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ON CATEGORIES O OF QUIVER VARIETIES OVERLYING THE
BOUQUET GRAPHS

BORIS TSVELIKHOVSKIY

Abstract. We study representation theory of quantizations of Nakajima quiver
varieties associated to bouquet quivers. We show that there are no finite di-
mensional representations of the quantizations Aλ(n, �) if both dimV = n and
the number of loops � are greater than 1. We show that when n ≤ 3 there
is a Hamiltonian torus action with finitely many fixed points, provide the di-
mensions of Hom-spaces between standard objects in category O and compute
the multiplicities of simples in standards for n = 2 in case of one-dimensional
framing and generic one-parameter subgroups. We establish the abelian local-
ization theorem and find the values of parameters, for which the quantizations
have infinite homological dimension.
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1. Introduction

Our primary goal is to study category O of quantizations of the Nakajima quiver
variety with underlying quiver Q = B�, which has one vertex, � loops, where � ∈ Z≥0
and a one-dimensional framing. The notion of category O in the context of conical
symplectic resolutions was introduced in [8]. In particular in [20] the author studies
the properties of category O for the Gieseker varieties. These are the framed moduli
spaces of torsion free sheaves on P2 with rank r and second Chern class n. They
admit a description as quiver varieties for the quiver with one vertex, one loop, n-
dimensional space assigned to the vertex and an r-dimensional framing (see Chapter
2 of [27] for details). The results and methods of [20] provide invaluable tools for
our research. We start by recalling the setup.
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1.1. Generalities on category O for conical symplectic resolutions. We fix
the base field to be C. Recall that an affine variety Y is Poisson provided it comes
equipped with an algebraic Poisson bracket, i.e. a bilinear map

{·, ·} : Λ2C[Y ] → C[Y ],

s.t. for any f, g, h ∈ C[Y ]
• {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0, the Jacobi identity;
• {fg, h} = g{f, h} + h{g, f}, the Leibnitz rule.

Let X0 be a normal Poisson affine variety equipped with an action of the multi-
plicative group S := C∗, s.t. the Poisson bracket has a negative degree with respect
to this action, i.e.

{C[X0]i,C[X0]j} ⊆ C[X0]i+j−d with d ∈ Z>0.

We assume that C[X0] =
⊕
i≥0

C[X0]i with C[X0]0 = C w.r.t. the grading coming

from the S-action (this action will be called the contracting action). Geometrically
this means that there is a unique fixed point o ∈ X0 and the entire variety is
contracted to this point by the S-action. Let (X,ω) be a symplectic variety and
ρ : X → X0 a projective resolution of singularities, which is also a morphism of
Poisson varieties. In addition, assume that the action of S admits a ρ-equivariant
lift to X. A pair (X, ρ) as above is called a conical symplectic resolution.

Definition 1.1. Let (X, ρ) be a conical symplectic resolution. A quantization of
the affine variety X0 is a filtered algebra A together with an isomorphism grA ∼−→
C[X0] of graded Poisson algebras (Poisson bracket grA is given in Remark 1.3). By
a quantization of X we understand a sheaf (in the conical topology, i.e. open spaces
are Zariski open and S-stable) of filtered algebras Ã (the filtration is complete and
separated) together with an isomorphism grÃ ∼−→ OX of sheaves of graded Poisson
algebras.

Remark 1.2. There are sufficiently many S-stable open affine subsets. Namely, due
to a result of Sumihiro every point x of X has an open affine neighborhood in the
conical topology (see Section 3, Corollary 2 in [31]).

Remark 1.3. We would like to point out that the algebra A := grA has a natural
Poisson bracket. Let a ∈ Ai and b ∈ Aj with ã ∈ A≤i and b̃ ∈ A≤j any lifts, then
the Poisson bracket is given by

{a, b} := [ã, b̃] + Ai+j−d−1,

where d ∈ Z≥0 is the maximal positive integer, s.t. [a′, b′] ∈ Ai+j−d−1 for any
a′ ∈ Ai, b

′ ∈ Aj , called the degree (notice that [ã, b̃] ∈ Ai+j−1 since the algebra A
is isomorphic to C[X0] and hence commutative). It is this bracket that we want to
match the original bracket on C[X0] in Definition 1.1.

Remark 1.4. There is a map from the set of quantizations of X to the second
de Rham cohomology H2

DR(X). This map is called the period map and is an
isomorphism provided Hi(X,OX) = 0 for all i > 0 (see [4]). If this is the case, the
quantizations Ã are parameterized (up to isomorphism) by the points of H2

DR(X).
The quantization corresponding to the cohomology class λ will be denoted by Ãλ.
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Suppose that X is equipped with a Hamiltonian action of a torus T with finitely
many fixed points, i.e. |XT | < ∞. Assume, in addition, that the action of T
commutes with the contracting action of S. A one-parametric subgroup ν : C∗ → T
is called generic if XT = Xν(C∗). To a generic one-parametric subgroup ν : C∗ → T
one can associate a category of modules over the algebra A defined above, called
category Oν(A). Namely, the action of ν lifts to A and induces a grading on it, i.e.
A =

⊕
i∈Z

Ai,ν . We denote

A≥0,ν =
⊕
i≥0

Ai,ν ,A≤0,ν =
⊕
i≤0

Ai,ν (similarly define A<0,ν ,A>0,ν) and(1)

Cν(A) := A≥0,ν/
(
A≥0,ν ∩AA>0,ν) = A0/

⊕
i>0

A−iAi.(2)

Let A -mod be the category of finitely generated A-modules.

Definition 1.5. The category Oν(A) is the full subcategory of A -mod, on which
A≥0,ν acts locally finitely.

Recall that if R is a commutative Noetherian ring and X = SpecR, then one
has an equivalence of abelian categories:

(3) R -mod
Loc
�
Γ

Coh(X),

where Γ and Loc are the functor of global sections and localization respectively (see
Chapter II, Corollary 5.5 in [16] for details).

Definition 1.6. An Ãλ-module M is called coherent provided there is a global
complete and separated filtration on M , s.t. gr(M) is a coherent OX -module. The
category of coherent Ãλ-modules will be denoted by Coh(Ãλ) (or simply Ãλ -mod).

The noncommutative analogue of equivalence (3) is

(4) Aλ -mod
Locλ
�
Γλ

Coh(Ãλ),

here Aλ := Γ(X, Ãλ) (notice that Aλ is a quantization of X0 provided Ãλ is a
quantization of X). The equivalence (4) has a weaker (derived form):

(5) Db(Aλ -mod)
LLocλ
�

RΓλ

Db(Coh(Ãλ)).

Definition 1.7. If the functors Γλ and Locλ are mutually inverse equivalences, we
say that abelian localization holds for λ and if RΓλ and LLocλ are quasi-inverse
equivalences (between the bounded derived categories) that derived localization
holds.

Example 1.8. Let g be a simple Lie algebra with Borel subalgebra b and Cartan
subalgebra h. In order to fit the classical BGG category O in this framework,
one needs to consider the Springer resolution X = T ∗(G/B) → N = X0 of the
nilpotent cone N ⊂ g∗. Recall that an element x ∈ g is called nilpotent if the
operator ad∗x : g∗ → g∗ is nilpotent and N is the set of all nilpotent elements of g∗.
The nilcone N is a Poisson variety w.r.t. the Kirillov-Kostant-Souriau bracket and
the symplectic leaves in N are the coadjoint orbits. The tori are the maximal torus
T ⊂ GL(V ) and S := C∗ acting by inverse scaling. Let μ : Z(g) → C be a central
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character, then the block Oμ ⊂ O consists of finitely generated U(g)-modules for
which U(b) acts locally finitely, U(h) semisimply and the center with generalized
character μ. Pick a generic one-parameter subgroup ν(C∗) ⊂ T , s.t. b is spanned
by elements with positive ν(C∗)-weights. Let U(g)μ := U(g)/Iμ with Iμ the ideal
generated by z − μ(z) for z ∈ Z(g) be the central reduction of U(g) w.r.t. the
central character μ.

We want to show that U(g)μ is a quantization of the nilcone N . One can
explicitly describe the Poisson bracket on C[N ] descending from U(g)μ (as explained
in Remark 1.3). Recall that according to the PBW theorem gr(U(g)) is isomorphic
to S(g) = C[g∗]. Moreover, Harish Chandra theorem asserts that Z(g) is isomorphic
to S(h)W = C[h∗]W . Here W is the Weyl group acting on h∗ via w ·μ = w(μ+ρ)−ρ,
where ρ is half the sum of all positive roots. Combining these results allows to show
the isomorphism of algebras gr(U(g))μ � C[N ]. Let x1, . . . , xn be a basis of g and

ckij ∈ C the structure constants given by [xi, xj ] =
n∑

k=1
ckijxk. The Poisson bracket

on N ⊂ g∗ becomes the restriction of the bracket on g∗ given by

{f, g} =
n∑

k=1

ckijxk
∂f

∂xi

∂g

∂xj
, for f, g ∈ C[g∗]

which can be more conveniently rewritten as

{f, g}(ξ) = 〈ξ, [dξf, dξg]〉,
where ξ ∈ g∗, dξf ∈ g∗∗ � g stands for the differential of f at ξ and [, ] denotes
the Lie bracket on g (see Proposition 1.3.18 in [10] for details). This is exactly the
Kirillov-Kostant-Souriau bracket on the nilcone N .

Next we want to compare the categories Oν(U(g)μ) and Oμ. The difference
in the requirements for an object M ∈ U(g)μ -mod to be in Oν(U(g)μ) or Oμ is
that for the former containment Z(g) must act on M with an honest character μ,
while for the latter the action of U(h) on M has to be semisimple. In case μ is
dominant regular (〈μ + ρ, α∨〉 �∈ Z≤0 for all positive roots α) these conditions are
interchangeable, i.e. one gets an equivalent category by dropping one condition and
adding the other (see Theorem 1 in [30]), and, hence, the categories Oν(U(g)μ) and
Oμ are equivalent.

Finally, let Dμ(G/B) stand for the category of μ-twisted D-modules on the flag
variety G/B. Then one has an equivalence

U(g)μ -mod
Loc
�
Γ

Dμ(G/B) -mod

for dominant regular μ (with 〈μ+ ρ, α∨〉 �∈ Z≤0 for all positive roots α), this is the
Beilinson-Bernstein theorem, see [1], while

Db(U(g)μ -mod)
LLoc
�
RΓ

Db(Dμ(G/B) -mod)

is an equivalence provided 〈μ + ρ, α∨〉 �= 0, see [2].

Remark 1.9. More generally, there are two functors between the categories Aλ -mod
and Ãλ -mod and the corresponding derived categories:

Aλ -mod
Locλ
�
Γλ

Ãλ -mod,
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Db(Aλ -mod)
LLocλ
�

RΓλ

Db(Ãλ -mod).

Definition 1.10. If the functors Locλ,Γλ (LLocλ,RΓλ) are mutually inverse equiv-
alences, we say that abelian (derived) localization holds for the pair (λ, Ãλ).

1.2. Questionnaire on quantizations. Let ρ : X → X0 be a conical symplectic
resolution. Assume that X admits a Hamiltonian torus action with finitely many
fixed points and the nonzero cohomology of the structure sheaf of X vanishes. We
list some typical questions that can be asked about quantizations and categories of
modules thereof.

(1) For which λ does Aλ have finite homological dimension?
(2) What is the classification of finite dimensional irreducible modules?
(3) What are the supports of these modules?
(4) What are the two-sided ideals of Aλ?
(5) For which λ ∈ H2

DR(X) do the abelian/derived localizations hold?
(6) What are the composition series of standard modules in category O?

Remark 1.11. According to a result of McGerty and Nevins (see [23, Theorem 1.1])
the ‘derived equivalence locus’ appearing in (5) is the same as the locus, providing
affirmative answer in (1).

1.3. Main results and structure of the paper. The present paper is devoted
to study of quantizations of Nakajima quiver varieties overlying the bouquet graph
(one vertex and finitely many loop edges) and categories O thereof. Let Mθ(n, �)
denote the Nakajima quiver variety for quiver Q with one vertex and � loops, a
vector space V � Cn assigned to the vertex and one-dimensional framing (see
Section 2 for precise definitions and detailed explanations). The quantizations
Aλ(2, �) of Mθ(n, �) are naturally parameterized by λ ∈ H2(Mθ(n, �)) � C and
θ ∈ char(GL(V )).

The exposition in the paper is organized as follows. Section 2 gives preliminary
results on the varieties Mθ(n, �). It is shown that Mθ(n, �) has finitely many fixed
points w.r.t. the Hamiltonian torus T action for n ≤ 3 (here T ⊂ GL(V ) is a
maximal torus), the central fiber of the resolution ρ̄ : Mθ(n, �) → M(n, �) is of
dimension less than 1

2M
θ(n, �) for n, � > 1. From this (using Gabber’s theorem)

one deduces that there are no finite dimensional Aλ(n, �)-modules with generic ν.
Furthermore, the resolutions ρ̄ : Mθ(n, �) → M(n, �) serve as counterexamples to
Conjecture 1.3.1 in [12]. The explanation of this phenomenon concludes the section
(see Remark 2.28 for details).

In Section 3, following the recipe of [25], [26] (see also Section 2 of [5]), the
description of symplectic leaves of M(n, �) and slices to points on them for n = 2, 3
is obtained. One of the two nontrivial slices to M(2, �) turns out to be a hypertoric
variety. The description of T -fixed points on that slice is provided.

Following the lines of [7], we give an overview on generalities on hypertoric
varieties and categories O associated to them and describe category O for the slices
(Proposition 4.15, Section 4).

The next section is devoted to the proof of Theorem 5.4 (incomplete form of
abelian localization theorem) and the description of the locus of λ, for which the
algebra Aλ(2, �) has finite homological dimension (Corollary 5.5).
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Then, using the construction of restriction functor introduced in [3] for ra-
tional Cherednik algebras (quantizations of the Hilbert scheme of points on C2)
and its generalization for the Gieseker scheme in [20], we define a functor Res :
Oν(Aλ(2, �)) → Oν(Sλ(2, �)), where Oν(Sλ(2, �)) stands for the category O for
the slice. This functor is exact and faithful on standard objects. It serves as the
main ingredient in the proof of Theorem 6.15, which gives a description of Hom-
spaces between standard objects in Oν(Aλ(2, �)). The multiplicities of simples in
standards are established in Corollary 6.16.

The complete form of abelian localization theorem appears in Section 7 (see
Theorem 7.6).

2. First results on Oν(Aλ(n, �))

In this section we collect some basic information on the category Oν(Aλ(n, �)).
The quantization of Mθ(n, �) corresponding to a character λ of g is the algebra
Aλ(n, �) := (D(R)/[D(R){Φ(x) − λ(x), x ∈ g}])G.

2.1. Category O for the quantizations of quiver varieties with Q = B�.
We study the Nakajima quiver variety with underlying quiver Q, which has one
vertex, � loops, where � ∈ Z≥0 and a one-dimensional framing. This variety admits
the following description. One starts with a vector space V of dimension n and
considers the space R := gl(V )⊕� ⊕ V ∗, which has a natural G := GL(V ) action.
The identification of g := gl(V ) with g∗ via the trace form enables to identify the
cotangent bundle T ∗R with gl(V )⊕2�⊕V ∗⊕V . Next notice that T ∗R is a symplectic
vector space with a Hamiltonian action of G. The corresponding moment map is
given by

(6) μ(X1, . . . , X�, Y1, . . . , Y�, i, j) =
�∑

k=0

[Xk, Yk] − ji.

