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FAMILY OF D-MODULES AND REPRESENTATIONS WITH A

BOUNDEDNESS PROPERTY

MASATOSHI KITAGAWA

Abstract. In the representation theory of real reductive Lie groups, many
objects have finiteness properties. For example, the lengths of Verma modules

and principal series representations are finite, and more precisely, they are
bounded. In this paper, we introduce a notion of uniformly bounded families
of holonomic D-modules to explain and find such boundedness properties.

A uniform bounded family has good properties. For instance, the lengths of
modules in the family are bounded and the uniform boundedness is preserved
by direct images and inverse images. By the Beilinson–Bernstein correspon-
dence, we deduce several boundedness results about the representation the-
ory of complex reductive Lie algebras from corresponding results of uniformly
bounded families of D-modules. In this paper, we concentrate on proving
fundamental properties of uniformly bounded families, and preparing abstract
results for applications to the branching problem and harmonic analysis.

1. Introduction

In this paper, we introduce a notion of uniformly bounded families of D-modules,
which are good families of holonomic D-modules with bounded lengths. We show
that the uniform boundedness is preserved by fundamental operations of D-modules
such as direct images, inverse images and taking subquotients. By the Beilinson–
Bernstein correspondence [5], we deduce several boundedness results about the
representation theory of complex reductive Lie algebras from corresponding results
of uniformly bounded families of D-modules.

In the representation theory of real reductive Lie groups, finiteness results about
lengths of modules and multiplicities in branching laws are fundamental and enable
us to study Harish-Chandra modules and unitary representations. We list typical
examples of the results: finiteness of the lengths of Verma modules and principal
series representations, Harish-Chandra’s admissibility theorem [17], irreducibility
of U(g)K-actions on K-isotypic components, and finiteness of multiplicities in the
Plancherel formula of symmetric spaces [35, 47].

Our main concern is that the finiteness is uniform. The length of a Verma
module is bounded by some constant independent of its highest weight, and a
similar result holds for principal series representations. The former is an easy
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consequence of Soergel’s theorem [43] (see also Remark 7.14), and the latter is
proved by Kobayashi–Oshima in [35].

In [35], T. Kobayashi and T. Oshima give criteria for the finiteness and the uni-
form boundedness of multiplicities in the branching problem and harmonic analysis
of real reductive Lie groups. The criteria are given by conditions on the existence
of open orbits in flag varieties, and proved by using hyperfunction boundary value
maps. A. Aizenbud, D. Gourevitch and A. Minchenko give similar results using fam-
ilies of holonomic D-modules and Schwartz distributions in [2]. T. Tauchi proves
similar results based on the finiteness of hyperfunction solutions in [44]. Their
results are one of our motivations.

In this paper, we do not deal with concrete applications to the branching problem
and harmonic analysis. We concentrate on providing fundamental properties of
uniformly bounded families, and preparing abstract results for such applications.
See Proposition 7.8 and Remark 7.9 for an easy application to the estimate of
multiplicities.

Let us state the definition of uniformly bounded families and their properties.
Our definition is based on Bernstein’s work [6]. In the paper, he has introduced
the multiplicity m(M) of a module M of the Weyl algebra DCn , and proved that
the multiplicity is well-behaved for direct images, inverse images and taking sub-
quotients. We denote by Modh(DX) the category of holonomic D-modules on a
smooth variety X. Let f : Cn → Cm be a morphism of algebraic varieties of degree
d′ and set d = max(1, d′). Let Df+ (resp. Lf∗) denote the direct (resp. inverse)
image functor. Then we have∑

i

m(Dif+(M)) ≤ dn+mm(M) and
∑
i

m(Lif
∗(N )) ≤ dn+mm(N ),

for any M ∈ Modh(DCn) and N ∈ Modh(DCm) (see Fact 4.4). Here we put
m(M) := m(Γ(M)). The key point is that the coefficient dn+m is independent
of M (or N ). In other words, the estimates of the multiplicities are uniform with
respect to M (or N ). This is the starting point of our definition.

Let AX,Λ := (AX,λ)λ∈Λ be a family of algebras of twisted differential operators
on a smooth variety X over C. We say that (U,ϕ,Φ) is a trivialization of AX,Λ if
ϕ : U → X is a surjective étale morphism and Φλ : ϕ

#AX,λ → DU is an isomor-
phism. Here ϕ# is the pull-back of algebras of twisted differential operators by ϕ.
Take a trivialization (U,ϕ,Φ) with affine U and a closed embedding ι : U → Cn.
Then for a family M ∈

∏
λ∈Λ Modh(AX,λ), we can consider a function

Λ � λ �→ m(ι+(ϕ
∗(Mλ))) ∈ N.(1.0.1)

The boundedness of the function does not depend on ι (see Proposition 4.7), and
does depend on the isomorphisms Φ.

We introduce a relation ∼ of trivializations. For two trivializations (U,ϕ,Φ) and
(V, ψ,Ψ), we write (U,ϕ,Φ) ∼ (V, ψ,Ψ) if the set{

ϕ̃#Ψλ ◦ (ψ̃#Φλ)
−1 : λ ∈ Λ

}
⊂ Aut(DU×XV ) 
 Z(U ×X V )

spans a finite-dimensional subspace of the space Z(U×X V ) of closed 1-forms. Here

ϕ̃ : U ×X V → V and ψ̃ : U ×X V → U are the projections of the fiber product. See
Definition 4.11.

We say that a trivialization T is bounded if T ∼ T . Although the relation
is not an equivalence relation of trivializations, it is an equivalence relation of
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bounded trivializations. Moreover, if two bounded trivializations T = (U,ϕ,Φ) and
S = (V, ψ,Ψ) with affine V and U are equivalent, the boundedness of the function
(1.0.1) defined for T is equivalent to that for S. An equivalence class of bounded
trivializations is called a bornology of AX,Λ (see Definition 4.16).

For a bornology B of AX,λ, we say that M ∈
∏

λ∈Λ Modh(AX,λ) is a uniformly
bounded family with respect to B if the function (1.0.1) defined for any/some T ∈ B
is bounded. We denote by Modub(AX,Λ,B) the full subcategory of∏

λ∈Λ Modh(AX,λ) whose objects are uniformly bounded. Similarly, we define a

derived category version Db
ub(AX,Λ,B). See Definition 4.20 for the details.

Corresponding to operations of AX,Λ, we define operations of bornologies by nat-
ural ways: pull-back f#B, external tensor product B�B′, twisting by an invertible
sheaf BL and opposite Bop. Theorem 1.1 is a fundamental result about uniformly
bounded families. See Propositions 4.22 and 4.31, and Theorems 4.26 and 4.28.

Theorem 1.1. The uniform boundedness is preserved by direct images, inverse
images, external tensor products, twisting by an invertible sheaf and taking subquo-
tients.

For example, for a morphism f : Y → X of smooth varieties, we can define a
direct image functor

Df+ : Db
ub(AX,Λ,B) → Db

ub(f
#AX,Λ, f

#B)
via Df+(M) = (Df+(Mλ))λ∈Λ, which is the restriction of the direct product
of the direct image functors on Db

h(AX,λ) (λ ∈ Λ). Here f#AX,Λ is the family
(f#AX,λ)λ∈Λ.

The proofs for the last three operations in Theorem 1.1 are easy by the definition
of uniformly bounded families. The proofs for the others are essentially the same
as a proof of preserving holonomicity (see e.g. [12, VII. §12] and [21, 3.2]).

When each AX,λ is G-equivariant, we can define a notion of G-equivariant
bornologies by a natural way (Definition 5.6). The G-equivariance is preserved by
the pull-back by a G-equivariant morphism. It is important for the representation
theory that if X is a homogeneous variety G/H, there exists a unique G-equivariant
bornology of a family of G-equivariant algebras of twisted differential operators (see
Proposition 5.10).

In Beilinson–Bernstein’s paper [5], they give a way to classify equivariant D-
modules. Combining the classification and the notion of G-equivariant bornologies,
we obtain

Theorem 1.2 (Theorem 5.15). Let B be a bornology of AX,Λ. Suppose that X is a
G-variety of an affine algebraic group G, and B and AX,Λ are G-equivariant. If G
has finitely many orbits in X, then any family of (AX,λ, G)-modules with bounded
lengths is uniformly bounded with respect to B.

In Section 5, we give several methods to construct bornologies and uniformly
bounded families from algebraic group actions. In particular, we will see that there
are many uniformly bounded families.

Let us state applications of uniformly bounded families to the representation
theory. Let G be a connected reductive algebraic group over C and B a Borel
subgroup of G. By the Beilinson–Bernstein correspondence, any g-module with
an infinitesimal character is isomorphic to Γ(M) for some twisted D-module on
G/B. We always choose the twist of D such that Γ is exact on the category of
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quasi-coherent twisted D-modules. We say that a family (Mi)i∈I of g-modules is
uniformly bounded if the lengths of Mi are bounded and the localization of the
family of all composition factors of all Mi is a uniformly bounded family on G/B.

The uniform boundedness is preserved by several operations of g-modules such as
taking subquotients, tensoring with finite-dimensional modules and cohomological
parabolic inductions. This follows from corresponding results for D-modules in
Theorem 1.1. By Theorem 1.2, any family of Harish-Chandra modules (or objects
in the BGG category O) with bounded lengths is uniformly bounded. This implies
that many families in the representation theory of real reductive Lie groups are
uniformly bounded.

We shall state the preservation result for cohomological parabolic inductions.
Let P be a parabolic subgroup of G and L a Levi subgroup of P . Let (g,K) be a
pair (see Definition 2.5). Take a reductive subgroup KL ⊂ K such that kL ⊂ k ∩ l

and KL normalizes l and p.

Theorem 1.3 (Theorem 7.15). Let (Mi)i∈I be a uniformly bounded family of
(l,KL)-modules. Then the family (DjΓK

KL
(U(g)⊗U(p)Mi))i∈I,j∈Z is uniformly boun-

ded, where DjΓK
KL

is the j-th Zuckerman derived functor.

As mentioned before, the lengths of Verma modules (or principal series repre-
sentations) are bounded, which is a special case of Theorem 1.3. It is well-known
that the length of a cohomologically induced module is finite (see e.g. [32, Theorem
0.46]).

For the proof of Theorem 1.3, we need the localization of the Zuckerman derived
functor. In this paper, we construct the localization following F. Bien [10]. A
conceptual treatment of the localization using the equivariant derived category is
given by S. N. Kitchen [31]. See also [39]. We do not treat the equivariant derived
category in this paper.

The algebra of invariant differential operators plays an important role in the
representation theory of real reductive Lie groups such as the Schur–Weyl duality
and the compact Howe duality [22], a characterization of compact Gelfand pair
[45], and Harish-Chandra’s study of (g,K)-modules [17,18]. If (g,K) is a pair with
connected reductive group K, then the U(g)K-action on a non-zero K-isotypic
component of an irreducible (g,K)-module is irreducible. This is a classical result
that follows from the Jacobson density theorem and complete reducibility of the K-
action (see e.g. [16, Section 4.2]). Theorem 1.4 can be considered as a generalization
of the result.

Let G′ be a reductive subgroup of G and (g′,K ′) a subpair of (g,K). Suppose
that K ′ is a reductive subgroup of K and Adg(K

′) is contained in Adg(G
′).

Theorem 1.4 (Theorem 7.22). Let (Vi)i∈I and (V ′
i )i∈I be uniformly bounded fami-

lies of (g,K)-modules and (g′,K ′)-modules, respectively (e.g. families of irreducible
Harish-Chandra modules). Then there exists a constant C such that for any i ∈ I
and j ∈ Z, we have

LenU(g)G′ (Hj(g
′,K ′;Vi ⊗ V ′

i )) ≤ C,

where Len(·) means the length of a module.

One of our motivations of Theorem 1.4 is to study multiplicities in the branching
problem and harmonic analysis of real reductive Lie groups. Theorem 1.4 asserts
that the multiplicities are roughly controlled by U(g)G′

. We can give criteria for the
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uniform boundedness of the multiplicities by a ring-theoretic invariant of a quotient
of U(g)G′

. See [29] for this kind of applications.
Another motivation of Theorem 1.4 is the Howe duality [23]. If V is the Segal–

Weil–Shale representation and (G′, H ′) is a reductive dual pair of G (i.e. ZG(G
′) =

H ′, ZG(H
′) = G′), then Theorem 1.4 asserts that (higher) theta lifts Θi(V

′) =
Hi(g

′,K ′;V ⊗V ′∨) are of finite length as h′-modules and the lengths are bounded.
By our method, we cannot prove one of important parts of Howe’s theorem that the
theta lift Θ0(V

′) has a unique irreducible quotient. However our theorem enables
us to define the Euler–Poincaré characteristic of the higher theta lifts. See Theorem
7.26. We remark that the Euler-Poincaré characteristic of the theta lifting for p-adic
groups is studied in [1].

Let G be a connected reductive algebraic group over C and K its connected
reductive subgroup. I. Penkov and G. Zuckerman call a g-module M a generalized
Harish-Chandra module ifM is locally finite, completely reducible and admissible as
a k-module (see e.g. [40]). A relation between generalized Harish-Chandra modules
and supports of D-modules on G/B is studied by A. V. Petukhov [41].

A motivation of our study of the category of generalized Harish-Chandra modules
is to study the category of U(g)K-modules. By Lepowsky–McCollum’s result [37],
the category of U(g)K-modules can be embedded in the category of (g⊕ k,Δ(K))-
modules. Hence this relates the branching problem and harmonic analysis to the
study of (g⊕k,Δ(K))-modules. As an application of uniformly bounded families, we
prove fundamental results of the category of generalized Harish-Chandra modules:
finiteness of equivalence classes of irreducible objects (Corollary 7.36), boundedness
of the Loewy lengths of modules (Theorem 7.41), and existence of projective objects
(Proposition 7.43).

This paper is organized as follows. In Section 2, we review the notions of general-
ized pairs, pairs (g,K), relative Lie algebra cohomologies and truncation functors.
In Section 3, we recall the definition of algebras of twisted differential operators
and their operations. At the end of the section, we study the direct image functors
with respect to the projections of principal G-bundles. The definition of uniformly
bounded families of D-modules is in Section 4. Theorem 1.1 is proved here. Sec-
tion 5 is devoted to constructions of bornologies and uniformly bounded families.
The proof of Theorem 1.2 is given here. In Section 6, we review the localization of
the Zuckerman derived functor following [10]. Applications to the representation
theory are given in Section 7.

Notation and convention. In this paper, any algebraic variety is assumed to
be quasi-projective and defined over C. Let OX and O(X) denote the structure
sheaf of a variety X and the algebra of its global sections, respectively. Let CX

denote the constant sheaf on X. Suppose that X is smooth. We write DX for
the algebra of non-twisted (local) differential operators. We express algebras of
twisted differential operators and the spaces of their global sections by script letters
and calligraphic letters, respectively. For example, the spaces of global sections of
algebras AX ,BX,λ and DX are denoted as AX ,BX,λ and DX , respectively.

Any representation and module in this paper are assumed to be defined over
C. We express affine algebraic groups and their Lie algebras by Roman alphabets
and corresponding German letters. For example, the Lie algebras of affine algebraic
groups G,K and H are denoted as g, k and h. For a complex Lie algebra g, we write
U(g) and Z(g) for the universal enveloping algebra and its center, respectively. For



FAMILY OF MODULES WITH A BOUNDEDNESS PROPERTY 297

an affine algebraic group G, let G0 denote the identity component of G. For a G-
module (resp. a g-module) V , we write V G (resp. V g) for the space of all invariant
vectors in V .

We denote by Mod(AX), Mod(A, G), Mod(g,K) and Mod(g) the categories of
(left) modules of a sheaf AX of algebras, a generalized pair (A, G), a pair (g,K) and
a Lie algebra g, respectively. We write LenR(V ) for the length of an R-module V
in each category, e.g. LenAX

(V ), LenA,G(V ), Leng,K(V ) and Leng(V ). We denote
by Modqc(AX) (resp. Modh(AX)) the category of quasi-coherent modules (resp.
holonomic modules) of an algebra AX of twisted differential operators. We use
the same notation for categories of equivariant modules such as Modqc(AX , G) and
Modh(AX , G).

For an algebra AX of twisted differential operators on a smooth variety X,
let Db

qc(AX) (resp. Db
h(AX)) denote the full subcategory of the derived category

D(Mod(AX)) consisting of objects M• whose cohomologies Hi(M•) are quasi-
coherent (resp. holonomic) and vanish for any |i| � 0. We list operations of sheaves:

• L∨: the dual of an invertible sheaf L
• Γ, RΓ: the global section functor and its right derived functor of sheaves
• f−1: the inverse image functor of sheaves
• f∗, Rf∗: the direct image functor and its right derived functor of sheaves
• f∗, Lf∗: the inverse image functor and its left derived functor of OY -
modules (or twisted D-modules)

• Df+: the direct image functor of twisted D-modules.

Here f : X → Y is a morphism of smooth varieties. We denote by Rif∗, L−if
∗ and

Dif+ the compositions Hi ◦Rf∗, H
i ◦ Lf∗ and Hi ◦Df+, respectively.

Let (·) ⊗ (·) (without subscript) denote the tensor product over C. For an R-
module M and an S-module N , we write M � N for the external tensor product
of M and N .

2. Preliminary

In this section, we prepare several known results and definitions. We deal with
generalized pairs, Lie algebra cohomology groups and truncation functors.

2.1. Generalized pair. In this subsection, we recall the definitions of generalized
pairs and (A, G)-modules, and show easy propositions related to generalized pairs.
We refer the reader to [32, p.96].

In this paper, any algebraic group is affine and defined over C, and any C-
algebra is associative and unital without Lie algebras. For a representation V of
an affine algebraic group G as an abstract group, we say that V is a G-module or
G acts rationally on V if the G-action is locally finite and any finite-dimensional
G-subrepresentation of V is a representation of an algebraic group.

Definition 2.1. LetA be a C-algebra and G an affine algebraic group over C acting
rationally on A by algebra automorphisms. We say that the pair (A, G) equipped
with a G-equivariant algebra homomorphism ι : U(g) → A is a generalized pair if
the adjoint action of g on A determined by ι coincides with the differential of the
action of G on A.

For a generalized pair (A, G), we denote by AdA (or Ad) the action of G on
A. For example, if G′ is a closed subgroup of G, then (U(g), G′) is a generalized
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pair. For a G-equivariant algebra AX of twisted differential operators on a smooth
variety X, (Γ(AX), G) forms a generalized pair.

Definition 2.2. Let (A, G) be a generalized pair. We say that an A-module V
equipped with a rational G-action is an (A, G)-module if the following two condi-
tions hold.

(i) The differential of the G-action on V coincides with the g-action via the

composition g
ι−→ A → EndC(V ) and

(ii) gXv = Ad(g)(X)gv holds for any g ∈ G,X ∈ A and v ∈ V .

We denote by Mod(A, G) the category of (A, G)-modules.

If G is reductive, any (A, G)-module is completely reducible as a G-module.
Hence the functor Mod(A, G) � V �→ V G ∈ Mod(AG) is exact, where V G is the
space of all G-invariant vectors in V . Moreover, it is easy to see that the functor
sends an irreducible object to zero or irreducible one. See e.g. [16, Theorem 4.2.1].
Hence we have Proposition 2.3.

Proposition 2.3. Let (A, G) be a generalized pair with reductive G. Then for any
(A, G)-module V , we have

LenAG(V G) ≤ LenA,G(V ),

where Len means the length of a module.

We will reduce some propositions about (A, G)-modules to those for (A, G0)-
module. To do this, we need the following easy lemma.

Lemma 2.4. Let (A, G) be a generalized pair and V an (A, G)-module. Then we
have

LenA,G(V ) ≤ LenA,G0
(V ) ≤ |G/G0|LenA,G(V ).

Proof. The first inequality is trivial. It is enough to show the second inequality
when V is an irreducible (A, G)-module.

By Zorn’s lemma, we can take a proper (A, G0)-submodule W such that any non-
zero (A, G0)-submodule of V/W contains a unique irreducible (A, G0)-submodule.
Take a maximal subset S ⊂ G/G0 such that WS :=

⋂
g∈S gW is non-zero. Since V

is irreducible as an (A, G)-module, S is a proper subset of G/G0. Fix g ∈ G/G0−S.
Since WS ∩ gW = 0, the composition WS ↪→ V � V/gW is injective. Hence WS

contains an irreducible (A, G0)-submodule V0.
Since V is an irreducible (A, G)-module, we have V =

∑
g∈G/G0

gV0. This

implies that V is completely reducible as an (A, G0)-module, and hence the length
as an (A, G0)-module is less than or equal to |G/G0|. �

2.2. (g,K)-module. We review the notion of pairs (g,K) and the relative Lie
algebra cohomology groups. We refer the reader to [32, Chapters I, IV] and [13,
Chapter I].

Definition 2.5. Let g be a complex Lie algebra and K an affine algebraic group
with Lie algebra k ⊂ g. We say that (g,K) is a pair if the following two conditions
hold.

(i) A rational K-action on g by Lie algebra automorphisms is given, whose
restriction to k is equal to the adjoint action of K on k.
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(ii) The differential of the K-action on g coincides with the adjoint action of k
on g.

We denote by Adg (or simply Ad) the action of K on g.

If (g,K) is a pair, then (U(g),K) forms a generalized pair. A (U(g),K)-module
is called a (g,K)-module.

For a complex Lie algebra g, the functor Tor
U(g)
i (·, ·) can be computed by an

explicit complex called the Chevalley–Eilenberg chain complex. We recall the com-
plex in the relative setting. Let (g,K) be a pair. Remark that the following results
also hold if K is replaced with its Lie algebra k. The relative Chevalley–Eilenberg
chain complex is a sequence

· · · ∂k+1−−−→ CEk(g,K)
∂k−→ CEk−1(g,K)

∂k−1−−−→ · · · ∂1−→ CE0(g,K) → 0,

where CEk(g,K) := U(g)⊗U(k) ∧k(g/k). The differential ∂k is given by

∂k(v ⊗X1 ∧ · · · ∧Xk)

=
∑
i

(−1)i+1vX̃i ⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk

+
∑
i<j

(−1)i+jv ⊗ ([X̃i, X̃j ] + k) ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xk,

where each Xi is in g/k and each X̃i is a representative of Xi in g. For a (g,K)-
module V , we set

Hi(g,K;V ) := Hi((V ⊗U(g) CE•(g,K))K) 
 Hi((V ⊗U(k) ∧•(g/k))K),

Hi(g,K;V ) := Hi(Homg,K(CE•(g,K), V )) 
 Hi(HomK(∧•(g/k), V )).

We call them the relative Lie algebra homology and cohomology of V , respectively.
If K is reductive, the complex (CE•(g,K), ∂•) is a projective resolution of C

in Mod(g,K). Hence we can compute Tor and Ext by the complex. See [32,
Proposition 2.117] and [36, Lemma 3.1.9].

Fact 2.6. Let V and W be (g,K)-modules. If K is reductive, then we have natural
isomorphisms

Hi(g,K;V ⊗W ) 
 Torg,Ki (V,W ),

Hi(g,K; HomC(V,W )) 
 Extig,K(V,W ).

The following result is called the Poincaré duality. See [32, Corollary 3.6].

