /x_y. This induces a canonical
isomorphism f#P(e# ) ~ P(f#.af) of Picard algebroids. See [4, Lemma 2.2].

Proposition 3.7. For local sections (3, fi @ T;,T") € f#P(y) and SR TR w €
Dy x = fTH Ay o, O) ®oy Qx, we define

S®T®W'(Zfi®TiaT/):ZSTi®T®fiW
=) S@a(T)r® fiw—-S®Teo(I")w,

where (T )w and o(T;)T are defined by the Lie derivative. Then this induces a
right action of f#at on oy x.

Proof. A straightforward computation shows the proposition. Hence we omit the
details. O

Remark 3.8. Since 4% is locally trivial, we can reduce the computation to the non-
twisted case. In the case, the action coincides with that in [2I, Lemma 1.3.4]. In
[28, 1.1.15], the action in Proposition [31is constructed by a formal computation
of algebras of twisted differential operators.

3.3. G-equivariant module. In this subsection, we review the notion of G-equiva-
riant Z-modules. We refer the reader to [4] 1.8], [25] and [26], Section 3].

Let G be an affine algebraic group and X a smooth G-variety. We write p: G x
X — X for the multiplication map and py: G X X — X for the projection onto the
second factor. An Ox-module M is G-equivariant if an Og« x-module isomorphism
M =5 p5M is specified and satisfies the associative law [26] (3.1.2)]. The G-
equivariant structure is sometimes called an (algebraic) G-action on M. In fact,
the G-equivariant structure induces a G-action on the set of sections of M. The
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G-action on M is differentiable, that is, it induces a Lie algebra homomorphism
g — Endc (M)

We say that an algebra o/ of twisted differential operators is G-equivariant if
an algebra homomorphism 44: U(g) — &/ and a G-action on & are specified and
satisfy the following conditions:

(i) The G-action is given by algebra isomorphisms.
(ii) g is G-equivariant with respect to the adjoint action on U(g).
(iii) The differential of the G-action on «f coincides with the adjoint action of
g on &/ coming from 4.

The G-equivariant structure induces an isomorphism
(3.3.1) p ot ~ pf o (~ Do R o)

of algebras satisfying the associative law. See [4], Lemma 1.8.7].

Let /x be a G-equivariant algebra of twisted differential operators on X. An
&/-module M is called G-equivariant or an (#x,G)-module if M is G-equivariant
as an Ox-module and the morphism p*M =» psM is a Do W &x-isomorphism.

Let f: Y — X be a G-morphism of smooth G-varieties. Then the natural left
action of U(g) on @ _, x induces an algebra homomorphism U(g) — f#.o/x. Hence
the algebra f#.o/x is G-equivariant. The G-equivariant structure coincides with
the one obtained from the canonical isomorphism P(f#a/x) ~ f*P(ex) X s+ Ty
of Picard algebroids.

In this setting, the direct image functor and the inverse image functor preserve
G-equivariant modules, i.e. we have

H'o Df,: Mody.(f#a/x,G) — Mod.(ex,G),
H'o Lf*: Mod(ex,G) — Mod.(f#ox, Q).

Although it is more conceptual to use the equivariant derived category, we do not
deal with it in this paper.

Let A be a G-equivariant algebra of twisted differential operators on X. We
consider G x X as a G x G-variety via the action (a,b) - (g,7) = (agb~*,bx), and
the codomain X of u (resp. p2) as a G x G-variety by letting the second (resp. first)
factor of G x G act trivially. Then p and py are G x G-equivariant, and hence p# A
and p;#A are G X G-equivariant algebras.

Proposition 3.9. The isomorphism B31) is G x G-equivariant.

Proof. The assertion follows from the associative law of the G-equivariant structure
on A and easy diagram chasing. Hence we omit the details. O

3.4. Principal bundle and direct image. Let G be an affine algebraic group
and p: X5 Xa principal G-bundle over a smooth variety X together with a free
right action X xG — X. In this paper, a principal bundle over an algebraic variety
is assumed to be locally trivial in the étale topology. Then the projection p is affine.
In this subsection, we study the direct image functor with respect to the projection
.

Let @/ be a G-equivariant algebra of twisted differential operators on X equip-
ped with a G-equivariant algebra homomorphism R: U(g) — /5.
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Proposition 3.10. Assume that p: X — X is a trivial bundle, i.e. X ~XxG.
Then there exists some algebra o/x of twisted differential operators on X such that

.Q/)? ~ .Q/X X @G
under the identification X~ X xG.

Proof. Let u: X x G — X be the multiplication map and p; : X x G — X the
projection. We define s: X — X = X x G via ¢ — (z,e) and t: X 5 XxG
via X x G 3 (2,9) = (2,e,9) € X x G x G. Then we have pot = idg and a
commutative diagram

e

X—2 s X.

A X

We regard X and X at the bottom as G-varieties via the trivial actions and X x G
via the right translation on GG. Then the morphisms are G-equivariant.
Since 275 is G-equivariant, we have

u#ﬂg o~ pf@zfg.
We therefore obtain isomorphisms
= (not)aly = t#pf oy ~ p? st oty ~ 57 o/ K D
of G-equivariant algebras of twisted differential operators. O
For A € (g*)9, we set I := Ker(\) C U(g) and
dxx = (Cros Qu(g) Poz)®
~ (pu | R(I_xi6)ps5 )
~ po S [(R(I-x16)pslz)"
(3.4.1) ~ (ol [Pz R(I-1))C,
where § € (g*)¢ is the character Z — tr(ady(Z)). Remark that
(R(I-x+5)O(G)) = (O(G)R(I-»))“ C Dg.

Then &7x  is a G-equivariant algebra of twisted differential operators on X equipped
with the homomorphism U(g) — “/x x (Z — A(*Z)). Here we consider X as a G-
variety via the trivial action. Note that if A is a character of G and p € (g*)¢
x4 18 isomorphic to Ly Qo Px.u ®o, L_x, where Ly is the invertible Ox-
module corresponding to the line bundle X XxagCy — X.

For a while, we fix A € (g*)¢. We write Dp y: Db.(p*e/x x) — D} (e/x,») for
the direct image functor in Section Bl We define a right exact functor

pra(M) :=Cy_s Qu(g) pe(M) € Modqc(ﬁfX’A)

for M € Mod,.(#/5). For a character A of G, py A(Ox) is isomorphic to Ly if G is
reductive.
To see Dpy » =~ Lpy », we need Lemma 3111

)

Lemma 3.11. p#a/x y is canonically isomorphic to Az as a G-equivariant algebra
of twisted differential operators.
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Proof. Since p: X > X is locally trivial, the multiplication map induces an iso-
morphism

'Q{X—>X = O)? Qp-10x p_ldx,x ~ WX/%XR(I,)\)
of sheaves. This is G-equivariant and an (O ® U(g), p_l,ngX, »)-bimodule isomor-

phism. By the definition of p# &/x \, we obtain an isomorphism o5 ~ p*alx \ of
G-equivariant algebras of twisted differential operators. O

The isomorphism &5 ~ p#o/x \ can be obtained from the following cartesian
square:

P*P(ex 5) £e p*Tx

| |

P(elz) = p*(p«(P(5))) — Tz ~ p*(p-(T5)).

This implies P(a/5) ~ p#P(/x 5) (see the discussions above Proposition ). We
identify /% with p o/x » by the isomorphism.

We shall describe the right .2/z-action on &7, 5. Let 7 be the natural projection
T)?G — p~1(Tx). Here T)? is the sheaf of G-invariant local sections of T, that is,
P (p«(T5)Y). Fix a basis X1, Xs,..., Xaima € 9. Since p: X — X is a principal
G-bundle, Q, = p~1(Q%) ®p-10, Q5 is isomorphic to O as an O g-module. The
isomorphism is given by

01 A Oz A Abdim x @ w = w(B1, 02, . .., Oaim x, R(X1), R(X2), ..., R(Xgimc))

5, where each 51 is a
local section of 7}? such that m(6;) = 6;. Since [Tg,R(g)] = 0, the isomorphism
commutes with the actions of ’7}? on Q, and O defined by the Lie derivative.

for local sections 61,60s,...,04imx € p~H(Tx) and w € Q%

Lemma 3.12. &/, 5 is isomorphic to 5 /R(I_xi5)95 as a (p~ ox x, d5)-
bimodule.

Proof. Let i: Q, — Oz be the above isomorphism. Composing i with the multi-
plication map, we obtain an isomorphism
‘Q{Xeff = p_l,;z{X,)\ ®p-10x QP - p_l‘Q{X)\ ®p-10x O)? - ’Qf)?/R(I—)\-H;)”Q{)?
of sheaves, and denote it by ¢. It is trivial that ¢ is a (p_lszfx,\,(’)g)—module
homomorphism. By Proposition B4, the action of 6 € P(%X)G is given by
(SQw)-0=S0@w—-S®c0)w

for S®w € oy, 5. Here o: P(o5)% — T)g is the restriction of the morphism
o: P(ay) — Tx attached to the Picard algebroid. Hence ¢ commutes with the
P(/5)%-action by the definition of i. Since P(#/5) is generated by P(#/5)¢ as an
Og-module, ¢ is a (p~ /x5, @5 )-bimodule isomorphism. O

Remark 3.13. Suppose that G is not unimodular. Although ¢ is a right g-homo-
morphism, the isomorphism p~'ay ®p-10x 2p — plalx \ ®p-105 O is not.
This is because i: {2, — Ox is not G-equivariant.

We fix the isomorphism @7y, ¢ ~ /5 /R(I_xys5)%5.
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Proposition 3.14. Dp_ y is isomorphic to the left derived functor Lp, x of p4+ .

Proof. By Proposition B3, Dp, » is isomorphic to p.o/y, 5 ®1€*¢z¢)\( p«(+). Hence it
is enough to show that there is a natural isomorphism

p*('Q{Xef() ®p*(4zf)7) p*(}—) ~Chs Qu(g) p*(}—)
for any locally free «7z-module F.
Since p is affine, we have p.(#y, 5) =~ p«(5)/R(I_xi5)p«(Z5) by Lemma
This implies
Pe(Fx %) ®p.(ar) P+ (F) = pu(F)/R(I-x15)p+(F)
~ Cr_s5 Qu(g) P+(F).
We have proved the proposition. O

Lemma 3.15. Let U be an open subset of X. If p.(#/5)|u is acyclic (e.g. U is
affine), I'(U, p.</5) is a projective left/right U(g)-module.

Proof. Since the bundle p: X & X is locally trivial in the étale topology, we
can take an affine étale covering {U; — U} such that U; xx X - U; is a trivial
principal G-bundle. Since p.&/5 is a quasi-coherent Ox-module, the cohomology
group H"(U, p,</3) is isomorphic to the étale cohomology group H*(Ust, (p«2/5 )et)
for any i. Here (p./5)e: is the étale sheaf associated to p.«/g. Hence the Cech
complex

0= T(U,pdz) > CO—CH— -
associated to the covering {U; — U} is exact and each term CV is a free left/right
U(g)-module. I'(U, p.o/5) is therefore a projective left /right ¢/(g)-module. O

By Lemma and Proposition B.I4] we obtain Theorem Note that
for a generalized pair (A,G) and a left A-module M, Torll-’{(g) (Cx—s, M) admits
a natural (A/I_y;sA)%module structure if A is a flat left ¢ (g)-module. In fact,

Torzi'{(g) (Cx—s, M) can be computed by using a free resolution of the .A-module M.
Theorem 3.16. For any M € Mod,.(</5), we have a natural isomorphism
D™py A(M) = Torf!® (Ca-s,p.(M))
of @fx x-modules, where Tor?(g)((c)\,g,p*(/\/l)) denotes the sheafification of the pre-
sheaf (U — Tor'®(Cy_s, T(p~1(U), M))).
By Theorem [B.10] there is a natural homomorphism
Tor}! @ (Cy 5, T(M)) = T(D™"py A(M))

of A%—modules, where Ay = I'(@/%). In general, it is not an isomorphism. Un-

der some assumption, we can show that the homomorphism is an isomorphism as
follows. Put Ax » :=I'(ex ).

Lemma 3.17. Assume that o/ is acyclic. Then the natural homomorphism
(Ag/R(I-x45)A5)Y — Ax is bijective. Moreover, for a free o/z-module F,
the natural homomorphism Cx_s ®yg) T'(F) — T(py A(F)) is an isomorphism of
Ax x-modules.
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Proof. Let F be a free @/g-module. Since p is affine and @/ is acyclic, p.(F) is
also acyclic. Take a free resolution --- — P; LN P, o, Cyx_s — 0. By Lemma
BI5 the following sequence is exact:
d d
- Py ®1,{(g) p*(]:) = Py ®M(g) p*(]:) = pJﬁ)\(]:) — 0.
Since all P; ®q(g) p«(F) are acyclic, Ker(dp) is also acyclic, and hence

T(Py ®u(g) P+ (F)) 5 T(Po @u(g) 2+ (F)) 2 T(py A(F)) = 0

is exact. Since each P; is free, we have I'(P; ®y(g) P«(F)) = Pi ®uqg) I'(F). This
implies that the natural homomorphism Cy_s®(g)['(F) — I'(p4 A(F)) is bijective.
Hence the second assertion follows from the first one.

Since ()¢ is left exact, we have

Axp = TP (@5)9) = T(pea (5))9 = (Ag/R(I-x45)Ag)C.
This implies that the natural algebra homomorphism (Ag/R(I-x4+5)Az)% = Ax

is an isomorphism. (|

Theorem 3.18. Let M € Mod.(</5) and i € N. Assume that the global section
functors are exact on Mody.(#/5) and Mody.(#x ). Then the natural homomor-
phism

Torl! @ (Ca_s, (M) = D(D~'pya(M))

is an isomorphism of Ax x-modules.

Proof. Remark that any object in Mod,.(2/5) is acyclic because IT' is exact on
Modg. (475 ). Take a free resolution F* of M. By Lemma[B3.I5] I'(F*) is a projective
resolution of I'(M) as a g-module. Hence we have
D(D™"pi a(M)) = D(H ™ (p1 A(F*)))

~H "ol (ps A(F*))

~ H_i((C)\f(; ®u(g) F(]:.))

~ Torzi’{(g)((CA,(s, r(Mm)).
Here the third isomorphism follows from Lemma B.17] O

Remark 3.19. One can prove a similar result about the commutativity of RI' and
Cr-s ®LL{(g) () without the exactness of T

I' is exact for any affine variety and A, or for any flag variety and good A (see
Fact [1]). To apply Theorem B8 to direct products of such varieties, we shall
show Lemma [3.20

Lemma 3.20. Let X and Y be smooth varieties and o/x (resp. <) an alge-
bra of twisted differential operators on X (resp. Y ). If the global section func-
tors on Mod,.(x) and Mod,.(%y) are exact, then the global section functor on
Mod,.(x X o4) is also exact.

Proof. Let 0 - M1 — My — M3 — 0 be a short exact sequence of quasi-coherent
Ax K ay-modules. Let U be an affine open subset of X. We write p: U XY — Y
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for the projection onto the second factor. Then p is affine. Hence we obtain a short
exact sequence

0= p(Miluxy) = p(Maluxy) = p«(Msluxy) = 0

of quasi-coherent @4 -modules. Since the global section functor I' on Mody.(<4-)
is exact, we obtain a short exact sequence

(3.4.2) 0—->T(UXY,M;) >T(UxY,Msy) -T(U x Y, M3) = 0.
Let g: X x Y — X be the projection onto the first factor. By (342,
s MOdqc(.ﬂZ/X X cny) — MOdqc(%X)

is exact. Since the global section functor I' on Mod,.(&x) is exact, this implies
that the sequence 0 — I'(M;) — I'(M3) — I'(M3) — 0 is exact. We have proved
the lemma. g

4. UNIFORMLY BOUNDED FAMILY

The purpose of this section is to reformulate Bernstein’s work [6] about the
multiplicity of a Den-module. We will introduce the notion of uniformly bounded
families of twisted Z-modules. A uniformly bounded family is a family with a good
boundedness property, which is preserved by direct images and inverse images. We
give several applications of uniformly bounded families in Section [7l

4.1. Multiplicity and functors. In this subsection, we review Bernstein’s work
[6] about the multiplicity (or the Bernstein degree) of a Den-module. We refer the
reader to [6], [21] 3.2.2] and [11l 1.83 and §4] for the proof of facts.

