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UNIPOTENT REPRESENTATIONS AND MICROLOCALIZATION

LUCAS MASON-BROWN

Abstract. We develop a theory of microlocalization for Harish-Chandra mod-
ules, adapting a construction of Losev [Duke Math. J. 159 (2011), pp. 99–143].
We explore the applications of this theory to unipotent representations of real
reductive groups. For a unipotent representation of a complex group, we de-
duce a formula for the restriction to a maximal compact subgroup, proving an
old conjecture of Vogan [Associated varieities and unipotent representations,
Birkhäuser Boston, Boston, MA, 1991] in a large family of cases.
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1. Introduction

Let GR be the real points of a connected reductive algebraic group. In [1],
Adams, Barbasch, and Vogan, following ideas of Arthur [2],[3], introduced a finite
set of irreducible representations of GR, called special unipotent representations.
We will recall their definition in Section 2.1. These representations are conjectured
to possess an array of distinguishing properties (see [1, Chp 1]). For example:

• They are conjectured to be unitary.
• They are conjectured to appear in spaces of automorphic forms.
• They are conjectured to generate (through various types of induction) all
irreducible unitary representations of G of integral infinitesimal character

Now let KR ⊂ GR be a maximal compact subgroup. Any (nice) irreducible repre-
sentation X of GR decomposes as a KR-representation into irreducible components,
each with finite multiplicity. The general philosophy of unipotent representations
suggests that if X is special unipotent, then these multiplicities should be ‘small’.
In [18, Conj 12.1], Vogan offers a conjectural description of the restriction to KR

of a special unipotent representation (under some additional conditions). A little
more precisely, he conjectures

Received by the editors October 1, 2021, and, in revised form, September 7, 2022, September
20, 2022, and September 25, 2022.

2020 Mathematics Subject Classification. Primary 17B35, 17B08, 22E46.

c©2023 American Mathematical Society

473

https://www.ams.org/ert/
https://www.ams.org/ert/
https://doi.org/10.1090/ert/633


474 LUCAS MASON-BROWN

Conjecture 1.1. Let X be a special unipotent representation of GR. Then there
are a subgroup HR ⊂ KR and a finite-dimensional HR-representation χ such that

X �KR
IndKR

HR
χ.

Of course, the actual conjecture in [18] is much more precise and involves a
certain ‘codimension condition’ on the associated variety of X, see Conjecture 2.7.
In Corollary 5.2, we will prove Vogan’s conjecture in a large family of cases.

The main ingredient in our proof is a functor ΦO which ‘microlocalizes’ Harish-
Chandra modules over a nilpotent K-orbit O. The construction of ΦO follows
[13, Sec 4], where a similar functor is constructed for Harish-Chandra bimodules.

Here is an outline of the structure of this paper. In Section 2, we will review some
preliminary facts about primitive ideals, associated varieties, unipotent represen-
tations, and the localization of categories. We will also give a precise formulation
of Vogan’s conjecture, cf. Conjecture 2.7. In Section 3, we will develop our main
technical tool for proving Conjecture 2.7, namely a microlocalization functor ΦO

for Harish-Chandra modules. In Section 4, we will relate Vogan’s conjecture to a
cohomological condition on certain K-equivariant vector bundles. In Section 5, we
will check this condition in the setting of complex groups, thus verifying Vogan’s
conjecture in a large family of cases.

2. Preliminaries

Fix KR ⊂ GR as in Section 1. Write K ⊂ G for the complexifications and
k ⊂ g for the (complex) Lie algebras. Let θ : g → g denote the Cartan involution
corresponding to k and let p ⊂ g be the −1-eigenspace of θ. There is a Cartan
decomposition g = k+ p.

A (g,K)-module is a left module X for the universal enveloping algebra U(g) of
g together with an algebraic K-action such that

(1) The action map U(g)⊗X → X is K-equivariant,
(2) The k-action on X, coming from the inclusion k ⊂ g ⊂ U(g), coincides with

the differentiated action of K.

A morphism of (g,K)-modules is a U(g)-module homomorphism which intertwines
the K-actions. Let M(g,K) denote the (abelian) category of (g,K)-modules. A
Harish-Chandra module is a (g,K)-module which is finitely generated for U(g).
Note that an irreducible (g,K)-module is automatically Harish-Chandra. Write
HC(g,K) ⊂ M(g,K) for the full subcategory of Harish-Chandra modules.

2.1. Unipotent representations. Let G∨ denote the Langlands dual of G, and
write N ⊂ g∗, N∨ ⊂ (g∨)∗ for the nilpotent cones. The nilpotent orbits for G and
G∨ are related via Barbasch-Vogan duality (see [4]). This is a map

d : {nilpotent orbits O∨ ⊂ N∨} → {nilpotent orbits O ⊂ N}.

A nilpotent orbit O ⊂ N is called special if it lies in the image of d.
Every nilpotent G∨-orbit O∨ ⊂ N∨ gives rise to an infinitesimal character λO∨

for U(g) as follows. If we fix a Cartan subalgebra h ⊂ g, there is a Cartan subalgebra
h∨ ⊂ g∨, which is canonically identified with h∗. Using a G∨-invariant identification
g∨ � (g∨)∗, we can regard O∨ as a nilpotent G∨-orbit in g∨. Choose an element
e∨ ∈ O∨ and an sl(2)-triple (e∨, f∨, h∨). Conjugating by G∨ if necessary, we can
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arrange so that h∨ ∈ h∨ � h∗. Put

λO∨ :=
1

2
h∨ ∈ h∨ � h∗.

This element is well-defined modulo the (linear) action of the Weyl group and thus
determines an infinitesimal character for U(g) by means of the Harish-Chandra
isomorphism. Let IO∨ ⊂ U(g) be the unique maximal ideal with infinitesimal
character λO∨ . A special unipotent ideal is any ideal in U(g) which arises in this
fashion.

Write AV(I) ⊂ g∗ for the associated variety of a two-sided ideal I ⊂ U(g) (i.e.
the vanishing locus of gr(I) ⊂ grU(g) � S(g) = C[g∗]). By [4, Prop A2], we have

AV(IO∨) = d(O∨).

In particular, the associated variety of a special unipotent ideal is (the closure of)
a special nilpotent orbit (this explains the word ‘special’ in ‘special unipotent’).

Definition 2.1. Suppose O∨ ⊂ N∨ is a nilpotent orbit. A special unipotent rep-
resentation attached to O∨ is an irreducible (g,K)-module X such that

AnnU(g)(X) = IO∨ .

Special unipotent ideals belong to a larger class of maximal ideals called simply
unipotent ideals. This more general class of ideals is defined in [14, Definition 6.0.1].
If I is a unipotent ideal, one can define the notion of a unipotent representation
analogously to Definition 2.1. Our main results (Theorem 4.1 and Corollary 5.2)
apply, without modification, to this more general class of representations (and the
proofs are identical). Since we will not recall here the definition of this more general
class of representations, the reader may choose to interpret ‘unipotent’ to mean
‘special unipotent’ wherever it is used below.

2.2. Associated varieties and associated K-cycles. Following [18], we will
associate to every Harish-Chandra module X some geometric data in N . We will
need the concept of a good filtration of X. A filtration of X

· · · ⊆ X−1 ⊆ X0 ⊆ X1 ⊆ . . . ,
⋂
m

Xm = 0,
⋃
m

Xm = X

by complex subspaces is compatible if

(1) Um(g)Xn ⊆ Xm+n for every m,n ∈ Z.
(2) KXm ⊆ Xm for every m ∈ Z.

Under these conditions, gr(X) has the structure of a graded, K-equivariant S(g/k)-
module. Our compatible filtration is good if

(3) gr(X) is finitely-generated over S(g).

There is an equivalence of categories (obtained by taking global sections) between

the category of K-equivariant coherent sheaves CohK(g/k)∗ on the affine space
(g/k)∗ and the category of finitely-generated K-equivariant S(g/k)-modules. Thus
if X is equipped with a good filtration, we can (and will) regard gr(X) as an object

in CohK(g/k)∗. The following is standard (see [18, Sec 1] for a proof).

Proposition 2.2. Every (g,K)-module admits a good filtration. The passage

from X ∈ HC(g,K) to gr(X) ∈ CohK(g/k)∗ induces a homomorphism on the
Grothendieck groups

KHC(g,K) → K CohK(g/k)∗.
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Proposition 2.2 provides a recipe for attaching geometric invariants to Harish-
Chandra modules. A function ϕ : CohK(g/k)∗ → S with values in a semigroup S is
additive if ϕ(B) = ϕ(A)+ϕ(C) whenever there is a short exact sequence 0 → A →
B → C → 0. Under this condition, ϕ is well-defined on classes in KHC(g,K) and
therefore (by Proposition 2.2) induces an (additive) function ϕ[gr(X)] on Harish-
Chandra modules.

The first example of this construction is the associated variety AV(X) of a
Harish-Chandra module X. Let S be the set of Zariski-closed subsets of (g/k)∗

with addition defined by ∪. Let ϕ be the function

ϕ : Coh(g/k)∗ → S, ϕ(M) = Supp(M) = V (Ann(M)).

Since support is additive, ϕ induces an (additive) function on K HC(g,K). If
X ∈ HC(g,K), we write AV(X) ∈ (g/k)∗ for ϕ[gr(X)].

The next result relates the associated variety of X to the associated variety of
its annihilator.

Theorem 2.3. Suppose X is an irreducible (g,K)-module. Let

I := Ann(X) ⊂ U(g),

a primitive ideal in U(g). Then the following are true:

(i) AV(I) is the closure of a nilpotent orbit OG ⊂ N .
(ii) OG ∩ (g/k)∗ is the union of finitely-many K-orbits,

OG ∩ (g/k)∗ = O1 ∪ · · · ∪Ot,

and each Oi a Lagrangian subvariety of OG.
(iii) Some Oi are contained in AV(X), and they are the maximal K-orbits

therein.
(iv) If AV(X) is reducible, then

codim(∂OG,OG) = 2.

Proof. (i) follows from the main theorem in [10]. (ii) and (iii) are [18, Thm 8.4].
(iv) is [18, Thm 4.6]. �

In Section 3.2, we will give a simple proof of Theorem 2.3(iv) using the machinery
of microlocalization.

In [18], Vogan introduces a refinement of AV(X) called the associated K-cycle
which carries additional information about theK-action on X. Consider the variety

Nk := N ∩ (g/k)∗.

The group K acts on Nk and, by (ii) of Theorem 2.3, with finitely many K-orbits.
Denote the K-orbits on Nk by

Nk = O1 ∪ · · · ∪On.

Note that if X is a finite-length Harish-Chandra module, then by (iii) of Theorem
2.3

AV(X) ⊆ Nk.

Definition 2.4. An associated K-cycle is an n-tuple

([E1], . . . , [En]) ∈ KVecK(O1)× · · · ×KVecK(On)

subject to the following two requirements
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(1) All of the classes [Ei] are genuine, i.e. they are represented by objects in

VecK(Oi).
(2) The K-orbits corresponding to nonzero classes are mutually incomparable,

i.e. none is contained in the closure of another.

The set S of associated K-cycles forms a semigroup, with addition defined by

([Ei]) + ([E ′
i ]) = ([E ′′

i ]), [E ′′
i ] :=

{
0 if [Ej ], [E ′

j ] 
= 0 for Oi ⊂ Oj ,

[Ei] + [E ′
i ] else.