Fact 2.7. Let V be a (g,K)-module. Put n = dimC(g/k). If K is reductive, then
we have a natural isomorphism

Hi(g,K;V ⊗ ∧n(g/k)) 
 Hn−i(g,K;V ),

where ∧n(g/k) is a (g,K)-module with the natural K-action and the g-action given
by the character X �→ tr(Adg(X)).
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2.3. Truncation functor. In many places, we reduce assertions about a complex
to those about a single object. To do so, we need the truncation functors. We refer
the reader to [27, Definitions 11.3.11 and 12.3.1].

Let A be an abelian category and C(A) the category of complexes in A. For a
complex (C•, d•) ∈ C(A), we set

τ≤kC• := · · · → Ck−2 → Ck−1 → Ker(dk) → 0 → 0 → · · · ,
τ>kC• := · · · → 0 → 0 → Im(dk) → Ck+1 → Ck+2 → · · · ,
τ≤k
s C• := · · · → Ck−2 → Ck−1 → Ck → 0 → 0 → · · · ,
τ>k
s C• := · · · → 0 → 0 → 0 → Ck+1 → Ck+2 → · · · .

τ≤k and τ>k are called truncation functors, and τ≤k
s and τ>k

s are called stupid
truncation functors. Then we have distinguished triangles

τ≤kC• → C• → τ>kC• +1−−→,

τ≤k
s C• → C• → τ>k

s C• +1−−→ .

Lemma 2.8. Let A and B be abelian categories and m a C-valued additive function
on the Grothendieck group of A. Assume m(M) ≥ 0 for any M ∈ A.

(i) For any distinguished triangle (N• → M• → L• +1−−→) in Db(A) and i ∈ Z,
we have

m(Hi(M•)) ≤ m(Hi(N•)) +m(Hi(L•)).

(ii) For any functor F : Db(B) → Db(A) of triangulated categories, complex
M• ∈ Db(B) and i ∈ Z, we have

m(Hi(F (M•))) ≤
∑
j

m(Hi−j(F (Hj(M•)))).

(iii) For any functor F : Db(B) → Db(A) of triangulated categories, bounded
complex M• ∈ C(B) and i ∈ Z, we have

m(Hi(F (M•))) ≤
∑
j

m(Hi−j(F (M j))).

Proof. (i) is clear by the long exact sequence associated to the distinguished triangle

(N• → M• → L• +1−−→). Set l(M•) := | {n ∈ Z : Hn(M•) �= 0} |. By induction on
l(M•) and the truncation functors, we can reduce the assertion (ii) to the case
M• 
 N [n] for some N ∈ B and n ∈ Z. In fact, we can take k ∈ Z such that
l(τ≤kC•), l(τ>kC•) < l(C•). Applying (i) to the following distinguished triangle
iteratively, we obtain (ii):

F (τ≤kM•) → F (M•) → F (τ>kM•)
+1−−→ .

Similarly, using the stupid truncation functors, we obtain (iii). �

3. D-module and its operations

The purpose of this section is to summarize fundamental results about D-
modules.
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3.1. Twisted D-module. We review algebras of twisted differential operators and
their operations. We refer to [4], [28, Section 1], [26, Sections 3 and 4] and [25] for
(G-equivariant) algebras of twisted differential operators. In this paper, we denote
by DX the algebra of non-twisted (local) differential operators on a smooth variety
X. Any variety in this paper is assumed to be quasi-projective.

Let X be a (quasi-projective) smooth variety over C. Let iX be the standard
homomorphism OX → DX . There are several definitions of algebras of twisted
differential operators on X. We adopt a definition in which the algebras are locally
trivial in the étale topology. We refer to [28, 1.1] for the general case, and to
[20, A.1] for the locally trivial case in the Zariski topology.

Let TX be the tangent sheaf of X and p : T ∗X → X the natural projection from
the cotangent bundle T ∗X to X.

Definition 3.1. We say that a sheaf A of C-algebras on X is an algebra of twisted
differential operators if A is equipped with a C-algebra homomorphism i : OX → A
and an increasing filtration {Fi(A )}i∈Z

satisfying

(i) Fi(A ) = 0 for any i < 0,
(ii) A =

⋃
i∈Z

Fi(A ),
(iii) Fi(A ) · Fj(A ) ⊂ Fi+j(A ) and [Fi(A ), Fj(A )] ⊂ Fi+j−1(A ) for any i, j ∈

Z,
(iv) Im(i) = F0(A ), and OX is isomorphic to F0(A ) by i,
(v) the morphism σ : F1(A )/F0(A ) → TX given by σ(T )(f) = [T, f ] (T ∈

F1(A ), f ∈ OX) is an isomorphism,
(vi) the OX -algebra homomorphism p∗OT∗X → grF (A ) induced from i⊕ σ−1 :

OX ⊕ TX → grF (A ) is an isomorphism.

In addition to these conditions, we assume that A is locally trivial in the étale

topology, i.e. there exists an étale surjective morphism π : X̃ → X such that the
pull-back π#A (defined below) is isomorphic to (D

˜X , i
˜X).

We identify OX with i(OX) = F0(A ). The filtration F is called the order
filtration of A .

Let f : X → Y be a morphism of smooth varieties and AY an algebra of twisted
differential operators on Y . We set

Ωf := f−1Ω∨
Y ⊗f−1OY

ΩX ,

AY←X := f−1AY ⊗f−1OY
Ωf ,

AX→Y := OX ⊗f−1OY
f−1AY ,

where ΩX (resp. ΩY ) denotes the canonical sheaf ofX (resp. Y ). f#AY denotes the
sheaf of all differential endomorphisms of theOX -module AX→Y that commute with
the right f−1AY -action. Then f#AY is an algebra of twisted differential operators
on X and AY←X is an (f−1AY , f

#AY )-bimodule.
The direct image of M• ∈ Db

qc(f
#AY ) is defined by

Df+(M•) = Rf∗(AY←X ⊗L
f#AY

M•) ∈ Db
qc(AY ),

and the inverse image of N • ∈ Db
qc(AY ) is defined by

Lf∗(N •) = AX→Y ⊗L
f−1AY

f−1(N •) ∈ Db
qc(f

#AY ).

It is well-known that the functors Df+ and Lf∗ are local for Y , and preserve
holonomicity.
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Lemma 3.2. Let AX be an algebra of twisted differential operators on X. Let
M ∈ Modqc(A

op
X ) and N ∈ Modqc(AX). Suppose that f : X → Y is an affine

morphism and N is flat. Then M⊗AX
N is f∗-acyclic and there exists a canonical

isomorphism of CY -modules

f∗(M)⊗f∗(AX) f∗(N )
	−→ f∗(M⊗AX

N ).

Moreover, f∗(N ) is a flat f∗(AX)-module.

Proof. Let M and N be as in the assertion. For any open subset U ⊂ Y , there is
a canonical morphism

Γ(f−1(U),M)⊗Γ(f−1(U),AX ) Γ(f
−1(U),N ) → Γ(f−1(U),M⊗AX

N )

by the definition of the tensor product ⊗AX
. By the universality of the sheafifica-

tion, this induces a morphism f∗(M) ⊗f∗(AX) f∗(N ) → f∗(M⊗AX
N ). We shall

show the morphism is an isomorphism. Since the assertions are local for Y and f
is affine, we can assume that X and Y are affine.

Since X is affine, M has a free resolution · · · → F1 → F0 → M → 0. Then we
obtain an exact sequence

· · · → F1 ⊗AX
N → F0 ⊗AX

N → M⊗AX
N → 0

of CX -modules because N is flat. Since Fi ⊗AX
N admits a quasi-coherent OX -

module structure, Fi ⊗AX
N is f∗-acyclic for any i. Hence M⊗AX

N is f∗-acyclic
and we obtain an exact sequence

· · · → f∗(F1 ⊗AX
N ) → f∗(F0 ⊗AX

N ) → f∗(M⊗AX
N ) → 0

of CY -modules. Here we used that f∗ : Mod(CX) → Mod(CY ) has finite coho-
mological dimension, i.e. Rif∗ = 0 for any i � 0 [19, III, Theorem 2.7, Lemma
2.8].

For L ∈ Modqc(AX), set T (L) := f∗(L) ⊗f∗(AX) f∗(N ). Since Fi is free,
f∗(Fi ⊗AX

N ) is canonically isomorphic to T (Fi). Then we have a commutative
diagram

T (F1) ��

	
��

T (F0) ��

	
��

T (M) ��

��

0

f∗(F1 ⊗AX
N ) �� f∗(F0 ⊗AX

N ) �� f∗(M⊗AX
N ) �� 0.

We have seen that the lower sequence is exact. The upper sequence is exact since
f∗(·)⊗f∗(AX) f∗(N ) is right exact. Hence we obtain the desired isomorphism

f∗(M)⊗f∗(AX) f∗(N ) 
 f∗(M⊗AX
N ).

We shall show that f∗(N ) is flat. Let y ∈ Y . For any L ∈ Mod(f∗(A
op
X )y), the

canonical homomorphism

L → f∗(A
op
X ⊗Γ(A op

X ) L)y(
 f∗(OX ⊗Γ(OX ) L)y)

is an isomorphism since X is affine. Hence the functor f∗(·)y : Modqc(A
op
X ) →

Mod(f∗(A
op
X )y) is essentially surjective, and similarly, full. Therefore f∗(N )y is

flat and hence f∗(N ) is flat. �
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Proposition 3.3. Suppose that f : X → Y is an affine morphism. Then Df+
is isomorphic to the left derived functor of f∗(AY←X) ⊗f∗f#AY

f∗(·), which is

f∗(AY←X)⊗L
f∗f#AY

f∗(·).

Proof. Let M• ∈ Db
qc(f

#AY ). Then M• has a locally free resolution F• by [21,

Corollary 1.4.20]. By Lemma 3.2, AY←X ⊗f#AY
F i is f∗-acyclic and we have

Df+(M•) = f∗(AY←X ⊗f#AY
F•)


 f∗(AY←X)⊗f∗f#AY
f∗(F•)


 f∗(AY←X)⊗L
f∗f#AY

f∗(M•).

Note that f∗(F•) is a flat resolution of f∗(M•) by Lemma 3.2. This shows the
proposition. �

Facts 3.4 and 3.5 are fundamental. See [28, Lemma 1.1.7, Propositions 1.2.3
and 1.2.6], and see [21, Propositions 1.5.11 and 1.5.21, and Theorem 1.7.3] for the
non-twisted case.

Fact 3.4. Let f : X → Y and g : Y → Z be morphisms of smooth varieties and
AZ an algebra of twisted differential operators on Z. Then we have (g ◦ f)#AZ =
f#g#AZ and

(i) Dg+ ◦Df+ = D(g ◦ f)+,
(ii) Lf∗ ◦ Lg∗ = L(g ◦ f)∗.

To state the base change theorem, we need the shifted inverse image functor
f†. For a morphism f : X → Y of smooth varieties and an algebra AY of twisted
differential operators, we set

f†(F•) = Lf∗(F•)[dim(X)− dim(Y )] (F• ∈ Db
qc(AY )).

Fact 3.5 (Base change theorem). Suppose that we have the following cartesian
square of smooth varieties:

Y ×X Z
g̃ ��

˜f

��

Y

f

��
Z

g �� X.

Let AX be an algebra of twisted differential operators. Then there exists an iso-

morphism g† ◦Df+ 
 Df̃+ ◦ g̃† of functors.

In this paper, the shift of f† is not important. When we use the base change

theorem, we will say that Lg∗ ◦Df+ is isomorphic to Df̃+ ◦ Lg̃∗ up to shift.

3.2. Picard algebroid. We review the notion of Picard algebroids and describe
the action of f#AY on AY←X using Picard algebroids. We refer the reader to
[4, §2].

Let Z be a smooth variety and TZ the tangent sheaf of Z.

Definition 3.6 ([4, 1.2 and 2.1.3]). Let T̃ be a quasi-coherent OZ-module on Z.

T̃ is called a Lie algebroid on Z if T̃ is a sheaf of complex Lie algebras equipped

with an OZ -module homomorphism σ : T̃ → TZ such that

[T, fT ′] = (σ(T )f)T ′ + f [T, T ′]
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for any local sections T, T ′ ∈ T̃ and f ∈ OZ .

A Lie algebroid T̃ on Z is called a Picard algebroid if σ : T̃ → TZ is epimorphic
and there is an isomorphism i : OZ → ker(σ) of OZ-modules such that [T, i(f)] =

σ(T )f for any local sections T ∈ T̃ and f ∈ OZ .

The isomorphism i in Definition 3.6 is unique. We identify OX with i(OX).
For an algebra (AZ , i) of twisted differential operators on a smooth variety Z,

we denote by P(AZ) the sheaf of sections in AZ with the order less than or equal
to 1. Then P(AZ) is a Picard algebroid on Z equipped with the homomorphism
i : OZ → P(AZ). Since AZ is generated by P(AZ), to define an action of AZ , it is
enough to define an action of P(AZ) such that i(1) acts by the identity morphism
[4, Lemma 2.1.4].

We describe the action f#AY on AY←X . Let X,Y, f and AY be as in the
previous subsection. We denote by f#P(AY ) the fiber product f

∗P(AY )×f∗TY
TX

of

f∗P(AY )
f∗σ−−→ f∗TY ← TX .

Then f#P(AY ) is a Picard algebroid on X equipped with i : OX → f#P(AY )
(h �→ (h⊗ 1, 0)). We can define an action of f#P(AY ) on AX→Y via

(
∑
i

fi ⊗ Ti, T
′) · g ⊗ S = T ′g ⊗ S +

∑
i

fig ⊗ TiS

for (
∑

i fi ⊗ Ti, T
′) ∈ f#P(AY ) and g ⊗ S ∈ AX→Y . This induces a canonical

isomorphism f#P(AY ) 
 P(f#AY ) of Picard algebroids. See [4, Lemma 2.2].

Proposition 3.7. For local sections (
∑

i fi ⊗ Ti, T
′) ∈ f#P(AY ) and S ⊗ τ ⊗ ω ∈

AY←X = f−1(AY ⊗OY
Ω∨

Y )⊗OX
ΩX , we define

S ⊗ τ ⊗ ω · (
∑
i

fi ⊗ Ti, T
′) =

∑
i

STi ⊗ τ ⊗ fiω

−
∑
i

S ⊗ σ(Ti)τ ⊗ fiω − S ⊗ τ ⊗ σ(T ′)ω,

where σ(T ′)ω and σ(Ti)τ are defined by the Lie derivative. Then this induces a
right action of f#AY on AY←X .

Proof. A straightforward computation shows the proposition. Hence we omit the
details. �

Remark 3.8. Since AY is locally trivial, we can reduce the computation to the non-
twisted case. In the case, the action coincides with that in [21, Lemma 1.3.4]. In
[28, 1.1.15], the action in Proposition 3.7 is constructed by a formal computation
of algebras of twisted differential operators.

3.3. G-equivariant module. In this subsection, we review the notion of G-equiva-
riant D-modules. We refer the reader to [4, 1.8], [25] and [26, Section 3].

Let G be an affine algebraic group and X a smooth G-variety. We write μ : G×
X → X for the multiplication map and p2 : G×X → X for the projection onto the
second factor. AnOX -moduleM isG-equivariant if anOG×X -module isomorphism

μ∗M 	−→ p∗2M is specified and satisfies the associative law [26, (3.1.2)]. The G-
equivariant structure is sometimes called an (algebraic) G-action on M. In fact,
the G-equivariant structure induces a G-action on the set of sections of M. The
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G-action on M is differentiable, that is, it induces a Lie algebra homomorphism
g → EndC(M).

We say that an algebra A of twisted differential operators is G-equivariant if
an algebra homomorphism ig : U(g) → A and a G-action on A are specified and
satisfy the following conditions:

(i) The G-action is given by algebra isomorphisms.
(ii) ig is G-equivariant with respect to the adjoint action on U(g).
(iii) The differential of the G-action on A coincides with the adjoint action of

g on A coming from ig.

The G-equivariant structure induces an isomorphism

μ#A 
 p#2 A (
 DG � A )(3.3.1)

of algebras satisfying the associative law. See [4, Lemma 1.8.7].
Let AX be a G-equivariant algebra of twisted differential operators on X. An

A -module M is called G-equivariant or an (AX , G)-module if M is G-equivariant

as an OX -module and the morphism μ∗M 	−→ p∗2M is a DG � AX -isomorphism.
Let f : Y → X be a G-morphism of smooth G-varieties. Then the natural left

action of U(g) on AY→X induces an algebra homomorphism U(g) → f#AX . Hence
the algebra f#AX is G-equivariant. The G-equivariant structure coincides with
the one obtained from the canonical isomorphism P(f#AX) 
 f∗P(AX)×f∗TX

TY
of Picard algebroids.

In this setting, the direct image functor and the inverse image functor preserve
G-equivariant modules, i.e. we have

Hi ◦Df+ : Modqc(f
#AX , G) → Modqc(AX , G),

Hi ◦ Lf∗ : Modqc(AX , G) → Modqc(f
#AX , G).

Although it is more conceptual to use the equivariant derived category, we do not
deal with it in this paper.

Let A be a G-equivariant algebra of twisted differential operators on X. We
consider G ×X as a G × G-variety via the action (a, b) · (g, x) = (agb−1, bx), and
the codomain X of μ (resp. p2) as a G×G-variety by letting the second (resp. first)
factor of G×G act trivially. Then μ and p2 are G×G-equivariant, and hence μ#A
and p#2 A are G×G-equivariant algebras.

Proposition 3.9. The isomorphism (3.3.1) is G×G-equivariant.

Proof. The assertion follows from the associative law of the G-equivariant structure
on A and easy diagram chasing. Hence we omit the details. �

3.4. Principal bundle and direct image. Let G be an affine algebraic group

and p : X̃ → X a principal G-bundle over a smooth variety X together with a free

right action X̃×G → X̃. In this paper, a principal bundle over an algebraic variety
is assumed to be locally trivial in the étale topology. Then the projection p is affine.
In this subsection, we study the direct image functor with respect to the projection
p.

Let A
˜X be a G-equivariant algebra of twisted differential operators on X̃ equip-

ped with a G-equivariant algebra homomorphism R : U(g) → A
˜X .
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Proposition 3.10. Assume that p : X̃ → X is a trivial bundle, i.e. X̃ 
 X × G.
Then there exists some algebra AX of twisted differential operators on X such that

A
˜X 
 AX � DG

under the identification X̃ 
 X ×G.

Proof. Let μ : X̃ × G → X̃ be the multiplication map and p1 : X̃ × G → X̃ the

projection. We define s : X → X̃ = X × G via x �→ (x, e) and t : X̃ → X̃ × G
via X × G � (x, g) �→ (x, e, g) ∈ X × G × G. Then we have μ ◦ t = id

˜X and a
commutative diagram

X̃
t ��

p

��

X̃ ×G
μ ��

p1

��

X̃

X
s �� X̃.

We regard X and X̃ at the bottom as G-varieties via the trivial actions and X̃ ×G
via the right translation on G. Then the morphisms are G-equivariant.

Since A
˜X is G-equivariant, we have

μ#A
˜X 
 p#1 A

˜X .

We therefore obtain isomorphisms

A
˜X = (μ ◦ t)#A

˜X 
 t#p#1 A
˜X 
 p#s#A

˜X 
 s#A
˜X � DG

of G-equivariant algebras of twisted differential operators. �
For λ ∈ (g∗)G, we set Iλ := Ker(λ) ⊂ U(g) and

AX,λ := (Cλ−δ ⊗U(g) p∗A ˜X)G


 (p∗A ˜X/R(I−λ+δ)p∗A ˜X)G


 p∗A
G
˜X
/(R(I−λ+δ)p∗A ˜X)G


 (p∗A ˜X/p∗A ˜XR(I−λ))
G,(3.4.1)

where δ ∈ (g∗)G is the character Z �→ tr(adg(Z)). Remark that

(R(I−λ+δ)O(G))G = (O(G)R(I−λ))
G ⊂ DG.

Then AX,λ is aG-equivariant algebra of twisted differential operators onX equipped
with the homomorphism U(g) → AX,λ (Z �→ λ(tZ)). Here we consider X as a G-
variety via the trivial action. Note that if λ is a character of G and μ ∈ (g∗)G,
AX,λ+μ is isomorphic to Lλ ⊗OX

AX,μ ⊗OX
L−λ, where Lλ is the invertible OX -

module corresponding to the line bundle X̃ ×G Cλ → X.
For a while, we fix λ ∈ (g∗)G. We write Dp+,λ : D

b
qc(p

#AX,λ) → Db
qc(AX,λ) for

the direct image functor in Section 3.1. We define a right exact functor

p+,λ(M) := Cλ−δ ⊗U(g) p∗(M) ∈ Modqc(AX,λ)

for M ∈ Modqc(A ˜X). For a character λ of G, p+,λ(O ˜X) is isomorphic to Lλ if G is
reductive.

To see Dp+,λ 
 Lp+,λ, we need Lemma 3.11.

Lemma 3.11. p#AX,λ is canonically isomorphic to A
˜X as a G-equivariant algebra

of twisted differential operators.
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Proof. Since p : X̃ → X is locally trivial, the multiplication map induces an iso-
morphism

A
˜X→X = O

˜X ⊗p−1OX
p−1AX,λ 
 A

˜X/A
˜XR(I−λ)

of sheaves. This is G-equivariant and an (O
˜X ⊗ U(g), p−1AX,λ)-bimodule isomor-

phism. By the definition of p#AX,λ, we obtain an isomorphism A
˜X 
 p#AX,λ of

G-equivariant algebras of twisted differential operators. �

The isomorphism A
˜X 
 p#AX,λ can be obtained from the following cartesian

square:

p∗P(AX,λ)
p∗σ �� p∗TX

P(A
˜X) 
 p∗(p∗(P(A

˜X))G) ��

��

T
˜X 
 p∗(p∗(T ˜X)G).

��

This implies P(A
˜X) 
 p#P(AX,λ) (see the discussions above Proposition 3.7). We

identify A
˜X with p#AX,λ by the isomorphism.

We shall describe the right A
˜X -action on AX← ˜X . Let π be the natural projection

T G
˜X

� p−1(TX). Here T G
˜X

is the sheaf of G-invariant local sections of T
˜X , that is,

p−1(p∗(T ˜X)G). Fix a basis X1, X2, . . . , XdimG ∈ g. Since p : X̃ → X is a principal

G-bundle, Ωp = p−1(Ω∨
X)⊗p−1OX

Ω
˜X is isomorphic to O

˜X as an O
˜X -module. The

isomorphism is given by

θ1 ∧ θ2 ∧ · · · ∧ θdimX ⊗ ω �→ ω(θ̃1, θ̃2, . . . , θ̃dimX , R(X1), R(X2), . . . , R(XdimG))

for local sections θ1, θ2, . . . , θdimX ∈ p−1(TX) and ω ∈ Ω
˜X , where each θ̃i is a

local section of T G
˜X

such that π(θ̃i) = θi. Since [T G
˜X
, R(g)] = 0, the isomorphism

commutes with the actions of T G
˜X

on Ωp and O
˜X defined by the Lie derivative.

Lemma 3.12. AX← ˜X is isomorphic to A
˜X/R(I−λ+δ)A ˜X as a (p−1AX,λ,A ˜X)-

bimodule.