Let Zcn be the algebra of non-twisted differential operators on C™ and D¢ the
algebra of global sections of Z¢n. Let (21, g, ..., 2,) be the standard coordinate of
C"™ and put 0; = 9/9x;. We denote by F the Bernstein filtration of Dcn, and then
FyDen = C,FyDen = spang{l,x1,22,...,2Tn,01,02,...,0n}, F;Dcn = (FiDen ).
Facts [4.1] and are essential for our study of a family of Z-modules.

Fact 4.1. Let M be a finitely generated D¢r-module and M a generating subspace
of M of finite dimension. Put F;M := F;Dcn - My. Then
(i) there exists some polynomial f € Q[t] such that f(i) = dimc(F; M) for any
1> 0
(ii) d(M) := deg(f) does not depend on My
(iii) the coefficient ag(ar) of f(t) = agant®™) + (lower terms) does not depend
on M
(iv) m(M) := agary - d(M)! is a natural number
(v) d(M) > n if M is non-zero.

The integer m(M) is called the multiplicity (or the Bernstein degree) of M. A
Dern-module M is said to be holonomic if M is finitely generated and d(M) = n or
d(M) = 0 holds. A D¢r-module M is holonomic if and only if the corresponding
Pen-module Pen @p, M is holonomic (see [2I, Proposition 3.2.11]). We put
m(M) := m(T'(M)) for M € Modp(Pc») and

m(M®) = 37 m(H' (M)

for M® € Db (Zgc»).
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Fact 4.2. Let 0 - L - M — N — 0 be a short exact sequence of finitely
generated Dcn-modules. Then we have d(M) = max(d(L),d(N)). If in addition
d(L) = d(N), then m(M) = m(L) + m(N) holds. In particular, the length of a
holonomic D¢r-module is less than or equal to its multiplicity.

Fact[A3lis an easy consequence of the definition of the multiplicity. See the proof
of [6, Theorem 3.2].

Fact 4.3. Let N and M be modules of Dcr and Dem, respectively. If N and M
are holonomic, then N X M is holonomic and we have m(N K M) = m(N)m(M).
Conversely, if N X M is holonomic, then N and M are holonomic.

We need a derived functor version of [6, Theorem 3.2]. The proof is the same as
the original version.

Fact 4.4. Let f: C™ — C™ be a morphism of affine varieties. Set d:=max(deg(f),1).
Then for any M® € D% (%c») and N'® € D% (Zcm), we have

m(Df(M?®)) < d"FMm(M®),
m(Lf*(N*®)) < d"T™m(N°®).

4.2. 9-modules on affine varieties. In FactlL4l we have seen that the multiplic-
ity is well-behaved for operations of Z-modules on affine spaces. In this subsection,
we consider similar results about Z-modules on affine varieties.

We recall the Kashiwara equivalence [2I, Theorem 1.6.1].

Fact 4.5. Let f: X — Y be a closed embedding of smooth varieties. Then
fy = Df1: Modg.(Zx) — Mod,x.(Zy) and
Dfi: Dg(Zx) = Dy (Zy)
give equivalences of categories. Here Mod;i(@y) is the full subcategory of

Mod,.(Zy) whose objects are supported on X, and D2X(Zy) is the full sub-

category of DZC(@y) consisting of complexes whose cohomologies are supported on
X.

For M* € D%(%x) on a smooth variety X and a closed embedding ¢: X — C",
we set

m,(M®) := m(Diy (M?®)).

Proposition 4.6. Let f: X — Y be a morphism of affine smooth varieties. Fix
closed embeddings t: X — C™ and ': Y — C™. Then there exists a constant C' > 0
such that

(4.2.1) my (Df(M*)) <C-m,(M*®),
(4.2.2) m, (Lf*(N*®)) < C-my(N?)

for any M*® € D% (Zx) and N* € D}(Dy).

Proof. Fix an extension fof f to C™ such that the diagram

X——Y
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is commutative. Set d := max(deg(f),1). By Fact [4.4] we obtain
my (Df(M®)) = m(Dfi(Dey (M®))) < d"m, (M),

Here we used D o Df, = Dfy o Du, (Fact BA(D)). We have shown the first
inequality (ZZT]).
Consider the following diagram:

x—I oxxyLoy

lb lbxu
f

Cr——C"xCm,

where f1(z) = (z, f(2)), f2(x,y) =y and f1(x) = (2, f(x)). Since the left square
is cartesian, we have an isomorphism Diy o Lff ~ Lff o D(v x (') of functors up
to shift by the base change theorem (Fact BA]). Hence we obtain

mo, (LF*(N*)) = m(Lff o D(vx V') 4 o Lf5(N*®))
< d"m(Duy (Ox) KD (N*®))
=d"""m, (Ox)m,(N*®)
by Fact 3] and Fact .4l which proves the second inequality (Z2.2). O

In the next subsection, we will consider families of twisted Z-modules on general
smooth varieties. Although the multiplicity itself is no longer a meaningful value
for general smooth varieties, boundedness of multiplicities of twisted Z-modules
can be defined.

To reduce properties of twisted Z-modules on a non-affine variety to that of
affine spaces, we have many choices of affine étale coverings, closed embeddings to
affine spaces, and local trivializations of an algebra of twisted differential operators.
We shall consider the effect on the multiplicity by the choices.

Proposition 4.7. Let f: X — Y be a surjective étale morphism of affine smooth
varieties. Fiz closed embeddings 12 X — C™ and /: Y — C™. Then there exists a
constant C' > 0 such that

C™hmy(N®) <m (Lf*(N®)) <C-my(N*®)
for any N'* € D%(%y).

Proof. We have proved the second inequality in Proposition We shall show the
first inequality.

Since f is smooth, f* is exact [2I] Proposition 1.5.13]. Hence we can assume
N e Modp(Zy ).

Since f is étale, f(M) admits a natural Zy-module structure for M € Mod,(Zx)
and the direct image functor D f, is isomorphic to Rf, = fi by [I5] Theorem 2.2].
Hence the canonical morphism N — f.(f*(N)) of Oy-modules is a morphism
of Py-modules. The morphism is monomorphic since f is surjective. Applying
Proposition 6 to f*(A), we obtain

mu(N) < my (f.(f* (V) < C-mi(f*(N)),

where C' is a constant independent of A. ([l
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Hereafter we consider the effect on the multiplicity by twisting by automor-
phisms.

Let X be a smooth affine variety and ¢: X — C" a closed embedding. The
automorphism group Aut(Zx) is isomorphic to the additive group Z(X) of closed
1-forms on X [5]. For w € Z(X), we denote by A, the corresponding automorphism
given by

A,(T)=T—-w(T) € Tx ® Ox
for T € Tx. A Px-module M can be twisted by A, and the twisted module is
denoted by M®“. We use the same notation for a complex of Zx-modules, e.g.
(M®)~.
Lemma 4.8. Let W be a finite-dimensional subspace of Z(X). Then there exists
a constant C such that

m,(0%) <C
for anyw e W.
Proof. Put M := Ox ® O(W) equipped with a Tx-action via

T'(f®9)=Tf®g—Zwi(T)f®/\ig (T € Tx),

where {w;}, is a basis of W and {\;}, is its dual basis. Then the action on M
extends to a Zx ® O(W)-action.

We denote by m,, the maximal ideal of O(W) corresponding to w € W. Then
by definition, we have M/m, M ~ O% for any w € W. Since the functors ¢4 and
I" are exact, we have

L(e4(0%)) = T(e4 (M) /myI(14.(M)).

Put M =T (14 (M)).

Since the functors ¢4 and I' preserve the lattice of submodules, M is noetherian
and hence finitely generated as a Dgn @ O(W)-module. Take a finite generating
subspace S C M and put F; M := (F;Dcn @ O(W))S for i > 0. Then the associated
graded module grf'M is a finitely generated O(C™ x W)-module.

By [38, Theorem 24.1], we can take an affine open subset U of W such that
O(U) ®ow) gr’ M is a free O(U)-module. Hence O(U) ®ow) F; M is a projective
O(U)-module for any ¢ > 0. This implies that the function

Wsw— dlm(c(FzM/mszM)
is constant on U. Hence U > w — m(M/m,M) is a constant function by the
definition of the multiplicity.

Replacing W by W\U and M by O(W\U) ®owy M, and repeating this argu-
ment, we can see that m(M/m,M) is bounded on W. O

Remark 4.9. Lemma .8 can be considered as a special case of [2] Theorem 3.18]
and the latter half of our proof is essentially the same as theirs.

Corollary 4.10. Let M* € D%(Px) and W be a finite-dimensional subspace of
Z(X). Then there exists a constant C' independent of M® such that

m,((M*)*) < C-m, (M)
for anyw e W.
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Proof. Fixw € W. Then we have (M*)¥ ~ M*®{ 0%. Note that for any smooth
variety Y and N'®, £* € D} (Zy), the tensor product N'* ®§  L* is isomorphic to
LA} (N*KL®), where Ay : Y — Y XY is the diagonal embedding (see [211 p. 39]).
Applying the base change theorem (Fact B.H) to the following cartesian square

X 2% X xX

lb l/LXL
Cr 22 ¢n x e,
we have
Dis((M*)°) = Diy(M®) @, 1.(0%)
up to shift. By Facts 3] and .4l we obtain
m((M)) = m(Duy (M®) @b, 14(0%)) < m, (M*)m,(0%).
This inequality and Lemma [£.§] imply the assertion. O

4.3. Uniformly bounded family. We shall define a good local trivialization of
a family of algebras of twisted differential operators. For an étale map ¢: U — V|,
we denote by ()¢ the functors ¢ (-) and ¢*(-) by abuse of notation.

Let @7/x a = (&x A)rea be a family of algebras of twisted differential operators on
a smooth variety X. Hereafter we deal with [], ., Mod(/x ) the direct product
of categories and its derived category. Set

MOdh(rQ{X,A) = H Modh(ﬂx7,\),
AEA
DZ(JZ{XJ\) = H DZ(.Q/X)\).
AEA
We denote by HY, Df,, Lf*,(-)|y and f# the direct products of the corresponding
functors by abuse of notation.
Recall that Z(X) is the space of closed 1-forms on X, which is isomorphic to
Aut(Zx) as an abelian group.

Definition 4.11. We say that a tuple (U, ¢, ®) is a trivialization of o/x a if U is
a smooth variety, ¢: U — X is a surjective étale morphism and @ is a family of
isomorphisms ®: &/x »|v = 9.

Let Ty = (U, ¢, ®) and Ty = (V, 4, ¥) be trivializations of «/x . We denote by
Z(Th,T3) C Z(U xx V) the image of

{gz#% o (PF®y) LN e A}

by the isomorphism Aut(Zyx,v) — Z(U xx V). Here ¢: U xx V — V and
QZ: U xx V — U are the projections of the fiber product. We write T} ~ T when
Z(Ty,T») spans a finite-dimensional subspace of Z(U xx V).

We say that a trivialization (U, ¢, @) is bounded if (U, p, ®) ~ (U, ¢, @) holds.

Remark 4.12. Let T = (U, p, ®) be a trivialization of @7/x 5. Then any element of
Z(T,T) is a 1-cocycle of the Cech complex of the sheaf of closed 1-forms on X with
respect to the étale covering ¢: U — X. Hence for each A € A, we have a 1-cocycle
c(A) € Z(T,T), and the cocycle defines an algebra Zx .(») of twisted differential
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operators on X. Then ®) extends to an isomorphism ®: @x x = Zx o). It is
obvious that the correspondence

(Ua ') (I)) = (U7 1) (C()\)),\e/\, ((b/)\))\el\)

is one-to-one. One can use such tuples instead of our trivializations.

Definition 4.13. Let T' = (U, ¢, ®) be a trivialization of @/x s and f: Y — X a
morphism of smooth varieties. We set f#T := (U xx Y, , f#®), where $: U x x
Y > Y and f: U xx Y — U are the projections of the fiber product.

It is clear that f#7 is a trivialization of f#.a/x .

The relation ~ is clearly symmetric and not reflexive in general. We shall show
fundamental properties of bounded trivializations. Lemma T4l is well-known and
easy.

Lemma 4.14. Let f: U — V be a morphism of smooth varieties. Then the follow-
ing diagram of abelian groups is commutative:

f#
Aut(Zy) —— Aut(Zy)

-,

zv)—L Lz,

If, in addition, f is dominant, then f* is injective.

Proposition 4.15. Let T; = (U;, ;, ®;) (i = 1,2,3) be trivializations of </x n and
Y — X a morphism of smooth varieties.

(i) ~ is transitive, i.e. Ty ~ Ty and Ty ~ T3 = T ~ T5.

(ii) Ty ~ To = f#T1 ~ f#Ty.

(iii) If T is bounded, then so is f#Ty.

(iv) If f is dominant, the converse of (i) and (iii) is true.

Proof. To show (i), let fi;: Us xx Us xx Us = U; x x U; be the projections of the
fiber product for (i,7) = (1,2),(2,3),(1,3). Assume T} ~ T3 and T ~ T3. Then

we have
[13(Z2(T1,T3)) C f12(2(T1,T2)) + f33(2(12,13))

by Lemma T4l Since fi3 is surjective, ff; is injective. Hence Z(T1,T3) spans a
finite-dimensional subspace of Z(U; x x Us).

By definition, (iii) follows from (ii). We shall show (ii) and (iv). Let [l xx
Uy xx Y — Uy xx Uy be the projection. By Lemma [£.14] we have

FH(2(T1,To) = Z(/# T4, f#T2).
This implies (ii) and (iv). O

By Proposition .15 the relation ~ is an equivalence relation of bounded trivi-
alizations.

Definition 4.16. An equivalence class of bounded trivializations is called a bornol-
ogy of the family o/x .
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If B is a bornology of @/x n and (A(i))ier is a family of elements of A, then
T := (U, ¢, (®r@))ier) is a bounded trivialization of (2/x \¢;))icr for any (U, ¢, ®) €
B. It is clear that the equivalence class of T" does not depend on the choice of
(U, ¢, @) € B. We denote by the same symbol B the equivalence class of T' by abuse
of notation.

Definition 4.17. Let f: Y — X be a morphism of smooth varieties and B a
bornology of @/x 5. By Proposition ELI5(ii), the equivalence class of f#T (T € B)
does not depend on the choice of T. We denote by f#B the equivalence class.

Proposition [£.18] is an easy consequence of Definition .17

Proposition 4.18. Let f: Y — X and g: Z — Y be morphisms of smooth vari-
eties. For any bornology B of o/x a, we have (f o g)#B = g f#B as bornologies of
(fog)*olxn = g* fFelx .

It is not obvious that a bornology contains enough trivializations for applica-
tions. We can make a good bounded trivialization from a bounded trivialization
by Proposition [4.19]

Proposition 4.19. Let Ty = (U, ¢, ®) be a trivialization of ox p and f: V — U a
surjective étale morphism. Put Ty := (V, o f, f#®). Then the following conditions
are equivalent:

(i) Ty is bounded,

(il) Tv is bounded,

(iil) Ty ~ Ty .
In particular, for any bornology B of @/x a, there exists a trivialization (W, ), ¥)
in B such that W is affine.

Proof. Let f1: V xxV = U xx V and fo: U xx V — U xx U be the morphisms
determined by the universal property of the fiber products. Then by Lemma (414,
we have

2Ty, Ty)) = Z2(Ty, Tv ),
1 (2(Ty, Tv)) = Z2(Tv, Tv).

Since f; and fy are surjective, f3 and f; are injective. Hence (i), (ii) and (iii)
are equivalent. The second assertion is clear because for any variety U, there is a
surjective étale morphism W — U from an affine variety W. ]

Definition 4.20. Let T = (U, ¢, ®) be a trivialization of @/x s with affine U. We
say that an object (My)aea € Mody(2x a) is uniformly bounded with respect to
T if for any closed embedding ¢: U — C", m,(M,|y) is bounded as a function
on A. Here we consider an /x »|y-module as a Zy-module by the isomorphism
D, ﬂX,)\|U — -@U-

We say that an object M € Db (a/x ») is uniformly bounded with respect to T if
H*(M) is uniformly bounded for any i and H*(M) vanishes for any |i| > 0. Here
Hi(M) is the family (H*(My))aea-

We denote by Mod,,(#x.a,T) (vesp. D%, (e/x a,T)) the full subcategory of
Mody, (/x.a) (resp. DY (</x a)) consisting of uniformly bounded objects with re-
spect to T'.