Now if M ∈ CohK(Nk), we can define an associated K-cycle

(2.1) ϕ(M) = ([ϕ1(M)], . . . , [ϕn(M)]),

where

ϕi(M) =

{
M |Oi

if Oi is open in Supp(M),

0 else.

The function ϕ : CohK(Nk) → S can be extended to the category CohKNk
(g/k)∗ of

K-equivariant coherent sheaves set-theoretically supported in Nk in the following
manner: if M ∈ CohKNk

(g/k)∗ choose a finite filtration 0 = Mt ⊂ Mt−1 · · · ⊂ M0 =

M by K-equivariant subsheaves such that Mi/Mi+1 ∈ CohK(Nk) for every i (for
example, take Mi := I(Nk)

iM for each i). Now define

ϕ : CohKNk
(g/k)∗ → S, ϕ(M) =

t−1∑
i=0

ϕ(Mi/Mi+1).

In [18, Thm 2.13], Vogan shows that ϕ is well-defined and additive. If X is a finite-

length Harish-Chandra module, then [gr(X)] ∈ K CohKNk
(g/k)∗. So ϕ induces an

(additive) function on finite-length Harish-Chandra modules AC(X) = ϕ[gr(X)],
called the associated K-cycle.

If X is a special unipotent Harish-Chandra module, see Definition 2.1, then

AC(X) is of a very special form. Let O ⊂ Nk be a K-orbit. Let p : Õ → O be the

universal K-equivariant cover and let ω
˜O
be the canonical bundle on Õ (i.e. the

line bundle of top-degree differential forms).

Definition 2.5. A K-equivariant vector bundle E on O is admissible if there is an

isomorphism of K-equivariant vector bundles on Õ

p∗E ⊗ p∗E � ω
˜O
⊕ · · · ⊕ ω

˜O︸ ︷︷ ︸
N times

,

for some N ∈ Z>0.

This condition has a very simple Lie-theoretic interpretation. If we choose a
point e ∈ O, there is an equivalence of categories

VecK(O) � Rep(Ke).

From left to right, the equivalence is given by restriction to the fiber over e. A
vector bundle E is admissible if and only if the corresponding Ke-representation
ρ : Ke → GL(V ) satisfies

(2.2) 2dρ = Tr|(k/ke)∗ · IdV .
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This is the ‘admissibility’ condition described in [18, Sec 7]. We note that if 0 →
E1 → E2 → E3 → 0 is a short exact sequence of K-equivariant vector bundles on
O and E1, E3 are admissible, then E2 is admissible (this is evident from (2.2)). So

admissibility is a property which can be ascribed to classes in KVecK(O).

Theorem 2.6 ([18, Thm 8.7]). Suppose X is a special unipotent (g,K)-module
with associated K-cycle AC(X) = ([E1], . . . , [En]). Then every nonzero class [Ei] is
admissible.

Only certain nilpotent K-orbits admit admissible vector bundles, so Theorem 2.6
imposes strong additional constraints on the associated varieties of special unipotent
representations.

2.3. Vogan’s conjecture. In [18, Sec 12], Vogan formulates a conjecture regarding
the K-structure of special unipotent Harish-Chandra modules, under some condi-
tions.

Conjecture 2.7 ([18, Conj 12.1]). Suppose X is a special unipotent Harish-Chandra
module, and suppose AC(X) = ([E ]), where E is an (admissible K-equivariant) vec-
tor bundle on a nilpotent K-orbit O ⊂ Nk. Let OG = G · O ⊂ N and assume OG

satisfies the condition

codim(∂OG,OG) ≥ 4.

Then there is an isomorphism of algebraic K-representations

(2.3) X �K Γ(O, E).

In Section 4, we will show that Conjecture 2.7 is true if E satisfies a certain
cohomological condition, which we can verify in many cases.

If we choose a point e ∈ O and write H for the centralizer of e in K, then E
corresponds to a finite-dimensional representation χ of H and, as representations
of K, Γ(O, E) �K IndKHχ. Thus, the conclusion of Conjecture 1.1 follows from that
of Conjecture 2.7.

2.4. Localization of categories. In this section, we will review some basic aspects
of the theory of localization of abelian categories. The discussion here follows
[17, Chapter 4].

Let C be an abelian category. A full subcategory B ⊂ C is called Serre if for
every short exact sequence 0 → X → Y → Z → 0 in C,

Y ∈ B ⇐⇒ X ∈ B and Z ∈ B.
In other words, B is a full subcategory which is closed under the formation of
subobjects, quotients, and extensions.

Example 2.8. Let X be a variety and Z ⊂ X a closed subvariety. Then CohZ(X)
is a Serre subcategory of Coh(X).

Given a Serre subcategory B ⊂ C, one can define the quotient category C/B. The
next (very standard) result describes the universal property which it satisfies.

Proposition 2.9 ([17, Cor 3.11]). Let C be an abelian category and B ⊂ C a Serre
subcategory. There is an abelian category C/B, unique up to equivalence, receiving
an exact, essentially surjective functor T : C → C/B with

B = kerT := {C ∈ C : TC = 0}
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satisfying the following universal property: if F : C → D is an exact functor with
B ⊆ kerF , then there is a unique exact functor G : C/B → D such that F = G ◦ T .

Example 2.10. Let X be a variety, Z ⊂ X a closed subvariety with open com-
plement U . Write j : U ⊂ X for the inclusion. Recall, Example 2.8, that
CohZ(X) ⊂ Coh(X) is a Serre subcategory. Restriction to U defines an exact
essentially surjective functor j∗ : Coh(X) → Coh(U) with kernel CohZ(X). It
is not difficult to show that j∗ satisfies the universal property in Proposition 2.9.
Hence, Coh(X)/CohZ(X)

∼−→ Coh(U).

We are interested in Serre subcategories of a very special type. A Serre subcat-
egory B is localizing if the quotient functor T : C → C/B admits a right-adjoint
L : C/B → C. We call the composition LT : C → C the localization of C with respect
to the localizing subcategory B.

Example 2.11. Return to the setting of Example 2.10. First, assume that
codim(Z,X) ≥ 2. Then j∗ : Coh(X) → Coh(U) admits a right adjoint (and right
inverse), namely j∗ : Coh(U) → Coh(X). Hence, CohZ(X) is a localizing subcate-
gory of Coh(X) and j∗j

∗ : Coh(X) → Coh(X) is the localization of Coh(X) with
respect to CohZ(X). If, on the other hand, codim(Z,X) = 1, the direct image un-
der j of a coherent sheaf on U is an object in QCoh(X), though not of Coh(X). In
fact, j∗ in this case does not admit a right adjoint, i.e. CohZ(X) is not a localizing
subcategory of Coh(X).

Proposition 2.12 catalogs the essential properties of L.

Proposition 2.12 ([17, Prop 4.3]). Suppose B is a localizing subcategory of an
abelian category C and that L : C/B → C is right adjoint to the quotient functor
T : C → C/B.

(1) L is left exact
(2) TL is naturally isomorphic to idC/B
(3) An object C ∈ C is in the image of L if and only if it has no nontrivial

maps from, or extensions by, objects in B. Symbolically,

C ∈ Im(L) ⇐⇒ Hom(B, C) = Ext1(C,B) = 0

(4) For every object C ∈ C, the canonical morphism C → LT (C) has kernel
and cokernel in B.

We conclude this section with a useful criterion which we will use below.

Proposition 2.13 ([17, Thm 4.9]). Suppose T : C → A is an exact functor of
abelian categories with a fully faithful right adjoint L : A → C. Then T is a
quotient functor and A � C/ kerT .

3. Microlocalization of Harish-Chandra modules

3.1. The Rees construction. We want to perform operations on filtered Harish-
Chandra modules analogous to the restriction and extension of coherent sheaves on
Nk. The first problem we encounter is that the category HCfilt(g,K) of Harish-
Chandra modules with good filtrations (in short, ‘well-filtered Harish-Chandra
modules’) is not abelian. Cokernels are not well-defined. The solution is to pass to

a larger abelian category containing HCfilt(g,K).
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Let A be an associative algebra equipped with an increasing filtration by sub-
spaces

· · · ⊆ A−1 ⊆ A0 ⊆ A1 ⊆ . . . , AmAn ⊆ Am+n,
⋂
m

Am = 0,
⋃
m

Am = A.

Form the algebra of Laurent series A[�, �−1] in the formal symbol �. Define a Z-
grading by declaring deg(a�k) = k. The Rees algebra of A is the graded subalgebra

R�A =
⊕
m∈Z

Am�m ⊂ A[�, �−1].

In a precise sense, R�A interpolates between A and gr(A).

Proposition 3.1. The subspaces �R�A ⊂ R�A and (� − 1)R�A ⊂ R�A are two-
sided ideals and

(1) There is a canonical isomorphism of graded algebras

R�A/�R�A � gr(A).

(2) There is a canonical isomorphism of filtered algebras

R�A/(�− 1)R�A � A.

Proof. The ideals are two-sided since the elements �, �− 1 are central.

(1) The linear maps An�n � An → An/An−1 assemble into a surjective homo-
morphism of graded algebras

R�A → gr(A).

The kernel of this homomorphism is the graded subalgebra⊕
n

An−1�
n =

⊕
n

An�
n+1 = �R�A.

(2) The inclusions An�n � An ⊆ A assemble into a filtered homomorphism

i : R�A → A

which is surjective since the filtration is exhaustive. Choose an element a
in the kernel of i

a = ap�
p + ap+1�

p+1 + · · ·+ aq�
q,

q∑
n=p

an = 0.

If we define bn = −ap − ap+1− · · ·− an ∈ An for p ≤ n ≤ q, then one easily
computes

(�− 1)

q−1∑
n=p

bn�
n = a.

In particular, a ∈ (� − 1)R�A. On the other hand, the subalgebra (� −
1)R�A is spanned by the elements (�−1)an�n and by an easy computation
i((�− 1)an�n) = 0.

�
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Now suppose M is a module for A equipped with an increasing filtration by
subspaces compatible with the filtration on A

· · · ⊆ M−1 ⊆ M0 ⊆ M1 ⊆ . . . , AmMn ⊆ Mm+n,
⋂
m

Mm = 0,
⋃
m

Mm = M.

Form the vector space M [�, �−1] and define a Z-grading (as above) by deg(m�k) =
k. Now M [�, �−1] is a graded module for R�A. The Rees module of M is the graded
R�A-submodule

M� =
⊕
m∈Z

Mm�m ⊂ M [�, �−1].

Take A = U(g) with its standard filtration. The group K acts on U(g) by filtered
algebra automorphisms and therefore on its Rees algebra R�U(g) by graded algebra
automorphisms. A (g�,K)-module is a graded left R�U(g)-module X� equipped
with a graded algebraic K-action satisfying the following two conditions:

(1) The action map R�U(g)⊗X� → X� is K-equivariant,
(2) The R�U(g)-action, restricted to the subspace k� ⊂ g� ⊂ R�U(g), coincides

with � times the differentiated action of K.

A morphism of (g�,K)-modules is a graded homomorphism of R�U(g)-modules
intertwining the K-actions. Write M(g�,K) for the abelian category of (g�,K)-
modules and HC(g�,K) for the full subcategory of finitely-generated (g�,K)-
modules.

The assignment X �→ R�X defines a functor from the category HCfilt(g,K) of
well-filtered Harish-Chandra modules to HC(g�,K).