Proof. Let i : Ωp → O
˜X be the above isomorphism. Composing i with the multi-

plication map, we obtain an isomorphism

AX← ˜X = p−1AX,λ ⊗p−1OX
Ωp → p−1AX,λ ⊗p−1OX

O
˜X → A

˜X/R(I−λ+δ)A ˜X

of sheaves, and denote it by ι. It is trivial that ι is a (p−1AX,λ,O ˜X)-module

homomorphism. By Proposition 3.7, the action of θ ∈ P(A
˜X)G is given by

(S ⊗ ω) · θ = Sθ ⊗ ω − S ⊗ σ(θ)ω

for S ⊗ ω ∈ AX← ˜X . Here σ : P(A
˜X)G → T G

˜X
is the restriction of the morphism

σ : P(A
˜X) → T

˜X attached to the Picard algebroid. Hence ι commutes with the

P(A
˜X)G-action by the definition of i. Since P(A

˜X) is generated by P(A
˜X)G as an

O
˜X -module, ι is a (p−1AX,λ,A ˜X)-bimodule isomorphism. �

Remark 3.13. Suppose that G is not unimodular. Although ι is a right g-homo-
morphism, the isomorphism p−1AX,λ ⊗p−1OX

Ωp → p−1AX,λ ⊗p−1OX
O

˜X is not.
This is because i : Ωp → O

˜X is not G-equivariant.

We fix the isomorphism AX← ˜X 
 A
˜X/R(I−λ+δ)A ˜X .
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Proposition 3.14. Dp+,λ is isomorphic to the left derived functor Lp+,λ of p+,λ.

Proof. By Proposition 3.3, Dp+,λ is isomorphic to p∗AX← ˜X ⊗L
p∗A

˜X
p∗(·). Hence it

is enough to show that there is a natural isomorphism

p∗(AX← ˜X)⊗p∗(A˜X
) p∗(F) 
 Cλ−δ ⊗U(g) p∗(F)

for any locally free A
˜X -module F .

Since p is affine, we have p∗(AX← ˜X) 
 p∗(A ˜X)/R(I−λ+δ)p∗(A ˜X) by Lemma
3.12. This implies

p∗(AX← ˜X)⊗p∗(A˜X
) p∗(F) 
 p∗(F)/R(I−λ+δ)p∗(F)


 Cλ−δ ⊗U(g) p∗(F).

We have proved the proposition. �

Lemma 3.15. Let U be an open subset of X. If p∗(A ˜X)|U is acyclic (e.g. U is
affine), Γ(U, p∗A ˜X) is a projective left/right U(g)-module.

Proof. Since the bundle p : X̃ → X is locally trivial in the étale topology, we

can take an affine étale covering {Uj → U} such that Uj ×X X̃ → Uj is a trivial
principal G-bundle. Since p∗A ˜X is a quasi-coherent OX -module, the cohomology

group Hi(U, p∗A ˜X) is isomorphic to the étale cohomology group Hi(Uét, (p∗A ˜X)ét)

for any i. Here (p∗A ˜X)ét is the étale sheaf associated to p∗A ˜X . Hence the Čech
complex

0 → Γ(U, p∗A ˜X) → C0 → C1 → · · ·

associated to the covering {Uj → U} is exact and each term Cj is a free left/right
U(g)-module. Γ(U, p∗A ˜X) is therefore a projective left/right U(g)-module. �

By Lemma 3.15 and Proposition 3.14, we obtain Theorem 3.16. Note that

for a generalized pair (A, G) and a left A-module M , Tor
U(g)
i (Cλ−δ,M) admits

a natural (A/I−λ+δA)G-module structure if A is a flat left U(g)-module. In fact,

Tor
U(g)
i (Cλ−δ,M) can be computed by using a free resolution of the A-module M .

Theorem 3.16. For any M ∈ Modqc(A ˜X), we have a natural isomorphism

D−ip+,λ(M) 
 Tor
U(g)
i (Cλ−δ, p∗(M))

of AX,λ-modules, where Tor
U(g)
i (Cλ−δ, p∗(M)) denotes the sheafification of the pre-

sheaf (U → Tor
U(g)
i (Cλ−δ,Γ(p

−1(U),M))).

By Theorem 3.16, there is a natural homomorphism

Tor
U(g)
i (Cλ−δ,Γ(M)) → Γ(D−ip+,λ(M))

of AG
˜X
-modules, where A

˜X = Γ(A
˜X). In general, it is not an isomorphism. Un-

der some assumption, we can show that the homomorphism is an isomorphism as
follows. Put AX,λ := Γ(AX,λ).

Lemma 3.17. Assume that A
˜X is acyclic. Then the natural homomorphism

(A
˜X/R(I−λ+δ)A ˜X)G → AX,λ is bijective. Moreover, for a free A

˜X-module F ,
the natural homomorphism Cλ−δ ⊗U(g) Γ(F) → Γ(p+,λ(F)) is an isomorphism of
AX,λ-modules.
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Proof. Let F be a free A
˜X -module. Since p is affine and A

˜X is acyclic, p∗(F) is

also acyclic. Take a free resolution · · · → P1
d1−→ P0

d0−→ Cλ−δ → 0. By Lemma
3.15, the following sequence is exact:

· · · → P1 ⊗U(g) p∗(F)
d1−→ P0 ⊗U(g) p∗(F)

d0−→ p+,λ(F) → 0.

Since all Pi ⊗U(g) p∗(F) are acyclic, Ker(d0) is also acyclic, and hence

Γ(P1 ⊗U(g) p∗(F))
d1−→ Γ(P0 ⊗U(g) p∗(F))

d0−→ Γ(p+,λ(F)) → 0

is exact. Since each Pi is free, we have Γ(Pi ⊗U(g) p∗(F)) 
 Pi ⊗U(g) Γ(F). This
implies that the natural homomorphism Cλ−δ⊗U(g)Γ(F) → Γ(p+,λ(F)) is bijective.
Hence the second assertion follows from the first one.

Since (·)G is left exact, we have

AX,λ = Γ(p+,λ(A ˜X)G) = Γ(p+,λ(A ˜X))G 
 (A
˜X/R(I−λ+δ)A ˜X)G.

This implies that the natural algebra homomorphism (A
˜X/R(I−λ+δ)A ˜X)G → AX,λ

is an isomorphism. �

Theorem 3.18. Let M ∈ Modqc(A ˜X) and i ∈ N. Assume that the global section
functors are exact on Modqc(A ˜X) and Modqc(AX,λ). Then the natural homomor-
phism

Tor
U(g)
i (Cλ−δ,Γ(M)) → Γ(D−ip+,λ(M))

is an isomorphism of AX,λ-modules.

Proof. Remark that any object in Modqc(A ˜X) is acyclic because Γ is exact on
Modqc(A ˜X). Take a free resolution F• ofM. By Lemma 3.15, Γ(F•) is a projective
resolution of Γ(M) as a g-module. Hence we have

Γ(D−ip+,λ(M)) 
 Γ(H−i(p+,λ(F•)))


 H−i ◦ Γ(p+,λ(F•))


 H−i(Cλ−δ ⊗U(g) Γ(F•))


 Tor
U(g)
i (Cλ−δ,Γ(M)).

Here the third isomorphism follows from Lemma 3.17. �

Remark 3.19. One can prove a similar result about the commutativity of RΓ and
Cλ−δ ⊗L

U(g) (·) without the exactness of Γ.

Γ is exact for any affine variety and λ, or for any flag variety and good λ (see
Fact 7.1). To apply Theorem 3.18 to direct products of such varieties, we shall
show Lemma 3.20.

Lemma 3.20. Let X and Y be smooth varieties and AX (resp. AY ) an alge-
bra of twisted differential operators on X (resp. Y ). If the global section func-
tors on Modqc(AX) and Modqc(AY ) are exact, then the global section functor on
Modqc(AX � AY ) is also exact.

Proof. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of quasi-coherent
AX � AY -modules. Let U be an affine open subset of X. We write p : U × Y → Y
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for the projection onto the second factor. Then p is affine. Hence we obtain a short
exact sequence

0 → p∗(M1|U×Y ) → p∗(M2|U×Y ) → p∗(M3|U×Y ) → 0

of quasi-coherent AY -modules. Since the global section functor Γ on Modqc(AY )
is exact, we obtain a short exact sequence

0 → Γ(U × Y,M1) → Γ(U × Y,M2) → Γ(U × Y,M3) → 0.(3.4.2)

Let q : X × Y → X be the projection onto the first factor. By (3.4.2),

q∗ : Modqc(AX � AY ) → Modqc(AX)

is exact. Since the global section functor Γ on Modqc(AX) is exact, this implies
that the sequence 0 → Γ(M1) → Γ(M2) → Γ(M3) → 0 is exact. We have proved
the lemma. �

4. Uniformly bounded family

The purpose of this section is to reformulate Bernstein’s work [6] about the
multiplicity of a DCn -module. We will introduce the notion of uniformly bounded
families of twisted D-modules. A uniformly bounded family is a family with a good
boundedness property, which is preserved by direct images and inverse images. We
give several applications of uniformly bounded families in Section 7.

4.1. Multiplicity and functors. In this subsection, we review Bernstein’s work
[6] about the multiplicity (or the Bernstein degree) of a DCn -module. We refer the
reader to [6], [21, 3.2.2] and [11, 1.§3 and §4] for the proof of facts.

Let DCn be the algebra of non-twisted differential operators on Cn and DCn the
algebra of global sections of DCn . Let (x1, x2, . . . , xn) be the standard coordinate of
Cn and put ∂i = ∂/∂xi. We denote by F the Bernstein filtration of DCn , and then
F0DCn = C, F1DCn = spanC{1, x1, x2, . . . , xn, ∂1, ∂2, . . . , ∂n}, FiDCn = (F1DCn)i.
Facts 4.1 and 4.2 are essential for our study of a family of D-modules.

Fact 4.1. Let M be a finitely generated DCn -module and M0 a generating subspace
of M of finite dimension. Put FiM := FiDCn ·M0. Then

(i) there exists some polynomial f ∈ Q[t] such that f(i) = dimC(FiM) for any
i � 0

(ii) d(M) := deg(f) does not depend on M0

(iii) the coefficient ad(M) of f(t) = ad(M)t
d(M) + (lower terms) does not depend

on M0

(iv) m(M) := ad(M) · d(M)! is a natural number
(v) d(M) ≥ n if M is non-zero.

The integer m(M) is called the multiplicity (or the Bernstein degree) of M . A
DCn-module M is said to be holonomic if M is finitely generated and d(M) = n or
d(M) = 0 holds. A DCn -module M is holonomic if and only if the corresponding
DCn-module DCn ⊗DCn

M is holonomic (see [21, Proposition 3.2.11]). We put
m(M) := m(Γ(M)) for M ∈ Modh(DCn) and

m(M•) :=
∑
i

m(Hi(M•))

for M• ∈ Db
h(DCn).
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Fact 4.2. Let 0 → L → M → N → 0 be a short exact sequence of finitely
generated DCn -modules. Then we have d(M) = max(d(L), d(N)). If in addition
d(L) = d(N), then m(M) = m(L) + m(N) holds. In particular, the length of a
holonomic DCn -module is less than or equal to its multiplicity.

Fact 4.3 is an easy consequence of the definition of the multiplicity. See the proof
of [6, Theorem 3.2].

Fact 4.3. Let N and M be modules of DCn and DCm , respectively. If N and M
are holonomic, then N � M is holonomic and we have m(N � M) = m(N)m(M).
Conversely, if N � M is holonomic, then N and M are holonomic.

We need a derived functor version of [6, Theorem 3.2]. The proof is the same as
the original version.

Fact 4.4. Let f:Cn→Cm be a morphism of affine varieties. Set d :=max(deg(f), 1).
Then for any M• ∈ Db

h(DCn) and N • ∈ Db
h(DCm), we have

m(Df+(M•)) ≤ dn+mm(M•),

m(Lf∗(N •)) ≤ dn+mm(N •).

4.2. D-modules on affine varieties. In Fact 4.4, we have seen that the multiplic-
ity is well-behaved for operations of D-modules on affine spaces. In this subsection,
we consider similar results about D-modules on affine varieties.

We recall the Kashiwara equivalence [21, Theorem 1.6.1].

Fact 4.5. Let f : X → Y be a closed embedding of smooth varieties. Then

f+ := D0f+ : Modqc(DX) → ModXqc(DY ) and

Df+ : Db
qc(DX) → Db,X

qc (DY )

give equivalences of categories. Here ModXqc(DY ) is the full subcategory of

Modqc(DY ) whose objects are supported on X, and Db,X
qc (DY ) is the full sub-

category of Db
qc(DY ) consisting of complexes whose cohomologies are supported on

X.

For M• ∈ Db
h(DX) on a smooth variety X and a closed embedding ι : X → Cn,

we set

mι(M•) := m(Dι+(M•)).

Proposition 4.6. Let f : X → Y be a morphism of affine smooth varieties. Fix
closed embeddings ι : X → Cn and ι′ : Y → Cm. Then there exists a constant C > 0
such that

mι′(Df+(M•)) ≤ C ·mι(M•),(4.2.1)

mι(Lf
∗(N •)) ≤ C ·mι′(N •)(4.2.2)

for any M• ∈ Db
h(DX) and N • ∈ Db

h(DY ).

Proof. Fix an extension f̃ of f to Cn such that the diagram

X
f ��

ι

��

Y

ι′

��
Cn

˜f �� Cm
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is commutative. Set d := max(deg(f̃), 1). By Fact 4.4, we obtain

mι′(Df+(M•)) = m(Df̃+(Dι+(M•))) ≤ dn+mmι(M•).

Here we used Dι′+ ◦ Df+ = Df̃+ ◦ Dι+ (Fact 3.4(i)). We have shown the first
inequality (4.2.1).

Consider the following diagram:

X
f1 ��

ι

��

X × Y
f2 ��

ι×ι′

��

Y

Cn
˜f1 �� Cn × Cm,

where f1(x) = (x, f(x)), f2(x, y) = y and f̃1(x) = (x, f̃(x)). Since the left square

is cartesian, we have an isomorphism Dι+ ◦ Lf∗
1 
 Lf̃∗

1 ◦D(ι× ι′)+ of functors up
to shift by the base change theorem (Fact 3.5). Hence we obtain

mι+(Lf
∗(N •))) = m(Lf̃∗

1 ◦D(ι× ι′)+ ◦ Lf∗
2 (N •))

≤ dn+mm(Dι+(OX) � Dι′+(N •))

= dn+mmι(OX)mι′(N •)

by Fact 4.3 and Fact 4.4, which proves the second inequality (4.2.2). �

In the next subsection, we will consider families of twisted D-modules on general
smooth varieties. Although the multiplicity itself is no longer a meaningful value
for general smooth varieties, boundedness of multiplicities of twisted D-modules
can be defined.

To reduce properties of twisted D-modules on a non-affine variety to that of
affine spaces, we have many choices of affine étale coverings, closed embeddings to
affine spaces, and local trivializations of an algebra of twisted differential operators.
We shall consider the effect on the multiplicity by the choices.

Proposition 4.7. Let f : X → Y be a surjective étale morphism of affine smooth
varieties. Fix closed embeddings ι : X → Cn and ι′ : Y → Cm. Then there exists a
constant C > 0 such that

C−1 ·mι′(N •) ≤ mι(Lf
∗(N •)) ≤ C ·mι′(N •)

for any N • ∈ Db
h(DY ).

Proof. We have proved the second inequality in Proposition 4.6. We shall show the
first inequality.

Since f is smooth, f∗ is exact [21, Proposition 1.5.13]. Hence we can assume
N ∈ Modh(DY ).

Since f is étale, f∗(M) admits a natural DY -module structure forM∈Modh(DX)
and the direct image functor Df+ is isomorphic to Rf∗ = f∗ by [15, Theorem 2.2].
Hence the canonical morphism N → f∗(f

∗(N )) of OY -modules is a morphism
of DY -modules. The morphism is monomorphic since f is surjective. Applying
Proposition 4.6 to f∗(N ), we obtain

mι′(N ) ≤ mι′(f∗(f
∗(N ))) ≤ C ·mι(f

∗(N )),

where C is a constant independent of N . �
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Hereafter we consider the effect on the multiplicity by twisting by automor-
phisms.

Let X be a smooth affine variety and ι : X → Cn a closed embedding. The
automorphism group Aut(DX) is isomorphic to the additive group Z(X) of closed
1-forms onX [5]. For ω ∈ Z(X), we denote by Aω the corresponding automorphism
given by

Aω(T ) = T − ω(T ) ∈ TX ⊕OX

for T ∈ TX . A DX-module M can be twisted by Aω and the twisted module is
denoted by Mω. We use the same notation for a complex of DX -modules, e.g.
(M•)ω.

Lemma 4.8. Let W be a finite-dimensional subspace of Z(X). Then there exists
a constant C such that

mι(Oω
X) ≤ C

for any ω ∈ W .

Proof. Put M := OX ⊗O(W ) equipped with a TX -action via

T · (f ⊗ g) = Tf ⊗ g −
∑
i

ωi(T )f ⊗ λig (T ∈ TX),

where {ωi}i is a basis of W and {λi}i is its dual basis. Then the action on M
extends to a DX ⊗O(W )-action.

We denote by mω the maximal ideal of O(W ) corresponding to ω ∈ W . Then
by definition, we have M/mωM 
 Oω

X for any ω ∈ W . Since the functors ι+ and
Γ are exact, we have

Γ(ι+(Oω
X)) 
 Γ(ι+(M))/mωΓ(ι+(M)).

Put M := Γ(ι+(M)).
Since the functors ι+ and Γ preserve the lattice of submodules, M is noetherian

and hence finitely generated as a DCn ⊗ O(W )-module. Take a finite generating
subspace S ⊂ M and put FiM := (FiDCn ⊗O(W ))S for i ≥ 0. Then the associated
graded module grFM is a finitely generated O(Cn ×W )-module.

By [38, Theorem 24.1], we can take an affine open subset U of W such that
O(U)⊗O(W ) gr

FM is a free O(U)-module. Hence O(U)⊗O(W ) FiM is a projective
O(U)-module for any i ≥ 0. This implies that the function

W � ω �→ dimC(FiM/mωFiM)

is constant on U . Hence U � ω �→ m(M/mωM) is a constant function by the
definition of the multiplicity.

Replacing W by W\U and M by O(W\U)⊗O(W ) M , and repeating this argu-
ment, we can see that m(M/mωM) is bounded on W . �

Remark 4.9. Lemma 4.8 can be considered as a special case of [2, Theorem 3.18]
and the latter half of our proof is essentially the same as theirs.

Corollary 4.10. Let M• ∈ Db
h(DX) and W be a finite-dimensional subspace of

Z(X). Then there exists a constant C independent of M• such that

mι((M•)ω) ≤ C ·mι(M•)

for any ω ∈ W .
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Proof. Fix ω ∈ W . Then we have (M•)ω 
 M•⊗L
OX

Oω
X . Note that for any smooth

variety Y and N •,L• ∈ Db
qc(DY ), the tensor product N • ⊗L

OY
L• is isomorphic to

LΔ∗
Y (N • �L•), where ΔY : Y → Y ×Y is the diagonal embedding (see [21, p. 39]).

Applying the base change theorem (Fact 3.5) to the following cartesian square

X
ΔX ��

ι

��

X ×X

ι×ι

��
Cn ΔCn �� Cn × Cn,

we have

Dι+((M•)ω) 
 Dι+(M•)⊗L
OCn

ι+(Oω
X)

up to shift. By Facts 4.3 and 4.4, we obtain

mι((M•)ω) = m(Dι+(M•)⊗L
OCn

ι+(Oω
X)) ≤ mι(M•)mι(Oω

X).

This inequality and Lemma 4.8 imply the assertion. �

4.3. Uniformly bounded family. We shall define a good local trivialization of
a family of algebras of twisted differential operators. For an étale map ϕ : U → V ,
we denote by (·)|U the functors ϕ#(·) and ϕ∗(·) by abuse of notation.

Let AX,Λ = (AX,λ)λ∈Λ be a family of algebras of twisted differential operators on
a smooth variety X. Hereafter we deal with

∏
λ∈Λ Modh(AX,λ) the direct product

of categories and its derived category. Set

Modh(AX,Λ) :=
∏
λ∈Λ

Modh(AX,λ),

Db
h(AX,Λ) :=

∏
λ∈Λ

Db
h(AX,λ).

We denote by Hi, Df+, Lf
∗, (·)|U and f# the direct products of the corresponding

functors by abuse of notation.
Recall that Z(X) is the space of closed 1-forms on X, which is isomorphic to

Aut(DX) as an abelian group.

Definition 4.11. We say that a tuple (U,ϕ,Φ) is a trivialization of AX,Λ if U is
a smooth variety, ϕ : U → X is a surjective étale morphism and Φ is a family of

isomorphisms Φλ : AX,λ|U 	−→ DU .
Let T1 = (U,ϕ,Φ) and T2 = (V, ψ,Ψ) be trivializations of AX,Λ. We denote by

Z(T1, T2) ⊂ Z(U ×X V ) the image of{
ϕ̃#Ψλ ◦ (ψ̃#Φλ)

−1 : λ ∈ Λ
}

by the isomorphism Aut(DU×XV ) → Z(U ×X V ). Here ϕ̃ : U ×X V → V and

ψ̃ : U ×X V → U are the projections of the fiber product. We write T1 ∼ T2 when
Z(T1, T2) spans a finite-dimensional subspace of Z(U ×X V ).

We say that a trivialization (U,ϕ,Φ) is bounded if (U,ϕ,Φ) ∼ (U,ϕ,Φ) holds.

Remark 4.12. Let T = (U,ϕ,Φ) be a trivialization of AX,Λ. Then any element of

Z(T, T ) is a 1-cocycle of the Čech complex of the sheaf of closed 1-forms on X with
respect to the étale covering ϕ : U → X. Hence for each λ ∈ Λ, we have a 1-cocycle
c(λ) ∈ Z(T, T ), and the cocycle defines an algebra DX,c(λ) of twisted differential
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operators on X. Then Φλ extends to an isomorphism Φ′
λ : AX,λ → DX,c(λ). It is

obvious that the correspondence

(U,ϕ,Φ) �→ (U,ϕ, (c(λ))λ∈Λ, (Φ
′
λ)λ∈Λ)

is one-to-one. One can use such tuples instead of our trivializations.

Definition 4.13. Let T = (U,ϕ,Φ) be a trivialization of AX,Λ and f : Y → X a

morphism of smooth varieties. We set f#T := (U ×X Y, ϕ̃, f̃#Φ), where ϕ̃ : U ×X

Y → Y and f̃ : U ×X Y → U are the projections of the fiber product.

It is clear that f#T is a trivialization of f#AX,Λ.
The relation ∼ is clearly symmetric and not reflexive in general. We shall show

fundamental properties of bounded trivializations. Lemma 4.14 is well-known and
easy.

Lemma 4.14. Let f : U → V be a morphism of smooth varieties. Then the follow-
ing diagram of abelian groups is commutative:

Aut(DV )
f#

��

	
��

Aut(DU )

	
��

Z(V )
f∗

�� Z(U).

If, in addition, f is dominant, then f∗ is injective.

Proposition 4.15. Let Ti = (Ui, ϕi,Φi) (i = 1, 2, 3) be trivializations of AX,Λ and
f : Y → X a morphism of smooth varieties.

(i) ∼ is transitive, i.e. T1 ∼ T2 and T2 ∼ T3 ⇒ T1 ∼ T3.
(ii) T1 ∼ T2 ⇒ f#T1 ∼ f#T2.
(iii) If T1 is bounded, then so is f#T1.
(iv) If f is dominant, the converse of (ii) and (iii) is true.