To define the Nakajima quiver variety Mθ(n, �), we need to choose some charac-
ter θ of G. It is known that θ is an integral power of the determinant, i.e. θ = detk
for some k ∈ Z.

Definition 2.1. The Nakajima quiver variety Mθ(n, �) is the GIT quotient
μ−1(0)θ−ss//θG. In particular, M(n, �) = μ−1(0)//G := SpecC[μ−1(0)]G.

Remark 2.2. An application of the Hilbert-Mumford criterion shows that the θ-
semistable locus admits the following natural description (see Lemma 3.8 in [26]
for details). Let S ⊆ V be a subspace, s.t. Xt(S), Yt(S) ⊆ S for all 1 ≤ t ≤ �, then

S ⊂ Ker j ⇒ S = 0, if θ > 0,
S ⊃ Im i ⇒ S = V, if θ < 0.

The torus T = (C∗)� acts on R by rescaling X1, . . . , X�. This naturally gives
rise to an action on T ∗R. This action is Hamiltonian and commutes with the action
of G and, therefore, descends to M(n, �) and Mθ(n, �). The action of s ∈ S is given
by multiplication of all the components of x ∈ T ∗R by s−1. Similarly, it commutes
with the action of G and descends to M(n, �) and Mθ(n, �).

For any θ �= 0 the action of G on μ−1(0)θ−ss is free. This implies that the variety
Mθ(n, �) is smooth and symplectic and is known to be a symplectic resolution
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of the normal Poisson variety M(n, �). We denote by ρ the corresponding map
ρ : Mθ(n, �) → M(n, �). It is a conical symplectic resolution.

Set R = sl(V )⊕� ⊕ V ∗ and let M(n, �) be the affine variety μ−1(0)//G, where
slightly abusing notation, we denote by μ the moment map for the Hamiltonian
action of G on T ∗R. Similarly, we set Mθ(n, �) := μ−1(0)θ−ss//θG. Next we
describe quantizations of M(n, �). Denote the ring of differential operators on R
by D(R).

Definition 2.3. A G-equivariant linear map Φ : g → D(R) satisfying [Φ(x), a] =
xR(a) for any x ∈ g and a ∈ D(R) is called a quantum comoment map.

Remark 2.4. The quantum comoment map Φ is defined up to adding a character
λ : g → C.

Notice that we can identify D(R) with D(R∗) via the Fourier transform sending
∂r ∈ D(R) to the function r ∈ D(R∗) and r∗ ∈ D(R) to −∂r∗ ∈ D(R∗). Thus
defined isomorphism D(R) → D(R∗) allows to consider two quantum comoment
maps Φ, Φ̃ : gl(V ) → D(R) sending x ∈ g to the corresponding vector field xR or
xR

∗ . Now define the symmetrized quantum comoment map to be Φsym := Φ+Φ̃
2 .

A direct computation shows that Φsym(x) = Φ(x) − ζ(x), where ζ is half the
character of the action of G on ΛtopR. For our quiver Q with one-dimensional
framing ζ(x) = 1

2 tr(x).

Next we take a character λ of g and consider the quantizations

Aλ(n, �) := (D(R)/[D(R){Φ(x) − λ(x), x ∈ g}])G,

Asym

λ (n, �) := (D(R)/[D(R){Φsym(x) − λ(x), x ∈ g}])G.
The filtration on Aλ(n, �) is induced from the Bernstein filtration on D(R) (here deg
R = deg R

∗ = 1). Recall that C[M(n, �)] = (C[T ∗R]/I)G, where I := {μ∗(ξ), ξ ∈
g} is the ideal generated by the image of g under the comoment map, and denote
Iλ := {Φ(x)− λ(x), x ∈ gl(V )}. The surjectivity of the natural map C[M(n, �)] →
gr(Aλ(n, �)) follows from the containment I ⊂ gr(Iλ). The reverse containment of
ideals follows from the regularity of the sequence μ∗(ξ1), . . . , μ∗(ξn2), where ξ1,
. . . , ξn2 is some basis for g. The regularity of the sequence is equivalent to flatness
of the moment map μ.

We notice that the difference between Aλ(n, �) and the algebra Aλ(n, �) (con-
structed analogously for R = gl(V )⊕� ⊕ V ∗) is that Aλ(n, �) = D(C�) ⊗ Aλ(n, �).
Thus, some questions about representation theory of Aλ(n, �) reduce to analogous
ones for Aλ(n, �).

The quantizations Aθ of Mθ(n, �) are parameterized (up to isomorphism) by the
points of H2(Mθ(n, �)) � C (see [4]). The quantization corresponding to λ will be
denoted by Aθ

λ.

Remark 2.5. The period of the quantization Aλ(n, �)sym is equal to λ.

We fix our choice of character θ = det−1. As can be inferred from the proof of
Lemma 2.6, this choice is generic.

Lemma 2.6. There is an isomorphism Aλ(n, �) ∼= A−λ−1(n, �).
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Proof. There is a symplectomorphism γ : Mθ(n, �) � M−θ(n, �) produced by
(X1, . . . , X�, Y1, . . . , Y�, i, j) �→ (Y ∗

1 , . . . , Y
∗
� ,−X∗

1 , . . . ,−X∗
� , j

∗,−i∗),

thus inducing multiplication by −1 on H2(Mθ(n, �),Z). As the image of λ under
the period map is λ + 1

2 ∈ H2(Mθ(n, �),Z), the result follows. �

Remark 2.7. The categories Oν(Aλ(n, �)) and Oν(Aλ(n, �)) are, in fact, equivalent.
Indeed, recall that Aλ(n, �) = D(C�)⊗Aλ(n, �) and let t1, . . . , t� be the coordinates
on C�. Then the functor Oν(Aλ(n, �)) → Oν(Aλ(n, �)) given by M �→ C[t1, . . . , t�]⊗
M produces an equivalence of categories. It has a quasi-inverse functor which sends
N ∈ Oν(Aλ(n, �)) to the annihilator of 〈∂t1, . . . , ∂t�〉.
Definition 2.8. We have the standardization and costandardization functors �ν

and ∇ν : Cν(Aλ(n, �)) -mod → Oν(Aλ(n, �)) given by

�ν(N) := Aλ(n, �)/Aλ(n, �)A>0
λ (n, �) ⊗Cν(Aλ(n,�)) N,

∇ν(N) := HomCν(Aλ(n,�))(Aλ(n, �)/A<0
λ (n, �)Aλ(n, �), N).

We consider the restricted Hom (w.r.t. the natural grading on

Aλ(n, �)/A<0
λ (n, �)Aλ(n, �))

in the definition of the operator ∇ν above.

Definition 2.9. Let C be an abelian, artinian category enriched over R with simple
objects {Sα|α ∈ I}, projective covers {Pα|α ∈ I}, and injective hulls {Iα|α ∈ I}.
Let � be a partial order on the index set I. We call C highest weight with respect
to this partial order if there is a collection of objects {�α|α ∈ I} and epimorphisms
Pα

Πα→ �α
πα→ Sα such that for each α ∈ I, the following conditions hold:

(1) the object kerπα has a filtration such that each subquotient is isomorphic
to Sβ for some β ≺ α;

(2) the object ker Πα has a filtration such that each subquotient is isomorphic
to �γ for some γ � α.

The objects �α are called standard objects.

Definition 2.10. Let θ1, . . . , θk be the characters of T -action on the vector space⊕
p∈XT

TpX, where TpX stands for the tangent space at a fixed point p ∈ XT . The

kernels ker(θ1), . . . , ker(θk) partition the cocharacter space Hom(C∗, T ) ⊗Z R into
polyhedral cones, to be referred to as chambers. If a cocharacter ν lies in the
interior of a chamber (in other words, all θi(ν) �= 0), then Xν(C∗) = XT . Such
one-parameter subgroups are called generic.

The next result can be found in [18] (see Proposition 2.2).

Proposition 2.11. Suppose that abelian localization holds and λ is generic (out-
side some finite set). Choose a generic one-parameter subgroup ν. Then the
following are true:

(1) the category Oν(Aλ(n, �)) depends only on the chamber of ν;
(2) the natural functor Db(Oν(Aλ((n, �))) → Db(Aλ(n, �) -mod) is a full em-

bedding;
(3) Cν(Aλ(n, �)) = C[Mθ(n, �)T ];
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(4) Assume, in addition, that there are finitely many fixed points for the ac-
tion of ν. The category Oν(Aλ(n, �)) is highest weight with standard ob-
jects �ν(pi) and costandard objects ∇ν(pi) for pi ∈ Mθ(n, �)T .

Remark 2.12. The order required for highest weight structure comes from the con-
traction order on the fixed points. This is the order, in which pi �ν pj iff pi ∈ Xν

pj
,

where Xν
pj

:= {x ∈ Mθ(n, �) | lim
t→0

ν(t)x = pi}.

2.2. T -fixed points. To study the category Oν(Aλ(n, �)), we first need to obtain
some information on the torus fixed points. This is summarized in Theorem 2.14.

Remark 2.13. Since the case � = 1 was studied in [20], henceforth we assume � ≥ 2.

Theorem 2.14. The variety Mθ(n, �) has finitely many T -fixed points if dimV ≤
3.

Proof. Let p̃ = (X1, . . . , X�, Y1, . . . , Y�, i, j) ∈ μ−1(0) be a point in the preimage of
a fixed point p ∈ Mθ(n, �), then there exists a homomorphism ηp : T → G, s.t. the
following system of equalities is satisfied (t = (t1, . . . t�) ∈ T ):

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1X1 = ηp(t)X1ηp(t)−1,

. . .

t�X� = ηp(t)X�ηp(t)−1,

t−1
1 Y1 = ηp(t)Y1ηp(t)−1,

. . .

t−1
� Y� = ηp(t)Y�ηp(t)−1,

i = ηp(t)−1i,

j = ηp(t)j.

Let {ε1, . . . , ε�} be the set of coordinate characters of the torus T , i.e. εi(t1, . . . , t�)
= ti. The weight decomposition of V with respect to ηp is

V =
⊕

χ∈char(T )

Vχ,

with Vχ = {v ∈ V | ηp(t)·v = χ(t)v}. It follows from the system of equation (7) that
Xi(Vχ) ⊂ Vχ−εi and, similarly, Yi(Vχ) ⊂ Vχ+εi (here multiplication of characters is
written additively). As im j �= 0 due to the stability condition it follows from the
last equation in (7) that im j ∈ V0.

Below we provide a description of the fixed points when dim(V ) ≤ 3.

Case 1. If dim(V ) = 1, the variety Mθ(1, �) is a single point.

Case 2. If dim(V ) = 2, we choose a cyclic vector 0 �= v0 ∈ im(j) (by v being a
cyclic vector we mean that spanC(f(X1, . . . , X�, Y1, . . . , Y�)v)f∈C[t1,...,t2�] = V ) as
the first vector in the basis. Then at least one of the Xk or Ys must act nontrivially
on v0 and the image is v1 inside some V±εi . The vectors v0 and v1 already span V
as they have different weights and cannot be collinear. We notice that Xsv0 = v1
or Ysv0 = v1 immediately implies X �=sv0 = Y�=sv0 = X �=sv1 = Y�=sv1 = 0 as all
these vectors would lie in weight spaces different from V0,...,0 and V0,...,0,±1s,0,...,0.
It remains to notice that equation (6) becomes [Xs, Ys] + ji = 0, which shows
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that Xs �= 0 implies Ys = 0 and vice versa. Therefore, there are 2� fixed points:

ps = (X �=s = 0, Xs =
(

0 0
1 0

)
, Y1 = 0, . . . , Y� = 0, i = 0, j =

(
1
0

)
), ps+� = (X1 =

0, . . . , X� = 0, Y�=s = 0, Ys =
(

0 0
1 0

)
, i = 0, j =

(
1
0

)
) , where s ∈ {1, . . . , �}.

Case 3. Now dim(V ) = 3. Again let the cyclic vector 0 �= v0 ∈ im j be the first
vector in the basis. Now there are the following possibilities (s, k ∈ {1, . . . , �}):

• for some s, k: Xsv0 = v1 �= 0 and Ykv0 = v2 �= 0;
• for some s �= k: Xsv0 = v1 �= 0 and Xkv0 = v2 �= 0;
• for some s �= k: Ysv0 = v1 �= 0 and Ykv0 = v2 �= 0;
• for some s �= k: Xsv0 = v1 �= 0 and Ykv1 = v2 �= 0;
• for some s, k: Xsv0 = v1 �= 0 and Xkv1 = v2 �= 0;
• for some s, k: Ysv0 = v1 �= 0 and Ykv1 = v2 �= 0;
In each of the cases above the vectors v0, v1 and v2 are linearly independent and

span V , while all the remaining X and Y coordinates of p are zero. We verify it
when Xsv0 = v1 and Ykv0 = v2, the remaining cases being similar.

First, X �=k and Y�=s must be zero, as otherwise there would be vectors with
weights different from those of v0, v1 and v2 and, therefore, linearly independent
with them. For the same reason Xkv0 = Xkv1 = Xsv1 = Xsv2 = Ysv0 = Ysv2 =
Ykv1 = Ykv2 = 0. To show Ysv1 = 0, we notice that equation (6) reduces to
[Xs, Ys] + [Xk, Yk] + ji = 0. Applying to v1, we get

XsYsv1 + jiv1 = 0,

and notice that XsYsv1 ∈ V0,...,−1s,...,0, while jiv1 ∈ V0,...,0s,...,0. Thus, jiv1 = 0
and XsYsv1 = 0 separately, so Ysv1 = 0 and Ys = 0. It is analogous to show that
Xk = 0. �

v0 v1

v2

Yk

Xs

Remark 2.15. Next we show that when n = 4, � = 2 the subvariety of fixed points
contains a copy of the projective line CP1 = P(spanC(μ1, μ2)). The operators below
are presented in a weight basis with the first vector of weight (0, 0), the second
(−1, 0), the third (0,−1) and the fourth (−1,−1), the action of the subgroup of G,
preserving the weight decomposition, can only simultaneously rescale μ1 and μ2.
The subvariety is given by

X1 =

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 μ1 0

⎞⎟⎟⎠ , X2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
0 μ2 0 0

⎞⎟⎟⎠ , Y1 = Y2 = 0, i = 0, j =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ .
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v0,0

v−1,0 v0,−1

v−1,−1

X1 X2

X2 X1

Remark 2.16. Both varieties Mθ(1, �) and M(1, �) consist of a single point, there-
fore, we proceed with the case dimV = 2.

The following fact is a particular case of the result established in Section 5 of
[21] and will be used in the proof of Theorem 6.15. Suppose ν̃ lies in the face of a
chamber containing ν. Then �ν̃ restricts to an exact functor Oν(Cν̃(Aλ(2, �))) →
Oν(Aλ(2, �)). Moreover, there is an isomorphism of functors �ν = �ν̃ ◦ �, where
�ν̃ : Cν̃(Aλ) -mod → Aλ -mod,� : Cν(Aλ) -mod → Cν̃(Aλ) -mod and �ν is the
standardization functor given by Definition 2.8. This allows to study the functor
�ν̃ in stages.

We start by describing the fixed points loci Mθ(2, �)ν(C∗) for certain one-param-
eter subgroups ν̃ : C∗ → T and the corresponding algebras Cν̃(Aλ).