Proposition 3.2. If X ∈ HCfilt(g,K) (with filtration · · · ⊆ X−1 ⊆ X0 ⊆ X1 ⊆
. . . ), R�X has the structure of a (g�,K)-module, finitely-generated over R�U(g).
The assignment X �→ R�X defines a functor

R� : HCfilt(g,K) → HC(g�,K)

defined on morphisms f : X → Y by (R�f)(x�m) = f(x)�m. This functor is a fully-

faithful embedding. Its image is the subcategory HCtf(g�,K) of Harish-Chandra
(g�,K)-modules which are �-torsion-free.

Proof. There is a functor

� = 1 : HC(g�,K) → HCfilt(g,K)

defined by X� �→ X�/(�−1)X�. The argument provided in the proof of Proposition
3.1 (replacing rings with modules) shows that (� = 1)◦R� is the identity functor on

HCfilt(g,K). It remains to exhibit a natural isomorphism R�(X�/(�− 1)X�) � X�

for every X� ∈ HCtf(g�,K).

Fix X� ∈ HCtf(g�,K) and write Xn
�

for its nth graded component. For every
integer N , define the graded subspace

X≤N
�

=
⊕
n≤N

Xn
� .

There is a linear map

ϕN : X≤N
�

→ XN
� , ϕN (x) =

∑
n≤N

xn�N−n.



482 LUCAS MASON-BROWN

This map is surjective, since (for example) it restricts to the identity map on XN
�
.

We will show that

kerϕN = (�− 1)X� ∩X≤N
�

.

Suppose

(�− 1)(xp + xp+1 + · · ·+ xq) ∈ (�− 1)X� ∩X≤N
�

.

Then �xn − xn+1 = 0 for every n ≥ N and consequently x ∈ X≤N−1
�

since X� is
�-torsion free. Then by a simple computation ϕN ((�− 1)(xp + · · ·+ xq)) = 0.

Conversely, suppose

x = xp + xp+1 + · · ·+ xN ∈ kerϕN .

Then
∑

n≤N xn�N−n = 0. For n ≤ N , define

yn = −xn − �xn−1 − �2xn−2 − · · · ∈ Xn
� .

Then by a simple computation

x = (�− 1)(yN−1 + yN−2 + . . . ) ∈ (�− 1)X� ∩X≤N
�

.

This proves kerϕN = (� − 1)X� ∩X≤N
�

. As a result, ϕN induces a linear isomor-
phism

ϕN : (X�/(�− 1)X�)
≤N = X≤N

�
/
(
(�− 1)X� ∩X≤N

�

)
� XN

� .

We can assemble these maps into a graded isomorphism

ϕ =
⊕
N

ϕN : R�(X�/(�− 1)X�) � X�.

It is clear from its construction that ϕ is a R�U(g)-module homomorphism and is
compatible with the K-actions. �

Besides R�, there are several other functors relating the categories HCfilt(g,K),

HC(g�,K) and CohK×C
×
(g/k)∗. By Proposition 3.1 applied to A = U(g) there are

natural isomorphisms

R�U(g)/�R�U(g) � S(g), R�U(g)/(�− 1)R�U(g) � U(g).

Every M ∈ CohK×C
×
(g/k)∗ can be regarded as a finitely-generated (g�,K)-module

via the surjective map R�U(g) → S(g) → C[(g/k)∗]. On the other hand, if

X� ∈ HCfilt(g�,K), then X�/�X� has the structure of a graded, K-equivariant,
coherent sheaf on (g/k)∗ and X�/(� − 1)X� has the structure of a well-filtered
Harish-Chandra module. These operations define functors, which are related as
described in Proposition 3.3.



UNIPOTENT REPRESENTATIONS AND MICROLOCALIZATION 483

Proposition 3.3. The functors

i : CohK×C
×
(g/k)∗ → HC(g�,K),

M �→ M,

� = 0 : HC(g�,K) → CohK(g/k)∗,

X� �→ X�/�X�,

� = 1 : HC(g�,K) → HCfilt(g,K),

X� �→ X�/(�− 1)X�,

gr : HCfilt(g,K) → CohK×C
×
(g/k)∗,

X �→ gr(X)

satisfy the relations

(1) (� = 0) ◦ i = id
(2) (� = 1) ◦R� = id
(3) (� = 0) ◦R� = gr

Proof. The first relation is obvious. The second and third follow from Proposition
3.1 (replacing A with X). �

The situation is summarized in the following commutative diagram.

HC(g�,K) M(g�,K)

CohK×C
×
(g/k)∗ HCfilt(g,K)

HC(g,K) M(g,K)

�=0
�=1

i
R�

gr

forget

3.2. Construction of ΦO. Choose e ∈ Nk and let O = K · e ⊂ Nk. Recall that if

X� ∈ M(g�,K), then X�/�X� ∈ QCohK×C
×
(g/k)∗. Define the associated variety

of X� to be the subset

AV(X�) := Supp(X�/�X�) ⊂ (g/k)∗.

If Z is a subset of (g/k)∗, we can define full subcategories QCohK,C×

Z (g/k)∗,

CohK,C×

Z (g/k)∗, MZ(g�,K), HCZ(g�,K), HCfilt
Z (g,K), and HCZ(g,K) by consid-

ering all objects with set-theoretic support (or associated variety) contained in Z.
We begin with a simple observation.

Proposition 3.4. The subcategories

QCohK×C
×

∂O (g/k)∗ ⊂ QCohK×C
×

O
(g/k)∗,

CohK×C
×

∂O (g/k)∗ ⊂ CohK×C
×

O
(g/k)∗,

HC∂O(g,K) ⊂ HC
O
(g,K),

HC∂O(g�,K) ⊂ HC
O
(g�,K)
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are Serre.

Proof. The first two subcategories are Serre by the additivity of support. The
third subcategory is Serre by the additivity of the associated variety (see the re-
marks preceding Theorem 2.3). For the fourth subcategory, we argue as follows.
Suppose A is filtered algebra with an algebraicK-action such that gr(A) is a finitely-
generated commutative algebra. One can define Harish-Chandra (A,K)-modules
and good filtrations on them as in Section 2.2. Similarly to Proposition 2.2, ev-
ery Harish-Chandra (A,K)-module admits a good filtration and there is a group
homomorphism

KHC(A,K) → K CohK(Spec(gr(A))).

The algebra R�U(g) has two natural K-invariant filtrations. One is the filtration
defined by the grading. The second is defined by

(R�U(g))m = Um(g)[�] ∩R�U(g) = �mUm(g)[�].

If we equip R�U(g) with the latter filtration, there is a natural identification
grR�U(g) � S(g)[�]. So if X� ∈ HC(g�,K), then we can find a good filtration on

X� (compatible with our chosen filtration on R�U(g)) and [grX�] ∈ K CohK((g/k)∗

× Spec(C[�])). It is easy to see that

AV(X�) = Supp(grX�/� grX�).

Now it follows that HC∂O(g�,K) ⊂ HC
O
(g�,K) is Serre. �

Remark 3.5. Note that the subcategory M∂O(g�,K) ⊂ M
O
(g�,K) is not Serre.

It is closed under quotients and extensions, but not under subobjects. Take, for
instance, g = C. Then R�U(g) = C[x, �]. Let M = C(�), the field of rational
functions in �. M is an (infinitely-generated) C[x, �]-module with x acting by 0
and M/�M = 0 (since C(�) is a field). Hence, Supp(M) = ∅. Yet the submodule
L = C[�] has L/�L = C and is therefore supported at a point.

Our goal in this section is to prove (under a codimension condition on ∂O)
that HC∂O(g�,K) is a localizing subcategory of HC

O
(g�,K) and to construct the

corresponding localization functor

ΦO : HC
O
(g�,K) → HC

O
(g�,K),

see Section 2.4. We will see that ΦO descends to a functor

ΦO : HC
O
(g,K) → HC

O
(g,K)

which inherits all of the essential properties of ΦO.
Our construction of ΦO is adapted from Losev, who constructs analogous func-

tors in [13, Sec 3] for Harish-Chandra bimodules. Most of the proofs in this section
are due essentially to Losev, although some arguments have been modified to ac-
commodate our more general setting.

Fix an element e ∈ O. If we fix an invariant form on g, e is identified with a
nilpotent element in p, which we continue to denote by e. Choose an sl(2) triple
(e, f, h) ∈ p × p × k. The centralizer L := Ke,f,h is a maximal reductive subgroup
of Ke.

Define the maximal ideal Ie ⊂ R�U(g) to be the preimage under the canonical
surjection R�U(g) → S(g) of the maximal ideal defining e. Then consider the



UNIPOTENT REPRESENTATIONS AND MICROLOCALIZATION 485

completion of R�U(g) with respect to Ie:

R̂�U(g) := lim←−R�U(g)/Ine .

There is a canonical surjection R̂�U(g) → R�U(g)/Ie. Since R�U(g)/Ie is a field,

the kernel Îe ⊂ R̂�U(g) is the unique maximal (left, right, and two-sided) ideal in

R̂�U(g).

The basic properties of the algebra R̂�U(g) and its finitely-generated modules
are summarized in [13]. Here are a few:

Proposition 3.6 ([13, Lem 2.4.4]). The following are true:

(1) R̂�U(g) is Noetherian

(2) R̂�U(g) is separated and complete in the Îe-adic topology, i.e.⋂
n

Îe
n
R̂�U(g) = 0, R̂�U(g) � lim←− R̂�U(g)/Îe

n

(3) If X̂� is a finitely-generated R̂�U(g)-module, X̂� is separated and complete

in the Îe-adic topology, i.e.⋂
n

Îe
n
X̂� = 0, X̂� � lim←− X̂�/Îe

n
X̂�

If a group (or Lie algebra) acts on R�U(g) and preserves Ie, then it acts natu-

rally on the completion R̂�U(g). There are two reasonable group actions with this
property:

(1) The adjoint action of L. Since L preserves e ∈ g∗, it preserves the
maximal ideal defining it and therefore its preimage Ie ⊂ R�U(g). Conse-

quently, it lifts to an action on R̂�U(g). In fact, the entire centralizer Ke

acts in this fashion, but for reasons that will soon become apparent we will
not consider the action of the unipotent radical.

(2) The Kazhdan action of C×. The element h ∈ k determines a unique
cocharacter γ : C× → K with dγ1(1) = h. We get an algebraic action of
C× on U(g) by composing γ with Ad:

t ·X1 . . .Xm = Ad(γ(t))(X1) . . .Ad(γ(t))(Xm).

Finally, we extend this action to the polynomial algebra U(g)[�] by defining
t · � = t2�. This action obviously preserves the subalgebra R�U(g) ⊂
U(g)[�].

C× also acts on g∗ by t · ζ = t−2Ad∗(γ(t))(ζ). This induces a C×-action
on S(g) = C[g∗] characterized by t · X = t2Ad(γ(t))(X). These actions
(of C× on R�U(g), S(g), and g∗) are what Losev calls in [13] the ‘Kazhdan
actions’ of C×. The canonical map R�U(g) → S(g) is equivariant with
respect to the Kazhdan actions on R�U(g) and S(g). The definitions are
rigged so that e is fixed by C×:

t · e = t−2γ(t) · e = t−2e(γ(t)−1·) = t−2(e, γ(t)−1·)
= t−2(γ(t) · e, ·) = t−2(t2e, ·) = (e, ·) = e.