Proof. To show (i), let fij : U1 ×X U2 ×X U3 → Ui ×X Uj be the projections of the
fiber product for (i, j) = (1, 2), (2, 3), (1, 3). Assume T1 ∼ T2 and T2 ∼ T3. Then
we have

f∗
13(Z(T1, T3)) ⊂ f∗

12(Z(T1, T2)) + f∗
23(Z(T2, T3))

by Lemma 4.14. Since f13 is surjective, f∗
13 is injective. Hence Z(T1, T3) spans a

finite-dimensional subspace of Z(U1 ×X U3).

By definition, (iii) follows from (ii). We shall show (ii) and (iv). Let f̃ : U1 ×X

U2 ×X Y → U1 ×X U2 be the projection. By Lemma 4.14, we have

f̃∗(Z(T1, T2)) = Z(f#T1, f
#T2).

This implies (ii) and (iv). �

By Proposition 4.15, the relation ∼ is an equivalence relation of bounded trivi-
alizations.

Definition 4.16. An equivalence class of bounded trivializations is called a bornol-
ogy of the family AX,Λ.
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If B is a bornology of AX,Λ and (λ(i))i∈I is a family of elements of Λ, then
T := (U,ϕ, (Φλ(i))i∈I) is a bounded trivialization of (AX,λ(i))i∈I for any (U,ϕ,Φ) ∈
B. It is clear that the equivalence class of T does not depend on the choice of
(U,ϕ,Φ) ∈ B. We denote by the same symbol B the equivalence class of T by abuse
of notation.

Definition 4.17. Let f : Y → X be a morphism of smooth varieties and B a
bornology of AX,Λ. By Proposition 4.15(ii), the equivalence class of f#T (T ∈ B)
does not depend on the choice of T . We denote by f#B the equivalence class.

Proposition 4.18 is an easy consequence of Definition 4.17.

Proposition 4.18. Let f : Y → X and g : Z → Y be morphisms of smooth vari-
eties. For any bornology B of AX,Λ, we have (f ◦ g)#B = g#f#B as bornologies of
(f ◦ g)#AX,Λ = g#f#AX,Λ.

It is not obvious that a bornology contains enough trivializations for applica-
tions. We can make a good bounded trivialization from a bounded trivialization
by Proposition 4.19.

Proposition 4.19. Let TU = (U,ϕ,Φ) be a trivialization of AX,Λ and f : V → U a
surjective étale morphism. Put TV := (V, ϕ◦f, f#Φ). Then the following conditions
are equivalent:

(i) TU is bounded,
(ii) TV is bounded,
(iii) TU ∼ TV .

In particular, for any bornology B of AX,Λ, there exists a trivialization (W,ψ,Ψ)
in B such that W is affine.

Proof. Let f1 : V ×X V → U ×X V and f2 : U ×X V → U ×X U be the morphisms
determined by the universal property of the fiber products. Then by Lemma 4.14,
we have

f∗
2 (Z(TU , TU )) = Z(TU , TV ),

f∗
1 (Z(TU , TV )) = Z(TV , TV ).

Since f1 and f2 are surjective, f∗
2 and f∗

1 are injective. Hence (i), (ii) and (iii)
are equivalent. The second assertion is clear because for any variety U , there is a
surjective étale morphism W → U from an affine variety W . �
Definition 4.20. Let T = (U,ϕ,Φ) be a trivialization of AX,Λ with affine U . We
say that an object (Mλ)λ∈Λ ∈ Modh(AX,Λ) is uniformly bounded with respect to
T if for any closed embedding ι : U → Cn, mι(Mλ|U ) is bounded as a function
on Λ. Here we consider an AX,λ|U -module as a DU -module by the isomorphism
Φλ : AX,λ|U → DU .

We say that an object M ∈ Db
h(AX,Λ) is uniformly bounded with respect to T if

Hi(M) is uniformly bounded for any i and Hi(M) vanishes for any |i| � 0. Here
Hi(M) is the family (Hi(Mλ))λ∈Λ.

We denote by Modub(AX,Λ, T ) (resp. Db
ub(AX,Λ, T )) the full subcategory of

Modh(AX,Λ) (resp. Db
h(AX,Λ)) consisting of uniformly bounded objects with re-

spect to T .

Remark 4.21. By Proposition 4.7, the boundedness of mι(Mλ|U ) does not depend
on the choice of the embedding ι.
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Propositions 4.22 and 4.23 are easy consequences of Definition 4.20.

Proposition 4.22. Let T be a bounded trivialization of AX,Λ. Then the following
hold.

(i) Modub(AX,Λ, T ) is abelian.
(ii) For a short exact sequence 0 → L → M → N → 0 in Modh(AX,Λ), both L

and N are uniformly bounded if and only if so is M .
(iii) Db

ub(AX,Λ, T ) is a triangulated subcategory of Db
h(AX,Λ).

Proposition 4.23. Let T = (U,ϕ,Φ) be a bounded trivialization with affine U .
Then for any (Mλ)λ∈Λ ∈ Modub(AX,Λ, T ), the function LenAX,λ

(Mλ) of λ ∈ Λ is
bounded.

Proof. Fix a closed embedding ι : U → Cn. Then we have

LenAX,λ|U (Mλ|U ) = LenDCn
(ι+(Mλ|U )) ≤ mι(Mλ|U ).

The first equality follows from the Kashiwara equivalence (Fact 4.5) and the second
inequality from Fact 4.2. By the definition of uniformly bounded family, there is a
constant C independent of λ ∈ Λ such that

LenAX,λ|U (Mλ|U ) ≤ mι(Mλ|U ) ≤ C.

Since ϕ is surjective étale, the inverse image functor ϕ∗ is exact and sends a non-
zero module to a non-zero module (see the proof of Proposition 4.7). Hence we
obtain

LenAX,λ
(Mλ) ≤ C

for any λ ∈ Λ. �

We will show that the uniform boundedness is preserved by inverse images and
direct images. To do so, we need the following basic proposition.

Proposition 4.24. Let Ti = (Ui, ϕi,Φi) (i = 1, 2) be bounded trivializations of
AX,Λ with affine Ui. If T1 ∼ T2, then we have

Modub(AX,Λ, T1) = Modub(AX,Λ, T2),

Db
ub(AX,Λ, T1) = Db

ub(AX,Λ, T2).

Proof. By definition, the second equality follows from the first one.
Let pi : U1 ×X U2 → Ui (i = 1, 2) be the projections and put T ′

i := (U1 ×X

U2, ϕi ◦ pi, p#i Φi) for i = 1, 2. Applying Proposition 4.7 to f = pi, we have

Modub(AX,Λ, Ti) = Modub(AX,Λ, T
′
i ).(4.3.1)

By T1 ∼ T2, Z(T1, T2) spans a finite-dimensional subspace of Z(U1 ×X U2). Ap-
plying Corollary 4.10 to W = spanCZ(T1, T2), we have

Modub(AX,Λ, T
′
1) = Modub(AX,Λ, T

′
2).

This and (4.3.1) imply the desired equality. �

The following is well-defined by Proposition 4.24.
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Definition 4.25. Let B be a bornology of AX,Λ. We set

Modub(AX,Λ,B) := Modub(AX,Λ, T ),

Db
ub(AX,Λ,B) := Db

ub(AX,Λ, T ),

where T = (U,ϕ,Φ) is a bounded trivialization in B with affine U .

Theorem 4.26. Let f : Y → X be a morphism of smooth varieties and B a bornol-
ogy of AX,Λ. The direct image functor and the inverse image functor preserve the
uniform boundedness, that is, we have functors

Df+ : Db
ub(f

#AX,Λ, f
#B) → Db

ub(AX,Λ,B),
Lf∗ : Db

ub(AX,Λ,B) → Db
ub(f

#AX,Λ, f
#B).

Proof. Take T = (U,ϕ,Φ) ∈ B with affine U , and a surjective étale morphism
V → U ×X Y from an affine variety V . Consider the following diagram:

V
g �� U ×X Y

˜f ��

ϕ̃

��

U

ϕ

��
Y

f �� X,

where ϕ̃ and f̃ are the projections. Then (V, ϕ̃◦g, (f̃◦g)#Φ) is in f#B by Proposition

4.19. Since L(ϕ̃ ◦ g)∗ ◦ Lf∗ = L(f̃ ◦ g)∗ ◦ Lϕ∗ holds (Fact 3.4(ii)), the assertion for

the inverse image functor is reduced to Proposition 4.6 for f = f̃ ◦ g.
We shall show the assertion for Df+. Take a finite affine open covering

{Vi}i=0,1,2,...,r of U ×X Y and replace V with the (r + 1)-fold fiber product of⊔
i Vi. Let M ∈ Modub(f

#AX,Λ, f
#B) and fix λ ∈ Λ. Then Mλ|U×XY is quasi-

isomorphic to the Čech complex

0 → C0 → C1 → · · · → Cr → 0

with respect to the covering {Vi}. By the construction of Čech complex,
⊕

i C
i is

a direct summand of g∗(Mλ|V ).
By the base change theorem (Fact 3.5), there is an isomorphism Lϕ∗ ◦Df+ 


Df̃+ ◦ Lϕ̃∗ of functors, and hence we have

Lϕ∗ ◦Df+(Mλ) 
 Df̃+(Mλ|U×XY ) 
 Df̃+(C
•)

up to shift. For a closed embedding ι : U → Cn, we have

mι(Df̃+(C
•)) ≤

∑
i

mι(Df̃+(C
i))

≤ mι(Df̃+ ◦ g∗(Mλ|V ))
= mι(D(f̃ ◦ g)+(Mλ|V )).

Here the first inequality follows from Lemma 2.8(iii) for the complex C•. Note that
Dg+ is isomorphic to g∗ (see the proof of Proposition 4.7).

By Proposition 4.6 and M ∈ Modub(f
#AX,Λ, f

#B), there is a constant C inde-
pendent of λ such that

mι(Lϕ
∗ ◦Df+(Mλ)) ≤ mι(D(f̃ ◦ g)+(Mλ|V )) ≤ C.

This shows Df+(M) ∈ Db
ub(AX,Λ,B). �



FAMILY OF MODULES WITH A BOUNDEDNESS PROPERTY 319

We study the external tensor product of uniformly bounded families. Let AY,Λ

be a family of algebras of twisted differential operators on a smooth variety Y with
the same index set Λ as AX,Λ.

Definition 4.27. Let B and B′ be bornologies of AX,Λ and AY,Λ, respectively. We
denote by B � B′ the equivalence class of (U × V, ϕ × ψ,Φ � Ψ = (Φλ � Ψλ)λ∈Λ)
for some (U,ϕ,Φ) ∈ B and (V, ψ,Ψ) ∈ B′. If X = Y , we denote by B # B′ the
pull-back of B � B′ by the diagonal embedding X ↪→ X ×X.

It is easy to see that Definition 4.27 is well-defined. We set AX,Λ � AY,Λ :=
(AX,λ � AY,λ)λ∈Λ and M � N := (Mλ � Nλ)λ∈Λ for M ∈ Db

ub(AX,Λ,B) and
N ∈ Db

ub(AY,Λ,B′). By Fact 4.3, we obtain Theorem 4.28.

Theorem 4.28. Let B and B′ be bornologies of AX,Λ and AY,Λ, respectively. Then
B � B′ is a bornology of AX,Λ � AY,Λ and we have a bifunctor

(·) � (·) : Db
ub(AX,Λ,B)×Db

ub(AY,Λ,B′) → Db
ub(AX,Λ � AY,Λ,B � B′).

Moreover, for any M ∈ Db
h(AX,Λ) and N ∈ Db

h(AY,Λ) such that all Mλ and Nλ

have non-zero cohomologies, both M and N are uniformly bounded if and only if
so is M � N .

4.4. Twisting, opposite and tensor product. We consider operations of alge-
bras of twisted differential operators: twisting by an invertible sheaf, taking oppo-
site algebras and tensor products. Corresponding to the operations, we introduce
these operations of a bornology.

Let AX,Λ = (AX,λ)λ∈Λ be a family of algebras of twisted differential operators
on a smooth variety X. Let B be a bornology of AX,Λ and L an invertible sheaf on
X. Then we have a new family

A L
X,Λ := (L ⊗OX

AX,λ ⊗OX
L∨)λ∈Λ.

Remark that for a morphism f : Y → X of smooth varieties, there is a canonical
isomorphism

f#(L ⊗OX
AX,λ ⊗OX

L∨) 
 f∗(L)⊗OY
f#AX,λ ⊗OY

f∗(L)∨.(4.4.1)

See e.g. [28, Lemma 1.1.5].
We shall construct a bornology of A L

X,Λ. Since L is an invertible sheaf, there is a

bounded trivialization T = (U,ϕ,Φ) ∈ B such that L|U is isomorphic to OU . Take

a trivialization α : L|U
	−→ OU . Then T and α induce an isomorphism ΦL,α given

by

(L ⊗OX
AX,Λ ⊗OX

L∨)|U id⊗Φ⊗id−−−−−−→ L|U ⊗OU
DU ⊗OU

(L|U )∨ → DU .

We obtain a trivialization TL,α = (U,ϕ,ΦL,α) of A L
X,Λ.

Lemma 4.29. Take S = (V, ψ,Ψ) ∈ B and an isomorphism β : L|V → OV . Then
we have SL,β ∼ TL,α. In particular, TL,α is a bounded trivialization.

Proof. α and β induce an isomorphism

OU×XV

α−1|U×XV−−−−−−−→ L|U×XV

β|U×XV−−−−−→ OU×XV .

We write f ∈ O(U ×X V )× for the image of 1 by the isomorphism. Then we have

Z(TL,α, SL,β) = f−1df + Z(T, S)

(see Definition 4.11). This shows the lemma. �
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By Lemma 4.29, the following is well-defined.

Definition 4.30. We denote by BL the equivalence class of TL,α.

It is well-known that the functor

L ⊗OX
(·) : Modh(AX,λ) → Modh(L ⊗OX

AX,λ ⊗OX
L∨)

gives an equivalence of categories. We denote by L ⊗OX
(·) the direct product∏

λ∈Λ L ⊗OX
(·) of the functors by abuse of notation.

Proposition 4.31. The functor L⊗OX
(·) preserves the uniform boundedness, that

is, we have functors

L ⊗OX
(·) : Modub(AX,Λ,B) → Modub(A

L
X,Λ,BL),

L ⊗OX
(·) : Db

ub(AX,Λ,B) → Db
ub(A

L
X,Λ,BL).

Moreover, the two functors give equivalences of categories.

Proof. Since the assertion is local for X, we can assume L 
 OX . In this case, the
proposition is clear. �

Next we consider the family of the opposite algebras A op
X,λ. Note that (·)op is a

functor on the category of algebras of twisted differential operators on X. We set
A op

X,Λ := (A op
X,λ)λ∈Λ. We shall construct a bornology of A op

X,Λ from the bornology
B.

Recall that there is a canonical isomorphism

Dop
X 
 ΩX ⊗OX

DX ⊗OX
Ω∨

X ,(4.4.2)

where ΩX is the canonical sheaf of X. See [21, Lemma 1.2.7]. The isomorphism
induces an automorphism of the space Z(X) of closed 1-forms as

Z(X)
	−→Aut(DX)

(·)op−−−→ Aut(Dop
X )

	−→ Aut(ΩX ⊗OX
DX ⊗OX

Ω∨
X)

	−→ Aut(DX)
	−→ Z(X).

Here the fourth isomorphism comes from the isomorphism DX 
 Ω∨
X⊗OX

(ΩX⊗OX

DX ⊗OX
Ω∨

X)⊗OX
ΩX .

Lemma 4.32. The automorphism of Z(X) is the multiplication map by −1.

Proof. The lemma can be shown by an easy explicit computation. �
Remark that for an étale morphism f : U → X, there are canonical isomorphisms

f∗ΩX 
 ΩU ,

Ωf 
 OU ,

f#(A op
X,λ) 
 (f#AX,λ)

op.

In particular, the canonical isomorphism (4.4.2) commutes with the pull-back by
the étale morphism.

Take a bounded trivialization T = (U,ϕ,Φ) ∈ B such that ΩX |U 
 ΩU is

isomorphic to OU . Take a trivialization α : ΩU
	−→ OU . Then T and α induce an

isomorphism Φop,α given by

Dop
X,Λ|U

Φop

−−→ Dop
U

	−→ ΩU ⊗OU
DU ⊗OU

Ω∨
U → DU .

We obtain a trivialization T op,α = (U,ϕ,Φop,α).
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Lemma 4.33. Take S = (V, ψ,Ψ) ∈ B and an isomorphism β : ΩV → OV . Then
we have Sop,β ∼ T op,α. In particular, T op,α is bounded.

Proof. As we have seen in the proof of Lemma 4.29, there is f ∈ O(U ×X V )× such
that

Z(T op,α, Sop,β) = f−1df −Z(T, S).

The sign before Z(T, S) comes from Lemma 4.32. This shows the lemma. �

Definition 4.34. We denote by Bop the equivalence class of T op,α.

Corresponding to canonical isomorphisms of algebras of twisted differential op-
erators, there are identities of bornologies. Let ι be the diagonal embedding
X ↪→ X × X. For two algebras A1 and A2 of twisted differential operators on
X, we set

A1 # A2 := ι#(A1 � A2).

We use the same notation for families of algebras.
Let AX,Λ,BX,Λ and CX,Λ be families of algebras of twisted differential operators

on X with the same index set Λ. Let f : Y → X be a morphism of smooth varieties.
For the constant family DX,Λ := (DX)λ∈Λ, we consider a bounded trivialization
(X, idX , id). We denote by Bid the equivalence class of the trivialization. We use
the same notation for the constant family DY,Λ on Y . Fix an invertible sheaf L on
X.

By [28, §1], we have canonical isomorphisms

(A L
X,Λ)

op 
 (A op
X,Λ)

L∨
,

AX,Λ # BX,Λ 
 BX,Λ # AX,Λ,

(AX,Λ # BX,Λ) # CX,Λ 
 AX,Λ # (BX,Λ # CX,Λ),

DX,Λ # AX,Λ 
 AX,Λ,

A op
X,Λ # AX,Λ 
 Dop

X,Λ,

f#DX,Λ 
 DY,Λ,

f#(A L
X,Λ) 
 (f#AX,Λ)

f∗L,

f#(A op
X,Λ)

Ωf 
 (f#(AX,Λ))
op.

Here we set Ωf = f−1Ω∨
X ⊗f−1OX

ΩY (see Subsection 3.1). Since the isomorphisms
are canonical, they are natural in AX,Λ,BX,Λ and CX,Λ. It is easy to see that
the isomorphisms and the operations commute with the pull-back by the following
cartesian square:

Y
f �� X

U ×X Y
˜f ��

ϕ̃

��

U,

ϕ

��
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where ϕ : U → X is an étale morphism. For example, the following diagram com-
mutes:

f#(A op
X,Λ)

Ωf |U×XY
	 �� (f#(AX,Λ))

op|U×XY

f̃#((AX,Λ|U )op)Ω ˜f
	 ��

	

��

(f̃#(AX,Λ|U ))op.

	

��

Proposition 4.35. Let B1,B2 and B3 be bornologies of AX,Λ, BX,Λ and CX,Λ.
Under the above identifications, we have

(i) (BL
1 )

op = (Bop
1 )L

∨
,

(ii) B1 # B2 = B2 # B1,
(iii) (B1 # B2) # B3 = B1 # (B2 # B3),
(iv) Bid # B1 = B1,
(v) Bop

1 # B1 = Bop
id ,

(vi) f#Bid = Bid,

(vii) f#(BL
1 ) = (f#B1)

L∨
,

(viii) f#(Bop
1 )Ωf = (f#(B))op.

Proof. The proposition is clear by the constructions of bornologies and the natu-
rality of the canonical isomorphisms as mentioned above. �

4.5. Integral transform. We consider integral transforms of D-modules. Let AX

be an algebra of twisted differential operators on a smooth variety X.
We consider the following canonical isomorphisms:

A op
X # AX 
 Dop

X ,

DX # AX 
 AX ,

Ω∨
X ⊗OX

Dop
X ⊗OX

ΩX 
 DX .

We shall describe the isomorphisms explicitly. We write ι : X → X × X for the
diagonal embedding. Let M ∈ Modqc(A

op
X ) and N ∈ Modqc(AX). Then the

canonical right action of TX ⊂ DX on M⊗OX
N is given by

(A⊗B) · Z = AZ̃ ⊗B −A⊗ Z̃B(4.5.1)

for Z ∈ TX and A ⊗ B ∈ M ⊗OX
N , where Z̃ is a section of P(AX) such that

σ(Z̃) = Z. See Definition 3.6 for the notation of Picard algebroids. Since AX is
generated by P(AX), we have a canonical isomorphism

M⊗AX
N 
 (M⊗OX

N )/(M⊗OX
N )TX(4.5.2)

of CX -modules by (4.5.1).
Let M ∈ Modqc(DX) and N ∈ Modqc(AX). Then the canonical action of

P(AX) ⊂ AX on M⊗OX
N is given by

Z · (A⊗B) = σ(Z)A⊗B + A⊗ ZB(4.5.3)

for Z ∈ P(AX) and A ⊗ B ∈ M ⊗OX
N . Note that if Z ∈ OX , then we have

Z · (A⊗B) = A⊗ ZB.
Let M ∈ Modqc(D

op
X ). Then DX acts on Ω∨

X ⊗OX
M canonically. Ω∨

X is isomor-

phic to the exterior product
∧dim(X) TX over OX . Hence TX acts on

∧dim(X) TX 
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Ω∨
X by the Lie bracket. By taking a local coordinate system, we can see that the

action of TX ⊂ DX on Ω∨
X ⊗OX

M is given by

Z · (A⊗B) = ZA⊗B −A⊗BZ(4.5.4)

for Z ∈ TX and A ⊗ B ∈ Ω∨
X ⊗OX

M. We omit the explicit computation. See
[21, Lemma 1.2.7].

Lemma 4.36. For any A ∈ Modqc(D
op
X ), B ∈ Modqc(A

op
X ) and C ∈ Modqc(AX),

we have a natural isomorphism

A⊗DX
(Ω∨

X ⊗OX
(B ⊗OX

C)) 
 ((A⊗OX
Ω∨

X)⊗OX
B)⊗AX

C

of CX-modules.

Proof. Both sides of the expression can be regarded as the sheaves of TX -coinvariants
in A⊗OX

Ω∨
X ⊗OX

B ⊗OX
C by (4.5.2). It is easy to see that the two actions of TX

coincide by (4.5.1), (4.5.3) and (4.5.4). �

Let AX,Λ and AY,Λ be families of algebras of twisted differential operators on
smooth varieties X and Y with the same index set Λ, respectively. Fix bornologies
BX and BY of AX,Λ and AY,Λ, respectively.

Theorem 4.37. Let M ∈ Db
ub(AX,Λ,BX) and N ∈ Db

ub(AY,Λ � A op
X,Λ,BY � Bop

X ).
Then we have

(Rq∗(Nλ ⊗L
p−1AX,λ

p−1Mλ))λ∈Λ ∈ Db
ub(AY,Λ,BY ),

where p (resp. q) is the projection from Y ×X onto X (resp. Y ).