Theorem 2.17. The fixed point set Mθ(2, �)ν̃(C∗) for ν̃ : C∗ → T with ν̃(t) =
(td, 1, . . . , 1) and d ∈ Z>0 is Mθ(2, �− 1) � C2�−2 � C2�−2.

Proof. The subset Mθ(2, �)ν̃(C∗) is formed by the points p = (X1, . . . , X�, Y1, . . . ,
Y�, i, j) which satisfy the system of equation (8). These equations are obtained
analogously to those in (7) with ηp standing for the composition C∗ ν̃→ T → G, s.t.

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tdX1 = ηp(t)X1ηp(t)−1,

X2 = ηp(t)X2ηp(t)−1,

. . .

X� = ηp(t)X�ηp(t)−1,

t−dY1 = ηp(t)Y1ηp(t)−1,

Y2 = ηp(t)Y2ηp(t)−1,

. . .

Y� = ηp(t)Y�ηp(t)−1,

i = ηp(t)−1i,

j = ηp(t)j,

and ηp is the same for points in the same connected component.
There are two possible cases. First, if X1 = Y1 = 0, it follows from (8) and our

choice of the stability condition that the entire 2-dimensional vector space V is of

weight 0 with respect to ηp(t) and, thus, ηp(t) =
(

1 0
0 1

)
. Such points form the

fixed component Mθ(2, �− 1) ⊂ Mθ(2, �)ν̃(C∗).
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Next we treat the case when (X1, Y1) �= 0. Let v0 ∈ im j be a cyclic vector.
Notice that since dim(V ) = 2 and X1v0 ⊂ V−dε1 while Y1v0 ⊂ Vdε1 , we must
have that at least one of the operators X1, Y1 is zero as well as the remaining one

squared. Therefore, the matrix of the nonzero operator is conjugate to
(

0 0
1 0

)
.

One observes that X1 =
(

0 0
1 0

)
and Y1 = 0 implies the weight basis of V consists

of vectors with weights 0 and d, while ηp(t) =
(

1 0
0 td

)
in this basis, similarly,

ηp(t) =
(

1 0
0 t−d

)
if Y1 =

(
0 0
1 0

)
and X1 = 0. In either of the two cases a ν̃(C∗)-

fixed point must have {X2, . . . , X�, Y2, . . . , Y� | Xi, Yj ∈ h ⊂ sl2} and none of such
points are identified under the action of G, hence, we arrive with an irreducible
component isomorphic to C2�−2. �

Remark 2.18. Let T ′ � (C∗)�−1 := {(t1, . . . , t�−1, t�) ⊂ T | t� = 1}, then the
irreducible components of Mθ(2, �)T ′ are {p ∈ Mθ(2, �) | X1 = . . . = X�−1 = Y1 =
. . . = Y�−1 = 0} � T ∗P1 and 2�− 2 copies of C2. Indeed, now X� and Y� preserve
the weights of the weight vectors. Therefore, there are two possibilities:

(i) the vector space V = V0, so X �=� = Y�=� = 0 and we arrive at T ∗P1 described
above;

(ii) V is spanned by v0 ∈ V0 and v1 ∈ V±εs , in which case X� =
(
a 0
0 −a

)
, Y� =(

b 0
0 −b

)
, one of Xs or Ys is

(
0 0
1 0

)
(depending on the sign of the cor-

responding weight of v1), the other X’s and Y ’s as well as i are 0 and

j =
(

1
0

)
. Since the remaining action of G is trivial and s ∈ {1, . . . , �− 1},

this gives rise to 2�− 2 copies of C2.

Proposition 2.19. Let ν0 and ν′ be the one-parameter subgroups from Theorem
2.17.

(a) We have an isomorphism of algebras Cν0(Aλ(2, �)) � Aλ(2, � − 1) ⊕
D(C2�−2)⊕D(C2�−2), where Aλ(2, �−1) is a quantization of Z = Mθ(2, �−
1).

(b) Similarly, Cν′(Aλ(2, �)) � AZ1
λ+1− �

2
⊕ AZ2

λ+ �
2
, where Z1, Z2 are the fixed

components for ν′ and AZi
μ stands for the quantization of Zi with period

μ.

Proof. An application of (4), Proposition 2.2 in [20] gives that Cν0(A
sym

λ (2, �)) =
⊕
k
AZk

i∗
Zk

(λ)−ρZk
, where Zk’s are the irreducible components of Mθ(2, �)ν0 and

AZk

i∗
Zk

(λ)−ρZk
stands for the algebra of global sections of the filtered quantization

of Zk with period i∗Zk
(λ) − ρZk

. Here i∗Z is the pull-back map H2(Mθ(2, �),C) →
H2(Z,C) and ρZk

equals half of the first Chern class of the contracting bundle of
Zk. We start with describing this bundle in our case. For the general description
of tangent spaces to quiver varieties we refer to Lemma 3.10 and Corollary 3.12 in
[26]. The tangent bundle descends from the G-module ker β / im α, where α and
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β are in the following complex:

(9) Hom(V, V ) α
↪→ sl2 ⊗ C2� ⊕ V ⊕ V ∗ β

� Hom(V, V ),
here α stands for the differential of the G-action and β is the differential of the
moment map at that fixed point.

It is not hard to observe that the sequence (9) is equivariant with respect to the
(C∗)�-action with β surjective and α injective.

We proceed with verifying the assertion of (a). As every bundle over the C2�−2

component of Z is trivial, we look at the restriction of the contracting bundle to
Mθ(2, �− 1).

It follows from the description of the tangent bundle as the middle cohomol-
ogy of the complex (9) that the contracting bundle descends under G-action from
T ∗R

η̃p,>0 modulo two copies of gη̃p,>0. In our case (T ∗R)η̃p,>0 = H is the three-
dimensional space V ec(X1), while g is pointwise fixed under the action of η̃p, hence,
the contracting bundle descends from H.

The top exterior power of the vector bundle H̃ descending from H under G-action
is trivial, since G acts trivially on the top exterior power of H. By [17, Section
5], the period of a quantization Aλ(2, �) is λ − ζ, where ζ is half the character
of the action of G on ΛtopR. Thus the periods of the quantizations Aλ(2, �) and
Aλ(2, �− 1) are both equal to λ + 1

2 , the first claim of the proposition follows.
We verify the claim in (b) for Z1. There is a line subbundle Ltriv ⊂ Ṽ with the

fiber over a point p ∈ Z1 being im j. It is trivial, since for a fixed 0 �= w ∈ W one
has a nowhere vanishing section j(w) of Ṽ . Using the splitting principle, we write
Ṽ = Ltriv ⊕ L1 with c1(Ltriv) = 0 and c1(L1) = cZ1 , where cZ1 is the generator
of H2(Z1). In this case V = C〈v0, v1〉 with v0 of weight 0 and v1 of weight d, in

other words, ηp =
(

1 0
0 td

)
in the basis 〈v0, v1〉. This implies that the bundle on

Z1 descending from sl2 is Ltriv ⊕ L1 ⊕ L∗
1. Let η̃p(t) = (ν′(t), ηp(t)) ⊂ T ×G, then

U η̃p,>0 = (z1, . . . , z�, v1), where zs is the 12-entry (first row and second column) of
the matrix Xs, while gη̃p,>0 consists of the 12-entry of the corresponding matrix.
Hence, the nontrivial part of the contracting bundle is L1⊗C�−1. Thus we conclude
that ρZ1 = �−1

2 cZ1 .
Analogously one can show that the nontrivial part of the contracting bundle

on Z2 is L∗
1 ⊗ C�−1 and ρZ2 = 1−�

2 cZ2 . The maps i∗Z1
and i∗Z2

send c1(Ṽ ) ∈
H2(Mθ(2, �)) to the generators cZ1 ∈ H2(Z1) and cZ2 ∈ H2(Z2). The claim in (b)
follows. �
Remark 2.20. The quantizations AZ1

λ+1− �
2

and AZ2
λ+ �

2
are isomorphic to Dλ−�+1(P�−1)

and Dλ(P�−1) (the algebras of twisted differential operators on projective spaces).
2.3. Central fibers. Lemma 2.21 provides some information on the preimages of
zero under ρ̄ : Mθ(n, �) → M(n, �) (central fibers) in Mθ(n, �).
Lemma 2.21.

(a) The preimage of 0 in Mθ(2, �) is ρ̄−1(0) = P2�−1.
(b) Let n, � > 1, then dim(ρ̄−1(0)) < 1

2 dim(Mθ(n, �)).
Proof. An application of the Hilbert-Mumford criterion shows (the argument is
analogous to the one in Proposition 9.7.4. in [11]) that p ∈ Mθ(n, �) lies in ρ̄−1(0)
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if and only if on the corresponding representation there exists a filtration 0 =
L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ln = rp ∈ T ∗R by subrepresentations such that each
quotient Li/Li−1 for i < n is isomorphic to a simple representation (of the framed

quiver B̂2�) with dimension vector
(

0
1

)
and Ln/Ln−1 is isomorphic to the simple

representation with dimension vector
(

1
0

)
(here the top coordinate corresponds to

the dimension of framing and the bottom to the dimension of V ). This implies that
all the sln-components of p must be strictly upper-triangular matrices. It follows
from equation (6) and our choice of stability condition that i = 0.

(a) Pick a vector 0 �= h ∈ im j. As h is a cyclic vector, it must have a nontrivial

projection onto L/L1. The action by matrices of the form
(

1 α
0 1

)
(conjugation

by which does not change any of the 2 × 2 matrices of p) allows to assume that

the component of h along the first vector is zero. Acting by
(

1 0
0 ∗

)
⊂ GL2 allows

to pick a representative of p with j =
(

0
1

)
and the action by

(
∗ 0
0 1

)
⊂ GL2

to simultaneously rescale the 2 × 2 matrices of p. We conclude that p = (X1 =(
0 a1
0 0

)
, . . . , X� =

(
0 a�
0 0

)
, Y1 =

(
0 a�+1
0 0

)
, . . . , Y� =

(
0 a2�
0 0

)
, i = 0, j =(

0
1

)
) with at least one of Xk’s and Ys’s, being nonzero due to the stability condition,

up to simultaneous dilations of Xk’s and Ys’s, which shows the claim, stated in (a).
Now we show the claim in (b). Acting by matrices of the form

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 ∗
0 1 . . . 0 ∗
...

...
. . .

...
...

0 0 . . . 1 ∗
0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

we can assume that h is proportional to the last vector in the basis. The action by
the subgroup

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 ∗

⎞⎟⎟⎟⎟⎟⎠ ⊂ GLn

allows to assume j =

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠.
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Since i = 0, the moment equation (6) reduces to
�∑

k=0
[Xk, Yk] = 0 and as each of

the commutators is a matrix of the form

[Xk, Yk] =

⎛⎜⎜⎜⎜⎜⎝
0 0 ∗ ∗ . . . ∗
0 0 0 ∗ . . . ∗
...

...
...

. . . . . .
...

0 0 0 0 . . . ∗
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ ,

equation (6) imposes (n−1)(n−2)
2 independent conditions on the coordinates of p ∈

ρ̄−1(0). The action of matrices of the form⎛⎜⎜⎜⎜⎜⎝
∗ ∗ . . . ∗ 0
0 ∗ . . . ∗ 0
...

...
. . .

...
...

0 0 . . . ∗ 0
0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠
preserves both j and the strictly upper-triangular matrices and reduces the dimen-
sion by n(n−1)

2 . Therefore, we have established that

dim(ρ̄−1(0)) ≤ n(n− 1)
2

2�− (n− 1)(n− 2)
2

− n(n− 1)
2

= (n2 − n)�− n2 + 2n− 1

and a straightforward computation shows that (n2−n)�−n2 +2n−1 < (�−1)n2−
� + n = 1

2 dim(Mθ(n, �)) provided n, � > 1. �

Corollary 2.22. Assume n, � > 1, then the central fiber ρ̄−1(0) ⊂ Mθ(n, �) is an
isotropic but not Lagrangian subvariety.

Remark 2.23. The T - fixed points for the action on Mθ(2, �) (see Theorem 2.14)
lie on ρ−1(0) = P2�−1.

Corollary 2.24. H2(Mθ(2, �)) � C.

Proof. This follows from the fact that Mθ(2, �) is homotopy equivalent to the cen-
tral fiber, while the latter is isomorphic to P2�−1 as shown in Lemma 2.21(a). �

Corollary 2.25. There are no finite dimensional Aλ(n, �)-modules for n, � > 1
and generic ν.

Proof. The support of a finite dimensional module M must be 0 ∈ M(n, �) (since
0 is the only fixed point of M(n, �) for the S-action, the support is S-stable and
the module is finite dimensional). Notice that the support of Loc(M) is contained
in ρ̄−1(0) ⊂ Mθ(n, �). On the other hand, due to Gabber’s involutivity theorem
(see [14]), the support of a coherent module must be a coisotropic subvariety of
Mθ(n, �). However, this is impossible for dimension reasons. �

I would like to thank Pavel Etingof and Ivan Losev for bringing my attention to
the following fact.

Let A be a Poisson algebra over C, i.e. A = O(X), where X is an affine Poisson
variety.
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Definition 2.26. The zeroth Poisson homology, HP0(A) is the quotient A/{A,A}.

Conjecture 2.27 was formulated in [12] (see Conjecture 1.3.1 therein).

Conjecture 2.27. Let ρ : X̃ → X be a symplectic resolution with X affine, then
HP0(O(X)) = HdimX(X̃).

Conjecture 2.27 holds in many cases (see Examples 6.4− 6.7 in [13] for details):
(1) Let Y be a smooth symplectic surface. Set X = SymnY := Y n/Sn, the n-

th symmetric power of Y and consider the resolution ρ̄ : X̃ = HilbnY → X.
(2) Take Y = C2/Γ and the crepant resolution Ỹ → Y (here Γ ⊂ SL(2,C)

is a finite subgroup), consider X := SymnY and the resolution ρ1 : X̃ :=
HilbnỸ → SymnỸ . Now compose this with ρ2 : SymnỸ → SymnY to
obtain the resolution ρ = ρ2 ◦ ρ1 : X̃ → X.

(3) Let N be the cone of nilpotent elements in a complex semisimple Lie algebra
g, and ρ the Springer resolution T ∗(G/B) → N .

Remark 2.28. The resolutions ρ : Mθ(n, �) → M(n, �) serve as counterexamples
to Conjecture 2.27. Indeed, Htop(Mθ(2, �),C) = H3�−2(P2�−1,C) = 0 and, in
general, Htop(Mθ(n, �),C) = H

1
2 dim(Mθ(n,�))(Mθ(n, �),C) = 0, since the variety

Mθ(n, �) is homotopy equivalent to ρ−1(0) (via the contracting C∗-action) and
this variety has dimension strictly less than 1

2 dim(Mθ(n, �)) as shown in Lemma
2.21(b). On the other hand, the point 0 is a symplectic leaf in affine Poisson
varieties M(n, �). This is true, since the Poisson bracket is of degree −2 and there
are no invariant functions of degree one in C[T ∗R̄]G, hence, the maximal ideal of
0 is Poisson. From this it follows that the vector spaces HP0(O(M(n, �))) are at
least 1−dimensional. Therefore, Htop(M(n, �)) �= HP0(M(n, �)), contradicting the
claim of Conjecture 2.27.