Hence, the Kazhdan action preserves the ideal defining e and therefore its

preimage Ie ⊂ R�U(g). Consequently, it lifts to an action on R̂�U(g).
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Two comments on these definitions are in order. First, since L centralizes γ(C×),
these two actions commute. This is not the case if we consider the full action of Ke

and this is the principal reason why we restrict our attention to L. Second, neither
action is algebraic (i.e. locally finite), except in the most trivial situations. However,
both actions can be differentiated (to the Lie algebras l and C, respectively) since
they are lifted from algebraic actions on R�U(g).

Suppose X� ∈ M(g�,K). Form the completion of X� with respect to Ie:

X̂� := lim←−X�/I
n
e X�.

The space X̂� has lots of interesting structure. For one, it is obviously a module

for R̂�U(g). The L-action on X� lifts to an action on X̂�, since L preserves Ie. The
naive C×-action on X� (obtained from the grading) does not lift to the completion
(since IeX� is not usually graded). But as with R�U(g) we can define a slightly
modified action (called the Kazhdan action on X�) by

t · x = t2nγ(t)x, n = deg(n),

and this action does lift to the completion. Therefore, X̂� has the structure of

an R̂�U(g)-module with actions of L and C×. Once again, these actions are not
algebraic. But they do differentiate to the Lie algebras. The axioms for M(g�,K)
impose various compatibility conditions on these three algebraic structures.

Proposition 3.7. If X� ∈ M(g�,K), then X̂� has the structure of an R̂�U(g)-
module with actions of L and C× satisfying the following properties

(1) The L and C×-actions commute

(2) The action map R̂�U(g)⊗ X̂� → X̂� is both L and C×-equivariant

(3) The R̂�U(g)-action, restricted to the subspace l� ⊂ g� ⊂ R�U(g) ⊂ R̂�U(g),
coincides with � times the differentiated action of L.

A (ĝ�, L)-module is a left R̂�U(g)-module with L and C×-actions satisfying the
conditions of Proposition 3.7. A morphism of (ĝ�, L)-modules is an L and C× equi-

variant R̂�U(g)-module homomorphism. Write M(ĝ�, L) for the abelian category
of (ĝ�, L)-modules (with morphisms defined as above) and HC(ĝ�, L) for the full

subcategory of (ĝ�, L)-modules finitely-generated over R̂�U(g). Completion defines
a functor M(g�,K) → M(ĝ�, L). Its restriction to the subcategory HC(g�,K) is
exact.

Proposition 3.8 ([13, Prop 2.4.1]). If X� ∈ HC(g�,K), the natural map

R̂�U(g)⊗R�U(g) X� → X̂�

is an isomorphism. In particular, X̂� is a finitely-generated R̂�U(g)-module. In
other words, the completion functor restricts

•̂ : HC(g�,K) → HC(ĝ�, L).

This functor is exact.

Corollary 3.9. Suppose X� ∈ HC(g�,K). Then

(1) there is a natural isomorphism

X̂�/�X̂� � X̂�/�X�.
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(2) X̂� = 0 if and only if e /∈ Supp(X�).

Proof. (1) Let X� ∈ HC(g�,K). Multiplication by � defines a short exact
sequence in HC(g�,K)

X�

�→ X� → X�/�X� → 0.

Since completion is exact, we get a short exact sequence in HC(ĝ�, L)

X̂�

�→ X̂� → X̂�/�X� → 0,

which gives rise to the desired isomorphism.
(2) Use the description of (commutative) completion provided in part (1) of

Proposition A.2 to observe that X̂�/�X�=0 if and only if e /∈Supp(X�/�X�)

=: Supp(X�). From the previous part, X̂�/�X� = 0 if and only if X̂� =

�X̂�. From Proposition 3.8, X̂� is a finitely-generated R̂�U(g)-module and

therefore, from Proposition 3.6, separated in the Îe-adic topology. In par-

ticular (since � ∈ Îe) ⋂
n

�nX̂� = 0.

Consequently, X̂� = �X̂� if and only if X̂� = 0. Putting all of these
implications together, we deduce the result.

�

For every X̂� ∈ M(ĝ�, L), we will define a special subspace ΓX̂� of X̂� (actually
ΓX� is not, strictly speaking, a subspace when K is disconnected. We will address
this difficulty in a moment).

As usual, denote the identity component of K by K0. Let K1 = LK0. Note that
K1 is a subgroup of K with Lie algebra k and the component group of L/(L∩K0).

The construction of ΓX̂� proceeds in stages:

(1) First, take the subspace Γ0X̂� of K0-finite vectors. More precisely, define

Γ0X̂� := {x ∈ X̂� : x belongs to a finite-dimensional k�− invariant

subspace which integrates to a representation of K0}.

Since K0 is connected, Γ0X̂� has a well-defined algebraic K0-action. It is

also an R�U(g) submodule of X̂� and the K0-action is compatible with the
module structure in the two usual ways. Since k� is stable under the L and

Kazhdan C×-actions on R�U(g), Γ0X̂� is stable under the L and Kazhdan

C×-actions on X̂�. The L-action on Γ0X̂� is locally-finite—its differential
coincides with the locally finite action of k�. This presents an interesting

complication. The module Γ0X̂� has two (in general, distinct) algebraic
actions of L ∩K0. One comes from the K0-action built into the definition
of Γ0X̂�. The other comes from the L-action on X̂�. These two actions of
L ∩ K0 differentiate to the same action of l = Lie(L ∩ K0) and therefore
agree on the identity component of L ∩K0.

(2) Next, form the subspace of Γ0X̂� consisting of vectors on which the two
L ∩K0-actions coincide.

Γ1X̂� := {x ∈ Γ0X̂� : l ·1 x = l ·2 x, ∀l ∈ L ∩K0}.
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This subspace is an R�U(g)-submodule of Γ0X̂� and is stable under C×.
It has algebraic actions of L and K0 which agree on the intersection and
therefore an algebraic action of K1 = LK0.

(3) Take the C×-finite vectors in Γ1X̂�.

Γ1
lfX̂� := {x ∈ Γ1X̂� : x belongs to a finite-dimensional

C× − invariant subspace}.

This subspace has the structure of an R�U(g)-module with algebraic actions
of K1 and C×. The K1-action is compatible with the module structure in
the two usual ways. The C×-action is compatible with the module structure

in the sense that the action mapR�U(g)⊗Γ1
lfX̂� → Γ1

lfX̂� is C×-equivariant.
Note that the actions of K1 and C× do not, in general, commute. The
actions of L and C× obviously do, but the actions of K0 and C× do not.
We can fix this by composing the existing C×-action with γ(t)−1 (in effect,
undoing the ‘Kazhdanification’ required to make the original C×-action lift

to the completion). The result is a grading on Γ1
lfX̂� which is manifestly

even. Halve it, to obtain a grading which is compatible (under the natural

map X� → X̂�) with the original grading on X�. With this new grading,
Γ1
lf has the structure of a graded, K1-equivariant R�U(g)-module (with the

standard grading on R�U(g)).
(4) The final step is to perform a finite induction

ΓX̂� := IndKK1Γ1
lfX̂�.

If we identify ΓX̂� with functions

{f : K → Γ1
lfX̂� : f(k′k) = k′ · f(k) for k′ ∈ K1, k ∈ K},

there is an R�U(g)-module structure on ΓX̂� defined by

(Y f)(k) = (k · Y )f(k), Y ∈ R�U(g), k ∈ K, f ∈ ΓX̂�

and an algebraic C×-action defined by

(t · f)(k) = t · f(k), t ∈ C×, k ∈ K, f ∈ ΓX̂�.

Summarizing, ΓX̂� has the structure of an R�U(g)-module with algebraic
K and C×-actions. It is easy to check that these three structures satisfy
the defining properties of a (g�,K)-module.

Since all of the ingredients used to define ΓX̂� (K0-finite vectors, Γ1, C×-finite
vectors, induction) are functorial, Γ gives rise to a functor M(ĝ�, L) → M(g�,K).
Define

Φe := Γ ◦ •̂ : M(g�,K) → M(ĝ�,K).

Clearly, Φe is left exact: it is the composition of a completion functor (exact, by
Proposition 3.8), K0-finite vectors (left exact), Γ1 (left exact), C×-finite vectors
(left exact), and finite induction (exact). In Section 4, we will study its right
derived functors. We will need the following elementary result.

Proposition 3.10. The category M(g�,K) has enough injectives.

Proof. This follows from an easy general fact: suppose A and B are abelian cate-
gories and (L : A → B, R : B → A) is an adjunction. Suppose that L is exact and
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that the natural map A → RLA is an injection for every A ∈ A. Then if B has
enough injectives, so does A.

If A = M(g�,K) and B = R�U(g)−mod, the forgetful functor L : A → B has a
right adjoint R : B → A defined in much the same way as Γ. If B ∈ B, the subspace

R0(B) = {b ∈ B : b belongs to a finite-dimensional k�− invariant subspace

which integrates to a representation of K0}
has the structure of a K0-equivariant R�U(g)-module and

R1(B) = IndKK0R0B

has the structure of a K-equivariant R�U(g)-module. We need to force a grading
on R1B (compatible with the K-action and the module structure in all of the usual
ways). Define

R(B) =
⊕
n∈Z

R1(B),

putting one copy of R1B in every integer degree. Give R(B) the structure of a
(g�,K)-module by defining

Y (bn) = (Y b)m+n, Y ∈ R�U(g)m, k(bn) = (kb)n,

k ∈ K, t(bn) = (tnb)n, t ∈ C×.

It is easy to check that A,B, L, and R satisfy the conditions listed above. It is well
known that R −mod has enough injectives for any ring R. Hence, A has enough
injectives by the general fact above. �

For the remainder of this section, we will enforce the assumption

(3.1) codim(∂O,O) ≥ 2.

Let j : O ⊂ O be the inclusion.

Proposition 3.11. Recall the containments

CohK×C
×
(O) ⊂ CohK×C

×

O
(g/k)∗ ⊂ HC

O
(g�,K) ⊂ M(g�,K)

from Proposition 3.3. The functor Φe preserves all three subcategories of M(g�,K).

Its restriction to CohK×C
×
(O) coincides with the functor

j∗j
∗ : CohK×C

×
(O) → CohK×C

×
(O).

Proof. Suppose M ∈ CohK,C×
(O). By the definition of Φe and Proposition A.3, it

is clear that ΦeM coincides with the C×-finite part of j∗j
∗M . But the C×-action on

j∗j
∗M is already finite, so ΦeM = j∗j

∗M . By Theorem A.5 and the codimension

condition on O, this is an object in CohK×C
×
(O).

Now suppose M ∈ CohK,C×

O
(g/k)∗. M admits a finite filtration by K and C×-

equivariant subsheaves

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M, Ni := Mi/Mi−1 ∈ CohK,C×
(O) for 1 ≤ i ≤ t.

We have ΦeM1 ∈ CohK×C
×

O
(g/k)∗ by the previous paragraph. Suppose ΦeMi ∈

CohK×C
×

O
(g/k)∗ for some i < t. There is a short exact sequence

0 → Mi → Mi+1 → Ni+1 → 0



490 LUCAS MASON-BROWN

in CohK×C
×

O
(g/k)∗. By the left exactness of Φe, there is a long exact sequence in

QCohK×C
×

O
(g/k)∗

0 → ΦeMi → ΦeMi+1 → ΦeNi+1 → . . . .