Proof. Fix λ ∈ Λ. Then we have

Dq+(p
∗Ω∨

X ⊗L
OY ×X

(Nλ ⊗L
OY ×X

Lp∗Mλ))


Rq∗((AY,λ � ΩX)⊗L
AY,λ�DX

(p∗Ω∨
X ⊗L

OY ×X
(Nλ ⊗L

OY ×X
Lp∗Mλ)))


Rq∗(p
−1ΩX ⊗L

p−1DX
(p−1Ω∨

X ⊗L
p−1OX

(Nλ ⊗L
p−1OX

p−1Mλ)))


Rq∗((p
−1(ΩX ⊗OX

Ω∨
X)⊗L

p−1OX
Nλ)⊗L

p−1AX,λ
p−1Mλ)


Rq∗(Nλ ⊗L
p−1AX,λ

p−1Mλ).

The third isomorphism follows from Lemma 4.36 by taking flat resolutions of ΩX ,
Nλ and Mλ. By Proposition 4.35, we have

((BY � Bop
X ) # p#BX)p

∗Ω∨
X = (BY � Bop

id )
OY �Ω∨

X = BY � Bid = q#BY .

Therefore the theorem follows from Theorem 4.26. �

4.6. Family of easy morphisms. Retain the notation X, Y , AX,Λ, AY,Λ, BX

and BY in the previous subsection. We consider operations of D-modules by the
following family of morphisms:

fy : X → X × Y (y ∈ Y ),

fy(x) = (x, y).

Proposition 4.38. For any M ∈ Db
ub(AX,Λ � AY,Λ,BX � BY ), the family

(Lf∗
y (Mλ))λ∈Λ,y∈Y is uniformly bounded with respect to the bornology BX .
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Proof. It is enough to show the assertion for M ∈ Modub(AX,Λ � AY,Λ,BX �BY ).
Fix λ ∈ Λ and y ∈ Y .

Take (U,ϕ,Φ) ∈ BX and (V, ψ,Ψ) ∈ BY with affine U and V . Fix closed
embeddings ιU : U → Cn and ιV : V → Cm, and y′ ∈ ψ−1(y). Then we have a
commutative diagram

Cn
f ′′
y �� Cn × Cm

U
f ′
y ��

ιU

��

ϕ

��

U × V

ιU×ιV

��

ϕ×ψ

��
X

fy �� X × Y,

where f ′
y(x) = (x, y′) and f ′′

y (x) = (x, ιV (y
′)). Remark that the upper square is

cartesian.
By Facts 3.4(ii) and 3.5, we have

D(ιU )+ ◦ Lϕ∗ ◦ Lf∗
y (Mλ) 
 L(f ′′

y )
∗ ◦D(ιU × ιV )+ ◦ L(ϕ× ψ)∗(Mλ)

up to shift. Since the degree of f ′′
y is 1, we have

mιU (Lϕ
∗ ◦ Lf∗

y (Mλ)) ≤ mιU×ιV (L(ϕ× ψ)∗(Mλ))

by Fact 4.4. This shows the proposition. �

Proposition 4.39. Let N ∈ Db
ub(AX,Λ,BX). The family (D(fy)+(Nλ))λ∈Λ,y∈Y is

uniformly bounded with respect to the bornology BX � BY .

Proof. We retain the notation in the proof of Proposition 4.38. Then we have

L(ϕ× ψ)∗ ◦D(fy)+(Nλ) 
 Lϕ∗(Nλ) � Dι+(Oψ−1(y)),

where ι : ψ−1(y) → V is the inclusion map. By Fact 4.3, we have

mιU×ιV (Lϕ
∗(Nλ) � Dι+(Oψ−1(y))) = mιU (Lϕ

∗(Nλ))mιV (Dι+(Oψ−1(y))).

Since the multiplicity of the unique irreducible holonomic DCm-module supported
on a point is 1, we have

mιV (Dι+(Oψ−1(y))) = |ψ−1(y)|.

Since ψ is étale, |ψ−1(y)| is bounded on Y . Therefore we have shown the proposi-
tion. �

5. Examples of uniformly bounded family

In general, it is not easy to construct bornologies and uniformly bounded families
of twisted D-modules. An easy way to construct them is to use group actions. In
this section, we construct uniformly bounded families using principal bundles and
group actions with finite orbits.
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5.1. Bornology of a principal bundle. Let G be an affine algebraic group

and p : X̃ → X a principal G-bundle over a smooth variety X. Let A
˜X be a

G-equivariant algebra of twisted differential operators. For each λ ∈ (g∗)G, we
have defined a G-equivariant algebra AX,λ of twisted differential operators on X in
(3.4.1). Then we obtain a family (AX,λ)λ∈(g∗)G . Put Λ := (g∗)G.

In this subsection, we shall show that the family admits a standard bornology

determined by the bundle X̃ → X.
We can take a surjective étale morphism ϕ : U → X such that the pull-back

p : U×XX̃ → U of theG-bundle is trivial and A
˜X |U×X

˜X is isomorphic to the algebra

DU×X
˜X . Fix a section s : U → U ×X X̃ and an isomorphism α : s#(A

˜X |U×X
˜X) →

DU .
The section s determines a trivialization U × G 
 U ×X X̃ and α induces

an isomorphism A
˜X |U×X

˜X 
 DU � DG by Proposition 3.10. Then we have an
isomorphism

ΦU,s,α
λ : AX,λ|U = p∗(A ˜X/R(I−λ+δ)A ˜X)G|U

	−→ DU

for any λ ∈ Λ. See (3.4.1) for the notation. Hence we obtain a trivialization
(U,ϕ,ΦU,s,α) of AX,Λ.

Proposition 5.1. (U,ϕ,ΦU,s,α) is bounded and its equivalence class does not de-
pend on the choice of ϕ : U → X, s and α.

Proof. Let (ψ : V → X, t, β) be another choice of (ϕ, s, α). By considering the pull-
back of s, α, t, β,Φs,α and Φt,β to U ×X V , our computation can be done only on

U×XV . Hence we can assume U = V = X, X̃ = X×G and A
˜X = D

˜X = DX�DG.

We identify s#(D
˜X) and t#(D

˜X) with DX by the canonical isomorphisms. Then
α and β are automorphisms of DX . Since α and β are independent of λ ∈ Λ, the
choice of α and β does not affect the equivalence. Hence we can assume α = β = id.

Fix λ ∈ Λ. By the decomposition X × G = s(X)G, we have a monomorphism
ιs : DX 
 Ds(X) → p∗(DX×G)

G and the isomorphism (ΦU,s,α)−1 : DX → DX,λ

factors through the monomorphism. We define ιt similarly. Then ΦV,t,β
λ ◦(ΦU,s,α

λ )−1

is given by the following dot arrow:

DX 
 Ds(X)

��

ιs �� p∗(DX×G)
G �� �� DX,λ

DX 
 Dt(X)
ιt �� p∗(DX×G)

G �� �� DX,λ.

We write s(x) = (x, s′(x)) (x ∈ X) and define an automorphism a of X ×G by
a(x, g) = (x, s′(x)g). For a local section T ∈ TX , we denote by Ts the corresponding
section of Ts(X).

There exist closed 1-forms ωs
1, ω

s
2, · · · , ωs

n (n = dimC(g)) on X such that for any
local sections T ∈ TX and f ∈ OX ⊗O(G),

Tsf = ((a∗)−1 ◦ T ◦ a∗)f = Tf −
∑
i

ωs
i (T )L(Xi)f,

where {Xi}i=1,2,...,n is a basis of g and L is the differential of the left translation on

G. Similarly, we define
{
ωt
j

}
for t. Therefore

{
ΦV,t,β

λ ◦ (ΦU,s,α
λ )−1

}
λ∈Λ

is contained



326 M. KITAGAWA

in a finite-dimensional subspace spanned by {ωs
i } and

{
ωt
j

}
in Z(X). We have

proved the proposition. �

Definition 5.2. We denote by B(X, X̃) the equivalence class of the bounded triv-
ialization (U,ϕ,ΦU,s,α).

Let f : Y → X be a morphism of smooth varieties. Then we have a cartesian
square

Y ×X X̃
˜f ��

q

��

X̃

p

��
Y

f �� X.

Put

Ỹ := Y ×X X̃,

A
˜Y
:= f̃#A

˜X .

It is easy to see that q : Ỹ → Y is a principal G-bundle and A
˜Y is G-equivariant.

For each λ ∈ Λ, we define an algebra AY,λ of twisted differential operators on Y as
in (3.4.1) and we have a canonical isomorphism

AY,λ 
 f#AX,λ.

We identify the two algebras by the isomorphism. Then we obtain two bornologies

B(Y, Ỹ ) and f#B(X, X̃) of AY,Λ := (AY,λ)λ∈Λ.

Lemma 5.3. B(Y, Ỹ ) and f#B(X, X̃) are equal.

Proof. It is clear from the definition of B(X, X̃) and its pull-back (Definition 4.17).
�

Theorem 5.4 is a consequence of Lemma 5.3 and Theorem 4.26.

Theorem 5.4. We have functors

Df+ : Db
ub(AY,Λ,B(Y, Ỹ )) → Db

ub(AX,Λ,B(X, X̃)),

Lf∗ : Db
ub(AX,Λ,B(X, X̃)) → Db

ub(AY,Λ,B(Y, Ỹ )),

which are the restrictions of the direct image functor and the inverse image functor,
respectively.

Corollary 5.5. Let M ∈ Db
h(A ˜X). Then the family (Dp+,λ(M))λ∈Λ is uniformly

bounded with respect to B(X, X̃).

Proof. We shall apply Theorem 5.4 to Y = X̃ and f = p. The fiber product X̃×X X̃

is canonically isomorphic to the trivial bundle X̃ × G. The isomorphism is given

by X̃×G � (x, g) �→ (x, xg) ∈ X̃×X X̃. Hence the following diagram is a cartesian
square:

X̃ ×G
m ��

pr

��

X̃

p

��
X̃

p �� X,
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where m is the multiplication map and pr is the projection onto the first factor.

Then the constant family (M)λ∈Λ is uniformly bounded with respect to B(X̃, X̃ ×
G). Therefore the assertion follows from Theorem 5.4. �

By Corollary 5.5, we can construct many uniformly bounded families of D-
modules parametrized by (g∗)G using principal G-bundles.

5.2. G-equivariant bornology. Let X be a smooth G-variety of an affine alge-
braic group G, and AX,Λ be a family of G-equivariant algebras of twisted differential
operators. We write π : G × X → X and m : G × X → X for the projection and
the multiplication map, respectively. Since all AX,λ are G-equivariant, we have a
canonical isomorphism

π#AX,Λ 
 m#AX,Λ.

See (3.3.1).

Definition 5.6. We say that a bornology B of AX,Λ isG-equivariant if π#B = m#B
holds under the isomorphism π#AX,Λ 
 m#AX,Λ.

Proposition 5.7 is clear by Definition 5.6 and Proposition 4.18.

Proposition 5.7. Let f : Y → X be a morphism of smooth G-varieties and B a
G-equivariant bornology of AX,Λ. Then f#B is G-equivariant.

We set mg := m(g, ·) for g ∈ G. Then mg is an automorphism of X.

Proposition 5.8. Let M ∈ Db
ub(AX,Λ,B). Then (Lm∗

g(Mλ))λ∈Λ,g∈G is uniformly
bounded with respect to B.

Proof. For g ∈ G, let fg denote the morphism fg : X → G × X defined by
fg(x) = (g, x). Then we have mg = m ◦ fg. Since B is G-equivariant, Lm∗(M)
is uniformly bounded with respect to π#B = m#B. By Proposition 4.38, (Lf∗

g ◦
Lm∗(Mλ))λ∈Λ,g∈G is uniformly bounded with respect to B = f#

g π#B. This shows
the assertion. �

In Subsection 5.1, we have given a way to construct a bornology using a principal
bundle. We shall show that the bornology is G-equivariant if the bundle has G-

equivariant structure. Let G and T be affine algebraic groups and p : X̃ → X a

principal T -bundle over a smooth variety X. Suppose that X̃ and X are G × T -
varieties and p is G × T -equivariant. Let A

˜X be a G × T -equivariant algebra of

twisted differential operators on X̃.
Put Λ := (t∗)T . Then we have a family AX,Λ = (AX,λ)λ∈Λ of G×T -equivariant

algebras, and its bornology B(X, X̃) as in Subsection 5.1.

Proposition 5.9. B(X, X̃) is G-equivariant.

Proof. Consider the following commutative diagram:

X̃

p

��

G× X̃

id×p

��

π�� m �� X̃

p

��
X G×X

π�� m �� X,
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where π and m are the projection and the multiplication map, respectively. Since
A

˜X is G-equivariant, π#A
˜X and m#A

˜X are canonically isomorphic. We obtain a

family AG×X,Λ constructed from the principal T -bundle G × X̃ → G × X. Then
π#AX,Λ and m#AX,Λ are canonically isomorphic to AG×X,Λ = DG �AX,Λ. Under
this identification, by Lemma 5.3, we have

π#B(X, X̃) = B(G×X,G× X̃) = m#B(X, X̃).

This implies that B(X, X̃) is G-equivariant. �

We shall show the uniqueness of G-equivariant bornologies on a homogeneous
variety. Let G and H be affine algebraic group and its closed subgroup, and DG the
algebra of non-twisted differential operators. We write p : G → G/H for the natural
projection. Then we obtain a G-equivariant algebra DG/H,λ of twisted differential

operators on G/H for any λ ∈ (h∗)H . See (3.4.1).
It is well-known that any G-equivariant algebra of twisted differential operators is

canonically isomorphic to some DG/H,λ (see [25, Theorem 4.9.2]). This is because
it is generated by U(g) and OG/H . Hence we consider a bornology of a family

DG/H,Λ := (DG/H,Λ(r))r∈R for Λ: R → (h∗)H .

Proposition 5.10. There exists a unique G-equivariant bornology of DG/H,Λ.

Proof. The existence is clear because B(G/H,G) is a G-equivariant bornology of
DG/H,Λ by Proposition 5.9.

We shall show the uniqueness. Let B be a G-equivariant bornology of DG/H,Λ.

By Proposition 4.15(iv), it is enough to show p#B = p#B(G/H,G). Let π,m : G×
G/H → G/H be the projection and the multiplication map, respectively, and
ι : G → G × G/H a morphism given by ι(g) = (g, eH). Using the G-equivariant
structure, we identify the following three families:

m#DG/H,Λ, π#DG/H,Λ, (DG � DG/H,λ(r))r∈R.

Since m ◦ ι = p, by Proposition 4.18, we have

p#B = ι#m#B = ι#π#B = ι#(Bid � B) = Bid,

where Bid is the equivalence class of the trivialization (G, idG, id) of the constant
family (DG)r∈R. Therefore we have p#B = Bid = p#B(G/H,G). �

5.3. Uniformly bounded family of irreducible modules. Let K be an affine
algebraic group and X a K-variety. Let AX,Λ := (AX,λ)λ∈Λ be a family of K-
equivariant algebras of twisted differential operators on X. Fix a K-equivariant
bornology B of AX,Λ. A classification of K-equivariant AX,λ-modules is given by
Beilinson–Bernstein [5] (see also [20, Theorem 2.4]).

We review the classification. Fix λ ∈ Λ and x ∈ X. We write i : Kx ↪→ X and
p : K → Kx for the inclusion and the natural surjection, respectively. LetKx denote
the stabilizer of x in K. Since i#AX,λ is K-equivariant and Kx is homogeneous,
there is a unique element μ(λ) of (k∗x)

Kx such that i#AX,λ is canonically isomorphic
to

DKx,μ(λ) := (p∗(DK)⊗U(kx) Cμ(λ))
Kx .

See [25, Theorem 4.9.2]. We identify i#AX,λ with DKx,μ(λ) by the isomorphism.
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Fact 5.11. Let M be an irreducible coherent (AX,λ,K)-module whose support is

Kx. Then there exists a unique irreducible Kx-module F such that

(i) kx acts on F by the character μ(λ),

(ii) M is isomorphic to the unique irreducible submodule of D0i+(Ind
K
Kx

(F )),

where IndKKx
(F ) is the (DKx,μ(λ),K)-module of local sections of the associated

vector bundle K ×Kx
F over Kx 
 K/Kx. In particular, M is holonomic.

We shall show that a family of (AX,λ,K)-modules with bounded lengths is uni-
formly bounded if K has finitely many orbits in X.

Lemma 5.12. Let F be an irreducible Kx-module. Put n = dimC(Kx). Assume

that kx acts on F by the character μ(λ). Then IndKKx
(F ) is isomorphic to a direct

summand of D−np+,μ(λ)(OK).

Proof. By Theorem 3.16 and the Poincaré duality (Fact 2.7), we have

D−np+,μ(λ)(OK) 
 TorU(kx)
n (Cμ(λ)−δ, p∗(OK)) 
 (p∗(OK)⊗ Cμ(λ))

(Kx)0 ,

where δ is the character kx � X �→ tr(adkx(X)). The assertion follows from the
isomorphisms and the Frobenius reciprocity. �
Lemma 5.13. Let M be an irreducible coherent (AX,λ,K)-module whose support

is Kx. Then M is isomorphic to a submodule of H−n ◦Di+ ◦Dp+,μ(λ)(OK).

Proof. Since Kx is locally closed in X, the cohomology Dki+(N ) vanishes for any
k < 0 and N ∈ Modqc(AX,λ). Using truncation functors (see Subsection 2.3), we
have

H−n ◦Di+ ◦Dp+,μ(λ)(OK) 
 D0i+(D
−np+,μ(λ)(OK)).

Hence the assertion follows from Fact 5.11 and Lemma 5.12. �
Let π and m be the projection and the multiplication map from K ×X to X,

respectively. We write fx(g) = (g, x) for g ∈ K and x ∈ X. Then we have i ◦ p =
m◦fx. We denote by D(fx)+,λ the direct image functor Db

qc(DG) → Db
qc(π

#AX,λ).
By Proposition 4.39, (D(fx)+,λ(OK))x∈X,λ∈Λ is uniformly bounded with respect
to π#B.

Since B and any algebra in AX,Λ areK-equivariant, we havem#AX,Λ 
 π#AX,Λ

and m#B = π#B. Therefore (Dm+ ◦D(fx)+,λ(OK))x∈X,λ∈Λ is uniformly bounded
with respect to B by Theorem 4.26. By Lemma 5.13 and i ◦ p = m ◦ fx, we obtain

Proposition 5.14. Let M ∈
∏

λ∈Λ Modh(AX,λ,K). Assume that each Mλ is
irreducible and its support is the closure of some K-orbit dependent on λ. Then M
is a uniformly bounded family with respect to B.
Theorem 5.15. Let M ∈

∏
λ∈Λ Modh(AX,λ,K). Assume that K has finitely

many orbits in X and the length of each Mλ is bounded by a constant independent
of λ ∈ Λ. Then M is a uniformly bounded family with respect to B.

For the representation theory of real reductive Lie groups, we generalize The-
orem 5.15 to the universal covering group of K in a sense. Retain the notation
X,K,AX,Λ,B as above and assume that K is connected.

Fix λ ∈ Λ for a while. Let ν be a character of k and M a quasi-coherent
AX,λ-module. We say that M is a twisted (AX,λ,K)-module with twist ν if the
action of k on M⊗ Cν lifts to an action of K. Let AX,(λ,ν) be the K-equivariant
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algebra AX,λ ⊗EndC(Cν), which is isomorphic to AX,λ without the K-equivariant
structures. Then M is a twisted (AX,λ,K)-module with twist ν if and only if M
admits a K-equivariant structure as an AX,(λ,ν)-module.

Take (U,ϕ,Φ) ∈ B. Then (U,ϕ, (Φλ)λ∈Λ,ν∈(k∗)K ) is a bounded trivialization of
(AX,(λ,ν))λ∈Λ,ν∈(k∗)K . Since the K-action on AX,(λ,ν) is the same as that on AX,λ,
the bornology defined by (U,ϕ, (Φλ)λ∈Λ,ν∈(k∗)K ) is K-equivariant.

Corollary 5.16. Proposition 5.14 and Theorem 5.15 hold even if all Mλ are
twisted (AX,λ,K)-modules.

5.4. Finite orbits and uniformly bounded family. Retain the notation X,
K, AX,Λ,B in the previous subsection. Assume that K has finitely many or-
bits in X and K is connected. In this subsection, we consider the AX,λ-module

Tor
U(k)
i (AX,λ, F ) for a finite-dimensional k-module F .

To estimate the length of Tor
U(k)
i (AX,λ, F ), we need Lemma 5.17 about a com-

plex of filtered modules.

Lemma 5.17. Let A be a filtered ring and (C•, d•) a complex of filtered A-modules.
Then gr(Hi(C•)) is isomorphic to a subquotient of Hi(gr(C•)) for any i ∈ Z.

Proof. Fix i ∈ Z. It is easy to see that the following canonical homomorphisms are
injective:

Im(gr(di−1)) → gr(Im(di−1)) → gr(Ker(di)) → Ker(gr(di)),(5.4.1)

where gr(dk) : gr(Ck) → gr(Ck+1) is the homomorphism induced from dk : Ck →
Ck+1. The filtrations on Im(di−1), Ker(di) and Hi(C•) are induced from that on
Ci. Hence we have gr(Hi(C ·)) 
 gr(Ker(di))/gr(Im(di−1)). This isomorphism and
(5.4.1) show the lemma. �

Let π : T ∗X → X be the cotangent bundle. We have a homomorphism σ : S(k) →
OT∗X defined by taking the principal symbol of AX,λ. The homomorphism σ
does not depend on the choice of the K-equivariant algebra AX,λ. In fact, the
composition k → P(AX,λ) → TX coincides with the differential of the K-action on
X, and σ is determined by σ|k. Here P(AX,λ) is the Picard algebroid associated to
AX,λ (see Subsection 3.2).

Lemma 5.18. Fix λ ∈ Λ. Let M be an AX,λ-module with a filtration, and N a
coherent π∗OT∗X -module annihilated by σ(k). If gr(M) is isomorphic to a subquo-
tient of N⊕n, then M is holonomic and there exists a constant C(N ) depending
only on N such that

LenAX,λ
(M) ≤ C(N ) · n.

Proof. Put Ñ := OT∗X⊗π−1π∗OT∗X
N . Since σ(k) annihilates Ñ and K has finitely

many orbits in X, the support of Ñ is contained in the union of the conormal
bundles of all K-orbits in X. Since gr(M) is isomorphic to a subquotient of N⊕n,
the filtration of M is good, and hence M is coherent by [21, Theorem 2.1.3].
Moreover, the characteristic variety of M is a union of the conormal bundles of
some K-orbits in X. This shows that M is holonomic.

Let C(N ) be the sum of multiplicities of Ñ along the conormal bundles of all
K-orbits. Let m(M) be the sum of multiplicities in the characteristic cycle of M.
Then we have m(M) ≤ C(N ) ·n. Since the length of M is bounded by m(M) (see
[21, Proposition 5.1.9]), this shows the lemma. �
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Let U be the unipotent radical of K. If necessary, replacing K with its finite
covering, we may assume that [K/U,K/U ] is simply-connected.

Lemma 5.19. There exists some constant C > 0 such that for any finite-dimensio-
nal k-module F , λ ∈ Λ and i ∈ Z, we have

LenAX,λ
(Tor

U(k)
i (AX,λ, F )) ≤ C · dimC(F ),

where AX,λ is considered as a U(k)-module by the right action. Moreover, any

composition factor of Tor
U(k)
i (AX,λ, F ) is a holonomic twisted (AX,λ,K)-module.