3. Symplectic leaves and slices

3.1. Symplectic leaves. First we describe the symplectic leaves and slices to them
for the Poisson varieties M(2, �) and M(3, �). The general description was given
by Nakajima, it can also be found in Section 2 of [5]. In particular (Section 6 of
[25] or Section 3 of [26]), it was shown that

M(n, �) =
⋃

Ĝ⊆G

M(n, �)Ĝ,

where the strata are parametrized by reductive subgroups Ĝ ⊆ G and M(n, �)Ĝ
stands for the locus of isomorphism classes of semisimple representations, whose
stabilizer is conjugate to Ĝ. A semisimple representation r ∈ T ∗R is in M(n, �)Ĝ,

if it can be decomposed as r = r0 ⊕
n⊕

i=1
(ri⊗Ui), where ri’s for i > 0 are simple and

pairwise nonisomorphic with zero-dimensional framing and Ui’s are their multiplic-
ity spaces, and Ĝ is conjugate to

∏
GL(Ui). Moreover, according to Theorem 1.3

of [9], the stratum M(n, �)Ĝ is an irreducible locally closed subset of M(n, �). Each
stratum M(n, �)Ĝ, being irreducible, must be a symplectic leaf. The information
about the symplectic leaves of M(2, �) and M(3, �) is summarized in Tables 1 and
2.
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Remark 3.1. We would like to notice that there are no irreducible representations
with dimension vector (1, 1), as each summand [Xk, Yk] in equation (6) equals zero
and, therefore, ji = 0 as well, forcing i = 0 or j = 0 (or i = j = 0) and making
the representation with dimension vector (1, 0) (zero-dimensional framing) in the
former case and with dimension vector (0, 1) in the latter a subrepresentation.

The third leaf in Table 1 corresponds to representations r = r0 ⊕ r1 ⊕ r2, while
the fourth r = r0⊕r1⊗C2, the multiplicities in Table 2 are indicated in the second
column therein.

Remark 3.2. Since M(2, �) has a unique symplectic leaf of codimension 2, the slice
to which is an A1 singularity the Namikawa Weyl group (see [28]) of M(2, �) is Z/2Z.
As there are no symplectic leaves of codimension 2 in M(3, �), the corresponding
Namikawa Weyl group is trivial.

Table 1. Symplectic leaves of M(2, �)

type dim vector dim of leaf stabilizer (in GL2)
1 (2,1) 6�− 4 {id}
2 (2, 0) ⊕ (0, 1) 6�− 6 C∗·id

3 (1, 0) ⊕ (1, 0) ⊕ (0, 1) 2�
(
λ 0
0 μ

)
, λ, μ ∈ C∗

4 (1, 0)⊕2 ⊕ (0, 1) 0 GL2

Table 2. Symplectic leaves of M(3, �)

type dim vector dim of leaf stabilizer (in GL3)
1 (3,1) 16�− 12 {id}
2 (3, 0) ⊕ (0, 1) 16�− 16 C∗·id

3 (2, 1) ⊕ (1, 0) 6�− 4

⎛⎝1 0 0
0 1 0
0 0 ν

⎞⎠, ν ∈ C∗

4 (2, 0) ⊕ (1, 0) ⊕ (0, 1) 6�− 6

⎛⎝λ 0 0
0 λ 0
0 0 μ

⎞⎠, λ, μ ∈ C∗

5 (1, 0) ⊕ (1, 0) ⊕ (1, 0) ⊕ (0, 1) 4�

⎛⎝λ 0 0
0 ν 0
0 0 μ

⎞⎠, λ, ν, μ ∈ C∗

6 (1, 0)⊕2 ⊕ (1, 0) ⊕ (0, 1) 2�

⎛⎝∗ ∗ 0
∗ ∗ 0
0 0 μ

⎞⎠, μ ∈ C∗

7 (1, 0)⊕3 ⊕ (0, 1) 0 GL3

3.2. Fixed points on the slice. Next we study the slice taken at some point
of the leaf of type 3 in Table 1. This slice is the quiver variety in Figure 1 with
k, s ∈ {1, . . . , �−1, �+1, . . . , 2�−1}. The dimension vector is (1, 1) and the framing
is also one-dimensional.
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•

• •

i2

j2

x1,...,x�−1,y�,...,y2�−2

y1,...,y�−1,x�,...,x2�−2

i1

j1

Figure 1. Slice quiver

We consider the point p = (X� =
(

1 0
0 −1

)
, X �=� = 0, Yk = 0, i = 0, j = 0).

As the representation is semisimple, the G orbit through p in T ∗R is closed and
slightly abusing notation we will refer to the corresponding point in M(2, �) as p as
well. The slice to the symplectic leaf at p will be denoted by SLp. The description
of slices as quiver varieties can be found in Section 2 of [5]. In our case the slice
SLp is the hypertoric variety obtained from the (C∗)2-action on C2�. In the basis
〈x1, x2, . . . , x2�−2, i1, i2〉 the weights are (t−1

1 t2, . . . , t
−1
1 t2, t1t

−1
2 , . . . , t1t

−1
2 , t−1

1 , t−1
2 ).

It is the quiver variety for the underlying graph depicted on Figure 1 with one-
dimensional vector spaces assigned to the vertices and one-dimensional framing.
We denote by ρs the map SLθ

p → SLp and fix θ = (−1,−1). The preimage of zero
ρ−1
s (0) and the fixed points for the T ′ � (C∗)�−1-action on SLθ

p are described in
Proposition 3.3.

Proposition 3.3.

(a) ρ−1
s (0) ∼= CP2�−2 ∪ CP2�−2 consists of two irreducible components, inter-

secting in a single point (xs = yk = i1 = i2 = 0, j1 = j2 = 1).
(b) There are 4� − 3 fixed points on SLθ

p for the T ′-action. These points are
(the (C∗)2- orbits of) (xi = 1, x�=i = yj = i1 = i2 = j2 = 0, j1 = 1), (yj = 1, xi =
y�=j = i1 = i2 = j1 = 0, j2 = 1) and (xs = yk = i1 = i2 = 0, j1 = j2 = 1).

Proof. To see that (a) is true, we first notice that for (x,y, i, j) ∈ ρ−1
s (0) we have

either all xk = 0 or all ys = 0 (use the Hilbert-Mumford criterion in a similar way
to the proof of Lemma 2.21). In the former case the stability condition guarantees
j2 �= 0 and j1 or at least one of ys’s is nonzero. Therefore, the first equation in
(10) immediately implies that i2 = 0. To see that i1 = 0 as well, notice that the
one-dimensional torus, acting on the vector space assigned to the left vertex, acts
on i1 and ys with j1 with opposite weights. We look at the space C2�−1 \ {0},
formed by ys’s and j1. The C∗-action on the one-dimensional framing attached
to the right vertex allows to assume j2 = 1. Observing that the action of the
remaining C∗ simultaneously rescales the vectors in C2�−1 \{0}, we recover the first
CP2�−2 component in ρ−1

s (0). Similarly, if all ys = 0, one comes up with CP2�−2

with coordinates xk and j2. It remains to notice that the projective spaces have
exactly one point of intersection (xs = yk = i1 = i2 = 0, j1 = j2 = 1).
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Next we verify the assertion of (b). The moment map equations considered
separately for the two vertices are equivalent to

(10)

⎧⎨⎩
�−1∑
i=1

(xiy�+i + x�+iyi) + j1i1 = 0,

j1i1 = j2i2.

Recall that θ = (−1,−1). Then the θ-semistable locus consists of all represen-
tations for which at least one of j1, j2 is not equal to zero and

• if j1 �= 0 and j2 = 0 there exists an i such that xi �= 0;
• if j2 �= 0 and j1 = 0 there exists a j such that yj �= 0.

The formulas for the torus action below are derived from the fact that xi ∈
Hom(r1, r2) and yi ∈ Hom(r2, r1) are the elements above and below diagonal in
the ith matrix of our quiver variety, where r = r0 ⊕ r1 ⊕ r2 is the decomposition of
the representation into simples.

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t′1x1 = t1x1t
−1
2 ,

. . .

t′−1
�−1x2�−1 = t1x2�−1t

−1
2 ,

t′1y1 = t−1
1 y1t2,

. . .

t′−1
�−1y2�−1 = t−1

1 y2�−1t2,

j1 = t−1
1 j1,

j2 = t−1
2 j2,

i1 = t1i1,

i2 = t2i2,

here (t′1, . . . , t′�−1) ∈ T ′ and (t1, t2) ∈ (C∗)2. We first notice that it is not possible
for both is and js to be nonzero (s ∈ {1, 2}), as otherwise the second equation of
(10) would imply all is, js (s ∈ {1, 2}) were nonzero and consequently t1 = t2 = 1,
implying all xk = yc = 0, hence, contradicting the first equation of (10). It follows
from (a) that i1 = i2 = 0. From the system of equalities (11) it also follows that
we must have one of the following

• xi �= 0, yl+i �= 0 and yi �= 0 with i ∈ {2, . . . , �};
• xl+i �= 0 and yi �= 0 with i ∈ {2, . . . , �};
• all xi and all yj are zero with j1 = j2 = 1 and i1 = i2 = 0.

In each of the former two cases (10) reduces to either xiy�+i = 0 or x�+iyi = 0,
then the claim of the proposition easily follows from the description of semistable
points. �

Remark 3.4. The slice SLp ⊂ Mθ(2, �) is a formal subscheme (formal neighborhood
of the point p). We describe the intersection of the fixed point loci SLT ′

p ∩Mθ(2, �)T ′

(the latter was found in Remark 2.18). Each fixed point (xs = 1, x�=s = yj = i1 =
i2 = j2 = 0, j1 = 1) on the slice with s ∈ {1, . . . , � − 1} is the fixed point (X� =(

1 0
0 −1

)
, Y� = 0, Xs =

(
0 1
0 0

)
, X �=s = Yk = 0, i = 0, j =

(
1
0

)
) on Mθ(2, �)T ′ ;

(ys = 1, xi = y�=s = i1 = i2 = j1 = 0, j2 = 1) is (X� =
(
−1 0
0 1

)
, Y� = 0,
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Xs =
(

0 1
0 0

)
, X �=s = Yk = 0, i = 0, j =

(
1
0

)
). Notice that these points are

respectively the points (1, 0) and (−1, 0) on C2
s ⊂ Mθ(2, �)T ′ (see Remark 2.18). In

case s ∈ {� + 1, . . . , 2�} the fixed points on the slice are (X� =
(

1 0
0 −1

)
, Y� = 0,

Ys =
(

0 1
0 0

)
, X �=s = Yk = 0, i = 0, j =

(
1
0

)
) and (X� =

(
−1 0
0 1

)
, Y� = 0,

Ys =
(

0 1
0 0

)
, X �=s = Yk = 0, i = 0, j =

(
1
0

)
), finally, (xs = yk = i1 = i2 = 0, j1 =

j2 = 1) becomes (X� =
(

1 0
0 −1

)
, X �=� = Yk = 0, i = 0, j =

(
1
1

)
) ∈ T ∗P1.

4. Category Oξ(Sλ(2, �)) for the slice SLp

The main goal of this section is to provide a description of the category
Oν(SLλ(2, �)) for the slice SLp. These results will be used in the next section
for the study of category Oν(Aλ(2, �)). As SLp is a hypertoric variety, we use the
results of [6] and [7], where analogous categories were explicitly described in a more
general setting.

We start by briefly recalling the basic definitions, notions and results (for a more
detailed exposition see [6] and [7]).

4.1. Hypertoric varieties (a brief overview). Let D be the Weyl algebra of
polynomial differential operators on Cn, i.e.

D = C〈x1, ∂1, . . . xn, ∂n〉,

with [xi, xj ] = [∂i, ∂j ] = 0 and [∂i, xj ] = δij . The action of torus T̃ = (C∗)n on Cn

induces an action on D. This provides the Zn- grading

D =
⊕
z∈WZ

Dz,

where WZ is the character lattice of T̃ , deg(xi) = − deg(∂i) = (0, . . . , 0, 1
i
, 0, . . . , 0)

and Dz := {a ∈ D | t · a = tz11 . . . tznn a ∀ t ∈ T̃}.
Observe that the 0th graded piece is DT̃ = C[x1∂1, . . . , xn∂n] and define h−

i :=
∂ixi and h+

i := xi∂i with h−
i − h+

i = 1. We consider the Bernstein filtration
on D (here deg(xi) = deg(∂j) = 1) and let H := gr(D0) = C[h1, . . . , hn], where
hi := h+

i + F0(D0) = h−
i + F0(D0).

Fix a direct summand Λ0 ⊂ WZ, let WR := WZ ⊗Z R, V0,R = RΛ0, V0 := CΛ0 ⊂
W ∼= t∗, k = V ⊥

0 and K ⊂ T̃ be the connected subtorus with Lie algebra k. Thus Λ0
may be identified with the character lattice of T̃ /K and WZ/Λ0 may be identified
with the character lattice of K.

Consider the moment map for the action of torus K ⊂ T̃ = (C∗)n on T ∗Cn, i.e.

μ : T ∗Cn → k∗.

Definition 4.1. The hypertoric variety associated to the pair (Λ0, η) with η a
Λ0-orbit in WZ is M(X) := μ−1(0)η−ss//K. Also define M0(X) := μ−1(0)//K.
We consider the categorical quotient in both cases. The projective map M(X) →
M0(X) will be denoted by κ. We will denote the subspace η + V0,R ⊂ WR by Vη.
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Let S := C∗ act on T ∗Cn by inverse scalar multiplication, i.e. s · (z, w) :=
(s−1z, s−1w). This induces an S-action on both M(X) and M0(X), and the map
κ is S-equivariant. We have that κ : M(X) → M0(X) is a conical symplectic
resolution. The symplectic form ω has weight 2 w.r.t. the aforementioned S-action.

Definition 4.2. The hypertoric enveloping algebra associated to Λ0 is the ring of
K-invariants U := DK =

⊕
z∈Λ0

Dz.

Remark 4.3. The hypertoric variety M0(X) is affine, and for any central character
λ of the hypertoric enveloping algebra U there is a natural isomorphism gr(Uλ) �
C[M0] � C[M] (Proposition 5.2 in [7]).

4.2. Hypertoric category O. Let Z(U) denote the center of U . It is not hard to
show that Z(U) is the subalgebra isomorphic to the image of S[k] under the quantum
comoment map (Section 3.2 of [7]). Let λ : Z(U) → C be a central character. Notice
that the isomorphism Z(U) � S[k] allows to think of λ as an element of k∗. We
will denote by Uλ := U/〈ker(λ)〉U the corresponding central quotient. Consider
a module M ∈ U -mod. For a point v ∈ W := Specm(C[h±

1 , . . . , h
±
n ]/〈h+

i − h−
i +

1 | i ∈ 1, . . . , n〉), let Jv ⊂ C[h±
1 , . . . , h

±
n ]/〈h+

i − h−
i + 1 | i ∈ 1, . . . , n〉 denote the

corresponding maximal ideal. Then the generalized v-weight space of M is defined
as

Mv := {m ∈ M | J k
v m = 0 for k � 0}.

The support of M is defined by

SuppM := {v ∈ W | Mv �= 0}.

We will use the notation U -modΛ for M ∈ U -mod with SuppM ⊂ Λ.
Choose a generic element ξ ∈ Λ∗

0 � (t/k)∗, the action of ξ lifts to U and produces
a grading given by

Uk :=
⊕

ξ(z)=k

Uz.