Note that ΦeMi is coherent by hypothesis and ΦeNi+1 is coherent since Ni+1 ∈
CohK×C

×
(O). Hence, ΦeMi+1 is coherent, since it fits within an exact sequence

between coherent sheaves. By induction on i, ΦeM ∈ CohK×C
×

O
(g/k)∗.

Finally, suppose X� ∈ HC(g�,K). Define M = X�/�X� ∈ CohK,C×

O
(g/k)∗.

There is a short exact sequence

0 → �X� → X� → M → 0

in HC
O
(g�,K). By the left exactness of Φe, there is a long exact sequence

0 → Φe�X� → ΦeX� → Φe → . . .

in M
O
(g�,K) and hence an inclusion

ΦeX�/Φe�X� ⊆ ΦeM.

It is clear from the construction of Φe that �ΦeX� = Φe�X�. So we obtain from
above

ΦeX�/�ΦeX� ⊆ ΦeM.

The left hand side is coherent since the right hand side is coherent. Choose a
finite set of generators x1, . . . , xn for ΦeX�/�ΦeX� over S(g/k). Choose arbitrary
lifts x̃1, . . . , x̃n to ΦeX� and form the (g�,K)-submodule R ⊂ Φe generated by
these elements. By definition, ΦeX� = R + �ΦeX�. If we replace X� with �X�

and repeat the same argument, we obtain �ΦeX� = �R + �2ΦeX�, and hence
ΦeX� = R+ �2ΦeX�. Then, ΦeX� = R + �nΦeX� by a simple induction on n.

Since R is finitely-generated over a nonnegatively graded ring, its grading is
bounded from below. Choose an integer N such that Rn = 0 for every n < N .

If n < N and x ∈ (ΦeX�)n, then x ∈
⋂

n �
nΦeX�. Since X̂� is separated in the

Îe-adic topology (part (3) of Proposition 3.6),⋂
n

�nX̂� ⊆
⋂
n

Îne X̂� = 0.

Then it is clear from the construction of Γ that⋂
n

�nΦeX� = 0.

So, x = 0 and we see that the grading on ΦeX� is (also) bounded from below. Now
suppose n is arbitrary and y ∈ (ΦeX�)n. Choose m so large that (�mΦeX�)n = 0.
Then ΦeX� = R+ �mΦeX� implies y ∈ R. This proves that ΦeX� = R.

Now, ΦeX� is a finitely-generated (g�,K)-module and hence an object in
HC(g�,K). From the inclusion ΦeX�/�ΦeX� ⊆ ΦeM and the additivity of support,
we have ΦeX� ∈ HC

O
(g�,K). �

Write A
O

for the full image of the completion functor •̂ : HC
O
(g�,K) →

HC(ĝ�, L).
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Proposition 3.12. The functors

•̂ : HC
O
(g�,K) → A

O
, Γ : A

O
→ HC

O
(g�,K)

are left and right adjoints.

Proof. Both functors factor through the intermediate category HC
O
(g�,K

1)

HC(g�,K) HC(g�,K
1) A

O

Res •̂

Ind Γ1
lf

.

The functor IndKK1 : HC
O
(g�,K

1) → HC
O
(g�,K), as we have defined it, is left-

adjoint to Res. There is an alternative definition of IndKK1 via tensor products and
coinvariants (rather than functions and invariants), given by

IndKK1V = C[K]⊗C[K1] V,

and this second version of induction is right-adjoint to Res. Since K1 has finite
index in K, these two versions coincide. Thus, it suffices to exhibit an adjunction
between the functors •̂ : HC(g�,K

1) → A
O
and Γ1

lf : AO
→ HC(g�,K

1).

Choose X ∈ HC
O
(g�,K

1) and Y ∈ A
O
. We want to define a natural bijection

Homg�,K1,C×(X,Γ1
lfY ) � Homĝ�,L,C×(X̂, Y ).

Suppose f ∈ Homg�,K1,C×(X,Γ1
lfY ). Compose f with the inclusion i : Γ1

lfY ⊂ Y
to obtain an L and C×-equivariant R�U(g)-module homomorphism i ◦ f : X → Y .

Since Y is complete in the Îe-adic topology (part (3) of Proposition 3.6), this
homomorphism extends to a (unique) morphism in HC(ĝ�, L)

î ◦ f : X̂ → Y.

On the other hand, if g ∈ Homĝ�,L,C×(X̂, Y ), the restriction g|X takes values in

Γ1
lfY . One easily checks that the assignments f �→ î ◦ f and g �→ g|X define

mutually inverse bijections. �
Proposition 3.13 establishes some of the corresponding properties of Φe. The

statements and proofs are analogous to [13, Prop 3.4.1].

Proposition 3.13. The functor

Φe : HC
O
(g�,K) → HC

O
(g�,K),

which is well-defined by Proposition 3.11, has the following properties:

(1) For every X� ∈ HC
O
(g�,K), there is a natural map

X� → ΦeX�,

and its completion

X̂� → Φ̂eX�

is an injection.
(2) kerΦe = HC∂O(g�,K).
(3) For every X� ∈ HC

O
(g�,K),

Ann(X�) ⊆ Ann(ΦeX�).

(4) Form the right derived functors RiΦe : M(g�,K) → M(g�,K) using Propo-
sition 3.10. Then if X� ∈ HC

O
(g�,K), the gradings on RiΦeX� are

bounded from below.
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Proof. (1) This is a formal consequence of the adjunction (•̂,Γ) established
in Proposition 3.12. The natural map X� → ΦeX� is the morphism in
Homg�,K,C×(X�,ΦeX�) corresponding to the identity map

id ∈ Homĝ�,L,C×(X̂�, X̂�).

Its completion is a morphism

X̂� → Φ̂eX�

in HC(ĝ�, L). On the other hand, the identity map id ∈ Homg�,K,C×(ΦeX�,

ΦeX�) corresponds to a natural map Φ̂eX� → X̂� in HC(ĝ�, L). Since all
maps are natural, the composition

X̂� → Φ̂eX� → X̂�

is the identity. In particular, X̂� → Φ̂eX� is an injection.
(2) If X� ∈ HC∂O(g�,K), then ΦeX� = 0 by (one half of) part (2) of Corollary

3.9. Conversely, if X� ∈ HC
O
(g�,K) and ΦeX� = 0, then Φ̂eX� = 0 and

hence X̂� = 0 by the result of the previous part. Then X� ∈ HC∂O(g�,K)
by (the other half of) part (2) of Corollary 3.9.

(3) Since X̂� is an inverse limit of quotients X�/I
n
e X� — each annihilated by

Ann(X�)—there is an obvious inclusion Ann(X�) ⊆ Ann(X̂�). And since

Γ1
lfX̂� ⊆ X̂�, we have Ann(X̂�) ⊆ Ann(Γ1

lfX̂�). Examining the formula for

the R�U(g)-action on IndKK1Γ1
lfX̂�, it is clear that Ann(ΓX̂�) is the largest

K-invariant subspace of Ann(Γ1
lfX̂�). But Ann(X�) is already K-invariant,

so Ann(X�) ⊆ Ann(ΦeX�).
(4) Consider the abelian category M≥0(g�,K) of (g�,K)-modules with non-

negative gradings. In the proof of Proposition 3.10, we defined a functor
R : R�U(g) − mod → M(g�,K) right adjoint to the forgetful functor. R
was defined by

R(B) =
⊕
n∈Z

R1(B), B ∈ R�U(g)−mod,

for R1B a certainK-equivariant R�U(g)-module produced canonically from
B. We could have defined

R(B) =
⊕
n≥0

R1(B), B ∈ R�U(g)−mod.

This is still a (g�,K)-module since R�U(g) is nonnegatively graded, and
the resulting functor R : R�U(g) − mod → M≥0(g�,K) is right adjoint
to the corresponding forgetful functor. Then the general fact cited in the
proof of Proposition 3.12 implies enough injectives in M≥0(g�,K).

Now, consider the category M b(g�,K) of (g�,K)-modules with gradings
bounded from below. If X� ∈ M b(g�,K), we can shift the grading on X� by
an appropriate integer N to obtain an object XN

�
∈ M≥0(g�,K). XN

�
has

an injective covering XN
�

↪→ I in M≥0(g,K) by the result of the previous
paragraph. Since the shift I−N ∈ M b(g�,K) remains injective, X� ↪→ I−N

is an injective covering of X�. Hence, M b(g�,K) has enough injectives as
well.
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Let X� ∈ HC
O
(g�,K). X� is finitely-generated over a nonnegatively-

graded ring and, therefore, an object of M b(g�,K). Choose an injective
resolution 0 → X� → I• inM b(g�,K). The result follows from the standard
construction of RiΦeX�.

�
From these properties, we deduce

Proposition 3.14. Φe is a localization functor for the subcategory HC∂O(g�,K) ⊂
HC

O
(g�,K).

Proof. We will apply the general criterion of Proposition 2.13. We proved in Propo-
sition 3.12 that the functors

HC
O
(g�,K) A

O

•̂

Γ

form an adjoint pair and in part (2) of Proposition 3.13 that kerΦe = HC∂O(g�,K).
It remains to show that Γ : A

O
→ HC

O
(g�,K) is fully faithful.

Choose objects X̂�, Ŷ� ∈ A
O
. Suppose f ∈ Homg�,K,C×(ΓX̂�,ΓŶ�). Compose

f with the natural map ΓŶ� → Y� → Ŷ� to obtain an L and C×-equivariant

R�U(g)-module homomorphism ΓX̂� → Ŷ�. Since Ŷ� is complete in the Îe-adic
topology (Proposition 3.6), this homomorphism extends to a unique morphism

f̃ ∈ Homĝ�,L,C×(Φ̂eX�, Ŷ�) making the following diagram commute

ΓX̂� ΓŶ�

Φ̂eX� Ŷ�

f

∃! ˜f

The restriction f̃ |
̂X�

is a morphism in Homĝ�,L,C×(X̂�, Ŷ�) and the correspondence

f �→ f̃ |
̂X�

defines a map Hom(ΓX̂�,ΓŶ�) → Hom(X̂�, Ŷ�) which is manifestly
inverse to Γ. �

From Proposition 3.14 and the general properties of localization (Proposition
2.12), we get a number of additional properties more or less for free:

Corollary 3.15. Φe has the following additional properties

(1) For every X� ∈ HC
O
(g�,K), the kernel and cokernel of the natural map

X� → ΦeX�

are objects in HC∂O(g�,K)
(2) X� ∈ ImΦe if and only if

Hom(HC∂O(g�,K), X�) = Ext1(X�,HC∂O(g�,K)) = 0

(3) •̂ ◦ Γ : A
O
→ A

O
is the identity functor. In particular, the injection X̂� ↪→

Φ̂eX� from Proposition 3.13(1) is actually an isomorphism.

If we choose a different representative e′ ∈ O, we get a different functor Φe′ :
HC

O
(g�,K) → HC

O
(g�,K). This functor enjoys all of the properties enumerated

above. In particular, it is a localization functor for the subcategory HC∂O(g�,K).
But localization functors are defined by a universal property and are therefore
unique up to natural isomorphism. This proves
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Proposition 3.16. If e, e′ ∈ O, there is a natural isomorphism

Φe � Φe′ .

We can therefore write ΦO without ambiguity.