Remark 5.20. Lemma 5.19 for i = 0 is proved in [44].

Proof. Fix F and λ. By induction on the length of F , the assertion can be reduced
to the case of irreducible F . Since F is irreducible, k/Annk(F ) is reductive, where
Ann means the annihilator of a module. Hence we can take a character μ of k such

that F ⊗ Cμ lifts to a K-module. This implies that Tor
U(k)
i (AX,λ, F ) is a twisted

(AX,λ,K)-module with twist μ. In fact, the homology can be computed by an
h-complex of weak (AX,(λ,μ),K)-modules in the sense of Bernstein–Lunts [9, 2.5].
See [31, Proposition 3.3] for the complex. Here AX,(λ,μ) is a K-equivariant algebra
defined before Corollary 5.16.

To compute Tor
U(k)
i (AX,λ, F ), we shall use the Chevalley–Eilenberg chain com-

plex. See Fact 2.6. Let (AX,λ ⊗ F ⊗ ∧−•k, d•) be the complex. For any i ≥ 0, the
differential d−i is given by

d−i(P ⊗ f ⊗ (X1 ∧X2 ∧ · · · ∧Xi))

=
∑
a

(−1)a+1(PXa ⊗ f − P ⊗Xaf)⊗X1 ∧X2 ∧ · · · ∧ X̂a ∧ · · · ∧Xi

+
∑
a<b

(−1)a+bP ⊗ f ⊗ [Xa, Xb] ∧X1 ∧X2 ∧ · · · ∧ X̂a ∧ · · · ∧ X̂b ∧ · · · ∧Xi.

(5.4.2)

We denote by G the order filtration of AX,λ. It induces a filtration G̃i on
AX,λ ⊗ F ⊗ ∧ik as

G̃i
n(AX,λ ⊗ F ⊗ ∧ik) = Gn−i(AX,λ)⊗ F ⊗ ∧ik

for any i ≥ 0. Then the complex (AX,λ ⊗ F ⊗ ∧−•k, d•) is a complex of filtered
AX,λ-modules. By (5.4.2), we have an isomorphism

(gr(AX,λ ⊗ F ⊗ ∧−•k), gr(d•)) 
 (π∗OT∗X ⊗ F ⊗ ∧−•k, d•)

of complexes, where the right hand side is the Koszul complex of the S(k)-module
π∗OT∗X ⊗ F 
 (π∗OT∗X)⊕ dim(F ). Hence we have

H−i(gr(AX,λ ⊗ F ⊗ ∧−•k)) 
 Tor
S(k)
i (π∗OT∗X ,C)⊗ F

as π∗OT∗X -modules. Note that Tor
S(k)
i (π∗OT∗X ,C) is a coherent π∗OT∗X -module

because each term of the Koszul complex is coherent.

By Lemma 5.17, gr(Tor
U(k)
i (AX,λ, F )) is isomorphic to a subquotient of

Tor
S(k)
i (π∗OT∗X ,C) ⊗ F . We can apply Lemma 5.18 to M = Tor

U(k)
i (AX,λ, F )
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and N = Tor
S(k)
i (π∗OT∗X ,C). Hence there is a constant Ci depending only on

Tor
S(k)
i (π∗OT∗X ,C) such that

LenAX,λ
(Tor

U(k)
i (AX,λ, F )) ≤ Ci · dimC(F ).

C := maxi {Ci} exists because Tor
U(k)
i (·, ·) vanishes for any i > dimC(k). The

assertion in the lemma holds for this C. �

Corollary 5.21 is a direct consequence of Lemma 5.19 and Corollary 5.16.

Corollary 5.21. Let F be a set of k-modules with bounded dimensions. Then the

family (Tor
U(k)
i (AX,λ, F ))i∈Z,F∈F ,λ∈Λ is uniformly bounded with respect to B.

Let AY,Λ be a family of twisted differential operators on a smooth variety Y .
Fix a bornology B′ of AY,Λ. We write q : X × Y → Y for the projection onto the
second factor.

Theorem 5.22. Let M ∈ Modub(AX,Λ � AY,Λ,B � B′). If all Mλ are q∗-acyclic,
then there exists a constant C > 0 such that

LenAY,λ
(Tor

U(k)
i (F, q∗(Mλ))) ≤ C · dimC(F )

for any finite-dimensional k-module F , i ∈ Z and λ ∈ Λ. Moreover, the family

(Tor
U(k)
i (F, q∗(Mλ)))λ∈Λ,i∈Z,F∈F is uniformly bounded with respect to B′. Here F

is a set of finite-dimensional k-modules whose dimensions are bounded.

Proof. For N ∈ Db
h(A

op
X,λ), put

T i
λ(N ) := Riq∗(p

−1N ⊗L
p−1AX,λ

Mλ),

where p : X × Y → X is the projection onto the first factor.
For λ ∈ Λ, let Iλ be the set of all (isomorphism classes of) irreducible twisted

(A op
X,λ,K)-modules. By Corollary 5.16, the family (N )λ∈Λ,N∈Iλ is a uniformly

bounded family with respect to B. Hence by Theorem 4.37, we can define a constant
C1 as

C1 := max
{
LenAY,λ

(T i
λ(N )) : λ ∈ Λ,N ∈ Iλ, i ∈ Z

}
.

Fix a finite-dimensional k-module F . Take a free resolution J• of the U(k)-module
F . Then we have

T−i
λ (J• ⊗U(k) AX,λ) = R−iq∗(p

−1(J• ⊗U(k) AX,λ)⊗L
p−1AX,λ

Mλ)


 R−iq∗(J
• ⊗U(k) Mλ)


 H−i(J• ⊗U(k) q∗(Mλ))


 Tor
U(k)
i (F, q∗(Mλ)).

Here the second isomorphism holds because Jk ⊗U(k) Mλ is isomorphic to a direct
sum of some copies of Mλ as a sheaf, and Mλ is q∗-acyclic. This shows the second
assertion by Theorem 4.37 and Corollary 5.21.
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To show the first assertion, we remark that H−i(J•⊗U(k) AX,λ) is isomorphic to

Tor
U(k)
i (F,AX,λ) as an A op

X,λ-module. By Lemma 2.8(ii), we have

LenAY,r
(Tor

U(k)
i (F, q∗(Mλ))) = LenAY,r

(T−i
λ (J• ⊗U(k) AX,λ))

≤
dimC(k)∑
j=0

LenAY,λ
(T−i+j

λ (Tor
U(k)
j (F,AX,λ))).

By Lemma 5.19, there is a constant C2 independent of F such that

LenA op
X,λ

(Tor
U(k)
j (F,AX,λ)) ≤ C2 · dimC(F )

for any j ∈ Z and λ ∈ Λ, and any composition factor of the module is in Iλ. By
Lemma 2.8(i), we obtain

LenAY,λ
(Tor

U(k)
i (F, q∗(Mλ))) ≤ C1 · C2 · dimC(F )(dimC(k) + 1).

We have taken C1 and C2 independently of F , i and λ. Therefore we have proved
the theorem. �

6. Zuckerman derived functor and its localization

In this section, we review the Zuckerman derived functors and their localization.
We use the functors to study the relative Lie algebra cohomology/homology. The
localization can be realized by a composition of direct image functors and inverse
image functors. Hence we can apply results about uniformly bounded families to
study the functors and the cohomologies.

6.1. Zuckerman functor. In this subsection we review the Zuckerman derived
functor. We refer the reader to [13, I.8] and [48, 6.3] for our construction.

Let (A, G) be a generalized pair and H a reductive subgroup of G. Then (A, H)
forms a generalized pair and (g, H) forms a pair (see Definitions 2.1 and 2.5). Since
A is a G-module, for any X ∈ A, we can take f1, . . . , fn ∈ O(G) and X1, . . . , Xn ∈
A such that

Ad(g−1)(X) =
∑
i

fi(g)Xi

for any g ∈ G.
Let V be an (A, H)-module. We define three actions on O(G)⊗ V via

μ(X)(f ⊗ v) =
∑
i

fif ⊗Xiv (X ∈ A),

r(Y )(f ⊗ v) = R(Y )f ⊗ v + f ⊗ Y v (Y ∈ g),

r(g)(f ⊗ v) = R(g)f ⊗ gv (g ∈ H),

l(g)(f ⊗ v) = L(g)f ⊗ v (g ∈ G)

for f ∈ O(G) and v ∈ V . Here L (resp. R) denotes the left (resp. right) regular
action of G on O(G) and fi, Xi are the elements taken above for X. It is easy to see
that μ(X) does not depend on the choice of {fi} and {Xi}. Note that the actions
μ and l commute with r and we have

(μ(X)− l(X))(O(G)⊗ V )r(g) = 0

for any X ∈ g. This implies that ΓG
H(V ) := (O(G)⊗V )r(g),r(H) is an (A, G)-module

via μ and l.
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For an (A, H)-module V and i ∈ N, we set

DiΓG
H(V ) := Hi(g, H;O(G)⊗ V ),

where O(G) ⊗ V is considered as a (g, H)-module via the action r to take the
relative Lie algebra cohomology. The two actions l and μ satisfy the definition
of (A, G)-modules (Definition 2.2), and hence DiΓG

H(V ) is an (A, G)-module. See
e.g. [13, Proposition I.8.2] and [39, Theorem 1.6]. Remark that we can prove that
DiΓG

H(V ) is an (A, G)-module under the weaker assumption that G/H is affine
without reductivity of H. See Remark 6.6.

Fact 6.1. DiΓG
H(V ) admits an (A, G)-module structure defined by μ and l. If, in

addition, A is flat as a right U(g)-module, then DiΓG
H is isomorphic to the i-th right

derived functor of ΓG
H .

The functors DiΓG
H are called the Zuckerman derived functors.

The following property is well-known and easy to see from the above isomorphism
and the algebraic Peter–Weyl theorem [16, Theorem 4.2.7]. See e.g. [13, Theorem
I.8.8].

Fact 6.2. Let V be an (A, H)-module. Assume that G is reductive. For any i ∈ N,
the irreducible decomposition of DiΓG

H(V ) as a G-module is given by

DiΓG
H(V ) 


⊕
F

Hi(g, H;F ⊗ V )⊗ F ∗,

where the direct sum is over all isomorphism classes of irreducible G-modules. The
isomorphism is natural in V .

For a generalized pair (A, G), we consider (A ⊗ U(g), G) as a generalized pair
equipped with the diagonal homomorphism U(g) → A ⊗ U(g) and the diagonal
action of G on A⊗ U(g).
Lemma 6.3. Let V be an (A, H)-module. Assume that G is reductive. Then for
any (g, H)-module W and i ∈ N, there exists a natural isomorphism of AG-modules

DiΓG
H(V ⊗W )G 
 Hi(g, H;V ⊗W ),

where V ⊗W is considered as an (A⊗U(g), H)-module to apply the functor DiΓG
H .

Proof. The isomorphism DiΓG
H(V ⊗W )G 
 Hi(g, H;V ⊗W ) of vector spaces in Fact

6.2 is natural in V and W . Hence the isomorphism is also an AG-homomorphism.
�

Corollary 6.4. Retain the notation in Lemma 6.3. Then for any (g, H)-module
W and i ∈ N, we have

LenAG(Hi(g, H;V ⊗W )) ≤ LenA⊗U(g),G(D
iΓG

H(V ⊗W )).

Proof. We write Δ: g → A⊗ U(g) for the diagonal homomorphism Δ(X) = X ⊗
1 + 1⊗X. Then we have (A⊗ U(g))/(A⊗ U(g))Δ(g) 
 A.

By Proposition 2.3, we have

Len(A⊗U(g))G(D
iΓG

H(V ⊗W )G) ≤ LenA⊗U(g),G(D
iΓG

H(V ⊗W )).

The action of (A⊗ U(g))G on DiΓG
H(V ⊗W )G factors through (A⊗ U(g))G/(A⊗

U(g)Δ(g))G. Since G is reductive, we have

(A⊗ U(g))G/(A⊗ U(g)Δ(g))G 
 (A⊗ U(g)/A⊗ U(g)Δ(g))G 
 AG.
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The isomorphism AG 
 (A⊗ U(g))G/(A⊗ U(g)Δ(g))G is given by

AG � a �→ a⊗ 1 ∈ (A⊗ U(g))G/(A⊗ U(g)Δ(g))G.

The assertion therefore follows from Lemma 6.3. �

6.2. Localization of the Zuckerman functor. We review the localization of the
Zuckerman derived functor. We refer to [10, II.4] and to [31, 4.6] for a conceptual
treatment using the equivariant derived category (see also [8, 3.7]).

Let G be an affine algebraic group over C and AX a G-equivariant algebra of
twisted differential operators on a smooth G-variety X. Let H be a reductive
subgroup of G. We construct an (AX , G)-module from an (AX , H)-module.

We consider the following diagram:

X
π←− G×X

a−→ G×X
q−→ G/H ×X

π′
−→ X,

where π and π′ are the projections, a is the isomorphism given by a(g, x) = (g, gx)
and q is the natural projection. We consider the left two X as G × H-varieties
letting G act trivially and the others as G×H-varieties letting H act trivially. We
consider G as a G×H-variety via the left and right translations. Then π, a, q and π′

are G×H-equivariant. Since AX is G-equivariant, we have canonical isomorphisms

π#AX 
 DG � AX 
 (π′ ◦ q ◦ a)#AX

of G×G-equivariant algebras (see Proposition 3.9). In particular, they are G×H-
equivariant.

We set n = dimC(h),m = dimC(g/h) and

DiLG
H(M) := Lm−iπ

′
+(Lnq+(a+π

∗(M))H/H0) ∈ Modqc(AX , G)

for M ∈ Modqc(AX , H) and i ∈ N. Here (·)H/H0 means taking the H/H0-invariant
part in an H/H0-equivariant sheaf. Since the functors to define DiLG

H preserve
holonomicity, we can replace Modqc by Modh.

The functors DiLG
H can be considered as a localization of the Zuckerman functors

DiΓG
H (see [10, Theorem 4.4] and [31, Proposition 4.17]).

Proposition 6.5. Let M be an object in Modqc(AX , H). If the global section func-
tor Γ: Modqc(AX) → Mod(AX) is exact, then there exists a natural isomorphism

Γ(DiLG
H(M)) 
 DiΓG

H(Γ(M))

of (AX , G)-modules for any i ∈ N.

Proof. Note that G/H is affine by Matsushima’s criterion [46, Theorem 3.8]. Fix
i ∈ N.

Since q : G×X → G/H×X is a principal H-bundle, Lnq+(·)H/H0 is isomorphic

to TorU(h)
n (C, q∗(·))H/H0 by Theorem 3.16. Since h is reductive, we do not need the

shift δ. By n = dimC(h), and Facts 2.6 and 2.7, we have

TorU(h)
n (C, q∗(·))H/H0 
 Hn(h; q∗(·))H/H0


 H0(h; q∗(·))H/H0 
 q∗(·)H .

Hence we have

Lnq+a+π
∗(M)H/H0 
 q∗(OG � M)H .
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The action of DX ⊂ AG/H ⊗AX on Γ(q∗(OG �M)H) 
 (O(G)⊗Γ(M))H is given
by

A · f ⊗m =
∑
i

fif ⊗Aim,(6.2.1)

where {Ai} ⊂ AX and {fi} ⊂ O(G) are finite subsets satisfying
∑

i fi(g)Ai =
Ad(g−1)A. The G-action on (O(G) ⊗ Γ(M))H is given by the left translation on
O(G).

Let p : G/H × X → G/H be the projection and q′ : G → G/H the natural
projection. Since π′ is projection, we can compute Lm−iπ

′
+ by the relative de

Rham complex (see [21, Lemma 1.5.27]). Since G/H is a homogeneous variety,
the tangent sheaf TG/H is isomorphic to (q′∗OG ⊗ g/h)H . Hence we can write the
relative de Rham complex using Lie algebras as

Γ(Lm−iπ
′
+(q∗(OG � M)H))


Hi−m ◦ Γ ◦Rπ′
∗(p

−1(q′∗OG ⊗ ∧m+•(g/h)∗)H ⊗p−1OG/H
q∗(OG � M)H)


Hi((O(G)⊗ ∧•(g/h)∗)H ⊗O(G/H) (O(G)⊗ Γ(M))H)


Hi((O(G)⊗ ∧•(g/h)∗ ⊗ Γ(M))H).

Here the second isomorphism holds because G/H is affine and Γ is exact on
Modqc(AX), and the third isomorphism comes from the tensor product of the two
locally free sheaves on the affine variety G/H. The differentials in the above com-
plexes are those induced from the relative de Rham complex. By a straightforward
computation, the complex (O(G)⊗∧•(g/h)∗⊗Γ(M))H is isomorphic to the complex
HomH(CE•(g, H),O(G)⊗ Γ(M)). See Subsection 2.2 for the Chevalley–Eilenberg
chain complex CE•(g, H). Therefore we have

Γ(Lm−iπ
′
+(q∗(OG � M)H)) 
 Hi(g, H;O(G)⊗ Γ(M)) 
 DiΓG

H(Γ(M)).

As we have seen around (6.2.1), under the isomorphism Γ(DiLG
H(M)) 


Γ(DiLG
H(M)) of vector spaces, the AX -action and the G-action on Γ(DiLG

H(M))
coincide with those on DiΓG

H(Γ(M)) given in Fact 6.1. We have therefore proved
the proposition. �

Remark 6.6. In the proof, we did not use the reductivity of H. In fact, one can
define the Zuckerman functor DiΓG

H(V ) by the same way in the previous subsection
for any H if G/H is affine.

Let G and H be an affine algebraic group and its reductive subgroup, and X a
smooth G-variety. Let AX,Λ := (AX,λ)λ∈Λ be a family of G-equivariant algebras
of twisted differential operators on X. Take a G-equivariant bornology B of AX,Λ.
See Definition 5.6.

The functor DiLG
H is defined by a composition of inverse image functors, direct

image functors and taking invariants (·)H/H0 . Note that taking invariants is a spe-
cial case of taking a subquotient. Hence DiLG

H preserves the uniform boundedness.

Theorem 6.7. Let (Mλ)λ∈Λ be a family of (AX,λ, H)-modules. Suppose that M
is uniformly bounded with respect to B. Then (DiLG

H(Mλ))i∈Z,λ∈Λ is uniformly
bounded with respect to B.
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Proof. Recall the definition of the morphisms:

X
π←− G×X

a−→ G×X
q−→ G/H ×X

π′
−→ X.

Since B is G-equivariant, we have π#B = (π′ ◦ q ◦ a)#B by Definition 5.6. The
uniform boundedness is preserved by direct images, inverse images and taking
subquotients by Proposition 4.22 and Theorem 4.26. Hence we have proved the
theorem. �

7. Application to representation theory

In this section, we define a notion of uniformly bounded family of g-modules. A
typical example is a family of Harish-Chandra modules with bounded lengths. As
an application of results about uniformly bounded families of D-modules, we will
show that the uniform boundedness of a family of g-modules is preserved by several
operations such as (cohomologically) parabolic induction and taking coinvariants.

We will also prove the boundedness of the lengths of U(g)G′
-modules, which is

related to the branching problem and harmonic analysis.

7.1. Uniformly bounded family of g-modules. In this subsection, we introduce
the notion of uniformly bounded family of g-modules.

Let G be a connected reductive algebraic group and B a Borel subgroup of G.
Fix a Levi decomposition B = TU , where T is a maximal torus and U is the
unipotent radical of B. Then the natural projection p : G/U → G/B is a principal
T -bundle and G-equivariant.

We will reduce theorems about g-modules to those about D-modules on G/B.
To do so, we review the Beilinson–Bernstein correspondence. Let DG/U be the
algebra of non-twisted differential operators on G/U equipped with the natural
G× T -equivariant structure. For a character λ of t, we set

DG/B,λ := (Cλ ⊗U(t) p∗DG/U )
T

and consider DG/B,λ as a G×T -equivariant algebra of twisted differential operators

as in Subsection 3.4. Then p#DG/B,λ is naturally isomorphic to DG/U . Note that
one can explicitly construct a bounded trivialization belonging to B(G/B,G) using
an open covering by the open Bruhat cell and its translations.

Δ+ = Δ+(g, t) denotes the set of positive roots determined by B and T . We write
ρ for half the sum of the positive roots. Let Modeqc(DG/B,λ) be a full subcategory
of Modqc(DG/B,λ) whose object M satisfies the following conditions.

(i) The canonical morphism DG/B,λ ⊗U(g) Γ(M) → M is surjective.
(ii) Γ(N ) �= 0 holds for any non-zero submodule N of M in Modqc(DG/B,λ).

Fact 7.1 is called the Beilinson–Bernstein correspondence [5].

Fact 7.1. Let λ be a character of t.

(i) The homomorphism U(g) → DG/B,λ(= Γ(DG/B,λ)) is surjective and its
kernel is equal to the minimal primitive ideal with infinitesimal character
λ− ρ.

(ii) If λ − ρ is anti-dominant, then any quasi-coherent DG/B,λ-module M is

acyclic, i.e. Hi(G/B,M) = 0 for any i > 0. In particular, the global
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section functor Γ is exact on Modqc(DG/B,λ). Moreover, the global section
functor

Γ: Modeqc(DG/B,λ) → Mod(DG/B,λ)

gives an equivalence of categories.
(iii) If λ − ρ is regular and anti-dominant, then the global section functor

Γ: Modqc(DG/B,λ) → Mod(DG/B,λ) gives an equivalence of categories.

We need the following consequences of the Beilinson–Bernstein correspondence.

Corollary 7.2. Let λ be a character of t such that λ− ρ is anti-dominant.

(i) Let M be a g-module with the infinitesimal character λ−ρ. Suppose that L
is the maximum submodule of M := DG/B,λ ⊗U(g) M such that Γ(L) = 0.
Then we have M/L ∈ Modeqc(DG/B,λ) and M 
 Γ(M/L). Moreover, if M
is irreducible, then so is M/L in Modqc(DG/B,λ).

(ii) For any M ∈ Modqc(DG/B,λ), there exists a subquotient N of M such that
N ∈ Modeqc(DG/B,λ) and Γ(M) 
 Γ(N ).

(iii) For any irreducible M ∈ Modqc(DG/B,λ), the g-module Γ(M) is irreducible
or zero. In particular, we have Leng(Γ(M)) ≤ LenDG/B,λ

(M) for any

M ∈ Modh(DG/B,λ).

Proof. The first assertion of (i) is shown in the proof of [21, Corollary 11.2.6].
Assume that M is irreducible and let N be a non-zero submodule of M/L in
Modqc(DG/B,λ). Then we have Γ(N ) �= 0 and hence Γ(N ) = Γ(M/L). Since M/L
is generated by Γ(M/L) = Γ(N ), we have N = M/L. This shows that M/L is
irreducible.

To show (ii), let M ∈ Modqc(DG/B,λ). Take the maximum submodule L of
M′ := DG/B,λΓ(M) such that Γ(L) = 0. Then N := M′/L satisfies the desired
conditions as in (i).