Remark 4.21. By Proposition .7 the boundedness of m,(M|y) does not depend
on the choice of the embedding ¢.



FAMILY OF MODULES WITH A BOUNDEDNESS PROPERTY 317

Propositions [4.22] and [4.23] are easy consequences of Definition [£.20)]

Proposition 4.22. Let T be a bounded trivialization of «/x n. Then the following
hold.

(1) Modyp(x a,T) is abelian.
(ii) For a short exact sequence 0 — L — M — N — 0 in Mody (@x a), both L
and N are uniformly bounded if and only if so is M.
(iii) DY, (ex A, T) is a triangulated subcategory of Db (a/x ).

Proposition 4.23. Let T = (U, p,®) be a bounded trivialization with affine U.
Then for any (Mx)xea € Modus(@x A, T), the function Leng, ,(My) of A € A is
bounded.

Proof. Fix a closed embedding ¢: U — C™. Then we have
Leng,y 1o (Malv) = Leng, (14 (Ma|v)) < mi(Mafv).

The first equality follows from the Kashiwara equivalence (Fact [L3]) and the second
inequality from Fact By the definition of uniformly bounded family, there is a
constant C' independent of A € A such that

Len«Q{X,/\lU(M)\‘U) < mL(Mk|U) <C.

Since ¢ is surjective étale, the inverse image functor ¢* is exact and sends a non-
zero module to a non-zero module (see the proof of Proposition [7)). Hence we
obtain

LentQ{XA(M)\) <C
for any A € A. (]

We will show that the uniform boundedness is preserved by inverse images and
direct images. To do so, we need the following basic proposition.

Proposition 4.24. Let T; = (U;,¢;,®;) (i = 1,2) be bounded trivializations of
Ax n with affine U;. If Th ~ 15, then we have

Modys(@x A, T1) = Modyy(@x A, T),
Dby (@xa, T1) = Dby (x a, Th).

Proof. By definition, the second equality follows from the first one.
Let p;: Uy xx Uz — U; (i = 1,2) be the projections and put T} := (U; xx
Us, p; Opi,p?q)i) for ¢ = 1,2. Applying Proposition 7 to f = p;, we have

(431) Modub(ﬁfX,A,Ti) = MOdub(JZ{X,A,T{)

By Ty ~ Ty, Z(T1,T5) spans a finite-dimensional subspace of Z(U; x x Us). Ap-
plying Corollary EI0 to W = spangZ(T4,Tz), we have

MOdub(ﬂX,A, Tll) = Modub(ﬂ)g/\, TQ/)
This and (3] imply the desired equality. a

The following is well-defined by Proposition
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Definition 4.25. Let B be a bornology of /x 5. We set
Modys(2x A, B) == Modyp(@x a, T),
Doy (x,n, B) := Dy (x,a, T,
where T' = (U, ¢, @) is a bounded trivialization in B with affine U.

Theorem 4.26. Let f: Y — X be a morphism of smooth varieties and B a bornol-
ogy of @/x a. The direct image functor and the inverse image functor preserve the
uniform boundedness, that is, we have functors

Dfs: Dy (F*elx . f*B) = Diy(x.n, B),
Lf*: Db (e/x.n, B) = Dby (% a/x n, ¥ B).
Proof. Take T = (U,p,®) € B with affine U, and a surjective étale morphism

V — U xx Y from an affine variety V. Consider the following diagram:

Ve UxyY LU

P,k

Y X

where @ and f are the projections. Then (V, pog, (fog)#fl)) is in f# B by Proposition
I3 Since L(@og)* o Lf* = L(fog)* o Ly* holds (Fact BA[ii)), the assertion for
the inverse image functor is reduced to Proposition for f = fog.

We shall show the assertion for Df,. Take a finite affine open covering
Vit._ of U xx Y and replace V with the (r + 1)-fold fiber product of
1=0,1,2,...,r

LJ;Vi. Let M € Mody, (f# x A, f#B) and fix A € A. Then M|y y is quasi-
isomorphic to the Cech complex

0-C"=C'—---=C" =0
with respect to the covering {V;}. By the construction of Cech complex, €, C* is

a direct summand of g, (M| ).
By the base change theorem (Fact BX]), there is an isomorphism Lg* o Df; ~

Dﬂ o Lg* of functors, and hence we have

L™ o Df(My) = Dfy (Maluxxy) = Df4(C?)
up to shift. For a closed embedding ¢: U — C”, we have

my(Df4(C*)) < ZmL(fol(O"))

< m(Dfy o go(Malv))

= mL(D(fo 9)+(Mailv)).

Here the first inequality follows from Lemma [Z8[(iii) for the complex C*. Note that
Dy, is isomorphic to g, (see the proof of Proposition [4.7]).

By Proposition L6 and M € Mod,(f#o/x 4, f#B), there is a constant C' inde-
pendent of A such that

m, (L™ 0 Df1(My)) < m(D(f o g)+(Malv)) < C.
This shows Dfy (M) € D%, (Zx A, B). O
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We study the external tensor product of uniformly bounded families. Let 2%y s
be a family of algebras of twisted differential operators on a smooth variety Y with
the same index set A as @/x .

Definition 4.27. Let B and B’ be bornologies of @7x  and % A, respectively. We
denote by BX B’ the equivalence class of (U X Vo X ¢, @KU = (&) K Uy)yecp)
for some (U, p,®) € B and (V,9,¥) € B'. If X =Y, we denote by B # B’ the
pull-back of BX B’ by the diagonal embedding X — X x X.

It is easy to see that Definition is well-defined. We set @/x a K o =
(x A B 2y y)ren and M RN = (M) B Ny)rea for M € DP,(a/x p,B) and
N € Db, (e#y.p,B'). By Fact 3], we obtain Theorem

Theorem 4.28. Let B and B’ be bornologies of @/x a and <y a, respectively. Then
BX B’ is a bornology of «/x A W ety A and we have a bifunctor

()X (-): Db, (ex n, B) x Dby (etyn, B') — Dby (Ax A Rty p, BRB).
Moreover, for any M € D% (a/x.n) and N € D% (et a) such that all My and Ny

have non-zero cohomologies, both M and N are uniformly bounded if and only if
s0is MXN.
4.4. Twisting, opposite and tensor product. We consider operations of alge-
bras of twisted differential operators: twisting by an invertible sheaf, taking oppo-
site algebras and tensor products. Corresponding to the operations, we introduce
these operations of a bornology.

Let @/x n = (#x,2)aea be a family of algebras of twisted differential operators
on a smooth variety X. Let B be a bornology of &/x 4 and £ an invertible sheaf on
X. Then we have a new family

A 5= (L oy Hxx®0x LY )reA-
Remark that for a morphism f:Y — X of smooth varieties, there is a canonical
isomorphism
(4.4.1) (L @0y Dxr @0y L) = [ (L) @0y [Fdxr @0y [F(L)Y.
See e.g. [28, Lemma 1.1.5].

We shall construct a bornology of Jz{)f A- Since £ is an invertible sheaf, there is a
bounded trivialization T = (U, ¢, ®) € B such that L[|y is isomorphic to Op. Take
a trivialization a: Ly =5 Op. Then T and « induce an isomorphism ®~ given
by
id@d®id
(£ @0y Fx.p ®ox LY)v 2225 L]y @0, Pu @0y (L)Y — Dy
We obtain a trivialization T4 = (U, ¢, ®~%) of sz)ﬁA.

Lemma 4.29. Take S = (V,9,¥) € B and an isomorphism B: L]y — Oy. Then
we have S&P ~ T, In particular, T* is a bounded trivialization.
Proof. a and 8 induce an isomorphism

Ot_l‘UxXV BlUxXV

Ovuxxv Llus v Ovxxv-
We write f € O(U xx V)* for the image of 1 by the isomorphism. Then we have
Z(T%*,85P) = f~Ydf + 2(T, S)

(see Definition LTTl). This shows the lemma. O
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By Lemma [£.29] the following is well-defined.
Definition 4.30. We denote by B* the equivalence class of T,
It is well-known that the functor
L @0y (-): Mody(#x \) = Modp, (L ®oy xR0y L)

gives an equivalence of categories. We denote by £ ®@, (-) the direct product
[Lica £ ®ox (-) of the functors by abuse of notation.

Proposition 4.31. The functor L&o, (+) preserves the uniform boundedness, that
is, we have functors

L @0y (-): Moduy(@x 2, B) = Moduy (5 4, B5),
L Xox () Dzb('Q/X,Av B) — Dzb(ﬂ)g,Av Bﬁ)
Moreover, the two functors give equivalences of categories.

Proof. Since the assertion is local for X, we can assume £ ~ Ox. In this case, the
proposition is clear. O

Next we consider the family of the opposite algebras 27¢",. Note that (-)°P is a
functor on the category of algebras of twisted differential operators on X. We set
AP 1= (3 )rea. We shall construct a bornology of @7y”, from the bornology
B.

Recall that there is a canonical isomorphism
(4.4.2) 9}){}) ~ Ox Qo Ix Qoy Q}/(,

where Qx is the canonical sheaf of X. See [2I, Lemma 1.2.7]. The isomorphism
induces an automorphism of the space Z(X) of closed 1-forms as

Z(X) ZAut(Zx) L5 Aut(29) S Aut(Qx R0y Tx Doy Q%)
= Aut(Zx) = Z(X).

Here the fourth isomorphism comes from the isomorphism Zx ~ Q% ®o, (2x Roy
Dx @0y Nx%) Roy Qx.

Lemma 4.32. The automorphism of Z(X) is the multiplication map by —1.
Proof. The lemma can be shown by an easy explicit computation. (]
Remark that for an étale morphism f: U — X, there are canonical isomorphisms
["Qx =~ Qu,
Qf ~ Oy,
FH(E) = (fFlx0)°P.

In particular, the canonical isomorphism (£Z2) commutes with the pull-back by
the étale morphism.
Take a bounded trivialization T' = (U, ¢, ®) € B such that Qx|y ~ Qu is

isomorphic to Op. Take a trivialization a: Qg =5 Op. Then T and «a induce an
isomorphism ®°P* given by
PP ~
9;)(]?A‘U — ggp — Qu o, Yu Roy, Q& — 9y.

We obtain a trivialization T°P = (U, ¢, ®P<).
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Lemma 4.33. Take S = (V,9,¥) € B and an isomorphism (: Qy — Oy. Then
we have S°PP ~ TP In particular, TP is bounded.

Proof. As we have seen in the proof of Lemma .29 there is f € O(U xx V)* such
that

Z(Top,a’ Sop,ﬁ) — f*ldf — Z(T, S).

The sign before Z(T, S) comes from Lemma This shows the lemma. O

Definition 4.34. We denote by B°P the equivalence class of T°P<,

Corresponding to canonical isomorphisms of algebras of twisted differential op-
erators, there are identities of bornologies. Let ¢ be the diagonal embedding
X — X x X. For two algebras 7 and % of twisted differential operators on
X, we set

S H oy = 1* (o R chy).

We use the same notation for families of algebras.

Let #/x n, Zx A and €x A be families of algebras of twisted differential operators
on X with the same index set A. Let f: Y — X be a morphism of smooth varieties.
For the constant family Zx  := (Zx)xen, we consider a bounded trivialization
(X,idx,id). We denote by Bijq the equivalence class of the trivialization. We use
the same notation for the constant family %y o on Y. Fix an invertible sheaf £ on
X.

By [28, §1], we have canonical isomorphisms

(&Q{)QA)OP = (d)?/\)[v’
Gx N H Bx A= Bx A H# Axn,
(x A # BxA)# Cxn > IxnH# (BxnH# Cxn),

Dx A # Dx N> DX,
*527)?,0/\ H#H oy p ~ @;‘?A,
F#Dx n =~ Dy.a,

FEEN) ~ (fFatxn)

FE(AE)P = (f#(ax n))®

Here we set Qy = f~1QY% ®f-10 y (see Subsection [B)). Since the isomorphisms
are canonical, they are natural in @/x A, Bx a and €x . It is easy to see that
the isomorphisms and the operations commute with the pull-back by the following
cartesian square:
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where ¢: U — X is an étale morphism. For example, the following diagram com-
mutes:

T Y sy ——= (F#(x0))Pluxxy

] ]

FH((xalv)oP) T —=— (F#(

u))°P.

Proposition 4.35. Let Bi,By and B3 be bornologies of o/x n, Bx . and €x A.
Under the above identifications, we have
(i) (Bf)P = (BP)~E",

il) By # By = By # B,
iii) (31 # By) # By = B1 # (B2 # Bs),
iv) B id # B, =By,

v) BY # B =B},

( 1) f#Bld - Bld)

(vii) f#(BF) = (f#B1)*",
(viii) f#(B")™ = (f#(B))P

Proof. The proposition is clear by the constructions of bornologies and the natu-
rality of the canonical isomorphisms as mentioned above. ([l

4.5. Integral transform. We consider integral transforms of Z-modules. Let @7y
be an algebra of twisted differential operators on a smooth variety X.
We consider the following canonical isomorphisms:

AP Yty ~ D,
Dx # dx ~ dx,
Q& Rox .@;p ®ox Ox ~ Dx.
We shall describe the isomorphisms explicitly. We write ¢: X — X x X for the

diagonal embedding. Let M € Modg.(#5") and N € Mody.(#/x). Then the
canonical right action of Tx C Zx on M ®o, N is given by

(4.5.1) (A®B)-Z=AZ®@B—A®ZB

for Z € Tx and AQ@ B € M ®p, N, where Z is a section of P(«Zy) such that
o0(Z) = Z. See Definition for the notation of Picard algebroids. Since .7y is
generated by P(«7x), we have a canonical isomorphism

(4.5.2) M@y N = (M@0, N) /(Mo N)Tx

of Cx-modules by [@35T]).
Let M € Modg.(Zx) and N' € Modg.(«’x). Then the canonical action of

P(x) C ox on M Qp, N is given by
(4.5.3) Z-(A®B)=0(Z) A B+A®ZB

for Z € P(ex) and A® B € M ®p, N. Note that if Z € Ox, then we have
Z - (A®B)=A®ZB.
Let M € Mody.(25). Then Zx acts on Q% ®o, M canonically. QY is isomor-

dim(X dim(X) T ~

phic to the exterior product A ) Tx over Ox. Hence Tx acts on A
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QY by the Lie bracket. By taking a local coordinate system, we can see that the
action of Tx C Zx on QY% ®o, M is given by
(4.5.4) Z-(A®B)=ZA®B—-A® BZ

for Z € Tx and A® B € Q% ®o, M. We omit the explicit computation. See
[21, Lemma 1.2.7].

Lemma 4.36. For any A € Mody.(2%), B € Mody.(#7y") and C € Modg.(#x),
we have a natural isomorphism

A®@x (Q} ®ox (B Kox C)) = ((-A ®ox Qg{) ®ox B) Rty ¢
of Cx -modules.

Proof. Both sides of the expression can be regarded as the sheaves of Tx-coinvariants
in A®p, Q% @ox B®o, C by [E52). It is easy to see that the two actions of Tx
coincide by ([I5.1), (53] and ([@5.F). |

Let @/x n and @4 5 be families of algebras of twisted differential operators on
smooth varieties X and Y with the same index set A, respectively. Fix bornologies
Bx and By of &/x a and @/ 4, respectively.