Recall the embedding

R� : HCfilt
O

(g,K) ↪→ HC
O
(g�,K)

from Proposition 3.3. Setting � = 1 defines a right inverse to R�

� = 1 : HC
O
(g�,K) → HCfilt

O
(g,K),

which restricts to an equivalence on the subcategory HCtf
O
(g�,K) of �-torsion free

(g�,K)-modules. The condition of being �-torsion free means that

0 → X�

�
n

→ X� is exact ∀n ∈ N.

Since ΦO is left-exact, this condition is preserved under application of ΦO. So

ΦO preserves the subcategory HCtf
O
(g,K). Proposition 3.17 is analogous to the

discussion at the beginning of [13, Sec 3.4].

Proposition 3.17. ΦO descends to a well-defined functor on HC
O
(g,K). More

precisely, there is a unique functor

ΦO : HC
O
(g,K) → HC

O
(g,K)

making the following diagram commute

HCtf
O
(g�,K) HCtf

O
(g�,K)

HCfilt
O

(g,K) HCfilt
O

(g,K)

HC
O
(g,K) HC

O
(g,K)

ΦO

∼�=1 ∼�=1

forget

R�

forget

R�

ΦO

Proof. First, we will describe how we would like to define ΦO. Then we will prove
that this definition makes sense. Define the functor

P = forget ◦ (� = 1) ◦ ΦO ◦R� : HCfilt
O

(g,K) → HC
O
(g,K).

For an object X ∈ HC
O
(g,K), we would like to define

(3.2) ΦOX = P (X,F)

for any choice of good filtration F . For a morphism f : X → Y in HC
O
(g,K) we

would like to define

(3.3) ΦOf : P (f : (X,F) → (Y,G))
for any choice of good filtrations F on X and G on Y compatible with f . There
are several things to prove.

Objects. If F is a good filtration on X and s is an integer, write Fs for the
filtration defined by Fs

i X = Fs+iX. Fs is good. If s ≥ t there is an identity map

idFs,Ft : (X,Fs) → (X,F t),

and it is clear from the construction of ΦO that P (idFs,Ft) is the identity.
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Now let F and G be arbitrary good filtrations on X. There are integers r ≤ s ≤
t ≤ w such that for every integer i

(3.4) Fi+rX ⊆ Gi+sX ⊆ Fi+tX ⊆ Gi+w.

For a proof of this simple fact, see [18, Prop 2.2]. So the identity map defines
morphisms

idFr,Gs : (X,Fr) → (X,Gs),

idGs,Ft : (X,Gs) → (X,F t),

idFt,Fw : (X,F t) → (X,Gw)

in HCfilt
O

(g,K). From the previous paragraph and the functoriality of P we have

P (idGs,Ft) ◦ P (idFr,Gs) = P (idGs,Ft ◦ idFr,Gs) = P (idFr,Ft) = id,

P (idFt,Gw) ◦ P (idGs,Ft) = P (idFs,Gw ◦ idGs,Ft) = P (idGs,Gw) = id.

Hence, P (idGs,Ft);P (X,Gs) → P (X,F t) is an isomorphism. But P (X,F t) =
P (X,F) and P (X,Gs) = P (X,G). So in fact P (X,F) � P (X,G). Note that this
isomorphism is independent of r, s, t, and w. Thus, the isomorphisms identifying
P (X,F) and P (X,G) are well-defined.

Morphisms. Suppose f : X → Y is a morphism in HC
O
(g,K). Choose two

different lifts fF ,G : (X,F) → (Y,G) and fF ′,G′ : (X,F ′) → (Y,G′) to HCfilt
O

(g,K).

We hope to show that

P (fF ,G) = P (fF ′,G′)

up to the isomorphisms P (X,F) � P (X,F ′) and P (Y,G) � P (Y,G′) constructed
above.

From (3.4), there are integers r and s such that the identity maps on X and Y
induce morphisms

idFr,F : (X,Fr) → (X,F),

idFr,F ′ : (X,Fr) → (X,F ′),

idG,Gs : (X,G) → (X,Gs),

idG′,Gs : (X,G′) → (X,Gs).

P (idFr,F ) and P (idG,Gs) are the identity maps (on X and Y , respectively), and
P (idFr,F ′) and P (idG′,Gs) are isomorphisms. The isomorphisms P (X,F)�P (X,F ′)
and P (Y,G) � P (Y,G′) obtained from these maps coincide with the isomorphisms
constructed above. By the functoriality of P , P (fF ,G) = P (fF ′,G′) up to these
isomorphisms. �

As one might expect, ΦO inherits all of the essential properties of ΦO. Combining
Proposition 3.13 with Proposition 3.17, we easily deduce the following.

Proposition 3.18. The functor

ΦO : HC
O
(g,K) → HC

O
(g,K),

which is well-defined by Proposition 3.17, has the following properties:

(1) ΦO is left exact.

(2) kerΦO = HC∂O(g,K)
(3) ΦO is a localization functor for the subcategory HC∂O(g,K) ⊂ HC

O
(g,K)
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(4) There is a natural transformation id → ΦO

(5) For every X ∈ HC
O
(g,K)

Hom(HC∂O(g,K), X) = Ext1(X,HC∂O(g,K)) = 0.

(6) For every X ∈ HC
O
(g,K),

Ann(X) ⊆ Ann(ΦOX).

In particular, ΦO preserves central character.

In short, ΦO is a left exact endofunctor of HC
O
(g,K) which annihilates the

subcategory HC∂O(g,K). It is (in a precise sense) a quantum analogue of the

localization functor j∗j
∗ : CohK×C

×
(O) → CohK×C

×
(O).

3.3. Irreducibility of the associated variety. As an application of the con-
struction in the previous subsection, we will provide here an alternative proof of
Theorem 2.3(iv).

Proposition 3.19. Let X be an irreducible (g,K)-module and let OG denote the
(unique) open G-orbit in AV(Ann(X)). If AV(X) is reducible, then

codim(∂OG,OG) = 2.

Proof. Suppose

(3.5) codim(∂OG,OG) ≥ 4.

We will show that AV(X) is irreducible using (a variant of) the functor ΦO con-
structed in the previous subsection. Let O be an open K-orbit in AV(X). Note
that (3.5) implies

codim(∂O,O) ≥ 2,

see (ii) of Theorem 2.3. By Proposition 3.11, ΦO restricts to an endofunctor of
HC

O
(g�,K). The key input was Proposition A.3 combined with Proposition A.5.

In Proposition A.3, we took U to be an open dense subset of the ambient variety
X. If we assume only that U is dense in a component, we can prove a similar result
(by exactly the same methods). Namely, we can exhibit a natural isomorphism

ΓM � j∗j
∗M

for everyM ∈ CohK×C
×
(O). The sheaf j∗j

∗M is coherent (by Proposition A.5) and
supported in U . Repeating the proof of Proposition 3.11, we see that ΦO restricts
to a functor

ΦO : HCAV(X)(g�,K) → HC
O
(g�,K).

This descends to a functor

ΦO : HCAV(X)(g,K) → HC
O
(g,K)

by a version of Proposition 3.17. By (4) of Proposition 3.18, there is a natural
morphism of Harish-Chandra modules

X → ΦOX

which is manifestly injective since X is irreducible. Since the associated variety is
additive on short exact sequences, we deduce that AV(X) ⊆ AV(Φ̄OX) ⊆ O and

hence that AV(X) = O. This completes the proof. �
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4. Vogan’s conjecture and the cohomology of admissible vector

bundles

In this section we will show that, under a slightly stronger codimension condition,
Vogan’s conjecture (cf. Conjecture 2.7) follows from a purely geometric condition
on admissible vector bundles.

Theorem 4.1. Suppose X is a special unipotent Harish-Chandra module, and sup-
pose AC(X) = ([E ]), where E is an (admissible K-equivariant) vector bundle on
a nilpotent K-orbit O ⊂ Nk. Let OG = G · O ⊂ N and assume OG satisfies the
condition

(4.1) codim(∂OG,OG) ≥ 6.

Also assume

H1(O, E) = 0.

Then there is an isomorphism of algebraic K-representations

(4.2) X �K Γ(O, E).

The cohomological condition on the admissible vector bundle E in Theorem 4.1
can be verified in many cases. In Section 5, we will show that if GR is complex, then
this condition is always satisfied (provided (4.1) holds). In [15], we show that this
condition holds for the K-forms of the so-called ‘model orbit’ for GR = Sp(2n,R)
(i.e. the orbit corresponding to the partition (2n) of 2n).

Lemma 4.2. Take X as in Theorem 4.1, and let

M := gr(X) ∈ CohK×C
×
(g/k)∗ ⊂ M(g�,K).

Then the following are true

(i) ΦOM � Γ(O, E) as K-representations.
(ii) R1ΦOM = 0.

Proof. Choose a finite filtration by K × C×-equivariant subsheaves

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that Ni := Mk/Mk−1 ∈ CohK×C
×
(O) for 1 ≤ k ≤ n. Write Ei := Nk|O, a

K×C×-equivariant vector bundle on O. By the definition of the associated K-cycle
(cf. (2.1)), we have

[E ] =
n∑

k=1

[Ei]

in KVecK(O). Refining the filtration if necessary, we can further assume that Ek
is irreducible, for each k, and hence a direct summand in E (since E is assumed to
be semisimple).

We will prove both (i) and (ii) by induction on n. If n = 0, there is nothing to
prove. Assume (i) and (ii) hold up to n − 1. There is a short exact sequence in

CohK×C
×
(g/k)∗

0 → Mn−1 → M → Nn → 0,

and hence a long exact sequence in M(g�,K)
(4.3)
0 → ΦOMn−1 → ΦOM → ΦONn → R1ΦOMn−1 → R1ΦOM → R1ΦONn → . . . .
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Let E ′ :=
⊕n−1

k=1 Ek. By the induction hypothesis,

ΦOMn−1 �K Γ(O, E ′), R1ΦOMn−1 = 0.

By Proposition 3.11, the restriction of ΦO to the subcategory CohK×C
×
(O) ⊂

M(g�,K) coincides with the functor j∗j
∗, which in turn coincides (since O is affine)

with the global sections functor Γ(O, •). Hence ΦONn �K Γ(O, En) and R1ΦONn �
H1(O, En). Note that H1(O, En) = 0, since En is a direct summand in E and
H1(O, E) = 0. So R1ΦONn = 0. Now (5.2) becomes

0 → ΦOMn−1 → ΦOM → ΦONn → 0 → R1ΦOM → 0 → . . . .

Exactness implies that R1ΦOM = 0, proving (ii). For (i), consider the short exact
sequence

0 → ΦOMn−1 → ΦOM → ΦONn → 0.

Since K is reductive, this sequence splits upon restriction to K. Hence

ΦOM �K ΦOMn−1 ⊕ ΦONn � Γ(O, E ′)⊕ Γ(O, En) �K Γ(O, E),
as desired. �

We are now prepared to prove Theorem 4.1.

Proof of Theorem 4.1. The proof has two steps. First, we show that there is a
natural isomorphism in M(g,K)

(4.4) X � ΦOX.

Then we show that

(4.5) gr(ΦOX) �K Γ(O, E).
Since K is reductive, X �K gr(X). So (4.4) and (4.5) imply

X �K gr(X) �K gr(ΦOX) �K Γ(O, E),
as asserted.

Step 1. By (4) of Proposition 3.18, there is a natural map

(4.6) η : X → ΦOX.