Set

U+ :=
⊕
k≥0

Uk and U− :=
⊕
k≤0

Uk,

similarly, U+
λ and U−

λ are the images of U+ and U− under the quotient map U →
Uλ.

Definition 4.4. The hypertoric category O is the full subcategory of U -mod
consisting of modules that are U+ - locally finite and semisimple over the center
Z(U). Define Oλ to be the full subcategory of O consisting of modules on which U
acts with central character λ. Equivalently, it is as the full subcategory of Uλ-mod
consisting of modules that are U+

λ - locally finite. Finally, define O(Λ0,Λ, ξ) to be
the full subcategory of Oλ consisting of modules supported in Λ; equivalently, the
full subcategory of Uλ -modΛ consisting of modules that are U+

λ - locally finite. The
triple X := (Λ0,Λ, ξ) is called a quantized polarized arrangement.
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Similarly to category O of a semisimple Lie algebra, we have the direct sum
decompositions

(12)

O =
⊕

Λ∈W/Λ0

O(Λ0,Λ, ξ) and

Oλ =
⊕

Λ′∈Vλ/Λ0

O(Λ0,Λ′, ξ).

The summands in the decompositions above are blocks, i.e. they are the smallest
possible direct summands (see Section 4.1 of [7] for details).

Set Vλ := λ+V0 = λ+CΛ0, Vλ,R := λ+RΛ0 and let Λ be a Λ0-orbit in W with
IΛ the set of indices i ∈ {1, . . . , n} for which h+

i (Λ) ⊂ Z (equivalently h−
i (Λ) ⊂ Z.

For a sign vector α ∈ {+,−}n define the chamber Pα,0 to be the subset of the affine
space VΛ := Λ + V0,R ⊂ WR cut out by the inequalities

hi ≥ 0 for all i ∈ IΛ with α(i) = + and hi ≤ 0 for all i ∈ IΛ with α(i) = −.

If Pα∩Λ is nonempty, we say that α is feasible for Λ. We call α bounded for ξ if the
restriction of ξ is proper and bounded above on Pα. The set of feasible sign vectors
will be denoted by FΛ, the set of bounded vectors by Bξ and the set of bounded
feasible vectors by PΛ,ξ := FΛ ∩ Bξ.

Example 4.5. In case � = 2, the slice SLp is the hypertoric variety obtained from
the K = (C∗)2-action on C4 via

t · (x1, x2, i1, i2) = (t−1
1 t2x1, t1t

−1
2 x2, t

−1
1 i1, t

−1
2 i2).

Notice that k ↪→ Lie(T̃ ) and the image is span((−1, 1,−1, 0), (1,−1, 0,−1)), set
L :=spanR((−1, 1,−1, 0), (1,−1, 0,−1)). Then V0,R=spanR((1, 1, 0, 0), (0, 1, 1,−1))
(the subspace of WR orthogonal to L) and we consider Λ0 = V0,R ∩ WZ and the
central character λ : S[k] → C defined by λ(t1, t2) = (λ̃, λ̃) for λ̃ ∈ C. We take
η = (−1,−1) to be the restriction of the character θ of G.

Then Vλ is cut out in W (or Vλ,R inside WR) by the following equations:{
−x1 + x2 − i1 = λ̃

x1 − x2 − i2 = λ̃
,

equivalently, {
i1 + i2 = −2λ̃
x1 − x2 = i2 + λ̃

.

This is a 2-dimensional affine subspace of W . We identify Vλ with C2 (or Vλ,R

with R2) by choosing the origin of Vλ to be the point (0, 0,−λ̃,−λ̃) and the basis
u1 := (1, 1, 0, 0), u2 := (0, 1, 1,−1). Next we pick a one-parameter subgroup ξ =
(2, 1). In case λ̃ ∈ Z, we have Pλ,ξ = {+−−−,−+−−,−−−−,−−−+,−−+−}
(see Figures 2 and 3 for a depiction of the corresponding polarized arrangement,
chambers and sign vectors).

Remark 4.6. If α ∈ PΛ,ξ and ξ is a generic character then the differential of ξ
attains its maximal value at a single point of Pα. This point will be denoted by aα.
It is the intersection of dim(Vλ) hyperplanes from

h+
i = 0 for all i ∈ IΛ with α(i) = + and h−

i = 0 for all i ∈ IΛ with α(i) = −.
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h3 = 0

h4 = 0

h1 = 0

h2 = 0

•a4

•a3

•a2•a5

•a1

CP2

CP2

Figure 2. Polarized arrangement for � = 2

Let Cα be the unique polyhedral cone cut out in Vλ by dimVλ inequalities

h+
i ≥ 0 for all i ∈ IΛ, h

+
i (aα) = 0 with α(i) = + and

h−
i ≤ 0 for all i ∈ IΛ, h

−
i (aα) = 0 with α(i) = −.

Notice that Pα ⊂ Cα and the differential of ξ is negative on the extremal rays of
Cα.

Next we describe the standard objects of O(X). For any sign vector α ∈
{+,−}IΛ , consider the D-module

�α := D/Iα,

where Iα is the left ideal generated by the elements
• ∂i, for all i, s.t. h+

i (aα) = 0,
• xi, for all i, s.t. h−

i (aα) = 0,
• h+

i − h+
i (aα), i �∈ IΛ.

Define �Λ
α :=

⊕
v∈�

(�α)v, then the standard objects of O(Λ0,Λ, ξ) are �Λ
α for α ∈

PΛ,ξ (see Section 4.4 in [7]). Let SΛ
α denote the unique simple quotient of �Λ

α.
We will need one more definition.

Definition 4.7. The quantized polarized arrangement X = (Λ0,Λ, ξ) and polarized
arrangement X = (Λ0, η, ξ) are said to be linked if π(FΛ) = Fη for the projection
π : {+,−}n → {+,−}IΛ .
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h−
3 = 0

h+
3 = 0

h+
4 = 0

h−
4 = 0

h+
2 = 0 h−

2 = 0

h−
1 = 0

h+
1 = 0

ξ

- - -+

- - - -

+- -+

++-+

+- - -

++- -

+++--++-
- -+-

-+- -

Figure 3. Chambers and sign vectors for � = 2

Remark 4.8. The hypertoric category Oλ is a category Oξ for Uλ in the sense of
Definition 1.5.

Remark 4.9. If X = (Λ0,Λ, ξ) is regular, then the category O(X) is highest weight
and Koszul (see Definition 2.10 and Corollary 4.10 in [7]).

4.3. Hypertoric category O for the slice SLp. The slice SLp is the hypertoric
variety obtained from the K = (C∗)2-action on C2� via

(t1, t2) · (x1, . . . , x�−1, x�, . . . , x2�−2, i1, i2)
= (t−1

1 t2x1, . . . , t
−1
1 t2x�−1, t1t

−1
2 x�, . . . , t1t

−1
2 x2�−2, t

−1
1 i1, t

−1
2 i2),

it can be also viewed as a quiver variety (see Figure 1). This is the toric variety
M(X) for the polarized arrangement X = (Λ0, η, ξ). Let Λ0 = V0,R ∩ WZ for
V0,R = spanR(u1, . . . , u2�−2) (where the vectors u1, . . . , u2�−2 are defined below)
and the same character λ and same η as for � = 2 above, then Vλ is the affine subset
of W given by ⎧⎪⎪⎨⎪⎪⎩

−
�−1∑
k=1

xk +
�−1∑
k=1

x�−1+k − i1 = λ̃

�−1∑
k=1

xk −
�−1∑
k=1

x�−1+k − i2 = λ̃

,
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equivalently, ⎧⎨⎩
i1 + i2 = −2λ̃
�−1∑
k=1

xk −
�−1∑
k=1

x�−1+k = i2 + λ̃
.

This is a 2�− 2-dimensional affine subspace of W . We choose the origin to be the
point (0, . . . , 0, 0,−λ̃,−λ̃) and the basis

u1 := (1,−1, 0, . . . , 0, 0),
u2 := (1, 0,−1, . . . , 0, 0),
. . .

u�−1 := (1, 0, . . . ,−1, 0, . . . , 0, 0),
u� := (1, 0, . . . , 0, 1, 0, . . . , 0, 0),
u�+1 := (1, 0, . . . , 0, 0, 1, 0, . . . , 0, 0),
u2�−3 := (1, 0, . . . , 0, 1, 0, 0),
u2�−2 := (0, . . . , 0, 1, 1,−1).

One convenient choice of a character is ξ = (1, . . . , �− 2, �, . . . , 2(�− 1), �− 1).

Definition 4.10. The algebra Sλ(2, �) will stand for the quantization of the slice
SLp with period (λ + 1

2 , λ + 1
2 ).

Remark 4.11. The restriction of the quantization Aλ(2, �) to SLp is Sλ(2, �). This
is true since the map r̂ from Section 5.4 of [5] sends λ to (λ, λ). Indeed, r̂(λ) = r(λ−
ζ) + ζ̃, where ζ = −1

2 is the character for the action of G on ΛtopR̄, ζ̃ = (−1
2 ,−

1
2 )

is the character for the action of K on ΛtopC2� and r(ν) = (ν, ν) is the restriction.

Proposition 4.12. Pick a central character λ : Z(U) → C with λ̃ ∈ (−∞; 1− �)∪

(�−2;∞), let Λ̃ := {v ∈ WZ | h+
2�−1(v)+h+

2�(v) = −2λ̃,
�−1∑
k=1

h+
k (v)−

�−1∑
k=1

h+
�−1+k(v) =

h+
2�(v) + λ̃}. The quantized polarized arrangement X = (Λ0, Λ̃, ξ) is regular.

Remark 4.13. Henceforth, unless stated explicitly otherwise, we work with λ with
corresponding λ̃ regular.

Remark 4.14. Abelian localization holds for the algebra Sλ(2, �) for λ < 1 − � (it
is easy to see that FΛ = FΛ+rη with r ∈ Z≥0, so the conditions of Theorem 6.1 in
[7] are met).

Proposition 4.15. Pick a central character λ : Z(U) → C with λ̃ ∈ Z<0 + 1 − �,
let X = (Λ0, Λ̃, ξ) be the quantized polarized arrangement. Assume, in addition,
X is linked to X (see Definition 4.7).

(a) There is an equivalence of categories Oξ(Sλ(2, �)) = O(X).
(b) The set of feasible bounded vectors PΛ,ξ consists of the following 4� − 3

sign vectors (notice that the sign vector αmid = −−− . . .−︸ ︷︷ ︸
�−1

−−− . . .−︸ ︷︷ ︸
�−1

−−
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appears in both sets below for convenience but is counted once only)

2�− 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2�−1 = − . . .−−−︸ ︷︷ ︸
�−1

+ . . . + +−︸ ︷︷ ︸
�−1

− +

α2�−2 = − . . .−−−︸ ︷︷ ︸
�−1

+ . . . + −−︸ ︷︷ ︸
�−1

− +

. . .

α�+1 = − . . .−−−︸ ︷︷ ︸
�−1

− . . .−−−︸ ︷︷ ︸
�−1

− +

αmid = − . . .−−−︸ ︷︷ ︸
�−1

− . . .−−−︸ ︷︷ ︸
�−1

−−

α�−1 = − . . .−−+︸ ︷︷ ︸
�−1

− . . .−−−︸ ︷︷ ︸
�−1

−−

α�−2 = − . . .− ++︸ ︷︷ ︸
�−1

− . . .−−−︸ ︷︷ ︸
�−1

−−

. . .

α1 = + . . . + ++︸ ︷︷ ︸
�−1

− . . .−−−︸ ︷︷ ︸
�−1

−−

,

2�− 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2�−1 = − + + . . .+︸ ︷︷ ︸
�−1

−−− . . .−︸ ︷︷ ︸
�−1

+ −

β2�−2 = −− + . . .+︸ ︷︷ ︸
�−1

−−− . . .−︸ ︷︷ ︸
�−1

+ −

. . .

β�+1 = −−− . . .−︸ ︷︷ ︸
�−1

−−− . . .−︸ ︷︷ ︸
�−1

+ −

αmid = −−− . . .−︸ ︷︷ ︸
�−1

−−− . . .−︸ ︷︷ ︸
�−1

−−

β�−1 = −−− . . .−︸ ︷︷ ︸
�−1

+ −− . . .−︸ ︷︷ ︸
�−1

−−

β�−2 = −−− . . .−︸ ︷︷ ︸
�−1

+ + − . . .−︸ ︷︷ ︸
�−1

−−

. . .

β1 = −−− . . .−︸ ︷︷ ︸
�−1

+ + + . . .+︸ ︷︷ ︸
�−1

−−

.

(c) The simple and standard objects in the category Oξ(Sλ(2, �)) are indexed
by the sign vectors in (b). We have the short exact sequences 0 → SΛ

αi+1
→

ΔΛ
αi

→ SΛ
αi

→ 0 (resp. 0 → SΛ
βi+1

→ ΔΛ
βi

→ SΛ
βi

→ 0 ). The socle filtration
of ΔΛ

αmid
has subquotients SΛ

αmid
, SΛ

α�+1
and SΛ

β�+1
. Finally, if 1 ≤ i < �,

we have that ΔΛ
αi

(resp. ΔΛ
βi

) have a socle filtration with subquotients
SΛ
αi
, SΛ

αi+1
, SΛ

β2�−i
and SΛ

β2�−i+1
(resp. SΛ

βi
, SΛ

βi+1
, SΛ

α2�−i
and SΛ

α2�−i+1
).

(d) We have dim(Hom(ΔΛ
γ ,ΔΛ

α)) = 1 if SΛ
γ appears as a subquotient in fil-

tration of ΔΛ
α and dim(Hom(ΔΛ

β ,ΔΛ
α)) = 0 otherwise as determined in

(c).
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Proof. Since Λ0 is unimodular and X is integral, i.e. Λ ⊂ WZ, (a) follows from
Remark 4.2 of [7]. To determine the sign vector α of each chamber, we first notice
that ξ is maximized at one of the vertices. The vertex is formed by the intersection
of 2�− 2 hyperplanes in the arrangement (see Table 5). The corresponding 2�− 2
coordinates of α are derived from the decomposition of ξ in terms of the normal
vectors to the 2� − 2 hyperplanes (in Table 4 the direction of each normal vector
ηi is chosen so that the corresponding coordinate xi increases along ηi). There is a
unique way to choose the polyhedral cone Cα so that the dot product of any vector
inside the cone with ξ is negative. The remaining two coordinates are determined
by the coordinates of the vertex itself (see Tables 4 and 5).

We proceed with verifying the assertions in (c) and (d). The appearance of SΛ
γ

in the composition series of �Λ
α is equivalent to the containment Pγ ⊂ Cα (see

Proposition 4.15 in [7]). This, in turn, means that the 2� − 2 coordinates of the
sign vectors γ and α corresponding to the defining hyperplanes of aα coincide (here
aα is the point of maximum of ξ on the chamber Pα). The result follows from the
explicit description provided in Table 5. �

Proposition 4.16. If λ̃ ∈ Z<0 + 3
2 − �, we have Oξ(Sλ(2, �)) =

�−1⊕
i=1

(O{αi,β2�−i} ⊕

O{βi,α2�−i}) ⊕Oαmid
. Each block of the form O{a,b} is equivalent to the principal

block O0 in the BGG category O for sl2. In case λ̃ �∈ Z
2 , the category Oξ(Sλ(2, �))

is semisimple.