Theorem 4.37. Let M € Dzb(JZ{X,A, BX) and N € Dzb(ﬁfy’/\ X JZ%;?A, By K B?{p)
Then we have

(Rgs« (N ®£—1gfx,A pMi))rea € DYy (v, By),
where p (resp. q) is the projection from'Y x X onto X (resp. Y ).
Proof. Fix A € A. Then we have
Day (p*Q% ®6,, . Na®6, Lp*My))
~Ra.((Hypy R Qx) @ mo, (070X @5, N @5, Lp"M))))
~Rq.(p'Qx @1, (071X @10, N @pa10, 7 MA)))
~Ra.((p(2x ®ox %) @10, M) @1, 7MY
~Rq.(Nx @51y 7 M)

The third isomorphism follows from Lemma [.36] by taking flat resolutions of Qx,
Ny and M. By Proposition £.35] we have

((By B BR) # p? Bx )P % = (By K B}) O ¥ = By M By = ¢* By
Therefore the theorem follows from Theorem O

4.6. Family of easy morphisms. Retain the notation X, Y, @/x r, @A, Bx
and By in the previous subsection. We consider operations of Z-modules by the
following family of morphisms:

fy: X=X xY (yevY),
fy(@) = (z,y).

Proposition 4.38. For any M € Dzb(.;zfx,/\ X oy p, Bx X By), the family
(Lfy(Mx))reayey is uniformly bounded with respect to the bornology Bx .
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Proof. It is enough to show the assertion for M € Mod,(&/x A Koy 4, Bx K By).
Fix Ae AandyeY.

Take (U, p,®) € Bx and (V,4,¥) € By with affine U and V. Fix closed
embeddings (;: U — C" and ty: V — C™, and ' € ¥~ 1(y). Then we have a
commutative diagram

iy
cr > x Cm

LUT TLUXLV
1

U > UxV

Sal \L@Xd)
Ty

X —— X xY,

where f, () = (z,y’) and f;(z) = (z,tv(y’)). Remark that the upper square is
cartesian.

By Facts BA4L(ii) and B3, we have
D(ty)4 o Lp* o Lfy(My) = L(f,))" o D(try X ty)4 o L(p x 1)* (M)
up to shift. Since the degree of f is 1, we have
1y, (L™ o Lfy (My)) < Mg sy (L{p X )" (M)
by Fact 4l This shows the proposition. |

Proposition 4.39. Let N € Db, (o/x p,Bx). The family (D(f,)+(Na))reayey 48
uniformly bounded with respect to the bornology Bx X By .

Proof. We retain the notation in the proof of Proposition Then we have
L(p x )" 0 D(fy)+(Na) = L™ (Na) K Diy (Op-1(y)),
where ¢: 1 ~!(y) — V is the inclusion map. By Fact EE3] we have
Mgy (L™ (N3) B Dey (Oy-1(y))) = muy, (L™ (N3))muy (Dey (Oy-1(y)))-

Since the multiplicity of the unique irreducible holonomic Z¢m-module supported
on a point is 1, we have

Muy (De(Oy-1(y)) = [0~ ().

Since v is étale, |[¢p~1(y)| is bounded on Y. Therefore we have shown the proposi-
tion. ]

5. EXAMPLES OF UNIFORMLY BOUNDED FAMILY

In general, it is not easy to construct bornologies and uniformly bounded families
of twisted Z-modules. An easy way to construct them is to use group actions. In
this section, we construct uniformly bounded families using principal bundles and
group actions with finite orbits.
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5.1. Bornology of a principal bundle. Let G be an affine algebraic group
and p: X > Xa principal G-bundle over a smooth variety X. Let /5 be a
G-equivariant algebra of twisted differential operators. For each A € (g*)¢, we
have defined a G-equivariant algebra .o/x  of twisted differential operators on X in
(BZI). Then we obtain a family (#/x x)re(g)c- Put A= (g*)°.

In this subsection, we shall show that the family admits a standard bornology
determined by the bundle X - X.

We can take a surjective étale morphism ¢: U — X such that the pull-back
p: Ux xX — U of the G-bundle is trivial and Az |U><X55 is isomorphic to the algebra
Dyy 5 Fixasection s: U — U xx X and an isomorphism «: 3#(%)?|U><X)?) —
Du. _

The section s determines a trivialization U x G ~ U xx X and « induces
an isomorphism @[, 5 ~ Yv K % by Proposition Then we have an
isomorphism

‘I)E\]’S"ai x \|lu :p*(ﬂ)}/R(I—Hé)ﬂi)Gw = 9y

for any A € A. See (B4 for the notation. Hence we obtain a trivialization
(U, p, ®V5) of a/x .

Proposition 5.1. (U, ¢, ®Y%%) is bounded and its equivalence class does not de-
pend on the choice of ¢: U — X, s and «.

Proof. Let (1p: V — X, t,3) be another choice of (¢, s, «). By considering the pull-
back of s, a,t, 3, ®>* and ®"P to U x x V, our computation can be done only on
UxxV. Hence we can assume U =V = X, X = XxGand 5 = D5 = IxW%g.

We identify s#(Z5) and t# (%) with Zx by the canonical isomorphisms. Then
«a and § are automorphisms of Zx. Since a and 8 are independent of A € A, the
choice of @ and 8 does not affect the equivalence. Hence we can assume o = g = id.

Fix A € A. By the decomposition X x G = s(X)G, we have a monomorphism
ts: Dx = Dyx) — p«(Pxxc)¢ and the isomorphism (®Y*2)~1: 9% — PDx
factors through the monomorphism. We define ¢; similarly. Then CID‘;’t’ﬂ o (@g’s’a)_l
is given by the following dot arrow:

Dx = Dy(x) ——= pu(Dxxc)® —= Dx

v
Dx ~ Dyx) ——= p(Dxxc)® — Dx .

We write s(z) = (x,s'(x)) (r € X) and define an automorphism a of X x G by
a(z,g) = (z,5'(x)g). For alocal section T' € Tx, we denote by T the corresponding
section of Ty(x)-

There exist closed 1-forms w{,ws, - ,w)

local sections T' € Tx and f € Ox ® O(G),
T.f = (") oToa") f = Tf — 3 wi(T)L(X)/.

(n = dimc(g)) on X such that for any

where {X;},_,, , is a basis of g and L is the differential of the left translation on
G. Similarly, we define {w!} for t. Therefore {(I)E\/’t’ﬁ o (@g\]’s’o‘)*l} R is contained
PYE
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in a finite-dimensional subspace spanned by {wf} and {w!} in Z(X). We have
proved the proposition. (Il

Definition 5.2. We denote by B(X, X ) the equivalence class of the bounded triv-
ialization (U, ¢, ®Y:59).

Let f: Y — X be a morphism of smooth varieties. Then we have a cartesian
square

YXX)/Z+f>-X

P,

Y X.
Put
Y=Y X x )Z',
oy = f#dg.

It is easy to see that g: Y 5Yisa principal G-bundle and % is G-equivariant.
For each A € A, we define an algebra /) of twisted differential operators on Y as
in (B:41) and we have a canonical isomorphism

Ay~ fFalx z.
We id~entify the two algebras by the isomorphism. Then we obtain two bornologies
B(K Y) and f#B(X,X) of JZ{y,A = (dy))\)keA.
Lemma 5.3. B(Y,Y) and f#B(X,X) are equal.

Proof. 1t is clear from the definition of B(X, X) and its pull-back (Definition ELIT7).
O

Theorem 5.4l is a consequence of Lemma and Theorem
Theorem 5.4. We have functors
Dfy: Dby (ehn, B(Y,Y)) = Dby (ex a, B(X, X)),
Lf*: Dby (/xa, B(X, X)) = Dby (ha, BY,Y)),
which are the restrictions of the direct image functor and the inverse image functor,
respectively.
Corollary 5.5. Let M € D} (a/5). Then the family (Dp4 x(M))xea is uniformly
bounded with respect to B(X, X).

Proof. We shall apply Theorem[E4lto Y = X and f = p. The fiber product XxxX
is canonically isomorphic to the trivial bundle X x G. The isomorphism is given
by X xG 3 (z,9) — (z,29) € X xx X. Hence the following diagram is a cartesian
square:
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where m is the multiplication map and pr is the projection onto the first fac,tvor.
Then the constant family (M)xea is uniformly bounded with respect to B(X, X x
G). Therefore the assertion follows from Theorem [5.4 O

By Corollary (.5l we can construct many uniformly bounded families of 2-
modules parametrized by (g*)¢ using principal G-bundles.

5.2. G-equivariant bornology. Let X be a smooth G-variety of an affine alge-
braic group G, and &/x s be a family of G-equivariant algebras of twisted differential
operators. We write 7: G X X — X and m: G x X — X for the projection and
the multiplication map, respectively. Since all .@/x » are G-equivariant, we have a
canonical isomorphism

W#ﬁX7A ~ m#de\.

See (B3.1).

Definition 5.6. We say that a bornology B of @x 4 is G-equivariant if 7% B = m* B
holds under the isomorphism 71'#42%;@ A m#gfx A

Proposition [5.7] is clear by Definition and Proposition [£.I8

Proposition 5.7. Let f: Y — X be a morphism of smooth G-varieties and B a
G-equivariant bornology of o/x . Then f#B is G-equivariant.

We set my :=m(g,-) for g € G. Then my is an automorphism of X.

Proposition 5.8. Let M € D%, (o/x x,B). Then (Lm}(Mx))aenge is uniformly
bounded with respect to B.

Proof. For g € G, let f;, denote the morphism f,: X — G x X defined by
fo(x) = (g9,2). Then we have my; = mo f;. Since B is G-equivariant, Lm*(M)
is uniformly bounded with respect to 7% B = m#*B. By Proposition E38] (Lfy o
Lm*(My))rea,gec is uniformly bounded with respect to B = f_fﬂ#B. This shows
the assertion. O

In Subsection 5.1l we have given a way to construct a bornology using a principal
bundle. We shall show that the bornology is G-equivariant if the bundle has G-
equivariant structure. Let G and T be affine algebraic groups and p: X >3 Xa
principal T-bundle over a smooth variety X. Suppose that X and X are G x T-
varieties and p is G' X T-equivariant. Let &/ be a G x T-equivariant algebra of

twisted differential operators on X.
Put A := (t*)7. Then we have a family «/x o = (#x x)rea of G x T-equivariant
algebras, and its bornology B(X, X) as in Subsection B.11

Proposition 5.9. B(X, )N() 18 G-equivariant.
Proof. Consider the following commutative diagram:
X< GxX-">X

X< GxX-"sX,



328 M. KITAGAWA

where m and m are the projection and the multiplication map, respectively. Since
/5 is G-equivariant, n# 5 and m#,@{;{ are canonically isomorphic. We obtain a
family /g« x,a constructed from the principal T-bundle G' x X — G x X. Then
w#,dx,,\ and m#,;zfx,,\ are canonically isomorphic to @ox x A = Yo XR.ax p. Under
this identification, by Lemma [5.3] we have

#B(X,X) = B(G x X,G x X) =m#B(X, X).
This implies that B(X, X ) is G-equivariant. O

We shall show the uniqueness of G-equivariant bornologies on a homogeneous
variety. Let G and H be affine algebraic group and its closed subgroup, and Z¢ the
algebra of non-twisted differential operators. We write p: G — G/ H for the natural
projection. Then we obtain a G-equivariant algebra Y/ p,\ of twisted differential
operators on G/H for any X € (h*)H. See (B.41).

It is well-known that any G-equivariant algebra of twisted differential operators is
canonically isomorphic to some P g x (see [25, Theorem 4.9.2]). This is because
it is generated by U(g) and Og,p. Hence we consider a bornology of a family

Derun = (e aam))rer for Ar R — (h*)H.
Proposition 5.10. There exists a unique G-equivariant bornology of Y -

Proof. The existence is clear because B(G/H,G) is a G-equivariant bornology of
P/, by Proposition [5.91

We shall show the uniqueness. Let B be a G-equivariant bornology of Z¢/p A-
By Proposition EI5(iv), it is enough to show p* B = p#*B(G/H,G). Let m,m: G x
G/H — G/H be the projection and the multiplication map, respectively, and
t: G = G x G/H a morphism given by ¢(g9) = (g9,eH). Using the G-equivariant
structure, we identify the following three families:

m* Daimn, ™ Doan. (P68 Daymae))rer.
Since m o ¢ = p, by Proposition [L.I8], we have
p?*B = m#B = 1% B = #(Bq R B) = B,

where Bjq is the equivalence class of the trivialization (G,idg,id) of the constant
family (Z2g)rer. Therefore we have p#B = Biq = p? B(G/H, G). O

5.3. Uniformly bounded family of irreducible modules. Let K be an affine
algebraic group and X a K-variety. Let &/x p := (9x 1)rea be a family of K-
equivariant algebras of twisted differential operators on X. Fix a K-equivariant
bornology B of &/x o. A classification of K-equivariant #/x y-modules is given by
Beilinson—Bernstein [5] (see also [20, Theorem 2.4]).

We review the classification. Fix A € A and x € X. We write i: Ko — X and
p: K — Kz for the inclusion and the natural surjection, respectively. Let K, denote
the stabilizer of z in K. Since i#dx » is K-equivariant and Kz is homogeneous,
there is a unique element (\) of (€)%= such that i#./x ) is canonically isomorphic
to

Doy = 0x(Zx) Rue,) Crin) -
See [25, Theorem 4.9.2]. We identify i# o/, with D w,u(n) by the isomorphism.
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Fact 5.11. Let M be an irreducible coherent (27x x, K)-module whose support is
Kz. Then there exists a unique irreducible K -module F such that

(i) €, acts on F' by the character u(\),

(if) M is isomorphic to the unique irreducible submodule of D0i+(Ind§x (F)),

where Indﬁw (F) is the (Zka u(n), K)-module of local sections of the associated
vector bundle K x g, F over Kz ~ K/K,. In particular, M is holonomic.

We shall show that a family of (@7x x, K')-modules with bounded lengths is uni-
formly bounded if K has finitely many orbits in X.

Lemma 5.12. Let F' be an irreducible K,-module. Put n = dimc(K,). Assume
that €, acts on F by the character u(\). Then Indllgz (F) is isomorphic to a direct
summand of D™"p, ) (Ok).

Proof. By Theorem and the Poincaré duality (Fact [27), we have

D™ "py 0n)(OK) ~ TOY%(EI)(CH(,\)—&p*(OK)) ~ (p«(Ok) ® (CM(A))(KI)Ov

where ¢ is the character ¢, > X — tr(ade,(X)). The assertion follows from the
isomorphisms and the Frobenius reciprocity. O

Lemma 5.13. Let M be an irreducible coherent (o/x x, K)-module whose support
is Kx. Then M is isomorphic to a submodule of H™™ o Di . o Dpy ,0)(Ok).

Proof. Since K is locally closed in X, the cohomology D¥i (A\) vanishes for any
k < 0 and N' € Modg.(4x,»). Using truncation functors (see Subsection 2.3)), we
have

H™" o Diy 0 Dpy ux)(Ox) = D%y (D7"py )(Ok))-
Hence the assertion follows from Fact [5.11] and Lemma O

Let m and m be the projection and the multiplication map from K x X to X,
respectively. We write f,.(g) = (g,2) for g € K and € X. Then we have i op =
mo f,. We denote by D(f;)4,x the direct image functor D! .(Z¢) — Db, (n# a/x ).
By Proposition 39 (D(fs)+1(Ok))zex . rea is uniformly bounded with respect
to 77 B.

Since B and any algebra in .@/x 5 are K-equivariant, we have m#dX’A ~ w#%X,A
and m# B = 7#B. Therefore (Dm o D(f.)+ A(Ok))zex.rea is uniformly bounded
with respect to B by Theorem By Lemma [EI3land i o p = m o f,, we obtain

Proposition 5.14. Let M & [[ cp Mody(@x x, K). Assume that each My is
irreducible and its support is the closure of some K -orbit dependent on \. Then M
is a uniformly bounded family with respect to B.

Theorem 5.15. Let M € [[ o) Mody(@x x, K). Assume that K has finitely
many orbits in X and the length of each M is bounded by a constant independent
of A€ A. Then M is a uniformly bounded family with respect to B.

For the representation theory of real reductive Lie groups, we generalize The-
orem to the universal covering group of K in a sense. Retain the notation
X, K, ox p, B as above and assume that K is connected.