Since X is irreducible, η is injective. Let Y be its cokernel. By (6) of Propo-
sition 3.18 Ann(X) ⊆ Ann(Y ). If Ann(X) = Ann(Y ), then by Theorem 2.3,
dimAV(X) = dimAV(Y ). Yet by (2) of Proposition 3.18, AV(Y ) ⊆ ∂O. So
Ann(X) � Ann(Y ). Since X is special unipotent, Ann(X) is a maximal ideal. So
in fact Ann(Y ) = U(g). Hence, Y = 0 and (4.6) is an isomorphism.

Step 2. Choose a good filtration on X and let X� = R�X ∈ HCtf
O
(g�,K). Write

M = X�/�X� = gr(X) ∈ CohK×C
×

O
(g/k)∗. Since X� is �-torsion free, multiplica-

tion by � gives rise to a short exact sequence in M(g�,K)

0 → X�

·�→ X� → M → 0.

Since ΦO is left-exact, there is an associated long exact sequence in M(g�,K)

(4.7) 0 → ΦOX�

·�→ ΦOX� → ΦOM → R1ΦOX�

·�→ R1ΦOX� → R1ΦOM → . . . .

By (ii) of Lemma 4.2, we have R1ΦOM = 0. So R1ΦOX�

·�→ R1ΦOX� is surjec-
tive. By (4) of Proposition 3.13, the grading on R1ΦOX� is bounded from below,
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and multiplication by � increases degree. So R1ΦOX� = �R1ΦOX� implies that
R1ΦOX� = 0. Now (4.7) becomes

(4.8) 0 → ΦOX�

·�→ ΦOX� → ΦOM → 0.

In other words, there is an isomorphism

ΦOX�/�ΦOX� � ΦOM

in CohK×C
×
(g/k)∗. The left hand side is identified with the associated graded of

the filtered Harish-Chandra module ΦOX�/(�− 1)ΦOX�. There is an isomorphism
of (g,K)-modules (immediate from the definition of ΦO)

ΦOX�/(�− 1)ΦOX� � ΦOX.

Thus
[gr(ΦOX)] = [ΦOM ]

in K CohK(g/k)∗. By (i) of Lemma 4.2, ΦOM �K Γ(O, E). So
gr(ΦOX) �K Γ(O, E).

�

5. Vogan’s conjecture for complex groups

Let GR be a complex connected reductive algebraic group, regarded as a real
group by restriction of scalars. In this case, one can make several standard identi-
fications (see [4, Introduction]):

G � GR ×GR,

N � NR ×NR,

K � {(g, g) ∈ GR ×GR},
Nk � {(λ, λ) ∈ NR ×NR}.

In particular, every K-orbit O ⊂ Nk can be K-equivariantly identified with a
nilpotent coadjoint K-orbit and is therefore a symplectic variety. We will prove the
following result.

Proposition 5.1. Suppose GR is complex. Let O ⊂ Nk be a K-orbit and let E be
an admissible K-equivariant vector bundle on O. Then

Hi(O, E) = 0, 0 < i < codim(∂O,O)− 1.

Corollary 5.2. Suppose GR is complex and let O ⊂ Nk be a K-orbit such that

(5.1) codim(∂O,O) ≥ 4.

Suppose X is a special unipotent representation of GR such that AV(X) = O. Then
the conclusion of Vogan’s conjecture (cf. Conjecture 2.7) holds for X.

Proof. We will apply Theorem 4.1. Fix E and OG as in the statement of that theo-
rem. There are two conditions to check: the codimension condition codim(∂OG,OG)
≥ 6 and the cohomological condition H1(O, E) = 0. From (5.1) we deduce

codim(∂OG,OG) = 2 codim(∂O,O) ≥ 8.

In particular, codim(∂OG,OG) ≥ 6. From Proposition 5.1 we deduce

Hi(O, E) = 0, 0 < i < 3.
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In particular, H1(O, E) = 0. �

The proof of Proposition 5.1 will require some preparation.

Lemma 5.3. Let V be an affine variety and U ⊂ V an open subset with complement
Z = V \ U . If M ∈ QCoh(X) is Cohen-Macaulay, then

Hi(U,M |U ) = 0, 0 < i < codim(Z, V )− 1.

Proof. Let Hi
Z(V,M) denote the cohomology of X with support in Z. There is a

long exact sequence

(5.2) 0 → H0
Z(V,M) → H0(V,M) → H0(U,M |U ) → . . . .

See, e.g., [16, Thm 9.4]. Since V is affine, Hi(V,M) = 0 for i > 0. Together with
(5.2), this implies

(5.3) Hi(U,M |U ) � Hi+1
Z (V,M), i ≥ 1.

The vanishing behavior of the cohomology groups Hi
Z(V,M) is controlled by the

Z-depth of M , denoted depthZ(M). This is defined to be the length of the longest
M -regular sequence of functions in the ideal defining Z. We have in general (without
hypotheses on V or on M)

(5.4) Hi
Z(V,M) = 0, i < depthZ(M).

See, e.g., [9, Thm 5.8]. And for M Cohen-Macaulay

(5.5) depthZ(M) = codim(Z, V ).

See, e.g., [6, Chp 18]. Combining equations (5.3), (5.4), and (5.5) proves the result.
�

Our application of Lemma 5.3 will be somewhat indirect. Let O ⊂ Nk be a

K-orbit, and let p : Õ → O denote the universal K-equivariant cover. Consider the

affine varieties V := Spec(C[O]) and Ṽ := Spec(C[Õ]). There are open embeddings

O ⊂ V , Õ ⊂ Ṽ , and the complement of O in V (resp. Õ in Ṽ ) is of codimension

≥ 2. Of course, the covering map p : Õ → O extends to a finite K-equivariant

surjection p′ : Ṽ → V . Thus, there is a commutative square:

Õ Ṽ

O V

p p′

Theorem 5.4. The varieties Ṽ and V are Cohen-Macaulay.

Proof. By [8, Thm 3.3], V is Gorenstein with rational singularities. Thus by [5, Thm

6.2], the same is true of Ṽ . In characteristic 0, rational singularities implies Cohen-
Macaulay, see, e.g., [12, Thm 5.10]. This completes the proof. �

Proof of Proposition 5.1. Recall that O can be identified with a nilpotent coadjoint
K-orbit. In particular, O admits a K-equivariant symplectic form τ . The pullback

p∗τ of τ along the covering map p : Õ → O is a K-equivariant symplectic form on
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Õ. The top exterior power of p∗τ defines a global trivialization of the canonical

bundle ω
˜O
on Õ. So the admissibility condition of Definition 2.5 becomes

(5.6) p∗E ⊗ p∗E � O
˜O
⊕ · · · ⊕ O

˜O
.

Choose e ∈ O and write ρ : Ke → GL(E) for the Ke-representation on the fiber
E over e, see the remarks preceding Theorem 2.6. Then (5.6) is equivalent to the
condition 2dρ = 0. In other words, ρ descends to a representation of the (finite)
component group Ke/K

◦
e .

Let d := codim(O, V ) = codim(Õ, Ṽ ). By Theorem 5.4, Ṽ is Cohen-Macaulay.

So Lemma 5.3, applied to Õ ⊂ Ṽ , implies that

Hi(Õ,O
˜O
) = 0, 0 < i < d− 1.

Consider the K-equivariant vector bundle p∗O˜O
on O. Since p is finite, and hence

affine,

(5.7) Hi(O, p∗O˜O
) � Hi(Õ,O

˜O
) = 0, 0 < i < d− 1.

Under the equivalence VecK(O) � Rep(Ke), the vector bundle p∗O˜V corresponds to
the Ke-representation C[Ke/K

◦
e ]. By the representation theory of finite groups, ev-

ery irreducible representation of Ke/K
◦
e appears as a direct summand in C[Ke/K

◦
e ].

So every irreducible admissible vector bundle on O appears as a direct summand
in p∗O˜O

. The vector bundle E is a direct sum of such irreducibles. So

Hi(O, E) = 0, 0 < i < d− 1,

as asserted. �

Appendix A. Homogeneous vector bundles

Let K be an algebraic group acting on an affine variety V = Spec(R). Suppose
V contains an open, dense K-orbit j : U ⊂ V and let Z = V \ U . Choose a
point x ∈ U and let H = Kx. Since K acts transitively on U , a K-equivariant
coherent sheaf M ∈ CohK(U) is (the sheaf of sections of) a homogeneous vector
bundle, and we will speak interchangeably of K-equivariant vector bundles and
K-equivariant coherent sheaves on U . The geometric fiber of M over x is a finite-
dimensional vector space carrying a natural action of H. On the other hand, if
E is a finite-dimensional H-representation, there is a K-equivariant vector bundle
K ×H E → U with fiber equal to E. It is formed as the quotient space of K × E
under the natural right H-action h ·(k, v) = (kh, h−1v). Taking the fiber over x and
forming the vector bundle K ×H E define mutually inverse equivalences between
CohK(U) and the category of finite-dimensional H-representations.

Define the subgroup K1 = K0H and let i : Ux ⊂ U be the connected component
of x. We can describe Ux as a homogeneous space in two different ways.

Lemma A.1. The following are true:

(1) K0 acts transitively on Ux with isotropy H ∩K0.
(2) K1 acts transitively on Ux with isotropy H.

Proof. (1) Clearly K0x ⊆ Ux, since K0 is connected. Conversely, suppose
y ∈ Ux. Then there is a path connecting x to y in U . By the path-lifting
property for fibrations, there is a group element k ∈ K such that kx = y
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and a path from 1 to k in K lifting the path from x to y in U . In particular,
k ∈ K0. Therefore, Ux ⊆ K0x.

(2) Note that K1x is identified with K1/H = K0H/H and K0H/H is bijective
onto K0/(H ∩ K0). Thus, K1x is connected. This provides an inclusion
K1x ⊆ Ux. The reverse inclusion follows from (1): Ux = K0x ⊆ K1x.

�

Let Ũx = K0/H0 and let p : Ũx = K0/H0 → K0/(H∩K0) = Ux be the natural

projection. Let Ṽ be the normalization of V in the function field of Ũx. Then Ṽ
is a normal affine variety with an algebraic action of K0, an open K0-equivariant

immersion Ũx ⊂ Ṽ , and a finite, K0-equivariant map p′ : Ṽ → V extending the

map p : Ũx → Ux:

Ũx Ṽ

Ux V

p p′

j◦i

Let M ∈ CohK(V ). Write E = M |U ∈ CohK(U) and E for the fiber over x (a
finite-dimensional representation of H). Let mx ⊂ R be the maximal ideal defining
x and form the completion of M with respect to mx

M̂ = lim←−M/mn
xM.

Note that M̂ is a module for the completed algebra R̂ = lim←−R/mn
xR. The actions

of H and k on R preserve mx and therefore lift to the completion. These structures
exhibit the usual compatibility conditions:

(1) The action map R̂ ⊗ M̂ → M̂ is k and H-equivariant

(2) The action map k⊗ M̂ → M̂ is H-equivariant
(3) The k-action coincides on h with the differentiated action of H.

Here are some basic facts about M̂ .

Proposition A.2. The following are true:

(1) The stalk Mx is a module for the local ring Rx. Form the completions R̂x

and M̂x with respect to mx ⊂ Rx.

R̂x = lim←−Rx/m
n
x ,

M̂x = lim←−Mx/m
n
xMx.

Then the natural map R̂ → R̂x is an isomorphism of algebras, and the nat-

ural map M̂ → M̂x is an isomorphism of k and H-equivariant R̂-modules.
(2) The sections Γ(U, E) form a K-equivariant R-module. One can define the

completion

Γ̂(U, E) = lim←−Γ(U, E)/mn
xΓ(U, E).