Proof. According to the general result on block decompositions of hypertoric cat-
egories O (see (12)), it is sufficient to notice that the partition of points aγ corre-
sponding to sign vectors γ, according to Λ0-orbits in which they lie, is the same
as for corresponding sign vectors in the proposed block decompositions (see Table
5). �

Example 4.17. We illustrate the results for � = 2 (see also Figure 3). In case λ̃ ∈ Z

we have Pλ,ξ = {1 = + − −−, 2 = − + −−, 3 = − − −−, 4 = − − − + and 5 =
−− +−}. The standards in Oν(Sλ(2, 2)) are filtered as shown in Table 3. In case

Table 3. Multiplicities of simples in standards for � = 2

Δ1 Δ2 Δ3 Δ4 Δ5
S1 S2 S3 S4 S5
S3 S3 S4
S5 S4 S5

λ̃ ∈ Z + 1
2 , we have Oξ(Sλ(2, 2)) = O{1,5} ⊕ O{2,4} ⊕ O3. Finally, if λ̃ �∈ Z

2 , the

category Oξ(Sλ(2, 2)) =
5⊕

i=1
Oi is semisimple(see Figures 4 and 5).

5. Harish-Chandra bimodules, ideals and localization theorems

In this section we recall the definition of Harish-Chandra bimodules and the
restriction functor between the bimodules on the variety and the slice. We show
how using this functor allows to obtain results on two-sided ideals and abelian
localization.
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Table 4. Collection of hyperplanes and normal vectors

Hyperplane hi = 0 ∩ Vλ Normal vector

h1 = 0
2�−3∑
i=1

ui = 0 η1 = (1, . . . , 1, 0)

h2 = 0 u1 = 0 η2 = (−1, 0, . . . , 0)
h3 = 0 u2 = 0 η3 = (0,−1, 0 . . . , 0)
. . . . . . . . .

h2�−3 = 0 u2�−4 = 0 η2�−3 = (0, . . . , 0,−1, 0, 0)
h2�−2 = 0 u2�−3 + u2�−2 = 0 η2�−2 = (0, . . . , 0,−1,−1)
h2�−1 = 0 u2�−2 = −a η2�−1 = (0, . . . , 0, 1)
h2� = 0 u2�−2 = a η2� = (0, . . . , 0,−1)

Table 5. Sign vectors, walls of chambers and points of maximum
of ξ

Sign vector γ ∈ PΛ,ξ Coordinates of aγ in W Hyperplanes H, s.t. aα �∈ H
α1 (λ, 0, . . . , 0,−2λ, 0) h1 = 0, h2�−1 = 0
β1 (0, 0, . . . , 0, λ, 0,−2λ) h2�−2 = 0, h2� = 0
. . . . . . . . .
αmid (0, 0, . . . , 0,−λ,−λ) h2�−1 = 0, h2� = 0
. . . . . . . . .

α2�−1 (0, . . . , 0, λ,−2λ, 0) h2�−2 = 0, h2�−1 = 0
β2�−1 (λ, 0, . . . , 0,−2λ) h1 = 0, h2� = 0

α5 β5

α4 β4

αmid

α2 β2

α1 β1

Figure 4. Homs between standards in Oν(Sλ(2, 3)) for λ ∈ −2 +
Z<0 ∪ Z>0 + 1

Definition 5.1. Let A,A′ be two quantizations of the same Poisson algebra A. An
A -A′-bimodule B is called Harish-Chandra (HC) provided there exists an A -A′-
bimodule filtration on B, s.t. the induced left and right actions of A on gr(B)
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α5 β5

α4 β4

αmid

α2 β2

α1 β1

Figure 5. Homs between standards in Oν(Sλ(2, 3)) for λ ∈ −5
2 +

Z<0 ∪ Z>0 + 3
2

coincide and gr(B) is a finitely generated A-module. Such filtrations will be referred
to as good. The category of Harish-Chandra A -A′-bimodules will be denoted by
HC(A -A′) (with morphisms being bimodule homomorphisms).

By the associated variety of a HC-bimodule B (to be denoted by V (B)) we
understand the support supp(gr(B)) ⊂ Spec(A) of the coherent sheaf gr(B), where
the associated graded is taken with respect to a good filtration. It is straightforward
to observe that gr(B) is a Poisson A-module, hence V (B) is a union of finitely many
symplectic leaves (assuming Spec(A) is such).

Pick a point x ∈ M(2, �) on a symplectic leaf L. Then for the slice SLx at x we
have a restriction functor (see Section 3.4 in [5])

Res†,x : HC(Aλ(2, �) -Aλ′(2, �)) → HC(SLx,λ̃ -SLx,λ̃′).

Proposition 5.2. The following properties of functor Res†,x were established in
Section 3.4 of [5]:

(1) Res†,x is exact and intertwines tensor products.
(2) The variety V (Res†,x(B)) is uniquely characterized by V (Res†,x(B)) ×

(L)∧x = V (B)∧x , where L is the symplectic leaf through x (see Lemma
3.9 in [5] and Lemma 3.5 in [22]).

Theorem 5.3. If λ ∈ (−∞; 1− �)∪ (�− 2; +∞) is not an integer or half-integer,
then the algebra Aλ(2, �) has no proper two-sided ideals.

Proof. Assume that there is a nontrivial proper two-sided ideal I in Aλ(2, �). Then
pick a point x in an open symplectic leaf Lx inside V (Aλ(2, �)/I), so Res†,x(I) is
an ideal in the algebra SLx,λ̃ (notice that Res†,x(Aλ(2, �)) = SLx,λ̃ due to Property
(3.11) in [5]). As Res†,x(I) is supported at x, due to (2) in Proposition 5.2 and I
is finitely generated, we conclude that Res†,x(I) has finite codimension in SLx,λ̃.
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Since for λ as in the statement of the theorem there are no finite dimensional repre-
sentations neither in the category Sλ-mod nor in the category of finitely generated
modules over the corresponding quantization of the 2-dimensional slice, the type
A1 Kleinian singularity C2/Z2 (see Remark 3.2), the argument is concluded by
contradiction. �

Similarly, we prove the following.

Theorem 5.4. Abelian localization holds for (λ, θ) with θ < 0 and λ < −� or
θ > 0 and λ > �− 1.

Proof. The argument is completely analogous to the one in the proof of Lemma
5.3 in [20], which can be briefly summarized as follows. Define an Aλ+(m+1)χ -Aχ-
bimodule Aλ+mχ,χ(2, �) := (D(R)/[D(R){Φ(x) − (λ + mχ)(x), x ∈ g}])G,χ, the
abelian localization holds for λ if and only if the natural homomorphisms for m � 0
and χ = det

Aλ+(m+1)χ,−χ(2, �) ⊗Aλ+(m+1)χ
Aλ+mχ,χ(2, �) → Aλ+mχ(2, �),

Aλ+mχ,χ(2, �) ⊗Aλ+mχ
Aλ+(m+1)χ,−χ(2, �) → Aλ+(m+1)χ(2, �)

(13)

are isomorphisms. Assuming that this is not the case, there must be a nontrivial
module M in the kernel or cokernel of the first or the second map. Then the support
of M must be L, the closure of a symplectic leaf L. Applying the restriction functor
Res†,x to (13) (and using that it intertwines tensor products, see Proposition 5.2)
with x ∈ L, we again get natural homomorphisms. Furthermore, since the order
on the leaves is linear and L �= o (otherwise M would be of finite dimension, which
is impossible due to Corollary 2.22), we can pick x to be on the 2�-dimensional
leaf (the one with number 3 in Table 1). Since the slice SLx is the hypertoric
variety SLp and abelian localization holds for the algebra Sλ(2, �) for λ < −�
(see Remark 4.14), the restricted homomorphisms must be isomorphisms. As the
module Res†,x(M) is nonzero, we obtain a contradiction.

The assertion for θ > 0 and λ > �− 1 follows from the isomorphism Aλ(n, �) ∼=
A−λ−1(n, �) (see Lemma 2.6). �

Corollary 5.5. If λ ∈ (−∞;−�)∪ (�−1; +∞), then the algebra Aλ(2, �) has finite
homological dimension.

Proof. Theorem 1.1 of [23] asserts that the derived localization holds for λ if and
only if Aλ(2, �) is of finite homological dimension. �

6. Structure of the category Oν(Aλ(2, �))

The main goal of the present chapter is to present a proof of Theorem 6.15 and
Corollary 6.16, which provide a complete description of homomorphisms between
standard objects in Oν(Aλ(2, �)) and multiplicities of simple objects in the standard
ones. In order to accomplish this task we make an extensive use of methods and
results introduced in [8] and [21]. A brief overview of these techniques will be given
in Sections 6.1 through 6.3, after which the chapter concludes with the proof of
Theorem 6.15.



QUIVER VARIETIES FOR BOUQUET GRAPHS: CATEGORY O 461

6.1. Parabolic induction functor. Let ρ : X → X0 be a conical symplectic
resolution equipped with a Hamiltonian action of a torus T . Following Section 5.5
of [21], introduce a pre-order ≺λ on Hom(C∗, T ), the one-parameter subgroups of
T , via ν′ ≺λ ν, if

• Aλ(A>0,ν′

λ + (Aν′

λ )>0,ν) = AλA>0,ν
λ ;

• the natural action of ν′(C∗) on Cν(Aλ) is trivial.
The following result was established in [21] (see Lemma 5.8 therein).

Lemma 6.1. Consider two elements ν, ν′ ∈ Hom(C∗, T ), s.t. ν′ ≺λ ν. Then
Cν(Aλ) = Cν(Cν′(Aλ)). Furthermore, there is an isomorphism of functors �ν =
�ν′ ◦�, where �ν′ : Cν′(Aλ) -mod → Aλ -mod,� : Cν(Aλ) -mod → Cν′(Aλ) -mod
and �ν is the standardization functor given by Definition 2.8.

Proposition 6.2. Let X = Mθ(2, �) and consider the one-parameter subgroups
ν = (td1 , td2 , . . . , td�) with d1 � d2 > d3 > . . . > d� > 0 and ν̃ = (td, 1, . . . , 1) with
d > 0. Then we have ν̃ ≺λ ν.

Proof. We are going to find the sufficient condition on �-tuples of weights
(d1, d2, . . . , d�), so that for the corresponding one-parameter subgroup ν = (td1 , td2 ,
. . . , td�) the following containments hold

(14) Aλ(2, �)>0,ν̃ ⊆ Aλ(2, �)>0,ν .

For verifying the reverse containment it suffices to check that

(15) Aλ(2, �)>0,ν ⊆ Aλ(2, �)>0,ν̃ + (Aλ(2, �)ν̃(C∗))>0,ν and

(16) Aλ(2, �)≥0,ν ⊆ Aλ(2, �)>0,ν̃ + (Aλ(2, �)ν̃(C∗))≥0,ν .

Clearly, for such ν the equality

(17) Aλ(2, �)(Aλ(2, �)>0,ν̃ + (Aλ(2, �)ν̃(C∗))>0,ν) = Aλ(2, �)Aλ(2, �)>0,ν

holds. Recall that Cν(Afλ(2, �))=Aλ(2, �)≥0,ν/
(
Aλ(2, �)≥0,ν∩Aλ(2, �)Aλ(2, �)>0,ν)

and the latter is equal to

Aλ(2, �)≥0,ν/
(
Aλ(2, �)≥0,ν ∩ Aλ(2, �)(Aλ(2, �)>0,ν̃ + (Aλ(2, �)ν̃(C∗))>0,ν)

)
due to equality (17), where the action of ν̃(C∗) is trivial thanks to (16).

It remains to construct the tuples of numbers (d1, . . . , d�), s.t. the containments
(14)-(16) hold. The algebra of semiinvariants C[M(2, �)]≥0,ν̃ = gr(Aλ(2, �)≥0,ν̃) is
finitely generated (see Lemma 3.1.2 in [15]). Thus we can choose finitely many T -
semiinvariant generators f1, . . . , fs of the ideal C[M(2, �)]>0,ν̃ with fi∈C[M(2, �)]χi

a T -semiinvariant of weight χi = (ai1, . . . , ai�). Let f̃1, . . . , f̃s denote the lifts of
the generators to Aλ(2, �)≥0,ν̃ . These lifts generate Aλ(2, �)>0,ν̃ . Fix the collection
of numbers d2 > d3 > . . . > d� > 0, denote ai := minj{aji} and pick ν′ =
(td′

1 , td2 , . . . , td�) with

(18) d′1 > max(d2,−
∑

1<i≤�,ai<0

aidi).

We see that f̃i being in A>0,ν̃
λ imposes ai1 > 0 for all i ∈ {1, . . . , s}, hence, f̃i ∈ A>0,ν

λ

due to (18), so the containment (14) holds for ν′ in place of ν.
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Similarly, let g1, . . . , gk be the T -semiinvariant generators of the algebra
C[M(2, �)]≥0,ν with gj ∈ C[M(2, �)]θj a T -semiinvariant of weight θj = (bj1, . . . , b

j
�).

Introduce bi := minj{bji} and pick ν′′ = (td′′
1 , td2 , . . . , td�) with

(19) d′′1 > max(d2,−
∑

1<i≤�,bi<0

bidi).

Notice that due to inequality (19) for all g̃j (lifts of gj ’s, which generate A≥0,ν
λ ) g̃j ∈

Aλ(2, �)>0,ν implies g̃j ∈ Aλ(2, �)>0,ν̃ + (Aλ(2, �)ν̃(C∗))>0,ν , while g̃j ∈ Aλ(2, �)≥0,ν

implies g̃j ∈ Aλ(2, �)>0,ν̃ + (Aλ(2, �)ν̃(C∗))≥0,ν and, therefore, containments (15)
and (16) hold for ν′′ in place of ν.

Finally, we put d1 > max(d′1, d′′1) so that the conditions (14)-(16) all hold true
simultaneously for ν = (td1 , td2 , . . . , td�). �

Remark 6.3. Consider the pair of one-parameter subgroups ν = (td1 , td2 , . . . , td�)
with d1 > d2 > d3 > . . . > d�−1 � d� > 0 and ν0 = (td1 , td2 , . . . , td�−1 , 1). Similarly
to the argument presented in the proof of Proposition 6.2, one shows that the
containments (14)-(16) hold and hence ν0 ≺λ ν.

6.2. Restriction functor. Following [3] and [20], we define the restriction functor
Res : Oν(Aλ(2, �)) → Oν(Sλ(2, �)). Set Aλ(2, �)∧p := C[R//G]∧p ⊗C[R]G Aλ(2, �)
and Sλ(2, �)∧0 := C[C2�//K]Λ0 ⊗C[C2�]K Sλ(2, �), then analogously to Lemma 6.4
in [20] there is a G-equivariant isomorphism Θ : Aλ(2, �)∧p → Sλ(2, �)∧0 of filtered
algebras. It is the quantization of the Nakajima isomorphism of formal neigh-
borhoods (see Section 5.4 of [5] for details). Let ν0 = (td1 , td2 , . . . , td�−1 , 1) with
d1 > d2 > . . . > d�−1 > 0 be a one-parameter subgroup. Consider the category
Oν(Sλ(2, �))∧0 consisting of all finitely generated Sλ(2, �)∧0-modules such that

(1) h0 = deν0 (the differential of ν0 at e = (1, . . . , 1)) acts locally finitely with
eigenvalues bounded from above;

(2) the generalized h0-eigenspaces are finitely generated over C[Sp]∧0 .
We get an exact functor

Oν(Sλ(2, �)) → Oν(Sλ(2, �))∧0 , N �→ C[C2�//K]∧0 ⊗C[C2�]K N.