Fix A € A for a while. Let v be a character of £ and M a quasi-coherent
x y-module. We say that M is a twisted (@x x, K)-module with twist v if the
action of £ on M @ C, lifts to an action of K. Let @x (,) be the K-equivariant
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algebra @/x » ® End¢(C,), which is isomorphic to @x » without the K-equivariant
structures. Then M is a twisted (2Zx x, K)-module with twist v if and only if M
admits a K-equivariant structure as an &x (y,,)-module.

Take (U, p,®) € B. Then (U, @, (®x)rea,ve(e)x) is a bounded trivialization of
(“x (A v))reA,ve(esyx - Since the K-action on /x (y,,) is the same as that on @ »,
the bornology defined by (U, ¢, (®)rea,ve(er)x) is K-equivariant.

Corollary 5.16. Proposition .14 and Theorem hold even if all My are
twisted (9x x, K)-modules.

5.4. Finite orbits and uniformly bounded family. Retain the notation X,
K, o/x p,B in the previous subsection. Assume that K has finitely many or-
bits in X and K is connected. In this subsection, we consider the 2/x x-module

Torzg{(e)(bef/x x, F) for a finite-dimensional ¢-module F.

To estimate the length of Torzi’{(é)(fxzfx,A, F), we need Lemma [5.17] about a com-
plex of filtered modules.

Lemma 5.17. Let A be a filtered ring and (C*®,d®) a complex of filtered A-modules.
Then gr(H*(C*)) is isomorphic to a subquotient of H*(gr(C*®)) for any i € Z.

Proof. Fix i € Z. 1t is easy to see that the following canonical homomorphisms are
injective:
(5.4.1) Im(gr(d™1)) — gr(Im(d"~1)) — gr(Ker(d")) — Ker(gr(d")),

where gr(d*): gr(C*) — gr(C**1) is the homomorphism induced from d*: C* —
Ck*1. The filtrations on Im(d'~!), Ker(d?) and H*(C*®) are induced from that on
C*. Hence we have gr(H*(C")) ~ gr(Ker(d'))/gr(Im(d’~')). This isomorphism and
(E4T) show the lemma. O

Let m: T*X — X be the cotangent bundle. We have a homomorphism o: S(¢) —
Or-x defined by taking the principal symbol of </x y. The homomorphism o
does not depend on the choice of the K-equivariant algebra o/x . In fact, the
composition ¢ — P(ex ») — Tx coincides with the differential of the K-action on
X, and o is determined by o|¢. Here P(/x ») is the Picard algebroid associated to
&x » (see Subsection B.2).

Lemma 5.18. Fiz A € A. Let M be an </x x-module with a filtration, and N a
coherent m.Orx«x -module annihilated by o(¢). If gr(M) is isomorphic to a subquo-
tient of N®", then M is holonomic and there erists a constant C(N) depending
only on N such that

Leny, , (M) < C(N) - n.
Proof. Put N = Or+x @p-17, 044 N Since o(£) annihilates N and K has finitely
many orbits in X, the support of N is contained in the union of the conormal
bundles of all K-orbits in X. Since gr(M) is isomorphic to a subquotient of N7
the filtration of M is good, and hence M is coherent by [21I, Theorem 2.1.3].
Moreover, the characteristic variety of M is a union of the conormal bundles of
some K-orbits in X. This shows that M is holonomic.

Let C'(N) be the sum of multiplicities of A/ along the conormal bundles of all
K-orbits. Let m(M) be the sum of multiplicities in the characteristic cycle of M.
Then we have m(M) < C(N)-n. Since the length of M is bounded by m(M) (see
[2T, Proposition 5.1.9]), this shows the lemma. O
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Let U be the unipotent radical of K. If necessary, replacing K with its finite
covering, we may assume that [K /U, K /U] is simply-connected.

Lemma 5.19. There exists some constant C > 0 such that for any finite-dimensio-
nal ¢-module F', A € A and i € Z, we have

Leny, , (Tot'® (x5, F)) < C - dime(F),

where o/x x is considered as a U(E)-module by the right action. Moreover, any

composition factor of Torzi/l(é)(;zfx,)\, F) is a holonomic twisted (</x x, K)-module.
Remark 5.20. Lemma for ¢ = 0 is proved in [44].

Proof. Fix F and A. By induction on the length of F', the assertion can be reduced
to the case of irreducible F. Since F is irreducible, £/Anng(F') is reductive, where
Ann means the annihilator of a module. Hence we can take a character p of £ such
that FF ® C, lifts to a K-module. This implies that Torzi’{(é)(fxz%X)A, F) is a twisted
(x ., K)-module with twist p. In fact, the homology can be computed by an
h-complex of weak (2 (x,u), K )-modules in the sense of Bernstein-Lunts [J, 2.5].
See [31), Proposition 3.3] for the complex. Here @x (» ) is a K-equivariant algebra
defined before Corollary

To compute Torzi’{(é)(fxzfxy x, F'), we shall use the Chevalley-Eilenberg chain com-
plex. See Fact Let (@x » @ F @ A~*t,d®) be the complex. For any i > 0, the

differential d=* is given by
dNPRFR (X1 AXa A AXy))
= (-1)"T(PX,@f-PRXof) @ X1 AXo Ao AXg Av s AKX

D ()PP Rf@ [Xa X)) AXIAXo A AXg A AX A A X
a<b
(5.4.2)

We denote by G the order filtration of @/x . It induces a filtration G on
dx @ F ® N'E as

G (dxr®F @ NE) = Gp_i(ax ) ® F @ Nt

for any ¢ > 0. Then the complex (&/x » ® F ® A~*¢,d®) is a complex of filtered
x y-modules. By (5.4.2]), we have an isomorphism

(gr(x @ F @ AN"°t),gr(d®)) ~ (m.0p-x @ F @ N™%¢,d°)

of complexes, where the right hand side is the Koszul complex of the S(£)-module
1.0 x @ F ~ (1,07 x )@ 4 Hence we have

H i (gr(x \ ® F @ A™*)) ~ Tor} " (7,07-x,C) @ F

as m.Op= x-modules. Note that Toris(e)(mOT*X, C) is a coherent m,Op+x-module

because each term of the Koszul complex is coherent.
By Lemma [BI7] gr(Tor?(E) (x ., F)) is isomorphic to a subquotient of
Toris(é)(m(’)T*X,(C) ® F. We can apply Lemma to M = Tor?(é)(MX,A,F)



332 M. KITAGAWA

and N = Torf(é)(mOT* x,C). Hence there is a constant C; depending only on
Toris(e)(mOT*X, C) such that

LendX,A(Tor?(F)(uQ{X’/\, F)) < C; - dime(F).

C = max; {C;} exists because Torzi’{(e)(~, -) vanishes for any ¢ > dimc(€). The
assertion in the lemma holds for this C. g

Corollary (.21l is a direct consequence of Lemma [5.19 and Corollary 5.16]

Corollary 5.21. Let F be a set of t-modules with bounded dimensions. Then the
family (Torzi’{(é)(,xz%X,A, F))icz, rerrea s uniformly bounded with respect to B.

Let %45 be a family of twisted differential operators on a smooth variety Y.
Fix a bornology B’ of 7y 5. We write ¢: X x Y — Y for the projection onto the
second factor.

Theorem 5.22. Let M € Mod,,(ex a Koty o, BRB'). If all My are g.-acyclic,
then there exists a constant C > 0 such that

Lens, , (Tot ) (F, g.(M)))) < C - dime(F)

for any finite-dimensional t-module F, i € 7Z and A\ € A. Moreover, the family
(Torzi’{(?)(l*_’7 G«(Mx)))reaiez,per is uniformly bounded with respect to B'. Here F
is a set of finite-dimensional €-modules whose dimensions are bounded.

Proof. For N € DZ(,!Zf)(?’))\), put
Ti(N) = Rl (p" 'V @k, M),

where p: X x Y — X is the projection onto the first factor.

For A € A, let I be the set of all (isomorphism classes of) irreducible twisted
(@y"y, K)-modules. By Corollary G116, the family (N)xeaner, is a uniformly
bounded family with respect to B. Hence by Theorem .37 we can define a constant
Cy as

Cy := max {Lendyrk(Ti(N)) A E A,N € ly,1 € Z} .

Fix a finite-dimensional ¢-module F. Take a free resolution J* of the U (£)-module
F. Then we have

Ty (J* Query x2) = R (07 (T° @uey Fx ) @p-1., M)
~ Rfiq*(J' Qu(e) My)
~ H™'(J* ®ue) ¢+ (Mn))
o Torli'{(é) (F, q.(My)).
Here the second isomorphism holds because J* ®y(e) M is isomorphic to a direct

sum of some copies of M as a sheaf, and M is g.-acyclic. This shows the second
assertion by Theorem H.37] and Corollary £.211
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To show the first assertion, we remark that H~*(J® ®u(r) @x,x) is isomorphic to
Torzi'{(?)(F7 /x\) as an /4" -module. By Lemma 28]ii), we have

Lens,, (Tor ™ (F,q.(M)))) = Lenas, , (T (J* @uge) 7x,0))
dimgc (€) o ¢
< 3 Lengy, (T ™ (Tof O (F, ok ).
§=0

By Lemma [5.19] there is a constant Cy independent of F' such that
Len o0 (Tor'! " (F, a/x 1)) < Cs - dimc(F)

for any j € Z and A € A, and any composition factor of the module is in 1. By
Lemma [22§[i), we obtain

Len, , (Tor"" (F, g.(M,))) < Cy - Cy - dime(F)(dime (€) + 1).

We have taken C; and C5 independently of F', ¢ and A. Therefore we have proved
the theorem. |

6. ZUCKERMAN DERIVED FUNCTOR AND ITS LOCALIZATION

In this section, we review the Zuckerman derived functors and their localization.
We use the functors to study the relative Lie algebra cohomology /homology. The
localization can be realized by a composition of direct image functors and inverse
image functors. Hence we can apply results about uniformly bounded families to
study the functors and the cohomologies.

6.1. Zuckerman functor. In this subsection we review the Zuckerman derived
functor. We refer the reader to [13| 1.8] and [48] 6.3] for our construction.

Let (A, G) be a generalized pair and H a reductive subgroup of G. Then (A, H)
forms a generalized pair and (g, H) forms a pair (see Definitions [Z1] and 25). Since
A is a G-module, for any X € A, we can take fi,..., f, € O(G) and X4,..., X, €
A such that

Ad(g™)(X) =3 £i(9)X;

for any g € G.

Let V be an (A, H)-module. We define three actions on O(G) ® V' via
u(X)(f®v):Zfif®Xm (X € A),
r(Y)(f®v)=RY)f@v+ f@Yv (Y €g),
r(9)(f ®v) = R(g)f @ gv (9 € H),
Wg)(f®v) =Lg)f ©v (9€G)

for f € O(G) and v € V. Here L (resp. R) denotes the left (resp. right) regular
action of G on O(G) and f;, X; are the elements taken above for X. It is easy to see
that p(X) does not depend on the choice of {f;} and {X;}. Note that the actions
p and [ commute with r and we have

(1(X) = 1X))(OG) @ V)@ =0

for any X € g. This implies that TG (V) := (O(G)@V)"@:"(H) is an (A, G)-module
via p and [.
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For an (A, H)-module V and ¢ € N, we set
DTEH(V) = H'(g. H; O(G) @ V),

where O(G) ® V is considered as a (g, H)-module via the action r to take the
relative Lie algebra cohomology. The two actions | and p satisfy the definition
of (A, G)-modules (Definition 2.2)), and hence DTG (V) is an (A, G)-module. See
e.g. [I3, Proposition 1.8.2] and [39, Theorem 1.6]. Remark that we can prove that
DTG (V) is an (A, G)-module under the weaker assumption that G/H is affine
without reductivity of H. See Remark

Fact 6.1. DTG (V) admits an (A, G)-module structure defined by y and I. If, in
addition, A is flat as a right ¢ (g)-module, then Dil’g is isomorphic to the i-th right
derived functor of T'G.

The functors D'T'S are called the Zuckerman derived functors.

The following property is well-known and easy to see from the above isomorphism
and the algebraic Peter—Weyl theorem [16, Theorem 4.2.7]. See e.g. [13] Theorem
1.8.8].

Fact 6.2. Let V be an (A, H)-module. Assume that G is reductive. For any i € N,
the irreducible decomposition of DT%(V) as a G-module is given by

DTG(V)~ @ H (3. H; Fo V)@ F*,
F

where the direct sum is over all isomorphism classes of irreducible G-modules. The
isomorphism is natural in V.

For a generalized pair (A, G), we consider (4 ® U(g),G) as a generalized pair
equipped with the diagonal homomorphism U(g) — A ® U(g) and the diagonal
action of G on A® U(g).

Lemma 6.3. Let V be an (A, H)-module. Assume that G is reductive. Then for
any (g, H)-module W and i € N, there exists a natural isomorphism of A% -modules
DTGV @ W) ~ H'(g, H; V@ W),
where V@ W is considered as an (A®U(g), H)-module to apply the functor DTS
Proof. The isomorphism D'I'G (VW) ~ Hi(g, H; V®W) of vector spaces in Fact

is natural in V and W. Hence the isomorphism is also an A%-homomorphism.
[l

Corollary 6.4. Retain the notation in Lemma [63. Then for any (g, H)-module
W and i € N, we have

Lenye (H'(g, H; V @ W)) < Lenagu(g),c(DTHV @ W)).
Proof. We write A: g - A® U(g) for the diagonal homomorphism A(X) = X ®

1+1® X. Then we have (A@U(g))/(ARU(g))A(g) ~ A.
By Proposition 23] we have

Len(agu(g))c (D'TH(V @ W)¥) < Lenagu(q),c(DTH(V @ W)).

The action of (A®U(g))® on DTG (V ® W)C factors through (A® U(g))%/(A®
U(g)A(g))¢. Since G is reductive, we have

(AeU(g)° /(A U(g)A)" ~ (Ao U(g)/A@U(g)A(g)" ~ A%,
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The isomorphism A% ~ (A @ U(g))¢/(A@U(g)A(g))€ is given by
A9sama®le(AU(g)/(AU(g)Ag))C.
The assertion therefore follows from Lemma O

6.2. Localization of the Zuckerman functor. We review the localization of the
Zuckerman derived functor. We refer to [10} IT.4] and to [31], 4.6] for a conceptual
treatment using the equivariant derived category (see also [8, 3.7]).

Let G be an affine algebraic group over C and &/x a G-equivariant algebra of
twisted differential operators on a smooth G-variety X. Let H be a reductive
subgroup of G. We construct an («7x, G)-module from an («7x, H)-module.

We consider the following diagram:

XEGxXSGxX S 0/HxX ™ X,

where 7 and 7’ are the projections, a is the isomorphism given by a(g,z) = (g, gx)
and ¢ is the natural projection. We consider the left two X as G x H-varieties
letting G act trivially and the others as G x H-varieties letting H act trivially. We
consider G as a G x H-variety via the left and right translations. Then 7, a, ¢ and 7’
are G X H-equivariant. Since &/ is G-equivariant, we have canonical isomorphisms

ataly ~ D W afx ~ (1’ o qoa)? oy

of G x G-equivariant algebras (see Proposition 3.9]). In particular, they are G x H-
equivariant.
We set n = dime(h), m = dime(g/h) and

D'LG (M) == L, (Lugs (a7 (M) 7/70) € Mod,o (e, G)

for M € Mod,.(#/x, H) and i € N. Here (-)#/Ho means taking the H/Hy-invariant
part in an H/Hgy-equivariant sheaf. Since the functors to define D'L$ preserve
holonomicity, we can replace Mod,. by Mody.

The functors ID)iLg can be considered as a localization of the Zuckerman functors
DTS (see [0, Theorem 4.4] and [31, Proposition 4.17]).

Proposition 6.5. Let M be an object in Mody.(ex, H). If the global section func-
tor I': Modg.(#x) — Mod(Ax) is exact, then there exists a natural isomorphism

[(D'LE(M)) ~ DTH(I(M))
of (Ax,G)-modules for any i € N.

Proof. Note that G/H is affine by Matsushima’s criterion [46, Theorem 3.8]. Fix
1€ N.