The natural map

M̂ → Γ̂(U, E)
is an isomorphism of k and H-equivariant R̂-modules.
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(3) The sections Γ(Ux, i∗E) form a K0-equivariant R-module. One can define
the completion

̂Γ(Ux, i∗E) = lim←−Γ(Ux, i∗E)/mn
xΓ(U

x, i∗E).
The natural map

M̂ → ̂Γ(Ux, i∗E)
is an isomorphism of k and H ∩K0-equivariant R̂-modules.

(4) The sections Γ(Ũx, p∗i∗E) form a K0-equivariant R-module. One can define
the completion

̂
Γ(Ũx, p∗i∗E) = lim←−Γ(Ũx, i∗E)/mn

xΓ(Ũ
x, p∗i∗E).

The natural map

M̂ → ̂
Γ(Ũx, p∗i∗E)

is an isomorphism of k and H0-equivariant R̂-modules.

Proof. (1) By the exactness of localization, there are canonical isomorphisms

Rx/m
n
x � (R/mn

x)x, n ≥ 0.

But every element of R/mn
x outside of mx/m

n
x is already a unit, so (R/mn

x)x
= R/mn

x . The isomorphisms Rx/m
n
x � R/mn

x give rise to an isomorphism

R̂ � R̂x. The isomorphism M̂ � M̂x is obtained in a similar manner.
(2) Form the quasi-coherent sheaf j∗E . There is a natural mapM → j∗E , which

restricts to an isomorphism over U . Hence, the map of sheaves M → j∗E
induces an isomorphism of stalks

Mx � (j∗E)x = Γ(U, E)x
and therefore an isomorphism of k and H-equivariant R̂-modules

M̂x � ̂Γ(U, E)x.

But we saw in (1) that M̂ � M̂x. The same argument shows that Γ̂(U, E) �
̂Γ(U, E)x. Composing all of the isomorphisms in sight, we obtain M̂ �

Γ̂(U, E) as desired.
(3) Repeat the proof for (2), replacing U with Ux, E with i∗E , and H with

H ∩K0.
(4) Pulling back germs defines a k and H0-equivariant R-module homomor-

phism
Mx → (p∗i∗E)x̃

which is an isomorphism because p is a covering. We complete to obtain

an isomorphism M̂x � ̂(p∗i∗E)x̃ of k and H0-equivariant R̂-modules.

We saw in (1) that M̂ � M̂x. By the remarks after Lemma A.1, Ũx

embeds as an open subset in an affine variety Ṽ . Denote by s the inclusion

of Ũx into Ṽ . Then s∗p
∗i∗E is a quasi-coherent sheaf on Ṽ with global

sections Γ(Ũx, p∗i∗E). In particular, (p∗i∗E)x̃ � Γ(Ũx, p∗i∗E)x̃ and there-

fore, ̂(p∗i∗E)x̃ � ̂
Γ(Ũx, p∗i∗E)x̃. Applying part (1) to the sheaf s∗p

∗i∗E
provides an isomorphism

̂
Γ(Ũx, p∗i∗E) � ̂

Γ(Ũx, p∗i∗E)
˜V . Composing all of

the isomorphisms in sight, we obtain M̂ � ̂
Γ(Ũx, p∗i∗E), as desired.
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�
We will define a series of modules (all but the last will be subspaces of M̂) in

analogy with the modules Γ0X̂�,Γ
1X̂�,ΓX� defined in Section 3.2.

(1) First, form the subspace Γ0M̂ of K0-finite vectors:

Γ0M̂ = {x ∈ M̂ : x belongs to a finite-dimensional k-invariant

subspace which integrates to a representation of K0}.

Since K0 is connected, Γ0M̂ has a well-defined algebraic K0-action. It

is also an R-submodule of M̂ and the K0-action is compatible with the

module structure in the two usual ways. Since the k-action on M̂ is H-

equivariant, Γ0M̂ is invariant under H. Hence, Γ0M̂ has two (in general,
distinct) actions of H ∩K0, restricted from H and K0, respectively.

(2) Next, form the subspace Γ1M̂ of Γ0M̂ consisting of vectors on which the
two H ∩K0-actions coincide

Γ1M̂ = {x ∈ Γ0M̂ : l ·1 x = l ·2 x, l ∈ L ∩K0}.
This subspace is an R-submodule of Γ0M̂ . It has algebraic actions of H
and K0 which agree on the intersection and therefore an algebraic action
of K1 = HK0.

(3) Finally, induce up to K

ΓM̂ = IndKK1Γ1M̂.

If we identify ΓM̂ with functions

{f : K → Γ1M̂ : f(k′k) = k′ · f(k) for k′ ∈ K1, k ∈ K},
there is a natural R-module structure on ΓM̂ defined by the formula

(Y f)(k) = Ad(b)(Y )f(k), Y ∈ R�U(g), k ∈ K, f ∈ ΓM̂.

It is easy to check that the action map R ⊗ ΓM̂ → M̂ is K-equivariant.

These three modules have geometric significance.

Proposition A.3. There are natural isomorphisms

(1) Γ0M̂ � Γ(Ũx, p∗i∗E) of K1-equivariant R-modules,

(2) Γ1M̂ � Γ(Ux, i∗E) of K1-equivariant R-modules,

(3) ΓM̂ � Γ(U, E) of K-equivariant R-modules.

We will need a certain ‘Mackey’ isomorphism.

Lemma A.4. Let W and T be finite-dimensional K and H-representations, re-
spectively. To simplify the notation, write I(T ) for the K-equivariant R-module
Γ(U,K ×H T ) and C(I(T )) for its completion at x. Then C(I(T )) is a k and

H-equivariant R̂-module. There is a natural isomorphism of k and H-equivariant

R̂-modules
HomC(W,C(I(T ))) � C(I(HomC(W,T ))).

Proof. We know from Mackey that I commutes with Hom (see, e.g. [11, Thm
2.95]). Furthermore, C commutes with Hom for general abstract reasons: C is
a colimit and Hom is a left-adjoint. Combining these two facts gives the desired
isomorphism. �
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Proof of Proposition A.3. (1) There is a natural injection of k and H0-equiva-

riant R̂-modules

α : Γ(Ũx, p∗i∗E) ↪→ M̂

obtained by composing the inclusion Γ(Ũx, p∗i∗E) ⊂ ̂
Γ(Ũx, p∗i∗E) with the

isomorphism of Proposition A.2(4). Since Γ(Ũx, p∗i∗E) = (C[K0]⊗E)H
0 ⊂

C[K0]⊗ E, which is locally-finite as a K0-representation, we have in fact

α : Γ(Ũx, p∗i∗E) ↪→ Γ0M̂.

Both sides are now locally-finiteK0-representations and α isK0-equivariant.

Now, consider the natural projection r : M̂ → M̂/m̂xM̂ = E. r is an H-

equivariant R-module homomorphism. Moreover, the restriction of r to M̂ k

is injective: a kernel element is a Taylor series which is both locally constant
and 0-valued at x, hence identically 0. Furthermore, H-equivariance implies

r(M̂ k) ⊆ Eh. Since the composition p ◦ α is just evaluation at x̃

(p ◦ α)Γ(Ũx, p∗i∗E)K0

= EH0

= Eh.

So the restriction of α to K0-invariants is an isomorphism

α : Γ(Ũx, p∗i∗E)K0 � M̂ k.

We will use this fact to show that

HomK0(L,Γ0M̂) = HomK0(L,Γ(Ũx, p∗i∗E))

for every finite-dimensional K0-representation L. This will imply that the

injection α : Γ(Ũx, p∗i∗E) ↪→ Γ0M̂ of algebraic K0-representations is an
isomorphism. Note that

HomK0(L,Γ0M̂) = HomC(L, M̂)k K0 is connected

= HomC(L,Γ(Ũ
x, p∗i∗E)
∧

)k Proposition A.2(4)

= Γ(Ũx,K0 ×H0 HomC(L,E))
∧k

Lemma A.4

= Γ(Ũx,K0 ×H0 HomC(L,E))K
0

Remarks above

= HomC(L,E)H
o

obvious

= HomHo(L,E) obvious

= HomK0(L,Γ(Ũx, p∗i∗E)) Frobenius reciprocity.

(2) As explained in the construction of Γ1M̂ , Γ0M̂ has two (in general, distinct)

algebraic H ∩K0-actions. These actions transfer to Γ(Ũx, p∗i∗E) by means

of the isomorphism Γ0M̂ � Γ(Ũx, p∗i∗E) established above. We need a

direct description of these actions on Γ(Ũx, p∗i∗E).
There is, on the one hand, the obvious K0-action on Ũx. This induces

a K0-action on sections, given by the formula

(h ·1 f)(u) = f(h−1u), f ∈ Γ(Ũx, p∗i∗E), u ∈ Ũx, h ∈ K0.



506 LUCAS MASON-BROWN

The action of H on Γ(Ũx, p∗i∗E) is a bit more subtle. Since K0 is a normal

subgroup of K, H acts on Ũx by h(kx̃) = (h−1kh)x̃. This induces an
H-action on sections, given by

(h ·2 f)(kx̃) = f(h−1khx̃), f ∈ Γ(Ũx, p∗i∗E), k ∈ K0, h ∈ H.

To see that these two actions are the right ones (i.e. come from the actions

on Γ0M̂ defined in the construction of Γ1M̂) requires a painstaking analysis
of the natural isomorphisms in (1). We leave the trivial details to the reader.

Now if f ∈ Γ(Ũx, p∗i∗E), then (h ·1 f) = (h ·2 f) for every h ∈ H ∩K0 if

and only if f ∈ Γ(Ux, i∗E). Hence Γ1M̂ = Γ(Ux, i∗E).
(3) By (2) of Lemma A.1, Γ(Ux, i∗E) has the structure of a K1-equivariant

R-module, and the restriction map

Γ(U, E) → Γ(Ux, i∗E)

is a homomorphism of K1-equivariant R-modules. The K-representation
IndKK1Γ(Ux, i∗E) has the natural structure of a K-equivariant R-module as

described in the construction of ΓM̂ , and Frobenius reciprocity provides a
natural map of K-equivariant R-modules

r : Γ(U, E) → IndKK1Γ(Ux, i∗E).

If we identify IndKK1Γ(Ux, i∗E) with functions f : K → Γ(Ux, i∗E) satisfying
the transformation rule

f(k′k) = k′f(k), k ∈ K, k′ ∈ K1,

then a section s ∈ Γ(U, E) maps to the function fs : K → Γ(Ux, i∗E) defined
by fs(k) = (ks)|Ux . From this description and the equality KUx = U , it is

clear that r is an injection. If we can show that Γ(U, E) � IndKK1Γ(Ux, i∗E)
as K-representations, it will follow that r is an isomorphism. But as K-
representations

Γ(U, E) �K IndKHE �K IndKK1IndK
1

H E �K IndKK1Γ(Ux, i∗E)

by the transitivity of induction.
�

Finally, there is the question of finite generation.

Theorem A.5. Suppose

codim(Z, V ) ≥ 2.

Then the modules Γ(Ũx, p∗i∗E),Γ(Ux, i∗E), and Γ(U, E) are finitely-generated for
R.

Proof. Combine Theorems 4.1 and 4.3 in [7]. �
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