To show (iii), let M ∈ Modqc(DG/B,λ) and assume that M is irreducible. If
Γ(M) �= 0, then M belongs to Modeqc(DG/B,λ) by definition, and hence Γ(M) is
irreducible. �
Definition 7.3. Let λ be a character of t such that λ − ρ is anti-dominant. For
a g-module M with the infinitesimal character λ − ρ, we denote by Le

λ(M) the
DG/B,λ-module M/L in (i) of Corollary 7.2.

If λ− ρ is regular, then Le
λ is the localization functor DG/B,λ ⊗U(g) (·).

Proposition 7.4. Let λ be a character of t such that λ − ρ is anti-dominant.
Assume G = G1 × G2 and decompose B = B1 × B2, t = t1 ⊕ t2, ρ = ρ1 + ρ2 and
λ = λ1+λ2 ∈ t∗1⊕ t∗2. Let Mi be a gi-module with the infinitesimal character λi−ρi
for i = 1, 2. Then we have

Le
λ1
(M1) � Le

λ2
(M2) 
 Le

λ(M1 � M2).

Proof. IfM1 orM2 is zero, the assertion is trivial, so we can assume thatM1 andM2

are non-zero. Since Le
λ1
(M1)� Le

λ2
(M2) is generated by Γ(Le

λ1
(M1) � Le

λ2
(M2)) =

M1 � M2, there is a natural epimorphism

ϕ : Le
λ1
(M1) � Le

λ2
(M2) → Le

λ(M1 � M2).

We shall show Ker(ϕ) = 0. Let p : G1/B1 × G2/B2 → G1/B1 be the projection
onto the first factor. Then we have p∗(L

e
λ1
(M1) � Le

λ2
(M2)) 
 Le

λ1
(M1)⊗M2.
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Let α ∈ M∗
2 and put

α̃ := id⊗ α : Le
λ1
(M1)⊗M2 → Le

λ1
(M1).

Since Γ(Ker(ϕ)) = 0, we have Γ(p∗(Ker(ϕ))) = 0. Since Γ is exact, we have

Γ(α̃(p∗(Ker(ϕ)))) = 0.

α̃(p∗(Ker(ϕ))) is a submodule of Le
λ1
(M1) ∈ Modeqc(DG1/B1,λ1

). Hence we have
α̃(p∗(Ker(ϕ))) = 0 for any α ∈ M∗

2 . This shows p∗(Ker(ϕ)) = 0.
Let U be an open subset of G1/B1. Then we have Γ(U, p∗(Ker(ϕ))) = Γ(U ×

G2/B2,Ker(ϕ)) = 0. Considering the projection U ×G2/B2 → G2/B2, and by the
same discussion, we have Γ(U × V,Ker(ϕ)) = 0 for any open subset V ⊂ G2/B2.
This shows Ker(ϕ) = 0. �

Motivated by the Beilinson–Bernstein correspondence and the definition of uni-
formly bounded family of D-modules, we introduce Definition 7.5.

Definition 7.5. Let (Vi)i∈I be a family of g-modules. We say that (Vi)i∈I is
uniformly bounded if the following two conditions hold.

(i) The length of Vi is bounded by a constant independent of i ∈ I.
(ii) There exist a family (λ(r))r∈R of anti-dominant weights of t and a family

N ∈ Modub((DG/B,λ(r)+ρ)r∈R,B(G/B,G)) (see Section 5.1) such that any
composition factor of any Vi is isomorphic to some Γ(Nr).

We say that a family of (g,K)-modules of a pair (g,K) is uniformly bounded if it
is a uniformly bounded family of g-modules.

The uniform boundedness is preserved by several operations of g-modules. We
shall explain how to show the uniform boundedness.

Strategy. Let G′ be a connected reductive algebraic group with a Borel subgroup
B′, and F : Mod(g) → Mod(g′) a functor. Take t′ and ρ′ ∈ (t′)∗ for G′ as t and ρ
for G. Suppose that we want to show that (F (Vi))i∈I is uniformly bounded for any
uniformly bounded family (Vi)i∈I of g-modules.

Assume that for any exact sequence 0 → L → M → N → 0 in Mod(g), the se-
quence F (L) → F (M) → F (N) is exact. Then it is enough to show that (F (Vi))i∈I

is uniformly bounded when Vi is irreducible for any i ∈ I. See Proposition 7.6(i).
Let (Vi)i∈I be a uniformly bounded family of g-modules such that Vi is irreducible

for any i ∈ I. By definition, there exists a uniformly bounded family (Mi)i∈I of
twisted D-modules on G/B such that Γ(Mi) 
 Vi, Mi ∈ Modh(DG/B,λ(i)) and
λ(i)− ρ is anti-dominant for any i ∈ I. Remark that

Γ is exact on Modh(DG/B,λ(i))

by Fact 7.1(ii).
We need a geometrical version of F . Suppose that there is a functor

F :
∏
i∈I

Modqc(DG/B,λ(i)) →
∏
i∈I

Modqc(DG′/B′,λ′(i))

such that

(i) λ′(i)− ρ′ is anti-dominant for any i ∈ I,
(ii) Γ ◦ F 
 F ◦ Γ,
(iii) F preserves the uniform boundedness (for the bornologies B(G/B,G) and

B(G′/B′, G′)).



340 M. KITAGAWA

Then F also preserves the uniform boundedness. The boundedness of the lengths
of (F (Vi))i∈I follows from Corollary 7.2(iii). Note that the condition (i) always
holds in this paper and hence Γ is exact on each Modqc(DG′/B′,λ′(i)).

We have seen the conditions (ii) and (iii) for several functors such as the Zuck-
erman derived functors.

Proposition 7.6. Let g and h be complex reductive Lie algebras.

(i) For a short exact sequence 0 → L → M → N → 0 in
∏

i∈I Mod(g), both L
and N are uniformly bounded if and only if so is M .

(ii) For any family (λi)i∈I of characters of g and uniformly bounded family
(Vj)j∈J of g-modules, (Vj ⊗ Cλi

)i∈I,j∈J is also uniformly bounded.
(iii) For any set Φ of inner automorphisms of g and uniformly bounded family

(Vj)j∈J of g-modules, (V ϕ
j )ϕ∈Φ,j∈J is also uniformly bounded. Here V ϕ

j is

the g-module defined by the composition g
ϕ−→ g → EndC(Vj).

(iv) Let (Vi)i∈I (resp. (Wi)i∈I) be a family of non-zero g-modules (resp. h-
modules). Then (Vi � Wi)i∈I is a uniformly bounded family of (g⊕ h)-
modules if and only if both (Vi)i∈I and (Wi)i∈I are uniformly bounded.

Proof. (i) is trivial by definition.
(ii) is easy from the observation that the twist (·) ⊗ Cλi

does not affect the
structure of twisted DG/B-modules. See also Proposition 4.31.

Let g ∈ G. The functor (·)Ad(g) is realized geometrically as the inverse image
functorm∗

g : Modqc(DG/B,λ) → Modqc(DG/B,λ), wheremg : G/B → G/B is defined
by mg(x) = gx. Hence (iii) is a direct consequence of Proposition 5.8.

(iv) follows from Theorem 4.28 and Proposition 7.4. �

Proposition 7.7. Let (g,K) be a pair and M a reductive subgroup of K. Let
(Vi)i∈I be a uniformly bounded family of (g,M)-modules.

(i) (DjΓK
M (Vi))i∈I,j∈Z is uniformly bounded.

(ii) If K is reductive, there exists a constant C such that for any i ∈ I and
j ∈ Z, we have

LenU(g)K (Hj(k,M ;Vi)) ≤ C.

(iii) (ii) is also true if (Vi)i∈I is a uniformly bounded family of (g,m)-modules
and Hj(k,M ; ·) is replaced by Hj(k,m; ·).

(iv) (ii) is also true if we replace M with its covering M̃ .

Proof. As we have mentioned in Strategy, we can reduce the assertions to similar
results about D-modules on the flag variety. (i) follows from Theorem 6.7. Taking
the K-invariant part of (i), (ii) follows from Corollary 6.4.

By the definition of the relative Lie algebra cohomology, we have

Hj(k,m;Vi) = Hj(k,M0; (Vi)M0
),

where (Vi)M0
is the sum of all m-submodules in Vi that can lift to M0-modules.

Hence (iii) follows from (ii). (iv) can be reduced to (iii) by

Hj(k, M̃ ;Vi) = Hj(k,m;Vi)
˜M/˜M0 .

We have proved the proposition. �
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Let (g,K) be a pair. Then K acts on the flag variety of g, which is isomorphic
to G/B. Assume that K has finitely many orbits in G/B.

Proposition 7.8. Let h be a complex reductive Lie algebra and (Mi)i∈I a uniformly
bounded family of (g⊕ h)-modules. For any set F of finite-dimensional k-modules

whose dimensions are bounded, the family (Tor
U(k)
j (F,Mi))i∈I,j∈Z,F∈F is a uni-

formly bounded family of h-modules. Moreover, there exists a constant C such that
for any finite-dimensional k-module F , i ∈ I and j ∈ Z,

Lenh(Tor
U(k)
j (F,Mi)) ≤ C · dimC(F ).

Proof. The proposition follows from Theorem 5.22. See Strategy. Remark that the
assumption that K has finitely many orbits in G/B is also assumed in Subsection
5.4. �

Remark 7.9. If h = 0, then Lenh(Tor
U(k)
0 (F,Mi)) is the dimension of F ⊗U(k)Mi. In

this case, Proposition 7.8 is a kind of finite multiplicity theorems. Replacing G/B
by a partial flag variety G/P and DG/B,λ ⊗U(k) F by some holonomic D-module,
one can obtain several finite multiplicity theorems. We postpone the results to the
sequel.

A typical example of uniformly bounded family is a family of Harish-Chandra
modules.

Proposition 7.10. Any family of (g, k)-modules with bounded lengths is uniformly
bounded. In particular, so is any family of (g,K)-modules with bounded lengths.

Proof. The second assertion follows from the first one because the length of (g,K)-
module V is bounded by |K/K0| · Leng(V ) by Lemma 2.4.

Take a coveringK ′ ofK0 such that [K ′/UK′ ,K ′/UK′ ] is simply-connected, where
UK′ is the unipotent radical of K ′. Then we have a homomorphism K ′ → K →
Aut(g) and K ′ has finitely many orbits in G/B.

Let V be an irreducible (g, k)-module. We want to realize V as Γ(V) for some
irreducible D-module V on G/B. Since the k-action is locally finite, we can take a
finite-dimensional irreducible k-submodule F ⊂ V . Take a character μ of k such that
the k-action on F⊗Cμ lifts to a K ′-action. Since V is irreducible, the multiplication
map U(g)⊗F → V is surjective. Hence the k-action on V ⊗Cμ lifts to a K ′-action.

Let λ be a character of t such that λ−ρ is anti-dominant and λ−ρ is the infinites-
imal character of V . We can take an irreducible subquotient V of DG/B,λ ⊗U(g) V
such that Γ(V) 
 V (see Corollary 7.2(i)). By construction, V is an irreducible
twisted (DG/B,λ,K

′)-module with twist μ.
Since K ′ has finitely many orbits in G/B, the proposition follows from Corollary

5.16. �

7.2. Induction of uniformly bounded family. In this subsection, we will show
uniform boundedness of some family of g-modules.

Let G be a connected reductive algebraic group and B a Borel subgroup of G
with unipotent radical U . Put T := B/U . We denote by Iχ the minimal primitive
ideal of U(g) with infinitesimal character χ. Let WG be the Weyl group of G.

Proposition 7.11. The family (U(g)/Iχ)χ∈t∗/WG
of (g⊕g,Δ(G))-modules is uni-

formly bounded.
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Proof. U(g)/Iχ is isomorphic to Γ((DG/B,λ+ρ � DG/B,λ′+ρ) ⊗U(Δ(g)) C), where λ
(resp. λ′) is an anti-dominant weight in χ (resp. −χ). Since Δ(G) has finitely many
orbits in G/B ×G/B, the assertion follows from Corollary 5.21.

�
Remark 7.12. The structure of the (g ⊕ g,Δ(G))-modules can be reduced to that
of Verma modules (see [7, Section 6]). Proposition 7.11 can be deduced from this
and Soergel’s theorem [43, Theorem 11] (see also Remark 7.14).

Proposition 7.13. Let P be a parabolic subgroup of G containing B with unipo-
tent radical UP , and (Mi)i∈I a uniformly bounded family of p/uP -modules. Then
(U(g)⊗U(p) Mi)i∈I is a uniformly bounded family of g-modules. In particular, the
length of any Verma module is bounded by a constant independent of its highest
weight.

Proof. As we have mentioned in Strategy in the previous subsection, we can assume
that each Mi is irreducible and hence has an infinitesimal character. Since P is
parabolic, each g-module U(g)⊗U(p)Mi has an infinitesimal character χi. Then we
have

U(g)⊗U(p) Mi 
 (U(g)/Iχi
⊗Mi)⊗U(p) C.

(U(g)/Iχi
⊗ Mi)i∈I is a uniformly bounded family of (g⊕ g⊕ p/uP )-modules by

Propositions 7.11 and 7.6(iv). Since P has finitely many orbits in G/B×P/B, the
assertion follows from Proposition 7.8. �
Remark 7.14. The second assertion is an easy consequence of Soergel’s theorem
[43, Theorem 11]. In fact, the categorical structure of each block of the BGG
category O depends only on a pair of a Coxeter system and a subgroup of WG

determined by the block, and the number of such pairs is finite.

We consider cohomologically induced modules. Let (g,K) be a pair and p a
parabolic subalgebra of g. Take a Levi subalgebra l of p and a reductive subgroup
KL of K whose Lie algebra is contained in l∩ k. Assume that KL normalizes p and
l. We consider l-modules as p-modules through the natural surjection p → l.

Theorem 7.15. Let (Vi)i∈I be a uniformly bounded family of (l,KL)-modules, e.g.
a family of irreducible Harish-Chandra modules. (See Proposition 7.10.) Then
(DjΓK

KL
(U(g)⊗U(p) Vi))j∈Z,i∈I is a uniformly bounded family of (g,K)-modules. In

particular, there exists some constant C such that for any i ∈ I and j ∈ Z, we have

Leng,K(DjΓK
KL

(U(g)⊗U(p) Vi)) ≤ C.

Proof. The assertion follows from Propositions 7.13 and 7.7(i). �
It is well-known that a (g,K)-module cohomologically induced from an irre-

ducible module of a parabolic subpair is of finite length (see e.g. [32, Theorem
0.46]). In addition to this fact, we have shown that the lengths of such modules are
bounded.

Corollary 7.16 is a special case of Theorem 7.15 because the underlying Harish-
Chandra module of any principal series representation can be realized as a coho-
mologically induced module. See [32, Propositions 11.57 and 11.65].

Corollary 7.16. Let GR be a real reductive Lie group. Then there exists a constant
C such that the length of any principal series representation of GR is bounded by
C.
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Remark 7.17. Corollary 7.16 has been proved in [35, Proposition 4.1] by using the
theory of minimal K-types and the translation principle.

7.3. UgG′
-modules. For applications to the branching problem and harmonic anal-

ysis, we shall summarize several consequences of the results so far about uniformly
bounded families.

Let G be a reductive algebraic group and G′ a reductive subgroup of G.

Theorem 7.18. Let (Vi)i∈I and (V ′
i )i∈I be uniformly bounded families of g-modules

and g′-modules, respectively. Then there exists some constant C such that for any
i ∈ I and j ∈ N, we have

LenU(g)G′ (Tor
U(g′)
j (Vi, V

′
i )) ≤ C.

Proof. By Proposition 7.7(ii) for K = Δ(G′) and M = {e}, there is a constant C
such that for any i ∈ I and j ∈ N,

LenU(g)G′ (Hj(g′;Vi ⊗ V ′
i )) ≤ C.

Here we replaced U(g⊕ g′)Δ(G′) with U(g)G′
using the isomorphism

U(g⊕ g
′)/U(g⊕ g

′)Δ(g′) 
 U(g)
(see also the proof of Corollary 6.4). Put n = dimC(g

′). By the Poincaré duality
(Fact 2.7), we have

Hj(g′;Vi ⊗ V ′
i ) 
 Hn−j(g

′;Vi ⊗ V ′
i ) 
 Tor

U(g′)
n−j (Vi, V

′
i ).

Since these isomorphisms are natural in Vi and V ′
i , the isomorphisms are U(g)G′

-
homomorphisms. We have shown the theorem. �

Corollary 7.19. Let b′ be a Borel subalgebra of g′ and (Vi)i∈I a uniformly bounded
family of g-modules. Then there exists some constant C such that for any character
λ of b′, j ∈ Z and i ∈ I, we have

LenU(g)G′ (Tor
U(b′)
j (Vi,Cλ)) ≤ C.

Moreover, the constant C can be chosen independently of b′.

Proof. Since U(g′) is a free right U(b′)-module, there is a natural isomorphism

Tor
U(b′)
j (Vi,Cλ) 
 Tor

U(g′)
j (Vi,U(g′)⊗U(b′) Cλ)

of U(g)G′
-modules. The family (U(g′)⊗U(b′)Cλ)λ,b′ is uniformly bounded by Propo-

sition 7.13 and Proposition 7.6(iii). Hence the corollary follows from Theorem
7.18. �

Corollary 7.20. Let (Vi)i∈I be a uniformly bounded family of g-modules. There
exists some constant C such that for any maximal ideal I of Z(g′), i ∈ I and j ∈ Z,
we have

LenU(g)G′⊗U(g′)(Tor
Z(g′)
j (Z(g′)/I, Vi)) ≤ C.

Proof. Since U(g′) is a free Z(g′)-module, we have a natural isomorphism

Tor
Z(g′)
j (Z(g′)/I, Vi) 
 Tor

U(g′)
j (U(g′)/IU(g′), Vi).

Hence the corollary follows from Proposition 7.11 and Theorem 7.18. �
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Retain the notation G and G′ as above. Let (g,K) and (g′,K ′) be pairs (see
Definition 2.5).

Corollary 7.21. Assume that K and K ′ have finitely many orbits in the flag
varieties of g and g′, respectively. Then there exists some constant C such that for
any i ∈ N, irreducible (g′,K ′)-module V ′ and irreducible (g,K)-module V , we have

LenU(g)G′ (Tor
U(g′)
i (V, V ′)) ≤ C.

Proof. By Proposition 7.10, any family of irreducible (g,K)-modules or irreducible
(g′,K ′)-modules is uniformly bounded. Hence the assertion follows from Theorem
7.18. �
7.4. Euler–Poincaré characteristic. We shall define the Euler–Poincaré charac-
teristic in the setting of the branching problem and harmonic analysis. Retain the
notation G, G′, K and K ′ in the previous subsection. Assume that K ′ is reductive
and contained in K, and Adg(K

′) is contained in Adg(G
′).

Theorem 7.22. Let (Vi)i∈I (resp. (V ′
i )i∈I) be a uniformly bounded family of

(g,K)-modules (resp. (g′,K ′)-modules). Then there exists some constant C such
that for any i ∈ I and j ∈ N, we have

LenU(g)G′ (Hj(g
′,K ′;Vi ⊗ V ′

i )) ≤ C.

In particular, the Euler–Poincaré characteristic

EP(Vi, V
′
i ) :=

∑
i

(−1)iHi(g
′,K ′;Vi ⊗ V ′

i )

is well-defined as an element of the Grothendieck group of the category of U(g)G′
-

modules of finite length.

Proof. Almost all of the proof is the same as that of Theorem 7.18. We note the
difference. In this setting, the Poincaré duality (Fact 2.7) is written as

Hn−j(g′,K ′;Vi ⊗ V ′
i ⊗ ∧n(g′/k′)) 
 Hj(g

′,K ′;Vi ⊗ V ′
i ),

where n = dimC(g
′/k′) and the g′-action on ∧n(g′/k′) is trivial. Hence the twisting

by ∧n(g′/k′) does not affect the action of U(g)G′
. Therefore we have proved the

theorem by Proposition 7.7(ii). �
Remark 7.23. It is clear that for the well-definedness of the Euler–Poincaré charac-
teristic, we do not need the notion of uniformly bounded families. In fact, we need
only holonomicity of modules.

Remark 7.24. Hi(g
′,K ′;V ⊗V ′)∗ is isomorphic to Extig′,K′(V, (V ′)∗K′) as a U(g)G′

-

module (see [32, Corollary 3.2]). If Extig′,K′(V, (V ′)∗K′) is not finite dimensional,

the U(g)G′
-module does not have finite length because it is uncountably infinite

dimensional.

If all Hi(g
′,K ′;V ⊗ V ′) are finite dimensional, we can define the (Z-valued)

Euler–Poincaré characteristic

dimC EP(V, V ′) :=
∑
i

(−1)i dimC(Hi(g
′,K ′;V ⊗ V ′)).(7.4.1)

The characteristic for p-adic groups is studied in [42], [3] and [14]. Remark that
EP(V, V ′) in the papers corresponds to dimC EP(V, (V ′)∗K′) in our notation. We
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give sufficient conditions for the well-definedness of the Z-valued characteristic in
the sequels [29, Corollary 7.17].

7.5. Theta lifting. We apply Theorem 7.22 to the theory of the Howe duality (see
[22, 23]).

Let GR be a double cover of Sp(n,R). Let (HR, H
′
R
) be a reductive dual pair

of GR, i.e. HR = CGR
(H ′

R
) and H ′

R
= CGR

(HR) holds. Here CGR
(·) denotes the

centralizer in GR. We write gR, hR and h′
R
for the Lie algebras of GR, HR and H ′

R
,

respectively.
Fix a Cartan involution θ of GR which stabilizes HR and H ′

R
, and put KR :=

Gθ
R
,KH,R := Hθ

R
and KH′,R := (H ′

R
)θ. Then we have pairs (g,K), (h,KH) and

(h′,KH′), which are the complexifications of (gR,KR), (hR,KH,R) and (h′
R
,KH′,R),

respectively. We write (ω, V ) for the underlying Harish-Chandra module of the
Segal–Shale–Weil representation of GR. Then, by the classical invariant theory, we
have ω(U(g))H = ω(U(h′)). Here H is the centralizer in Sp(n,C) of the image of
H ′

R
by the covering map GR → Sp(n,R).

For an irreducible (h,KH)-module V ′, we set

Θi(V
′) := Hi(h,KH ;V ⊗ V ′∨),

where V ′∨ is the space of allKH -finite vectors in (V ′)∗. Then Θi(V
′) is an (h′,KH′)-

module. Let R(h,KH , ω) be the set of equivalence classes of irreducible (h,KH)-
modules such that Θ0(V

′) �= 0.

Fact 7.25 (R. Howe [23, Theorem 2.1]). For any V ′ ∈ R(h,KH , ω), Θ0(V
′) is

of finite length and has a unique irreducible quotient θ(V ′). The correspondence
R(h,KH , ω) � V ′ �→ θ(V ′) ∈ R(h′,KH′ , ω) is bijective.

For any i ∈ N, Θi(V
′) is of finite length by ω(U(g))H = ω(U(h′)) and Theorem

7.22. More precisely, Theorem 7.26 holds.

Theorem 7.26. Let V ′ be an irreducible (h,KH)-module. Then there exists some
constant C independent of V ′ such that

Lenh′,KH′ (Θi(V
′)) ≤ C

for any i ∈ N. In particular, as an element of the Grothendieck group of the category
of (h′,KH′)-modules of finite length, the Euler–Poincaré characteristic

EP(V, V ′∨) =
∑
i

(−1)iΘi(V
′)

is well-defined.