Since q: G x X — G/H x X is a principal H-bundle, L, q. (-)/Ho is isomorphic
to Tor? ) (C, g.(-))#/Ho by Theorem BI6l Since b is reductive, we do not need the
shift §. By n = dimc(h), and Facts 28] and 27, we have

Torlr/f(h) ((Ca Q*('))H/HD =~ Hn(ba q*('))H/HO
~ HO(h; qu () /M0 ~ . () 7.
Hence we have

Lngpapm (M)A/Ho ~ g (O R’ M)H.
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The action of Dx C Ag/u ® Ax on I'(¢. (O ®M)H) ~ (O(G) @ T'(M))* is given
by

(6.2.1) A-feom=>Y fif®Am,

where {4;} C Ax and {f;} C O(G) are finite subsets satisfying >, fi(g9)A; =
Ad(g~1)A. The G-action on (O(G) ® I'(M))H is given by the left translation on
O(G).

Let p: G/H x X — G/H be the projection and ¢': G — G/H the natural
projection. Since 7’ is projection, we can compute L,,_;m/, by the relative de
Rham complex (see [2I, Lemma 1.5.27]). Since G/H is a homogeneous variety,
the tangent sheaf 7¢/y is isomorphic to (¢,O0q¢ ® g/b). Hence we can write the
relative de Rham complex using Lie algebras as

U(Ly— i’ (.(Oc B M)T))
~H""™ ol o Rr.(p~(¢.0c @ "™ **(g/h)" )" ©p-104,, 4:(Oc K M)T)
~H'((0(G) @ A*(3/0)")" @o(a/m) (O(G) @ T(M))H)
~H'((O(G) @ A*(g/h)" @ T(M))™).

Here the second isomorphism holds because G/H is affine and T' is exact on
Mod,.(#x ), and the third isomorphism comes from the tensor product of the two
locally free sheaves on the affine variety G/H. The differentials in the above com-
plexes are those induced from the relative de Rham complex. By a straightforward
computation, the complex (O(G)®@A*(g/h)* @I (M))H is isomorphic to the complex
Homp (CEq(g, H), O(G) @ T'(M)). See Subsection [2Z2 for the Chevalley—Eilenberg
chain complex CE4(g, H). Therefore we have

D(L—imy (4:(Oc ®M)™)) =~ H' (g, H; O(G) @ [(M)) =~ DTG (L (M)).

As we have seen around (G.2), under the isomorphism T['(D'LE(M)) =~
(DL (M)) of vector spaces, the Ax-action and the G-action on I'(D'L%(M))
coincide with those on D'T'%(I'(M)) given in Fact We have therefore proved
the proposition. O

Remark 6.6. In the proof, we did not use the reductivity of H. In fact, one can
define the Zuckerman functor D'T'% (V) by the same way in the previous subsection
for any H if G/H is affine.

Let G and H be an affine algebraic group and its reductive subgroup, and X a
smooth G-variety. Let o/x p = (@/x )rea be a family of G-equivariant algebras
of twisted differential operators on X. Take a G-equivariant bornology B of &/x x.
See Definition

The functor DL is defined by a composition of inverse image functors, direct
image functors and taking invariants (-)/Ho. Note that taking invariants is a spe-
cial case of taking a subquotient. Hence ID)iLg preserves the uniform boundedness.

Theorem 6.7. Let (My)xrea be a family of (/x x, H)-modules. Suppose that M
is uniformly bounded with respect to B. Then (D'LG(My))iczaea is uniformly
bounded with respect to B.
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Proof. Recall the definition of the morphisms:
XEGxXSGxX S 0/HxXx ™ X

Since B is G-equivariant, we have 77 B = (7’ o0 ¢ 0 a)* B by Definition The
uniform boundedness is preserved by direct images, inverse images and taking
subquotients by Proposition [4.22] and Theorem .26l Hence we have proved the
theorem. ]

7. APPLICATION TO REPRESENTATION THEORY

In this section, we define a notion of uniformly bounded family of g-modules. A
typical example is a family of Harish-Chandra modules with bounded lengths. As
an application of results about uniformly bounded families of Z-modules, we will
show that the uniform boundedness of a family of g-modules is preserved by several
operations such as (cohomologically) parabolic induction and taking coinvariants.
We will also prove the boundedness of the lengths of ¢(g) -modules, which is
related to the branching problem and harmonic analysis.

7.1. Uniformly bounded family of g-modules. In this subsection, we introduce
the notion of uniformly bounded family of g-modules.

Let G be a connected reductive algebraic group and B a Borel subgroup of G.
Fix a Levi decomposition B = TU, where T is a maximal torus and U is the
unipotent radical of B. Then the natural projection p: G/U — G/B is a principal
T-bundle and G-equivariant.

We will reduce theorems about g-modules to those about D-modules on G/B.
To do so, we review the Beilinson-Bernstein correspondence. Let %,y be the
algebra of non-twisted differential operators on G/U equipped with the natural
G x T-equivariant structure. For a character A of t, we set

DeBx = (Cx Qup p+Dayv)”
and consider Y/ g\ as a G X T-equivariant algebra of twisted differential operators
as in Subsection 3.4l Then p# P /B, is naturally isomorphic to Z¢ /. Note that
one can explicitly construct a bounded trivialization belonging to B(G/B, G) using
an open covering by the open Bruhat cell and its translations.

AT = A*(g,t) denotes the set of positive roots determined by B and T'. We write
p for half the sum of the positive roots. Let Mod;.(Z¢,p,1) be a full subcategory
of Modyc(Z¢,/p,») whose object M satisfies the following conditions.

(i) The canonical morphism Zg/p \ ®u(g) I'(M) — M is surjective.
(ii) T(N) # 0 holds for any non-zero submodule N of M in Modg.(Z¢/p,»)-

Fact [[1]is called the Beilinson-Bernstein correspondence [5].

Fact 7.1. Let )\ be a character of t.

(i) The homomorphism U(g) — Dg/p (= I'(Zg/B,»)) is surjective and its
kernel is equal to the minimal primitive ideal with infinitesimal character
A —p.

(ii) If A — p is anti-dominant, then any quasi-coherent Z¢,p y-module M is
acyclic, i.e. H(G/B, M) = 0 for any i > 0. In particular, the global
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section functor I is exact on Modyc(Z,p,»). Moreover, the global section
functor

I': Modg.(Z¢/B,x) — Mod(Dg /B )

gives an equivalence of categories.
(iii) If A — p is regular and anti-dominant, then the global section functor
I': Modye(Z6/B,2) — Mod(Dg/p,») gives an equivalence of categories.

We need the following consequences of the Beilinson—Bernstein correspondence.

Corollary 7.2. Let A\ be a character of t such that A\ — p is anti-dominant.

(i) Let M be a g-module with the infinitesimal character A\ — p. Suppose that L
is the maximum submodule of M 1= 9D /p x @u(g) M such that T'(L) = 0.
Then we have M/L € Mod; .(Z¢/B,x) and M ~T(M/L). Moreover, if M
is irreducible, then so is M /L in Modyc(Pc/B,x)-

(ii) For any M € Modyc(Zc/p,x), there exists a subquotient N of M such that
N € Mod; .(Z¢/B,x) and T(M) ~T(N).

(iii) For any irreducible M € Modyc(Zc/,»), the g-module I'(M) is irreducible
or zero. In particular, we have Leng(I'(M)) < Leng,,, (M) for any
M e MOdh(gg/B7/\).

Proof. The first assertion of (i) is shown in the proof of [2I, Corollary 11.2.6].
Assume that M is irreducible and let A be a non-zero submodule of M /L in
Modge(Zc/B,x)- Then we have I'(NV) # 0 and hence I'(NV) = T'(M/L). Since M/L
is generated by I'(M/L) = T(N), we have N = M /L. This shows that M /L is
irreducible.

To show (ii), let M € Modg.(Zc/B,»). Take the maximum submodule £ of
M i= D¢ pT(M) such that T'(L) = 0. Then N := M’/L satisfies the desired
conditions as in (i).

To show (iii), let M € Modg.(Zq/p,») and assume that M is irreducible. If
(M) # 0, then M belongs to Mod;.(Z/p,») by definition, and hence T'(M) is
irreducible. g

Definition 7.3. Let A be a character of t such that A — p is anti-dominant. For
a g-module M with the infinitesimal character A — p, we denote by L§(M) the
D¢/ a-module M/L in (i) of Corollary

If A — p is regular, then L is the localization functor 2, x ®u(qg) (-)-

Proposition 7.4. Let A be a character of t such that A — p is anti-dominant.
Assume G = G1 X Go and decompose B = By X By, t =1t ® t2, p = p1 + p2 and
A= M+ €. Let M; be a gi-module with the infinitesimal character A; — p;
fori=1,2. Then we have

LS, (M) R LS, (Mz) ~ L5 (M; X My).
Proof. If My or M is zero, the assertion is trivial, so we can assume that M; and My

are non-zero. Since L§ (My) X L§ (Mz) is generated by I'(LS (M1) X LS, (M2)) =
M; X My, there is a natural epimorphism

©: Lil (Ml) X Liz(Mg) — Li(Ml X Mg)

We shall show Ker(p) = 0. Let p: G1/B; x G3/Bs — G1/B; be the projection
onto the first factor. Then we have p.(L§ (M) X LS, (M2)) >~ L§, (M1) ® M.
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Let a € M5 and put
a:=id®a: L5, (My) ® My — LS (My).
Since I'(Ker(¢)) = 0, we have I'(p.(Ker(¢))) = 0. Since I is exact, we have

I'(a(p. (Ker(¢)))) = 0.

a(p«(Ker(yp))) is a submodule of L§ (M1) € Mod;.(Zq, /B, ). Hence we have
a(p«(Ker(p))) = 0 for any o € M. This shows p,(Ker(yp)) = 0.

Let U be an open subset of G1/B;. Then we have I'(U, p.(Ker(y))) = T'(U x
G2/Bs,Ker(yp)) = 0. Considering the projection U x Gs/Bs — G3/Bs, and by the
same discussion, we have I'(U x V,Ker(¢)) = 0 for any open subset V' C Ga/Bs.
This shows Ker(yp) = 0. O

Motivated by the Beilinson-Bernstein correspondence and the definition of uni-
formly bounded family of Z-modules, we introduce Definition

Definition 7.5. Let (V;);cr be a family of g-modules. We say that (V;);er is
uniformly bounded if the following two conditions hold.

(i) The length of V; is bounded by a constant independent of ¢ € I.

(ii) There exist a family (A(r))rer of anti-dominant weights of t and a family
N € Moduws((Za)B,a(r)4+p)rer, B(G/B, G)) (see Section 5.1 such that any
composition factor of any V; is isomorphic to some I'(N.).

We say that a family of (g, K)-modules of a pair (g, K) is uniformly bounded if it
is a uniformly bounded family of g-modules.

The uniform boundedness is preserved by several operations of g-modules. We
shall explain how to show the uniform boundedness.

Strategy. Let G’ be a connected reductive algebraic group with a Borel subgroup
B’, and F: Mod(g) — Mod(g’) a functor. Take t' and p’ € (¢)* for G’ as t and p
for G. Suppose that we want to show that (F(V;));e; is uniformly bounded for any
uniformly bounded family (V;);e; of g-modules.

Assume that for any exact sequence 0 — L — M — N — 0 in Mod(g), the se-
quence F(L) — F(M) — F(N) is exact. Then it is enough to show that (F(V;))er
is uniformly bounded when V; is irreducible for any ¢ € I. See Proposition [7.6(i).

Let (V;)ier be a uniformly bounded family of g-modules such that V; is irreducible
for any 7 € I. By definition, there exists a uniformly bounded family (M;);cr of
twisted Z-modules on G /B such that I'(M;) ~ V;, M; € Modn(Zq/B i) and
A(7) — p is anti-dominant for any ¢ € I. Remark that

T is exact on MOdh(gg/B7,\(i))

by Fact [TIN(ii).

We need a geometrical version of F'. Suppose that there is a functor
F: [[Modge(Zay.ay) = [ [ Modae(Zer 5 xvi)
i€l iel
such that

(i) N(2) — p’ is anti-dominant for any i € I,

(ii) ToF ~FoTl,
(iii) F preserves the uniform boundedness (for the bornologies B(G/B, G) and

B(G'/B',G")).
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Then F also preserves the uniform boundedness. The boundedness of the lengths
of (F(V;))icr follows from Corollary [[2(iii). Note that the condition (i) always
holds in this paper and hence I' is exact on each Modg.(Zc/ B/ 5 (i)

We have seen the conditions (ii) and (iii) for several functors such as the Zuck-
erman derived functors.

Proposition 7.6. Let g and b be complex reductive Lie algebras.

(i) For a short exact sequence 0 = L — M — N — 0 in []
and N are uniformly bounded if and only if so is M.
(ii) For any family (\;)ier of characters of g and uniformly bounded family
(Vi)jes of g-modules, (V; @ Cy,)icr,jes is also uniformly bounded.
(iii) For any set ® of inner automorphisms of g and uniformly bounded family

(Vi)jes of g-modules, (V7)pea jes is also uniformly bounded. Here V7 is

the g-module defined by the composition g %> g — Endc(V;).

(iv) Let (Vi)ier (resp. (Wi)icr) be a family of non-zero g-modules (resp. b-
modules). Then (V; & W;)icr is a uniformly bounded family of (g ®bh)-
modules if and only if both (V;);cr and (W;);er are uniformly bounded.

ser Mod(g), both L

Proof. (i) is trivial by definition.

(ii) is easy from the observation that the twist (-) ® Cy, does not affect the
structure of twisted %, p-modules. See also Proposition 311

Let g € G. The functor (-)A4(9) is realized geometrically as the inverse image
functor mj : Mod,(Za/p,x) — Modye(Za,B,), where m,: G/B — G/B is defined
by my(z) = gz. Hence (iii) is a direct consequence of Proposition [3.8

(iv) follows from Theorem and Proposition [T O

Proposition 7.7. Let (g,K) be a pair and M a reductive subgroup of K. Let
(Vi)ier be a uniformly bounded family of (g, M)-modules.

(1) (DITE (Vi))ier jez is uniformly bounded.
(ii) If K is reductive, there exists a constant C such that for any i € I and
j € Z, we have

Leny ()« (H? (¢, M; V;)) < C.

(iif) (i) is also true if (V;)ier is a uniformly bounded family of (g, m)-modules
and HI (¢, M;-) is replaced by H (€, m;-).
(iv) (ii) is also true if we replace M with its covering M.
Proof. As we have mentioned in Strategy, we can reduce the assertions to similar
results about Z-modules on the flag variety. (i) follows from Theorem Taking

the K-invariant part of (i), (ii) follows from Corollary [641
By the definition of the relative Lie algebra cohomology, we have

HI (¢, m; V;) = HI (¢, Mo; (Vi) 1, ),

where (V;) s, is the sum of all m-submodules in V; that can lift to My-modules.
Hence (iii) follows from (ii). (iv) can be reduced to (iii) by

HI (8, M; Vi) = H (8, m; Vi) M/
We have proved the proposition. (|
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Let (g, K) be a pair. Then K acts on the flag variety of g, which is isomorphic
to G/B. Assume that K has finitely many orbits in G/B.

Proposition 7.8. Let b be a complex reductive Lie algebra and (M;);cr a uniformly
bounded family of (g ® h)-modules. For any set F of finite-dimensional €-modules
whose dimensions are bounded, the family (Torlj’-{(e)(F, M;))icr jez,per is a uni-
formly bounded family of h-modules. Moreover, there exists a constant C' such that
for any finite-dimensional €-module F, i € I and j € Z,
Leny (Tor! ) (F, M;)) < C - dime (F).

Proof. The proposition follows from Theorem [5.221 See Strategy. Remark that the
assumption that K has finitely many orbits in G/B is also assumed in Subsection

b4 O

Remark 7.9. If h = 0, then Leny (Torl(;{(é)(F, M;)) is the dimension of F' @) M;. In
this case, Proposition [[8is a kind of finite multiplicity theorems. Replacing G/B
by a partial flag variety G/P and Zq/p . ®u) F by some holonomic Z-module,
one can obtain several finite multiplicity theorems. We postpone the results to the
sequel.

A typical example of uniformly bounded family is a family of Harish-Chandra
modules.