Let h be the image of 1 under the quantum comoment map for t �→ ν(t)ν0(t)−1.
For N ∈ Sλ(2, �)∧0 -mod denote by Nfin the subspace of h-finite elements. The
statement and proof of Lemma 6.4 is analogous to Lemma 6.5 in [20].

Lemma 6.4. The functor •∧0 is a category equivalence. A quasi-inverse functor
is given by N �→ Nfin.

Finally, define

Res(N) := [Θ∗(C[R//G]∧p ⊗C[R]G N)]fin.

Notice that the functor Res is exact (by construction). The following isomorphism
of functors will be of crucial importance. It was established in Lemma 6.7 of [20].

(20) Res ◦ �ν0
∼= �ν0 ◦Res,

where Res is the functor Oν(Cν0(Aλ(2, �))) → Oν(Cν0(Sλ(2, �))) defined analo-
gously to Res.
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Remark 6.5. Let λ < 1−�. As SLν0
p consists of 4�−3 points and abelian localization

holds for λ (Remark 4.14), we have Cν0(Sλ(2, �)) ∼= C4�−3. The variety of fixed
points of Mθ(2, �)ν0 is T ∗CP1 together with the disjoint union of 2(� − 1) copies
of C2 (see Remark 2.18). Arguing analogously to the proofs of Theorem 2.17
and Proposition 2.19 one checks that Cν0(Aλ(2, �)) = Aλ(2, 1) ⊕ D(C2)⊕2�−2 �
Dλ(CP1) ⊕D(C2)⊕2�−2.

Corollary 6.6. Let λ ∈ Z<0 + 1 − � ∪ Z>0 + � − 2, then the images of standard
and simple objects in Oν(Cν0(Aλ(2, �))) are given by

Res(�i) = �αi
⊕�βi

, i > � + 1,
Res(�i) = �αi+1 ⊕�βi+1 , i < �,

Res(�j) = �αmid
, j ∈ {�, � + 1},

Res(Si) = Sαi
⊕ Sβi

, i > � + 1,
Res(Si) = Sαi+1 ⊕ Sβi+1 , i < �,

Res(Sj) = Sαmid
, j ∈ {�, � + 1}.

In case λ ∈ Z<0 + 1
2 − � ∪ Z>0 + �− 3

2 , the only difference is that Res(S�) = 0.

Proof. We show that the analogue of the assertion of the corollary holds for Res in
place of Res, then the result is a direct consequence of Lemma 6.1 and equality (20)
(as ν0 ≺λ ν due to Remark 6.3). The standard objects of Oν(Cν0(Aλ(2, �))) are
�(Ns), where Ns is the one-dimensional irreducible representation of Cν(Aλ(2, �))
� C2� with the action given by (a1, . . . , a2�) · w := asw for (a1, . . . , a2�) ∈ C2� and
0 �= w ∈ Ns. First, let us consider i �∈ {�, � + 1}, then

Res(�(Ni)) = Res(Cν0(Aλ(2, �))/I>0,ν ⊗C2� Ni)

=Res((Dλ(CP1) ⊕D(C2)⊕2�−2)/I>0,ν ⊗C2� Ni) = Res(D(C2
s)/Ĩ>0,ν)

=Res(C[xi, yi])
∼−→
ϕ

Mαk
⊕Mβk

,

where the map ϕ is the evaluation at points (1, 0) and (−1, 0) ∈ C2
s, the two points

on the sth copy of C2 which are the ν0(C∗)-fixed points with indices αk and βk on the
slice (see Remark 3.4 for details). Here D(C2

s) stands for the algebra of differential
operators on the sth copy of C2, while I>0,ν := Cν0(Aλ(2, �))Cν0(Aλ(2, �))>0,ν ,
Ĩ>0,ν = I>0,ν ∩ Di(C2) and Mαk

,Mβk
are the one-dimensional irreducibles in

Oν(Cν0(Sλ(2, �))) with k as given in the statement of the corollary. In case i ∈
{�, � + 1}, it is analogous to check that Res(�(Ni)) = Mαmid

. This completes
verification of the assertion on the images of standards.

Next we verify the assertion on the images of simples. Let M ∈Oν(Cν0(Aλ(2, �))),
we write Lν0(M) for the maximal quotient of �ν0(M) that does not intersect the
highest weight subspace. Analogously to Corollary 6.8 in [20], one checks that
Res(Lν0(M)) = Lν0(Res(M)). Therefore, if λ �∈ Z<0 + 1

2 − � ∪ Z>0 + � − 3
2 ,

then each Lν0(�(Ni)) is irreducible, so Lν(�(Ni)) = Lν0(�(Ni)) and we have
Res(Si) = Res(Lν(�(Ni))) = Res(Lν0(�(Ni))) = Lν0(Mαk

⊕Mβk
) = Sαk

⊕ Sβk

if i �∈ {�, � + 1} and Res(S�) = Res(S�+1) = Sαmid
.
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Notice that in case λ ∈ Z<0+ 1
2 −�∪Z>0 +�− 3

2 , we have �(N�+1) ⊂ �(N�) (see
Remark 6.5) and, hence, S� �= Lν0(�(N�)), instead, S� = Lν0(�(N�)/�(N�+1)),
while Res(�(N�)/�(N�+1)) is already equal to zero. �

Corollary 6.7. The restriction functor Res maps socles of standard objects to
socles of their images.

Proof. We start by noticing that Corollary 6.6 implies that Res maps simple objects
to semisimple, hence, the containment Res(Soc(�νi

)) ⊆ Soc(Res(�νi
)) follows.

The reverse inclusion is a consequence of part (c), Proposition 4.15. Namely, it
provides an explicit description of socles of standards in the target category, i.e.

Soc(�αk
) = Sαk+1 , Soc(�βk

) = Sβk+1 for � < k < 2�− 2,
Soc(�αmid

) = Sα�+1 ⊕ Sβ�+1 ,

Soc(�αk
) = Sβ2�−i

, Soc(�βk
) = Sα2�−i

for 1 ≤ k < �.

Combining the above with the statement of Corollary 6.6, allows to conclude

0 � Res(Soc(�k)) ⊆ Res(Sk+1) = Sαk+1 ⊕ Sβk+1 for � < k ≤ 2�,
0 � Res(Soc(��)) = Res(Soc(��+1)) ⊆ Res(S�+2) = Sα�+1 ⊕ Sβ�+1 ,

0 � Res(Soc(�k)) ⊆ Res(Sk+1) = Sβ2�−k
⊕ Sα2�−k

for 1 ≤ k < �,

so the nonstrict containments in every row must be equalities and the result follows.
�

Corollary 6.8. The socles of standards in Oν(Aλ(2, �)) are as follows:
(1) if λ ∈ Z<0 + 1 − � ∪ Z>0 + �− 2

Soc(�k) = Sk+1 for � + 1 < k < 2�,
Soc(��+1) = Soc(��) = S�+2,

Soc(�k) = S2�−k+1, for 1 ≤ k < �.

(2) if λ ∈ Z<0 + 1
2 − � ∪ Z>0 + �− 3

2

Soc(�k) = �k for � < k ≤ 2�,
Soc(�k) = S2�−k+1, for 1 ≤ k ≤ �.

(3) otherwise, if λ ∈ (−∞; 1 − �) ∪ (� − 2; +∞) is neither an integer nor a
half-integer

Soc(�k) = �k for 1 ≤ k ≤ 2�.

Remark 6.9. Since Res maps simple objects to semisimple, the containment

Res(Soc(M)) ⊆ Soc(Res(M))

is true for any M ∈ Oν(Cν0(Aλ(2, �))).

Proposition 6.10. Let λ ∈ Z<0 + 1 − � ∪ Z>0 + � − 2, then the support of the
simple module S1 has dimension 2�, supports of simple modules S2, . . . , S�+1
have dimension 4�−3, supports of simple modules S�+2, . . . , S2� are of dimension
4�− 2.
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Proof. By Theorem 1.2 in [19] all irreducible components of Supp(Si) have the
same dimension (the arithmetic fundamental groups are finite due to the general
result of [29]). If Res(Si) �= 0, there exists an irreducible component of Supp(Si),
containing the point p and, therefore, the symplectic leaf through it. Hence, codim
Supp(Si) in M(2, �) is equal to codim Supp(Res(Si)) in SLp. It remains to compute
the dimensions of Supp(Res(Sα))’s. It follows from Proposition 5.5 in [7] that the
variety Supp(Sα) is determined by the sign vector α corresponding to Sα. Namely,
Supp(Sα) is cut out in SLp by the equations

xs = 0 if αi(s) = − and ys = 0 if α(s) = + for s ∈ {1, . . . , 2�− 2},

ik = 0 if α(k) = − and jk = 0 if α(k) = + for k ∈ {2�− 1, 2�}.
The sign vectors for simple modules were provided in Proposition 4.15.

If α = − . . .−
a︷ ︸︸ ︷

+ . . .+︸ ︷︷ ︸
�−1

− . . .−−−︸ ︷︷ ︸
�−1

−− the coordinate ring C[Supp(Sα))] is gener-

ated by uij := xiyj and vjs := yjys for i ∈ {�−a, . . . , �−1}, j ∈ {1, . . . , �−a−1}, s ∈
{�, . . . , 2�− 2} subject to relations:

uijumn = umjuin,

uijvkl = uikvjl,

vijvkl = vkjvil.

Therefore, dim Supp(Sα) = � − a − 1 + � − 1 + a − 1 = 2� − 3. The case

α = − . . .−−−︸ ︷︷ ︸
�−1

a︷ ︸︸ ︷
+ . . .+ − . . .−︸ ︷︷ ︸

�−1

−− is completely analogous.

If α =
a︷ ︸︸ ︷

+ . . .+ − . . .−︸ ︷︷ ︸
�−1

− . . .−−−︸ ︷︷ ︸
�−1

+ −, the coordinate ring C[supp(Sα)] is gener-

ated by polynomials in uij , vklws = i1ysj2 with i, j, s, uij and vjs as above. It is di-

rect to check that dim Supp(Sα) = 2�−2. The case α = − . . .−−−︸ ︷︷ ︸
�−1

a︷ ︸︸ ︷
+ . . .+ − . . .−︸ ︷︷ ︸

�−1

−

+ is analogous.
Finally, if α = + . . . + ++︸ ︷︷ ︸

�−1

− . . .−−−︸ ︷︷ ︸
�−1

− − or − . . .−−−︸ ︷︷ ︸
�−1

+ . . . + ++︸ ︷︷ ︸
�−1

− −, then

the coordinate ring

C[supp(Sα)] = C[x1, . . . , x�−1, y�, . . . , y2�−2, j1, j2]C
∗×C∗

= C[y1, . . . , y�−1, x�, . . . , x2�−2, , j1, j2]C
∗×C∗

= C,

so, Supp(Sα) is a point. �

Example 6.11. If � = 2, then dim Supp(S1) = 4, dim Supp(S2) =dim Supp(S3) =
5 and dim Supp(S4) = 6.

6.3. Cross-walling functors and W -action. It was checked in Section 5 of [8]
that the natural functor ιν : Db(Oν(Aλ(2, �))) ↪→ Db(Coh(Aθ

λ(2, �))) is a full em-
bedding. As shown in Proposition 8.7 in [8], the functor ιν admits both left and
right adjoints to be denoted by ι!ν and ι∗ν respectively.
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Definition 6.12. Let ν, ν′ be generic one-parameter subgroups. The cross-walling
functor is given by

CWν→ν′ := ι!ν′ ◦ ιν .
The functor CWν→ν′ has a right adjoint CW

∗
ν→ν′ given by ιν ◦ ι∗ν′ .

We need to recall one more concept prior to formulating the property of cross-
walling functors relevant for the purposes of the exposition. Let C1, C2 be two
highest weight categories. Consider the full subcategories C�

1 ⊂ C1 and C∇
2 ⊂ C2

of standardly and costandardly filtered objects. We say that C2 is Ringel dual to
C1 if there exists an equivalence C�

1
∼−→ C∇

2 of exact categories. This equivalence
is known to extend to a derived equivalence R : Db(C1)

∼−→ Db(C2) to be called a
Ringel duality functor.

The following result is obtained via a direct application of part 2 of Proposition
7.4 in [21].

Proposition 6.13. The functor CWν→−ν [2− 3�] is a Ringel duality functor that
maps �ν(p) to ∇−ν(p) for all p ∈ Mθ(2, �)T .

Let W = NG(T )/T ⊂ Sp2�(C) be the Weyl group. The action of W on
C[Mθ(n, �)] lifts to an action on the quantization Aλ(2, �). This gives rise to the
functor Φw : Oν′(Aλ(2, �)) → Oν(Aλ(2, �)), where w · ν = ν′ (here we consider the
action of W via conjugation, i.e. w · ν = wνw−1). The functor Φw maps an object
N to itself with the twisted action of Aλ(2, �). More precisely,

a · n := (wa)n,

with the ordinary action of Aλ(2, �) on the r.h.s.
We conclude with an important result concerning the faithfulness of the functor

Res.

Proposition 6.14. The restriction of the functor Res to Oν(Aλ(2, �))� is faithful.

Proof. The functor Res is exact (see Section 6.2 of [21]). Since it also preserves
socles of the objects in Oν(Aλ(2, �))� (see Corollary 6.7), it is sufficient that Res
does not kill socles of standard objects to conclude that the functor is faithful (the
socle of the image of a nontrivial homomorphism in Oν(Aλ(2, �))� is nonzero). As
established in Corollary 6.6 this is the case for λ �∈ Z+ 1

2 , since Res(Si) �= 0 for all
i.

In case λ ∈ Z+ 1
2 , we have Res(S�) = 0 (here S� is the unique simple annihilated

by Res as shown in Corollary 6.6), however, S� does not lie in the socle of any
standard object in Oν(Aλ(2, �)) (see Corollary 6.6). �

6.4. Main theorem. The results obtained above allow to describe the Hom spaces
between standards in Oν(Aλ(2, �))�(see Figures 6 and 7 for example with � = 3).

Theorem 6.15. Let λ ∈ Z<0 + 1 − � ∪ Z>0 + �− 2 and ν = (td1 , td2 , . . . , td�) with
d1 � d2 � d3 � . . . � d� > 0. The nontrivial Homs in Oν(Aλ(2, �))� are

(1) Hom(�i,�i−1), where i ∈ {2, . . . , 2�}, i �= � + 1;
(2) Hom(��+2,��), Hom(��+1,��−1);
(3) Hom(�2�−i,�i+1) with i ∈ {0, . . . , �− 2}.
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Let λ ∈ Z<0 + 1
2 − � ∪ Z>0 + � − 3

2 . The nontrivial Homs between standards in
Oν(Aλ(2, �))� are Hom(�2�−i,�i+1) with i ∈ {0, . . . , �− 1}.

All the Hom spaces are one-dimensional.
Finally, if λ ∈ (−∞; 1 − �) ∪ (� − 2; +∞) is none of the above, the category

Oν(Aλ(2, �)) is semisimple.

Proof. First consider λ ∈ Z<0+1−�∪Z>0+�−2. For convenience of the exposition
the proof will be broken down into several steps.