The well-definedness of the Euler–Poincaré characteristic of the theta lifting for
p-adic groups is proved and studied in [1, Proposition 1.1].

7.6. Uniformly bounded family in branching problem. Let G be a connected
reductive algebraic group and G′ a connected reductive subgroup of G. Using the
restriction of modules, we shall construct a uniformly bounded family of g′-modules
from one of g-modules. We consider the embedding ι : G′ → G′ × G′ × G defined
by ι(g) = (e, g, g).
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Lemma 7.27. Let V be a g-module and V ′ an irreducible g′-module, and set
I := AnnZ(g′)(V

′). If 0 < dimC Homg′(V, V ′) < ∞, then there exists an irre-
ducible (g′ ⊕ g,Δ(G′))-module W such that V ′ �W is isomorphic to a subquotient

of DnΓ
ι(G′)
{e} (U(g′)/I ⊗ V ), where n := dimC(G

′).

Proof. Take a basis {ϕi} of Homg′(V/IV, V ′)(
 Homg′(V, V ′)) and its dual basis
{λi} of Homg′(V/IV, V ′)∗. Since Homg′(V/IV, V ′) is finite dimensional, we obtain

a U(g′)⊗ U(g)G′
-module homomorphism

V/IV → V ′ � Homg′(V/IV, V ′)∗

given by v �→
∑

i ϕi(v) ⊗ λi. Hence the U(g′) ⊗ U(g)G′
-module V/IV has an

irreducible quotient of the form V ′ � W0 for an irreducible U(g)G′
-module W0.

By Fact 2.7 and Lemma 6.3, we have

DnΓ
ι(G′)
{e} (U(g′)/I ⊗ V )ι(G

′) 
 U(g′)/I ⊗U(g′) V


 V/IV

as U(g′)⊗ U(g)G′
-modules. Hence V ′ � W0 is isomorphic to a quotient of

DnΓ
ι(G′)
{e} (U(g′)/I ⊗ V )ι(G

′).

This implies that we can take an irreducible subquotientX of DnΓ
ι(G′)
{e} (U(g′)/I⊗V )

such thatXι(G′) 
 V ′�W0 (see e.g. [48, Proposition 3.5.4]). SinceX = U(g)Xι(G′),
the g′-module X|g′ is a direct sum of some copies of V ′. Hence X is naturally
isomorphic to V ′ �Homg′(V ′, X) and the natural (g′ ⊕ g)-action on Homg′(V ′, X)
is irreducible. We have shown the lemma. �

Theorem 7.28. Let (Vi)i∈I be a uniformly bounded family of g-modules and (V ′
i )i∈I

a family of irreducible g′-modules. If 0 < dimC(Homg′(Vi, V
′
i )) < ∞ for any i ∈ I,

then (V ′
i )i∈I is uniformly bounded.

Proof. Set Ii := AnnZ(g′)(V
′
i ). Then (U(g′)/Ii⊗Vi)i∈I is a uniformly bounded fam-

ily of (g′ ⊕ g′ ⊕ g)-modules by Proposition 7.11. By Proposition 7.7(i),

(DnΓ
ι(G′)
{e} (U(g′)/Ii ⊗ Vi))i∈I is a uniformly bounded family of (g′ ⊕ g′ ⊕ g, ι(G′))-

modules. Here we set n := dimC(G
′).

By Lemma 7.27, for each i ∈ I, we can take an irreducible (g′ ⊕ g,Δ(G′))-module

Wi such that V ′
i � Wi is a subquotient of DnΓ

ι(G′)
{e} (U(g′)/Ii ⊗ Vi). This implies

that (V ′
i �Wi)i∈I is a uniformly bounded family of (g′ ⊕ g′ ⊕ g, ι(G′))-modules. By

Proposition 7.6(iv), the family (V ′
i )i∈I is uniformly bounded. �

7.7. Tensoring with finite-dimensional modules. Let G be a connected reduc-
tive algebraic group. We shall show that the uniform boundedness is preserved by
tensoring with finite-dimensional modules. In particular, the uniform boundedness
is preserved by the translation functors.

Lemma 7.29. Let V be an irreducible g-module. Fix a maximal torus T of G.
Consider U(g)/AnnU(g)(V ) as a G-module by the adjoint action. Then for any
irreducible G-module F , we have

dimC(HomG(F,U(g)/AnnU(g)(V ))) ≤ dimC(HomG(F,O(G/T ))) = dimC(F
T ).
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Proof. Let F be an irreducible G-module and χ the infinitesimal character of V .
Then AnnU(g)(V ) contains the minimal primitive ideal Iχ with the infinitesimal
character χ. Hence it is enough to show

dimC(HomG(F,U(g)/Iχ)) = dimC(HomG(F,O(G/T ))).

This is shown in [32, Theorem 7.194]. Note that R(λ) in the theorem is U(g)/Iχ
in our notation. �
Lemma 7.30. Let (Vi)i∈I be a uniformly bounded family of g-modules and F a
finite-dimensional g-module. Then there exists a constant C > 0 independent of F
such that

Leng(Vi ⊗ F ) ≤ C · dimC(F )2

for any i ∈ I.

Proof. Clearly, we can assume that F is completely reducible. Since the lengths of
all Vi are bounded by a constant independent of i ∈ I, we can also assume that all
Vi are irreducible. Set n := dimC(F ).

Fix i ∈ I. By Kostant’s theorem [32, Theorem 7.133], Vi ⊗ F is a direct sum of
finitely many submodules W1,W2, . . . ,Wm with generalized infinitesimal characters

χ1, χ2, . . . , χm, respectively. More precisely, we have m ≤ n and I|Wg|
j Wj = 0 for

any 1 ≤ j ≤ m, where Ij is the maximal ideal of Z(g) corresponding to χj and Wg

is the Weyl group of g. There is a g-module surjection

Ik
j ⊗ (Wj/IjWj) � Ik

j Wj/Ik+1
j Wj

for any k ∈ N, and Ik
j is generated by rk elements as a Z(g)-module. Here r is the

rank of g. Hence we have

Leng(Vi ⊗ F ) =
∑
j

Leng(Wj)(7.7.1)

≤ C ′ ·
∑
j

Leng(Wj/IjWj)(7.7.2)

= C ′ ·
∑
j

Leng((Vi ⊗ F )/Ij(Vi ⊗ F )),(7.7.3)

where C ′ is a constant depending only on |Wg| and r.
We shall estimate Leng((Vi ⊗ F )/Ij(Vi ⊗ F )). By Corollary 7.20, there exists a

constant C ′′ depending only on the family (Vi)i∈I such that

LenU(g)⊗U(g⊕g)Δ(G)((Vi ⊗ F )/Ij(Vi ⊗ F )) ≤ C ′′(7.7.4)

for any j. Here the action of U(g⊕ g)Δ(G) on Vi ⊗ F factors through

(U(g)/AnnU(g)(Vi)⊗ EndC(F ))Δ(G).

Take a maximal torus T of G. By Lemma 7.29, we have

dimC((U(g)/AnnU(g)(Vi)⊗ EndC(F ))Δ(G)) ≤ dimC((O(G/T )⊗ EndC(F ))G)

= dimC(EndT (F )) ≤ dimC(F )2.

In particular, the dimension of any irreducible module of (U(g)/AnnU(g)(Vi) ⊗
EndC(F ))Δ(G) is less than or equal to dimC(F ). By (7.7.4), we have

Leng((Vi ⊗ F )/Ij(Vi ⊗ F )) ≤ C ′′ · dimC(F ).
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Combining (7.7.3), we obtain

Leng(Vi ⊗ F ) ≤ C ′C ′′ · dimC(F )2. �

One can prove and refine Lemma 7.30 using twisting of D-modules on the flag
variety of g or the theory of projective functors [7]. For (g,K)-modules, a more
precise estimate is known [34, Proposition 5.4.1 and its proof].

Theorem 7.31. Let (Vi)i∈I be a uniformly bounded family of g-modules and
(Fj)j∈J a family of finite-dimensional g-modules with bounded dimensions. Then
(Vi ⊗ Fj)i∈I,j∈J is a uniformly bounded family of g-modules.

Proof. For i ∈ I and j ∈ J , let Rij be the set of all composition factors of Vi ⊗ Fj .
By Lemma 7.30, the lengths of all Vi ⊗ Fj are bounded by a constant independent
of i ∈ I and j ∈ J . Hence it suffices to show that the family (W )W∈Rij ,i∈I,j∈J is
uniformly bounded.

As we have seen in the proof of Lemma 7.30, any element of Rij is a subquotient
of (Vi ⊗ Fj)/I(Vi ⊗ Fj) for a maximal ideal I of Z(g). By Theorem 7.28, the
family (W )W∈Rij ,i∈I,j∈J is uniformly bounded. Note that although we have proved
Theorem 7.28 for a family of irreducible quotients, the proof also works for a family
of irreducible subquotients if each Vi in the theorem has finite length as a g′-
module. �

7.8. Category of (g, k)-modules. Let G be a connected reductive algebraic group
andK a finite covering of a connected reductive subgroup ofG. Suppose that [K,K]
is simply-connected. We denote by C(g, k) the full subcategory of Mod(g) whose
object is

(i) of finite length,
(ii) locally finite and completely reducible as a k-module, and
(iii) k-admissible, i.e. any k-isotypic component is finite dimensional.

Such a module is called a generalized Harish-Chandra module by I. Penkov and
G. Zuckerman (see e.g. [40]). We write Cχ(g, k) for the full subcategory of C(g, k)
whose object has the infinitesimal character χ.

In this subsection, we study the category Cχ(g, k). It is related to the branch-
ing problem and harmonic analysis because the algebra U(g)k roughly controls
multiplicities and its modules can be obtained from the Δ(K)-invariant part of
(g⊕ k,Δ(K))-modules. See Theorem 7.18.

Theorem 7.32. Let I (resp. J ) be a maximal ideal of Z(g) (resp. Z(k)). A :=
U(g)K/(I + J )U(g)K has finite length as an (A,A)-bimodule. In particular, the
intersection of all two sided ideals of finite codimension in A has finite codimension
in A, which coincides with the intersection of all left ideals of finite codimension in
A.

Proof. We have a (U(g)K ,U(g)K)-bimodule isomorphism

U(g)K/(I + J )U(g)K = (U(g)/(IU(g) + JU(g)))K


 (U(k)/JU(k)⊗U(k) U(g)/IU(g))K .

By Proposition 7.11, (U(g)/IU(g))I and (U(k)/JU(k))J are uniformly bounded
families of (g⊕ g)-modules and (k⊕ k)-modules, respectively. By applying Theorem
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7.18 to U(k)/JU(k)⊗ U(g)/IU(g), there exists some constant C independent of I
and J such that

LenU(g)K⊗U(g)K ((U(k)/JU(k)⊗U(k) U(g)/IU(g))K) ≤ C.

This shows the first assertion.
Let K be the intersection of all two sided ideals of finite codimension in A. A

two sided ideal of A is just an (A,A)-submodule of A. By the first assertion, the
poset of two sided ideals of A satisfies the descending chain condition. Hence K can
be written as an intersection of finitely many two sided ideals of finite codimension
in A. This implies that K has finite codimension in A.

Any left ideal J of A of finite codimension contains the two sided ideal
AnnA(A/J ), which is of finite codimension. Hence K is also the intersection of
all left ideals of finite codimension. �

Remark 7.33. If k does not contain any non-trivial ideal of g, the center of U(g)K
is equal to Z(g)Z(k) 
 Z(g)⊗Z(k) by [33, Theorem 10.1].

Let Iχ be the minimal primitive ideal of U(g) with infinitesimal character χ.

Theorem 7.34. Any family of objects in C(g, k) with bounded lengths is a uniformly
bounded family. In particular, for any irreducible object V ∈ Cχ(g, k), there exist an
anti-dominant λ ∈ χ and some M ∈ Modh(DG/B,λ+ρ) such that V 
 Γ(M). (See
Subsection 7.1 for the notation.)

Remark 7.35. The second assertion has been proved by A. V. Petukhov [41].

Proof. It is enough to show that the family of all irreducible objects in C(g, k)
(modulo isomorphism) is uniformly bounded.

Let V be an irreducible object in C(g, k) with infinitesimal character χ. Then
we can take a character μ of k such that V ⊗Cμ lifts to a K-module (see the proof
of Proposition 7.10). Since V ⊗ Cμ is an irreducible (k/[k, k] ⊕ g,Δ(K))-module,
replacing V by V ⊗ Cμ and (g, k) by (k/[k, k]⊕ g,Δ(K)), we can assume that V is
an irreducible (g,K)-module. See also the proof of Corollary 5.16.

We put W := DnΓK
{e}(U(g)/Iχ), where n = dimC(k) and we take the functor

DnΓK
{e} with respect to the left k-action. Then for any irreducible K-module F , we

have

HomK(F,W ) 
 F ∗ ⊗U(k) U(g)/Iχ
by Fact 6.2. The action of 0⊕ k ⊂ g⊕ g on F ∗ ⊗U(k) U(g)/Iχ is given by the right
multiplication, which is locally finite and lifts canonically to a K-action. W is a
(g⊕ g,K × K)-module since W is isomorphic to the direct sum of the K × K-
modules of the form F ⊗HomK(F,W ).

V ∨ denotes the subspace of all K-finite vectors in V ∗, which is the dual in C(g, k).
It is easy to see that V ∨ is irreducible by the K-admissibility. We shall show that
V � V ∨ is a subquotient of W .

Fix an irreducible K-submodule F of V . Then we have isomorphisms

HomK×K(F � F ∗,W ) 
 F ∗ ⊗U(k) U(g)/Iχ ⊗U(k) F


 (U(g)/Iχ ⊗U(k) EndC(F ))K


 (U(g)/(Iχ + U(g)AnnU(k)(F )))K
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as U(g⊕ g)K×K-modules. Here AnnU(k)(F ) denotes the annihilator of F in U(k).
Since HomK(F, V ) is a finite-dimensional irreducible U(g)K-module (see Fact 7.38),
we have a surjection

(U(g)/(Iχ + U(g)AnnU(k)(F )))K → EndC(HomK(F, V ))

by the Jacobson density theorem. This implies that there is a surjection

HomK×K(F � F ∗,W ) → HomK×K(F � F ∗, V � V ∨)


 EndC(HomK(F, V ))

of U(g⊕ g)K×K-modules. By [48, Proposition 3.5.4], V � V ∨ is isomorphic to a
subquotient of W .

By Propositions 7.11 and 7.7(i), (DnΓK
{e}(U(g)/Iχ))χ is a uniformly bounded

family of (g⊕ g,K ×K)-modules. By Proposition 7.6(i) the family (V � V ∨)V ∈S
is uniformly bounded, where S is the set of all equivalence classes of irreducible K-
admissible (g,K)-modules. From this and Proposition 7.6(iv), the family (V )V ∈S
is uniformly bounded. This shows the theorem. �

In the proof, we have proved Corollary 7.36. For a character μ of k, we denote
by Cχ,μ(g, k) the full subcategory of Cχ(g, k) whose object V satisfies that V ⊗ Cμ

lifts to a K-module.

Corollary 7.36. Let μ be a character of k and χ an infinitesimal character of g.
The number of equivalence classes of irreducible objects in Cχ,μ(g, k) is bounded by
some constant independent of μ and χ.

Remark 7.37. The number of equivalence classes of irreducible objects in Cχ(g, k)
may be infinite. (g, k) = (sl(2,C), so(2,C)) gives an example. See [24, Theorem
1.3.1].

For a (g, k)-module V and an irreducible finite-dimensional k-module F , we
denote by V (F ) the isotypic component with respect to F . Then V (F ) is a
U(k) ⊗ U(g)K-module. It is well-known that the g-module structure on V is re-
lated to the U(k) ⊗ U(g)K-module structure on V (F ). See [48, Lemma 3.5.3] and
[37]. Recall that U(k) and U(g)K are noetherian.

Fact 7.38. Let V be a (g, k)-module and F an irreducible finite-dimensional k-
module. For any submodule W of V (F ), we have (U(g)W )(F ) = W . In particular,
the length of V (F ) is less than or equal to that of V , and V (F ) is finitely generated
if V is finitely generated.

Lemma 7.39. Let F be an irreducible K-module. Then U(g)(F ) with respect to
the adjoint action is finitely generated as a left/right U(g)K-module. In particular,
any finitely generated submodule of the (U(g)K ,U(g)K)-bimodule U(g) is finitely
generated as a left/right U(g)K-module.

Proof. F ∗ ⊗ U(g) is finitely generated left U(g)-module. By [30, Lemma 2.2],
(F ∗ ⊗ U(g))K is finitely generated left U(g)K-module. Since U(g)(F ) is canoni-
cally isomorphic to F ⊗ HomK(F,U(g)) as a U(g)K-module, this shows the first
assertion.

Any finitely generated submodule of the (U(g)K ,U(g)K)-bimodule U(g) is con-
tained in a finite sum of some K-isotypic components. Since U(g)K is noetherian,
the second assertion follows from the first one. �
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Lemma 7.40. Let V be a (g, k)-module and F an irreducible finite-dimensional
k-module. If V (F ) is finite dimensional and generates V , then V is in C(g, k).
Proof. Since the multiplication map U(g)V (F ) → V is surjective, V is completely
reducible as a k-module. We shall show that V is k-admissible and of finite length.

Let F ′ be an irreducible finite-dimensional k-module. We shall show that V (F ′)
is finite dimensional. Since V is finitely generated, V (F ′) is finitely generated as a
U(g)K-module by Fact 7.38. Since V is generated by V (F ), we can take a finite-
dimensional subspace X ⊂ U(g) such that V (F ′) ⊂ U(g)KXV (F ). By Lemma 7.39,
there exists a finite-dimensional subspace X ′ ⊂ U(g) such that U(g)KXU(g)K =
X ′U(g)K . Then we have

V (F ′) ⊂ U(g)KXV (F ) = X ′U(g)KV (F ) = X ′V (F ),

and hence V (F ′) is finite dimensional. Therefore V is k-admissible.
We shall show that V is of finite length. Since V is generated by V (F ), AnnZ(g)(V )

is of finite codimension in Z(g). Hence V is a finite direct sum of g-submodules
with generalized infinitesimal characters. We can assume that V has a generalized
infinitesimal character χ.

Since V is generated by V (F ), there is a character μ of k such that V ⊗Cμ lifts to
a K-module. Then any irreducible subquotient of V is in Cχ,μ(g, k). By Corollary
7.36, the number of equivalence classes of irreducible objects in Cχ,μ(g, k) is finite.
Since V is k-admissible and noetherian, this shows that V is of finite length. �

Suppose that 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr = V is the socle filtration of
V ∈ C(g, k), that is, each Vi/Vi−1 is the sum of all irreducible submodules in V/Vi−1.
The length r is called the Loewy length of V .

Theorem 7.41. The Loewy length of any object in Cχ(g, k) is bounded by some
constant independent of the object and the infinitesimal character χ.

Proof. We construct projective objects in Cχ(g, k) using U(g) ⊗U(k) F , which is a
projective object in the category of all (g, k)-modules whose k-actions are completely
reducible.

Let F be an irreducible finite-dimensional k-module and χ an infinitesimal char-
acter of g. Put

P̃F,χ := U(g)/Iχ ⊗U(k) F.

Then there are canonical isomorphisms

Homk(F, P̃F,χ) 
 (U(g)/(Iχ + U(g)AnnU(k)(F )))K


 U(g)K/(Iχ + U(g)AnnU(k)(F ))K

of U(g)K-modules. Let J be the intersection of all U(g)K-submodules of finite

codimension in Homk(F, P̃F,χ). By Theorem 7.32, J has finite codimension in

Homk(F, P̃F,χ).
There is a canonical isomorphism

F ⊗Homk(F, P̃F,χ)
	−→ P̃F,χ(F )

of U(k)⊗U(g)K-modules. We consider F ⊗J as a subspace of P̃F,χ by the isomor-

phism. Put J̃ := U(g) · (F ⊗ J ) and

PF,χ := P̃F,χ/J̃.
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Since J̃(F ) = F ⊗ J by Fact 7.38, we have

PF,χ(F ) 
 F ⊗ (Homk(F, P̃F,χ)/J ).

Hence PF,χ is generated by the finite-dimensional subspace PF,χ(F ). By Lemma
7.40, PF,χ is an object in Cχ(g, k).

We shall show that PF,χ is projective in Cχ(g, k). Let V ∈ Cχ(g, k) and f : P̃F,χ →
V be a g-homomorphism. Then we have the U(g)K-homomorphism

Homk(F, P̃F,χ)
f∗

−→ Homk(F, V ).

The U(g)K-module Homk(F, V ) is finite-dimensional. By the definition of J , we

have f∗(J ) = 0 and hence f(J̃) = 0. This implies

Homg(PF,χ, V ) 
 Homg(P̃F,χ, V )


 Homg(U(g)⊗U(k) F, V )


 Homk(F, V ).

Since all objects in Cχ(g, k) are completely reducible as k-modules, the functor
Homk(F, ·) is exact on Cχ(g, k). Therefore PF,χ is projective in Cχ(g, k).

Any object in Cχ(g, k) is isomorphic to a quotient of a finite direct sum of pro-
jective objects of the form PF,χ. It is enough to bound the Loewy length of PF,χ.
By Proposition 7.11 and Theorem 7.18, there is a constant C independent of χ and
F such that

LenU(g)⊗U(g)K (PF,χ) ≤ LenU(g)⊗U(g)K (U(g)/Iχ ⊗U(k) F ) ≤ C.

By Lemma 7.42, the Loewy length of PF,χ as a g-module is bounded by C. �

Lemma 7.42. Let A be a C-algebra and V an irreducible U(g)⊗A-module. If V
is in C(g, k) as a g-module, then V is completely reducible as a g-module.

Proof. Since V has finite length as a g-module, V has an irreducible g-submodule
W . Since V is irreducible as a U(g)⊗A-module, we have V = A ·W . This implies
that V is a sum of some copies of W , and hence V is completely reducible as a
g-module. �

In the proof of Theorem 7.41, we have proved Proposition 7.43.

Proposition 7.43. Cχ(g, k) has enough projectives.
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Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 1–22, DOI 10.1007/978-3-319-59728-
7 1. MR3753906

[2] Avraham Aizenbud, Dmitry Gourevitch, and Andrei Minchenko, Holonomicity of relative
characters and applications to multiplicity bounds for spherical pairs, Selecta Math. (N.S.)
22 (2016), no. 4, 2325–2345, DOI 10.1007/s00029-016-0276-4. MR3573960

https://www.ams.org/mathscinet-getitem?mr=3753906
https://www.ams.org/mathscinet-getitem?mr=3573960


FAMILY OF MODULES WITH A BOUNDEDNESS PROPERTY 353

[3] Avraham Aizenbud and Eitan Sayag, Homological multiplicities in representation theory
of p-adic groups, Math. Z. 294 (2020), no. 1-2, 451–469, DOI 10.1007/s00209-019-02262-4.
MR4054816
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phic forms, Progr. Math., vol. 255, Birkhäuser Boston, Boston, MA, 2008, pp. 45–109, DOI
10.1007/978-0-8176-4646-2 3. MR2369496

[35] Toshiyuki Kobayashi and Toshio Oshima, Finite multiplicity theorems for induction and
restriction, Adv. Math. 248 (2013), 921–944, DOI 10.1016/j.aim.2013.07.015. MR3107532

[36] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress
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