Proposition 7.10. Any family of (g,€)-modules with bounded lengths is uniformly
bounded. In particular, so is any family of (g, K)-modules with bounded lengths.

Proof. The second assertion follows from the first one because the length of (g, K)-
module V' is bounded by |K/Ky| - Leng(V') by Lemma 24

Take a covering K’ of Ky such that [K'/Uk/, K' /U] is simply-connected, where
Uk is the unipotent radical of K’. Then we have a homomorphism K’ — K —
Aut(g) and K’ has finitely many orbits in G/B.

Let V be an irreducible (g, )-module. We want to realize V' as I'(V) for some
irreducible Z-module V on G/B. Since the t-action is locally finite, we can take a
finite-dimensional irreducible €-submodule F' C V. Take a character p of € such that
the -action on F®C,, lifts to a K’-action. Since V is irreducible, the multiplication
map U(g) ® F — V is surjective. Hence the -action on V ® C,, lifts to a K’-action.

Let A be a character of t such that A—p is anti-dominant and A— p is the infinites-
imal character of V. We can take an irreducible subquotient V of Y, p x ®u g V
such that T'(V) ~ V (see Corollary [[X(i)). By construction, V is an irreducible
twisted (Z¢/p,x, K')-module with twist .

Since K’ has finitely many orbits in G/ B, the proposition follows from Corollary
0. 10l O

7.2. Induction of uniformly bounded family. In this subsection, we will show
uniform boundedness of some family of g-modules.

Let G be a connected reductive algebraic group and B a Borel subgroup of G
with unipotent radical U. Put T := B/U. We denote by Z,, the minimal primitive
ideal of U(g) with infinitesimal character x. Let W be the Weyl group of G.

Proposition 7.11. The family (U(g)/Zy)yet-/we of (8@ ¢, A(G))-modules is uni-
formly bounded.
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Proof. U(g)/Z, is isomorphic to I'((Zq/Br+p X D B3 +p) Pu(a(g)) C), where A
(resp. A') is an anti-dominant weight in y (resp. —x). Since A(G) has finitely many
orbits in G/B x G/B, the assertion follows from Corollary (.211

O

Remark 7.12. The structure of the (g @ g, A(G))-modules can be reduced to that
of Verma modules (see [7, Section 6]). Proposition [[I1] can be deduced from this
and Soergel’s theorem [43] Theorem 11] (see also Remark [TT4]).

Proposition 7.13. Let P be a parabolic subgroup of G containing B with unipo-
tent radical Up, and (M;);cr a uniformly bounded family of p/up-modules. Then
(U(9) Du(py Mi)icr is a uniformly bounded family of g-modules. In particular, the
length of any Verma module is bounded by a constant independent of its highest
weight.

Proof. As we have mentioned in Strategy in the previous subsection, we can assume
that each M; is irreducible and hence has an infinitesimal character. Since P is
parabolic, each g-module U(g) ®(p) M; has an infinitesimal character y;. Then we
have

U(8) Dupy Mi ~ (U(9) /Ly, ® M;) Qyp) C.

(U(g)/Iy, @ M;)icr is a uniformly bounded family of (g @ g @ p/up)-modules by
Propositions [[.11] and Since P has finitely many orbits in G/B x P/B, the
assertion follows from Proposition [T.8] |

Remark 7.14. The second assertion is an easy consequence of Soergel’s theorem
[43,, Theorem 11]. In fact, the categorical structure of each block of the BGG
category O depends only on a pair of a Coxeter system and a subgroup of Wg
determined by the block, and the number of such pairs is finite.

We consider cohomologically induced modules. Let (g, K) be a pair and p a
parabolic subalgebra of g. Take a Levi subalgebra [ of p and a reductive subgroup
K1, of K whose Lie algebra is contained in [N €. Assume that K normalizes p and
[. We consider [-modules as p-modules through the natural surjection p — [.

Theorem 7.15. Let (V;);cr be a uniformly bounded family of (I, K1, )-modules, e.g.
a family of irreducible Harish-Chandra modules. (See Proposition [[I0l) Then
(]D)J'FII& (U(8) Qup) Vi))jezicr s a uniformly bounded family of (g, K')-modules. In
particular, there exists some constant C such that for any i € I and j € Z, we have

Leng,x (DT, (U(g) Gup) Vi) < C.
Proof. The assertion follows from Propositions and [T7(i). O

It is well-known that a (g, K)-module cohomologically induced from an irre-
ducible module of a parabolic subpair is of finite length (see e.g. [32, Theorem
0.46]). In addition to this fact, we have shown that the lengths of such modules are
bounded.

Corollary is a special case of Theorem because the underlying Harish-
Chandra module of any principal series representation can be realized as a coho-
mologically induced module. See [32, Propositions 11.57 and 11.65].

Corollary 7.16. Let Ggr be a real reductive Lie group. Then there exists a constant
C such that the length of any principal series representation of Gr is bounded by
C.
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Remark 7.17. Corollary [[.T6 has been proved in [35] Proposition 4.1] by using the
theory of minimal K-types and the translation principle.

7.3. U gGl-moduleS. For applications to the branching problem and harmonic anal-
ysis, we shall summarize several consequences of the results so far about uniformly
bounded families.

Let G be a reductive algebraic group and G’ a reductive subgroup of G.

Theorem 7.18. Let (V;)ier and (V);er be uniformly bounded families of g-modules
and g'-modules, respectively. Then there exists some constant C such that for any
1 €1 and j € N, we have

Leny (g (Torlj’-{(gl)(Vi, V) <C.

Proof. By Proposition [[77(ii) for K = A(G’) and M = {e}, there is a constant C
such that for any ¢ € I and j € N,

Leny o () (g':V; © V) < C.
Here we replaced U(g @ g')2(@") with U(g)¢" using the isomorphism
Ugog)/U(g® g')Ag') ~ U(g)

(see also the proof of Corollary [G4]). Put n = dimc(g’). By the Poincaré duality
(Fact [Z7)), we have

(g3 Vi @ V) = Hyo (Vi @ V) = Torl %) (v, V7).
Since these isomorphisms are natural in V; and V/, the isomorphisms are U (g)G,—

homomorphisms. We have shown the theorem. |

Corollary 7.19. Let b’ be a Borel subalgebra of g’ and (V;)ier a uniformly bounded
family of g-modules. Then there exists some constant C' such that for any character
Aofb,j€Z andi€ I, we have

Leny (g o7 (Torz;-{(b’)(Vi,(C)\)) <C.
Moreover, the constant C' can be chosen independently of b’.
Proof. Since U(g') is a free right U (b’)-module, there is a natural isomorphism
Tort ) (V;, €y) > Tor!! ) (Vi,U(g') @) C»)

of U(g)¢ -modules. The family (U(g")@ui(6/yCx) A, is uniformly bounded by Propo-
sition [[T3] and Proposition [[6(iii). Hence the corollary follows from Theorem
[CI8 O

Corollary 7.20. Let (V;);cr be a uniformly bounded family of g-modules. There
exists some constant C' such that for any mazimal ideal T of Z(g'),i € I and j € Z,
we have

Z ’
Leny gy su() (Tor; (2(a')/Z,V)) < C.
Proof. Since U(g') is a free Z(g’)-module, we have a natural isomorphism
Tor} @)(2(¢')/Z, Vi) = T (e /TU()), V2).
Hence the corollary follows from Proposition [.]1] and Theorem [.I8] O



344 M. KITAGAWA

Retain the notation G and G’ as above. Let (g, K) and (g’, K') be pairs (see
Definition 21]).

Corollary 7.21. Assume that K and K' have finitely many orbits in the flag
varieties of g and g, respectively. Then there exists some constant C' such that for
any i € N, irreducible (§', K')-module V' and irreducible (g, K)-module V, we have

Leny ()¢ (Torli/{(g,)(V, V') < C.

Proof. By Proposition [[.I0, any family of irreducible (g, K)-modules or irreducible
(¢/, K’)-modules is uniformly bounded. Hence the assertion follows from Theorem

18 O

7.4. Euler—Poincaré characteristic. We shall define the Euler—Poincaré charac-
teristic in the setting of the branching problem and harmonic analysis. Retain the
notation G, G’, K and K’ in the previous subsection. Assume that K’ is reductive
and contained in K, and Adg(K’) is contained in Ady(G").

Theorem 7.22. Let (V;)ier (resp. (V)ier) be a uniformly bounded family of
(g, K)-modules (resp. (¢', K')-modules). Then there exists some constant C such
that for any i € I and j € N, we have
Leny oo (H (gl K's Vi 0 V) < C.

In particular, the Euler—Poincaré characteristic

EP(V;,V)) ==Y (-1)'Hy(¢/, K';V; @ V)
is well-defined as an element of the Grothendieck group of the category of Z/{(g)G/-
modules of finite length.

Proof. Almost all of the proof is the same as that of Theorem [.I8 We note the

difference. In this setting, the Poincaré duality (Fact [Z7) is written as
H" (g K Vi@ Vi @ A" (g/¥)) = H;(¢', K's Vi @ V),

where n = dimc¢(g’'/t') and the g'-action on A™(g’/¥) is trivial. Hence the twisting

by A™(g'/) does not affect the action of U(g)¢". Therefore we have proved the

theorem by Proposition [T7ii). O

Remark 7.23. It is clear that for the well-definedness of the Euler—Poincaré charac-
teristic, we do not need the notion of uniformly bounded families. In fact, we need
only holonomicity of modules.

Remark 7.24. H;(¢', K'; V @ V')* is isomorphic to Exté,ﬁK,(V, (V')%,) as a U(g)% -
module (see [32, Corollary 3.2]). If Exty ./ (V, (V)% ) is not finite dimensional,
the U (g)G/—module does not have finite length because it is uncountably infinite
dimensional.

If all Hy(¢/,K';V ® V') are finite dimensional, we can define the (Z-valued)
Euler—Poincaré characteristic
(7.4.1) dimc EP(V, V') := > " (=1)" dime (Hi(g/, K'; V @ V).
The characteristic for p-adic groups is studied in [42], [3] and [I4]. Remark that
EP(V,V’) in the papers corresponds to dim¢ EP(V, (V')%.,) in our notation. We
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give sufficient conditions for the well-definedness of the Z-valued characteristic in
the sequels [29] Corollary 7.17].

7.5. Theta lifting. We apply Theorem to the theory of the Howe duality (see
22123]).

Let Gr be a double cover of Sp(n,R). Let (Hgr, Hy) be a reductive dual pair
of Gg, i.e. Hrp = Cg,(Hg) and Hp = Cg,(Hg) holds. Here Cg,(-) denotes the
centralizer in Gg. We write gg, hr and b for the Lie algebras of Gg, Hr and Hg,
respectively.

Fix a Cartan involution 6 of Gg which stabilizes Hg and Hpg, and put Kg :=
GY Kpyr = Hf and Ky g = (H)?. Then we have pairs (g, K), (h, Kg) and
(h', Kp), which are the complexifications of (gr, Kr), (hr, Kgr) and (bg, Kp ),
respectively. We write (w, V) for the underlying Harish-Chandra module of the
Segal-Shale—Weil representation of Gr. Then, by the classical invariant theory, we
have w(U(g))? = w(@U(h')). Here H is the centralizer in Sp(n,C) of the image of
Hy by the covering map Gg — Sp(n, R).

For an irreducible (h, Kg)-module V' we set

0;,(V") = Hy(h, Kg; Vo V'),

where V'Y is the space of all K -finite vectors in (V’)*. Then ©;(V')is an (', Kg)-
module. Let R(bh, Kp,w) be the set of equivalence classes of irreducible (b, Kp)-
modules such that ©q(V’) # 0.

Fact 7.25 (R. Howe [23] Theorem 2.1]). For any V' € R(h, Kg,w), ©¢(V’) is
of finite length and has a unique irreducible quotient §(V’). The correspondence
R(b, Kpg,w) > V' = 0(V') € R(Y, Kg,w) is bijective.

For any i € N, ©;(V') is of finite length by w(l(g))? = w(U(h’)) and Theorem
More precisely, Theorem holds.

Theorem 7.26. Let V' be an irreducible (, Kg)-module. Then there exists some
constant C' independent of V' such that

Lenh/)KH, (@1(‘//)) S C

for any i € N. In particular, as an element of the Grothendieck group of the category
of (b, Ky+)-modules of finite length, the Euler—Poincaré characteristic

EP(V, V") =Y (-1)'0;(V")

is well-defined.

The well-definedness of the Euler—Poincaré characteristic of the theta lifting for
p-adic groups is proved and studied in [I, Proposition 1.1].

7.6. Uniformly bounded family in branching problem. Let G be a connected
reductive algebraic group and G’ a connected reductive subgroup of G. Using the
restriction of modules, we shall construct a uniformly bounded family of g’-modules
from one of g-modules. We consider the embedding ¢: G’ — G’ x G’ x G defined

by (g9) = (e,9,9).
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Lemma 7.27. Let V be a g-module and V' an irreducible g'-module, and set
T := Annggy (V). If 0 < dimc Homg (V, V') < oo, then there exists an irre-
ducible (g ® g, A(G"))-module W such that V' AW is isomorphic to a subquotient

of DI U(a") /T ® V), where n := dime (G').

Proof. Take a basis {¢;} of Homg (V/ZV,V’)(~ Homg (V,V’)) and its dual basis
{\i} of Homy (V/ZV,V')*. Since Homy (V/ZV, V') is finite dimensional, we obtain
aU(g') ® U(g)% -module homomorphism

V/IV — V' K Homy (V/IV,V')*

given by v = 3. ¢;(v) ® Ai. Hence the U(g') ® U(g)® -module V/IV has an
irreducible quotient of the form V’ & Wy for an irreducible ¢(g)% -module Wj.
By Fact 2.7 and Lemma [6.3] we have

DT U() /T2 V) = U) /T Cuy V
~V/IV

as U(g') @ U(g)% -modules. Hence V' & Wy is isomorphic to a quotient of

D W)/ V).

This implies that we can take an irreducible subquotient X of D"Ff{(ec};/) U(g)/IeV)
such that X“(") ~ V/KW, (see e.g. [48, Proposition 3.5.4]). Since X = U(g) X&),
the g’-module X|y is a direct sum of some copies of V/. Hence X is naturally

isomorphic to V/ W Homg (V/, X') and the natural (g’ @ g)-action on Homg (V’, X)
is irreducible. We have shown the lemma. O

Theorem 7.28. Let (V;);er be a uniformly bounded family of g-modules and (V})ier
a family of irreducible g’'-modules. If 0 < dimc(Homgy (V;,V})) < oo for any i € I,
then (V)ier is uniformly bounded.

Proof. Set Z; := Annz gy (V{). Then (U(g')/Z;®V;)ier is a uniformly bounded fam-
ily of (¢’ ® g’ @ g)-modules by Proposition [Tl By Proposition [7(i)]
(D"Ff{(ec};/)(U(g’)/Ii ® V;))ier is a uniformly bounded family of (g’ ® ¢’ @ g,:(G))-
modules. Here we set n := dim¢(G’).

By Lemmal[Z.27] for each i € I, we can take an irreducible (g’ & g, A(G’))-module

W; such that V/ X W; is a subquotient of D”FE&?/)(U(Q’)/L ® V;). This implies
that (V/ KW, )ier is a uniformly bounded family of (g’ @ ¢’ @ g, ¢(G’))-modules. By

Proposition [T.6{iv)| the family (V});er is uniformly bounded. O

7.7. Tensoring with finite-dimensional modules. Let G be a connected reduc-
tive algebraic group. We shall show that the uniform boundedness is preserved by
tensoring with finite-dimensional modules. In particular, the uniform boundedness
is preserved by the translation functors.

Lemma 7.29. Let V' be an irreducible g-module. Fiz a mazimal torus T of G.
Consider U(g)/Anny gy (V) as a G-module by the adjoint action. Then for any
irreducible G-module F', we have

dim¢ (Home (F,U(g) /Anny ) (V))) < dime(Home (F, O(G/T))) = dime(FT).
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Proof. Let F be an irreducible G-module and x the infinitesimal character of V.
Then Anny) (V) contains the minimal primitive ideal Z, with the infinitesimal
character x. Hence it is enough to show

dim¢ (Homg (F,U(g)/Zy)) = dimc(Homeg (F, O(G/T))).