Step 1. Notice that Soc(�2�−1) = Soc(�2) = Soc(�1) = �2� (Corollary 6.8).
Hence, Hom(�2�,�2�−1), Hom(�2�,�2) and Hom(�2�,�1) do not vanish.

Step 2. Let w0 ∈ W be the longest element and consider the functor Fw0 :=
Φw0 ◦ CWν→−ν . Notice that w0 · ν = −ν and the order on the T -fixed points
corresponding to −ν is in reverse to the one associated with ν. Thus the functor Fw0

is an autoequivalence on Oν(Aλ(2, �))� with Fw0(�i) = �2�−i+1 (see Proposition
6.13). Hence, we see that Hom(�2�−1,�1) = Hom(�2�,�2) = 0 for � ≥ 3 since
Soc(�2) = S2�−1 does not contain �2� (see Corollary 6.8). On the other hand if
� = 2, then Soc(�2) = �4, so Hom(�3,�1) does not vanish. Similarly, one shows
that Hom(�2,�1) = Hom(�2�,�2�−1) does not vanish either.

Step 3. We complete the proof for integral λ arguing by induction on the number
of loops � with � = 2 being the base. Assume the assertion holds for the variety
Mθ(2, �) and take ν̃ = (td, 1, . . . , 1) with d > 0. Notice that Mθ(2, �) ⊂ Mθ(2, � +
1)ν̃ as a component. Since ν̃ ≺λ ν (see Proposition 6.2), Lemma 6.1 combined
with the assumption that induction hypothesis holds in case of � loops assures the
existence of required homomorphisms between �i’s with indices i ∈ {2, . . . , 2�} in
Oν(Aλ(2, � + 1)). The remaining Homs between standard objects (not appearing
in Steps 1, 2) vanish, since so do the Homs between their images in the category
Oν(Sλ(2, �)) and the functor Res is faithful (see Proposition 6.14).

Step 4. In case λ ∈ Z<0 + 1
2 − � ∪ Z>0 + � − 3

2 using that Soc(�i+1) with i ∈
{0, . . . , � − 1} is S2�−i (see Corollary 6.8), we establish the nonvanishing of Hom
spaces in the statement of the theorem. Again the remaining Homs vanish since
so do their images in the category Oν(Sλ(2, �)) and the functor Res is faithful on
standardly filtered objects (see Proposition 6.14).

Step 5. Finally, if λ ∈ (−∞; 1 − �) ∪ (� − 2; +∞) is neither an integer nor a half-
integer, Corollary 6.8 asserts that all standards �i in Oν(Aλ(2, �)) are irreducible.
Since for λ as above abelian localization holds (Theorem 5.4), the classes of standard
and costandard objects in K0(Oν(Aλ(2, �))) coincide (Corollary 6.4 in [8]), so we
have that ∇i’s are simple as well. In particular, every simple lies in the head
of a costandard object. The last condition is equivalent to Oν(Aλ(2, �)) being
semisimple (see Lemma 4.2 in [20]). �
Corollary 6.16. Let λ ∈ Z<0 + 1 − � ∪ Z>0 + �− 2. Then

(1) �2� = S2�;
(2) �i with �+1 < i < 2� has a socle filtration with subquotients Si and Si+1;
(3) �i with i ∈ {�, �+ 1} has a socle filtration with subquotients Si and S�+2;
(4) ��−1 has a socle filtration with subquotients S�−1, S�, S�+1 and S�+2;
(5) Finally, �i with i < �− 1 has a socle filtration with subquotients Si, Si+1

and S2�+1−i;
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Δ6 Δ5 Δ4 Δ3 Δ2 Δ1

Figure 6. Homs between standard objects in Oν(Aλ(2, �)) for
� = 3 and λ ∈ −2 + Z<0 ∪ Z>0 + 1

Δ6 Δ5 Δ4 Δ3 Δ2 Δ1

Figure 7. Homs between standard objects in Oν(Aλ(2, �)) for
� = 3 and λ ∈ −5

2 + Z<0 ∪ Z>0 + 3
2

Let λ ∈ Z<0 + 1
2 − � ∪ Z>0 + �− 3

2 . Then
(1) �i = Si for i > �;
(2) �i with i ≤ � has a socle filtration with subquotients Si and S2�−i+1.

The multiplicity of each subquotient is equal to 1(See Table 6 for an example).

Proof. We check the assertion for � + 1 < i < 2�, the remaining cases are estab-
lished analogously. Let 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mj = �i be a socle filtration.
Notice that M1 = Soc(�i), so Res(M1) = Soc(�αi

⊕�βi
) = Sαi+1 ⊕ Sβi+1 . Next,

Res(M2/M1) = Res(Soc(�i/M1)) ⊆ Soc((�αi
⊕�βi

)/(Sαi+1 ⊕ Sβi+1))) (see Re-
mark 6.9), but the latter is equal to Res(Si) (see (c) of Proposition 4.15), hence,
the nonstrict containment above must be an equality, so j = 2 and M2 = �i,
concluding verification of the claim. �

Table 6. Multiplicities of simples in standards in Oν(Aλ(2, �)) for
� = 2 and λ ∈ Z<0 − 1 ∪ Z>0

ΔI ΔII ΔIII ΔIV

SI SII SIII SIV

SII SIV SIV

SIII

SIV
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7. Singular parameters

In this Section we will combine the results of McGerty and Nevins from [24]
and [23] to show that certain quantization parameters λ are singular, by which we
understand that the derived localization does not hold. Definition 7.1 is due.

Definition 7.1. Let M be a D(R)-module equipped with a rational action of G.
This action gives rise to the map g → End(M) with x �→ xM . Recall that xR

stands for the image of x under the comoment map g → D(R). Then M is said
to be a (G, λ)-equivariant D(R)-module provided xMm = xRm − λ(x)m for all
x ∈ g,m ∈ M . The category of finitely generated (G, λ)-equivariant D(R) modules
will be denoted by D(R) − modG,λ.

7.1. Exactness of the functor of global sections. We have the functor πλ :
D(R) -modG,λ → Aλ(n, �) -mod of taking G - invariants and the functor πθ

λ :
DR -modG,λ → Aθ

λ(n, �) -mod (the latter category is the category of coherent
Aθ

λ(n, �)-modules) defined by first microlocalizing to the θ - semistable locus and
then taking G - invariants.

Proposition 7.2. The inclusion ker πdet
λ ⊂ ker πλ, where πλ : DR -modG,λ �

Aλ(n, �) -mod and πdet
λ : DR -modG,λ � Adet

λ (n, �) -mod holds for λ, provided
λ /∈ Z≤0

k + (� − 1)(n − k) − 1, k ∈ {1, . . . , n}. We also have ker πdet−1

λ ⊂ ker πλ,
whenever λ /∈ Z≥0

k + (� − 1)(n − k), k ∈ {1, . . . , n}. Moreover, for λ as above the
functor of global sections Γλ is exact.

Example 7.3. In case n = 2, we have ker πdet
λ ⊂ ker πλ if λ /∈ Z≤0

2 − 1 ∪ Z≤0 − �

and ker πdet−1

λ ⊂ ker πλ, if λ /∈ Z≥0
2 ∪ Z≥0 + �− 1.

Proof. First we recall the main results of [24]. Let X be a smooth, connected
quasiprojective complex variety with an action of a connected reductive group G
and λ : G → C∗ be a character. Assume, in addition, X is affine, the moment map
μ : T ∗X → g∗ is flat and the GIT quotient μ−1(0)//χG is smooth. The group G
is equipped with a finite set of one-parameter subgroups of a fixed maximal torus
T ⊂ G, depending on X and λ. These subgroups are known as the Kirwan-Ness
one-parameter subgroups. Suppose that for each Kirwan-Ness subgroup β

λ(β) ∈ shift(β) + I(β) ⊆ shift(β) + Z≥0,

where shift(β) is a numerical shift and I(β) ⊆ Z≥0. Then any λ-twisted, G-
equivariant D-module with unstable singular support is in the kernel of quantum
Hamiltonian reduction and the functor of global sections Γλ is exact.

Now we provide the proof of the second assertion (for θ = det−1), the statement
for θ = det can be either shown analogously or derived from the isomorphism
Aθ

λ(n, �) ∼= A−θ

−λ−1(n, �) (see Lemma 2.6).
The computation is very similar to the one in Section 8 of [24], so we retain

the notations. The multiplicity of each weight ei − ej is � and the weights ei get
substituted by −ei (alternatively, to avoid this substitution, one can use partial
Fourier transform, ‘swapping’ V ∗ with V , see [24] for the details). The Kempf-Ness

subgroups βk correspond to the weights −
k∑

i=1
ei, k ∈ {1, . . . , n}. The shift (in loc.
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cit.) becomes (�− 1)k(n− k) + k
2 and I(β) = Z≥0. Therefore, we need

(−λ− ρ) · βk /∈ Z≥0 + (�− 1)k(n− k) + k

2
k

2
+ kλ /∈ Z≥0 + (�− 1)k(n− k) + k

2
λ /∈ Z≥0

k
+ (�− 1)(n− k), k ∈ {1, . . . , n},

where ρ = 1
2

n∑
i=1

ei. For λ as above, the functor of global sections Γλ : Aθ
λ(n, �) →

Aλ(n, �) is exact (see [24]) and the inclusion ker πθ
λ ⊂ ker πλ holds. �

7.2. Complete form of the localization theorem.
Theorem 7.4. The algebra Aλ(2, �) is not of finite homological dimension for
λ ∈ (−�; �− 1) ∩ Z or λ = −1

2 , i.e. such λ are singular.
Proof. The argument is completely analogous to the one of a similar statement for
Gieseker schemes in [20] (see Corollary 5.2). We give a brief outline. The statement
is verified by contradiction. Assume Aλ(2, �) is of finite homological dimension with
λ as in the statement of the theorem. Then the main result (Theorem 1.1) of [23]
implies that the derived localization functor Db(Aλ -mod) → Db(Aθ

λ -mod) is an
equivalence, restricting to an equivalence Db(Oν(A

θ

λ(2, �))) → Db(Oν(Aλ(2, �))).
Since for our choice of λ the functor Γλ is exact (see Example 7.3), the abelian
equivalence holds for λ. From this one can conclude that the long wall-crossing
functor WC−θ←θ induces an abelian equivalence Oν(Aλ′(2, �)) → Oν(Aλ′′(2, �))
(here λ′ = λ + s with s ∈ Z>0 a sufficiently large integer, so that the category
Oν(Aλ′(2, �)) is a highest weight category and λ′′ − λ′ ∈ Z). Since WC−θ←θ is also
a Ringel duality and for our choice of λ the category Oν(Aλ′(2, �)) is not semisimple
(see Theorem 6.15), we obtain a contradiction with Lemma 4.2 in [20], asserting that
a highest weight category C, where the classes of standard and costandard objects
coincide, is semisimple if and only if for any Ringel duality R : Db(C) → Db(C∨),
we have H0(R(S)) �= 0 for any simple object S ∈ C. �
Proposition 7.5. Arguing completely analogously to the proof of Theorem 5.4,
one shows that abelian localization holds for θ < 0 and λ ∈ (−�; � − 1), λ �∈
Z and λ �= −1

2 .
Proof. We notice that if λ �∈ Z there are no finite dimensional irreducibles neither
in the category Sλ-mod nor in the category of finitely generated modules over the
corresponding quantization of the 2-dimensional slice, the type A1 Kleinian singu-
larity C2/Z/2Z (see Remark 3.2). Since the aforementioned varieties expose the
list of slices (Table 1) we conclude that there are no finite-dimensional irreducibles
over the quantization SLx,λ̃ for any slice SLx.

On the other hand, if the equivalence does not hold, there exists a nontrivial
bimodule M in the kernel or cokernel of one of the maps in (13) (see the proof of
Theorem 5.4) and a point x ∈ M(2, �), s.t. Res†,x(M) �= 0 is finite dimensional.
Hence, we come up with a contradiction. �

Combining Theorems 5.4 and 7.4 with Proposition 7.5, we establish the abelian
localization theorem.
Theorem 7.6. The abelian localization holds for λ �∈ (−�; �− 1)∩Z and λ �= −1

2 .
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Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. Reprint of the 1997 edi-
tion, DOI 10.1007/978-0-8176-4938-8. MR2838836

[11] Harm Derksen and Jerzy Weyman, An introduction to quiver representations, Graduate Stud-
ies in Mathematics, vol. 184, American Mathematical Society, Providence, RI, 2017, DOI
10.1090/gsm/184. MR3727119

[12] Pavel Etingof and Travis Schedler, Poisson traces for symmetric powers of symplectic
varieties, Int. Math. Res. Not. IMRN 12 (2014), 3396–3438, DOI 10.1093/imrn/rnt031.
MR3217666

[13] Pavel Etingof and Travis Schedler, Poisson traces, D-modules, and symplectic resolutions,
Lett. Math. Phys. 108 (2018), no. 3, 633–678, DOI 10.1007/s11005-017-1024-1. MR3765973

[14] Ofer Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981), no. 3,
445–468, DOI 10.2307/2374101. MR618321

[15] Iain G. Gordon and Ivan Losev, On category O for cyclotomic rational Cherednik algebras, J.
Eur. Math. Soc. (JEMS) 16 (2014), no. 5, 1017–1079, DOI 10.4171/JEMS/454. MR3210960

[16] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-
Verlag, New York-Heidelberg, 1977. MR0463157

[17] Ivan Losev, Isomorphisms of quantizations via quantization of resolutions, Adv. Math. 231
(2012), no. 3-4, 1216–1270, DOI 10.1016/j.aim.2012.06.017. MR2964603

[18] I. Losev, Etingof conjecture for quantized quiver varieties II: affine quivers
(2016).arXiv:1405.4998

https://mathscinet.ams.org/mathscinet-getitem?mr=1237825
https://mathscinet.ams.org/mathscinet-getitem?mr=2511190
https://mathscinet.ams.org/mathscinet-getitem?mr=2119140
https://mathscinet.ams.org/mathscinet-getitem?mr=4213772
https://mathscinet.ams.org/mathscinet-getitem?mr=2680198
https://mathscinet.ams.org/mathscinet-getitem?mr=2964613
https://mathscinet.ams.org/mathscinet-getitem?mr=3594665
https://mathscinet.ams.org/mathscinet-getitem?mr=1834739
https://mathscinet.ams.org/mathscinet-getitem?mr=2838836
https://mathscinet.ams.org/mathscinet-getitem?mr=3727119
https://mathscinet.ams.org/mathscinet-getitem?mr=3217666
https://mathscinet.ams.org/mathscinet-getitem?mr=3765973
https://mathscinet.ams.org/mathscinet-getitem?mr=618321
https://mathscinet.ams.org/mathscinet-getitem?mr=3210960
https://mathscinet.ams.org/mathscinet-getitem?mr=0463157
https://mathscinet.ams.org/mathscinet-getitem?mr=2964603
https://arxiv.org/abs/1405.4998


472 BORIS TSVELIKHOVSKIY

[19] Ivan Losev, Bernstein inequality and holonomic modules, Adv. Math. 308 (2017), 941–963,
DOI 10.1016/j.aim.2016.12.033. With an appendix by Losev and Pavel Etingof. MR3600079

[20] Ivan Losev, Representation theory of quantized Gieseker varieties, I, Lie groups, geometry,
and representation theory, Progr. Math., vol. 326, Birkhäuser/Springer, Cham, 2018, pp. 273–
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