This is shown in [32, Theorem 7.194]. Note that R()) in the theorem is U(g)/Z,
in our notation. g

Lemma 7.30. Let (V;);cr be a uniformly bounded family of g-modules and F a
finite-dimensional g-module. Then there exists a constant C > 0 independent of F
such that

Leng(V; ® F) < C - dimg (F)?
foranyiel.

Proof. Clearly, we can assume that F' is completely reducible. Since the lengths of
all V; are bounded by a constant independent of ¢ € I, we can also assume that all
V; are irreducible. Set n := dim¢(F).

Fix ¢ € I. By Kostant’s theorem [32, Theorem 7.133], V; ® F' is a direct sum of
finitely many submodules Wy, Ws, ..., W,, with generalized infinitesimal characters
X1, X2s - - - s Xm, respectively. More precisely, we have m < n and I}W“‘Wj = 0 for
any 1 < j < m, where Z; is the maximal ideal of Z(g) corresponding to x; and W
is the Weyl group of g. There is a g-module surjection

IV @ (W;/T,W;) — Iy W, /TF W,

for any k € N, and IJ’-€ is generated by r* elements as a Z(g)-module. Here 7 is the
rank of g. Hence we have

(7.7.1) Leng(V; ® F) = > Leng(W;)
(7.7.2) < 'Y Leng(W; /Z;W;)
(7.7.3) =C"-) Leng((Vi ® F)/Z;(Vi ® F)),

J

where C' is a constant depending only on |Wg| and .
We shall estimate Leng ((V; ® F')/Z;(V; ® F)). By Corollary [[.20, there exists a
constant C” depending only on the family (V;);cs such that

(7.7.4) Lenyg)gu(gaga@ (Vi @ F)/T;(V; @ F)) < c”
for any j. Here the action of U (g ® g)*(%) on V; ® F factors through
(U(g)/Anny(g)(V;) @ Ende(F)) 9.
Take a maximal torus T of G. By Lemma [.29] we have
dime (U(g)/Anny(g) (V) ® Ende(F))*( @) < dime ((O(G/T) ® Ende(F))9)
= dimc(Endy(F)) < dimg(F)?%

In particular, the dimension of any irreducible module of (U(g)/Anny ) (V;) ®
Endc(F))2() is less than or equal to dime(F). By (Z7Z4), we have

Leng ((V; ® F)/Z;(V; ® F)) < C” - dime(F).
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Combining (T.7.3), we obtain
Leng(V; ® F) < C'C” - dimc(F)2. O

One can prove and refine Lemma [7.30] using twisting of Z-modules on the flag
variety of g or the theory of projective functors [7]. For (g, K)-modules, a more
precise estimate is known [34, Proposition 5.4.1 and its proof].

Theorem 7.31. Let (V;)ie; be a uniformly bounded family of g-modules and
(F})jer a family of finite-dimensional g-modules with bounded dimensions. Then
(Vi ® F})ier,jes s a uniformly bounded family of g-modules.

Proof. For i € I and j € J, let R;; be the set of all composition factors of V; ® Fj.
By Lemma the lengths of all V; ® F}; are bounded by a constant independent
of i € I and j € J. Hence it suffices to show that the family (W)wer,, icr jes is
uniformly bounded.

As we have seen in the proof of Lemma [7.30] any element of R;; is a subquotient
of (V; ® F;)/Z(V; ® Fj) for a maximal ideal Z of Z(g). By Theorem [T.28, the
family (W)wer,, icr,jes is uniformly bounded. Note that although we have proved
Theorem for a family of irreducible quotients, the proof also works for a family
of irreducible subquotients if each V; in the theorem has finite length as a g'-
module. |

7.8. Category of (g, t)-modules. Let G be a connected reductive algebraic group
and K a finite covering of a connected reductive subgroup of G. Suppose that [K, K]
is simply-connected. We denote by C(g, ) the full subcategory of Mod(g) whose
object is
(i) of finite length,
(ii) locally finite and completely reducible as a ¢-module, and
(iii) ¢-admissible, i.e. any &-isotypic component is finite dimensional.
Such a module is called a generalized Harish-Chandra module by I. Penkov and
G. Zuckerman (see e.g. [40]). We write C, (g, ¥) for the full subcategory of C(g,¥)
whose object has the infinitesimal character x.
In this subsection, we study the category Cy(g,%). It is related to the branch-
ing problem and harmonic analysis because the algebra U(g)* roughly controls

multiplicities and its modules can be obtained from the A(K)-invariant part of
(g @ ¢, A(K))-modules. See Theorem [[.I8

Theorem 7.32. Let Z (resp. J) be a mazimal ideal of Z(g) (resp. Z(¢)). A :=
U)K /(T + TU(g)E has finite length as an (A, A)-bimodule. In particular, the
intersection of all two sided ideals of finite codimension in A has finite codimension
in A, which coincides with the intersection of all left ideals of finite codimension in

A.
Proof. We have a (U(g)¥,U(g)®)-bimodule isomorphism
U@/ + U™ = U(e)/(TU(g) + TU(@))"
~ (U()/TUE) S Uls)/TU(9))"

By Proposition [C.IT1] (U(g)/ZU(g))z and (U(t)/TU(E))s are uniformly bounded
families of (g & g)-modules and (¢ @ €)-modules, respectively. By applying Theorem
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to U(E)/TU) ® U(g)/IU(g), there exists some constant C' independent of T
and J such that

Leng (g)x gu(g)< (U8)/TUE) Rue) Ulg) /TU(9))") < C.

This shows the first assertion.

Let IC be the intersection of all two sided ideals of finite codimension in A. A
two sided ideal of A is just an (A, A)-submodule of A. By the first assertion, the
poset of two sided ideals of A satisfies the descending chain condition. Hence K can
be written as an intersection of finitely many two sided ideals of finite codimension
in A. This implies that I has finite codimension in A.

Any left ideal J of A of finite codimension contains the two sided ideal
Ann4(A/J), which is of finite codimension. Hence K is also the intersection of
all left ideals of finite codimension. O

Remark 7.33. If € does not contain any non-trivial ideal of g, the center of U(g)*
is equal to Z(g)Z(t) ~ Z(g) ® Z(€) by [33, Theorem 10.1].

Let Z, be the minimal primitive ideal of /(g) with infinitesimal character x.

Theorem 7.34. Any family of objects in C(g, t) with bounded lengths is a uniformly
bounded family. In particular, for any irreducible object V€ Cy (g, t), there exist an
anti-dominant X € x and some M € Mod,(Zc /B, x+p) such that V ~T(M). (See
Subsection [[1] for the notation.)

Remark 7.35. The second assertion has been proved by A. V. Petukhov [41].

Proof. Tt is enough to show that the family of all irreducible objects in C(g,€)
(modulo isomorphism) is uniformly bounded.

Let V be an irreducible object in C(g,€) with infinitesimal character y. Then
we can take a character p of ¢ such that V' ® C, lifts to a K-module (see the proof
of Proposition [[I0). Since V' ® C,, is an irreducible (¢/[¢,€] @ g, A(K))-module,
replacing V by V ® C,, and (g,¢) by (¢/[¢,€] @ g, A(K)), we can assume that V is
an irreducible (g, K)-module. See also the proof of Corollary
We put W := D”Fﬁ}(Z/[(g)/IX), where n = dim¢() and we take the functor
D"Fﬁ } with respect to the left ¢-action. Then for any irreducible K-module F', we
have

Hompg (F, W) ~ F* @) U(g) /Ty

by Fact The action of 0@ € C g ® g on F* @y ¢ U(g) /I, is given by the right
multiplication, which is locally finite and lifts canonically to a K-action. W is a
(g® g, K x K)-module since W is isomorphic to the direct sum of the K x K-
modules of the form F' ® Homg (F, W).

V'V denotes the subspace of all K-finite vectors in V*, which is the dual in C(g, €).
It is easy to see that V'V is irreducible by the K-admissibility. We shall show that
VX VYV is a subquotient of W.

Fix an irreducible K-submodule F' of V. Then we have isomorphisms

HomeK(F & F*, W) ~ F* ®M(E) U(g)/IX ®M(E) F
=~ (U(g) /Iy @y Ende(F)X
=~ (U(9)/(Zy + U(g) Anny e (F)) "
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as U(g ® g)* *K-modules. Here Anny¢)(F) denotes the annihilator of F in U(k).
Since Homy (F, V) is a finite-dimensional irreducible ¢ (g)* -module (see Fact [.35),
we have a surjection

(U(9)/(Zy +U(g)Anny ) (F)))* — Ende(Homg (F, V)
by the Jacobson density theorem. This implies that there is a surjection
Hompgy i (F X F*, W) — Hompgx g (FRF*, VR VY)
~ Endc(Homg (F,V))

of U(g @ g)X*K-modules. By [48, Proposition 3.5.4], V & V" is isomorphic to a
subquotient of W.

By Propositions [Tl and [T7(i), (D”Fﬁ} (U(g)/Zy))y is a uniformly bounded
family of (g @ g, K x K)-modules. By Proposition [T.6(i) the family (VXK VV)ycs
is uniformly bounded, where S is the set of all equivalence classes of irreducible K-
admissible (g, K)-modules. From this and Proposition [Z.6(iv), the family (V)yes

is uniformly bounded. This shows the theorem. ([l

In the proof, we have proved Corollary For a character p of €, we denote
by Cy..(g, ) the full subcategory of Cy (g, €) whose object V satisfies that V' ® C,,
lifts to a K-module.

Corollary 7.36. Let o be a character of ¥ and x an infinitesimal character of g.
The number of equivalence classes of irreducible objects in Cy, ,,(g,%) is bounded by
some constant independent of u and x.

Remark 7.37. The number of equivalence classes of irreducible objects in C, (g, €)
may be infinite. (g,¢) = (sl(2,C),s0(2,C)) gives an example. See [24], Theorem
1.3.1].

For a (g,t)-module V and an irreducible finite-dimensional ¢-module F, we
denote by V(F) the isotypic component with respect to F. Then V(F) is a
UE) @ U(g)X-module. It is well-known that the g-module structure on V is re-
lated to the U(€) ® U(g)X-module structure on V(F). See [48, Lemma 3.5.3] and
[37]. Recall that U(€) and U(g)X are noetherian.

Fact 7.38. Let V be a (g,t)-module and F' an irreducible finite-dimensional ¢-
module. For any submodule W of V(F'), we have (U(g)W)(F) = W. In particular,
the length of V(F) is less than or equal to that of V, and V(F) is finitely generated
if V is finitely generated.

Lemma 7.39. Let F be an irreducible K-module. Then U(g)(F) with respect to
the adjoint action is finitely generated as a left/right U(g)¥ -module. In particular,
any finitely generated submodule of the (U(g)X,U(g)X)-bimodule U(g) is finitely
generated as a left/right U(g)™ -module.

Proof. F* @ U(g) is finitely generated left U(g)-module. By [30, Lemma 2.2],
(F* @ U(g))X is finitely generated left U(g)®-module. Since U(g)(F) is canoni-
cally isomorphic to F' @ Homg (F,U(g)) as a U(g)®-module, this shows the first
assertion.

Any finitely generated submodule of the (U(g)%,uU(g)%)-bimodule U(g) is con-
tained in a finite sum of some K-isotypic components. Since U(g)¥ is noetherian,
the second assertion follows from the first one. |
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Lemma 7.40. Let V be a (g,%)-module and F an irreducible finite-dimensional
t-module. If V(F) is finite dimensional and generates V', then V is in C(g, ).

Proof. Since the multiplication map U(g)V (F') — V is surjective, V is completely
reducible as a £-module. We shall show that V is £-admissible and of finite length.

Let F’ be an irreducible finite-dimensional ¢-module. We shall show that V (F")
is finite dimensional. Since V is finitely generated, V(F") is finitely generated as a
U(g)K-module by Fact Since V is generated by V(F'), we can take a finite-
dimensional subspace X C U(g) such that V(F’) C U(g)* XV (F). By Lemmal[7.39,
there exists a finite-dimensional subspace X’ C U(g) such that U(g)® XUU(g)K =
X'U(g)X. Then we have

V(F') C U()“XV(F) = X'U(g)“V(F) = X'V(F),

and hence V(F") is finite dimensional. Therefore V' is £-admissible.

We shall show that V' is of finite length. Since V' is generated by V' (F), Annz4) (V)
is of finite codimension in Z(g). Hence V is a finite direct sum of g-submodules
with generalized infinitesimal characters. We can assume that V" has a generalized
infinitesimal character x.

Since V is generated by V' (F), there is a character p of € such that V®C,, lifts to
a K-module. Then any irreducible subquotient of V' is in Cy (g, ). By Corollary
[C36, the number of equivalence classes of irreducible objects in Cy (g, ) is finite.
Since V is £-admissible and noetherian, this shows that V is of finite length. (]

Suppose that 0 = Vo € V; € Vo C --- C V, = V is the socle filtration of
V € C(g,¥t), that is, each V;/V;_; is the sum of all irreducible submodules in V/V;_;.
The length r is called the Loewy length of V.

Theorem 7.41. The Loewy length of any object in Cy(g,¥) is bounded by some
constant independent of the object and the infinitesimal character x.

Proof. We construct projective objects in C,(g,€) using U(g) @) F, which is a
projective object in the category of all (g, £)-modules whose €-actions are completely
reducible.

Let F be an irreducible finite-dimensional £-module and x an infinitesimal char-
acter of g. Put

Py = U(9)/T @ue) F.
Then there are canonical isomorphisms
Home(F, Pry) ~ U(g)/(Zy +U(g) Anny ) (F))
~U(g)"™ /(T + U(g) Anny ey (F)) ¥

of U(g)X-modules. Let J be the intersection of all U(g)*-submodules of finite
codimension in Homg(F, ﬁp,x). By Theorem [[132] 7 has finite codimension in
Homg (F, 151:7 )

There is a canonical isomorphism

F @ Home(F, Pry) —» Pry(F)
of U(#) ®U(g)X-modules. We consider F'® J as a subspace of ﬁF’X by the isomor-
phism. Put J:=U(g) - (F® J) and
PF,X = ﬁp}x/j.
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Since J(F) = F ® J by Fact [[38] we have

P (F) = F @ (Home(F, Prx)/J).
Hence Pr,, is generated by the finite-dimensional subspace P, (F'). By Lemma
[[40, Pr,, is an object in C, (g, £).

We shall show that Pg, is projective in C, (g, ). Let V € C, (g, £) and f: f)RX —
V be a g-homomorphism. Then we have the U(g)®-homomorphism

Home(F, Pr.y) 2 Home(F, V).
The U(g)X-module Hom(F, V) is finite-dimensional. By the definition of J, we

have f*(J) =0 and hence f(J) = 0. This implies
Homgy(Pr,y, V) ~ Homg(ﬁpyx7 V)

~ Homg (U(g) ®ue) F,V)

~ Home(F, V).
Since all objects in C,(g,¥) are completely reducible as £-modules, the functor
Hom(F,-) is exact on Cy (g, £). Therefore Pp, is projective in C, (g, £).

Any object in C, (g, £) is isomorphic to a quotient of a finite direct sum of pro-

jective objects of the form Pp . It is enough to bound the Loewy length of Pp .

By Proposition [.TT] and Theorem [Z.I8], there is a constant C' independent of y and
F such that

Lenu(g)®u(g)x (PF,X) S Lenu(g)®u(g)x (Z/{(g)/IX ®z,{(g) F) S C.
By Lemma [T42] the Loewy length of P, as a g-module is bounded by C. |

Lemma 7.42. Let A be a C-algebra and V' an irreducible U(g) ® A-module. If V
is in C(g,t) as a g-module, then V is completely reducible as a g-module.

Proof. Since V has finite length as a g-module, V' has an irreducible g-submodule
W. Since V is irreducible as a U(g) ® A-module, we have V' = A-W. This implies
that V is a sum of some copies of W, and hence V is completely reducible as a
g-module. O

In the proof of Theorem [(41] we have proved Proposition [(.43]

Proposition 7.43. C,(g,t) has enough projectives.
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