DELIGNE-LUSZTIG DUALITY ON THE MODULI STACK OF BUNDLES

LIN CHEN

Abstract

Let $\operatorname{Bun}_{G}(X)$ be the moduli stack of G-torsors on a smooth projective curve X for a reductive group G. We prove a conjecture made by Drinfeld-Wang and Gaitsgory on the Deligne-Lusztig duality for D-modules on $\operatorname{Bun}_{G}(X)$. This conjecture relates the pseudo-identity functors given by Gaitsgory [Ann. Sci. Éc. Norm. Supér. (4) (2017)] and Drinfeld and Gaitsgory [Camb. J. Math. 3 (2015), pp. 19-125] to the enhanced Eisenstein series and geometric constant term functors given by Gaitsgory [Astérisque (2015)]. We also prove a "second adjointness" result for these enhanced functors.

Contents

Introduction 608

1. Outline of the proof 621
2. Step 1 630
3. Step 2 635
4. Step 3 644
5. Step 4 649
6. Step 5 652
Appendix A. Theory of D-modules 658
Appendix B. Well-definedness results in Gai15 660
Appendix C. D-modules on stacks stratified by power sets 662
Appendix D. The group scheme \widetilde{G} 665
Acknowledgments 667
References 667

Introduction

0.1. Motivation: Deligne-Lusztig duality. The following pattern, which are called Deligne-Lusztig duality, has been observed in several representation-theoretic contexts: The composition of two different duality functors on the category \mathcal{C}_{G} attached to a reductive group G is isomorphic to a Deligne-Lusztig functor, given by a complex indexed by standard parabolic subgroup $\mathbb{1}^{11} P$ of G, whose terms are compositions

$$
\mathcal{C}_{G} \xrightarrow{\mathrm{CT}_{P}} \mathcal{C}_{M} \xrightarrow{\mathrm{Eis}_{P}} \mathcal{C}_{G},
$$

where

[^0]- M is the Levi quotient group of P;
- \mathcal{C}_{M} is the category attached to M;
- CT_{P} and Eis_{P} are adjoint functors connecting \mathcal{C}_{G} and \mathcal{C}_{M}.

The study of such pattern can be dated back to the Alvis-Curtis duality operation on characters of finite Chevalley group Alv79, Cur80. Here are some examples of this pattern:

- The work of Bernstein-Bezrukavnikov-Kazhdan BBK18, where \mathcal{C}_{G} is the category of representations of the group $G(K)$, where K is a non-Archimedean local field.
- The work of Yom Din YD19, where \mathcal{C}_{G} is the category of character Dmodules on G, i.e., D-modules on the quotient stack $G / \operatorname{Ad}(G)$ of G by its adjoint action.
- The work of Drinfeld-Wang DW16 and Wan18, where \mathcal{C}_{G} is the space of automorphic functions for the group G. Note that this example is actually one categorical level down from the above pattern (i.e., one needs to replace "categories" by "spaces" and "functors" by "operators").
In the present paper we establish yet another incarnation of this pattern. Namely, we take \mathcal{C}_{G} to be the category of automorphic D-modules ${ }^{2}$ i.e., $\mathcal{C}_{G}=$ $\operatorname{Dmod}\left(\operatorname{Bun}_{G}(X)\right)$, where $\operatorname{Bun}_{G}(X)$ is the moduli stack of G-torsors on a smooth complete curve X.

Our context can be viewed as directly categorifying that of Drinfeld-Wang. It is also closely connected to that of Yom Din because $G / \operatorname{Ad}(G)$ is an open substack of $\operatorname{Bun}_{G}(Y)$ where Y is the nodal curve obtained by gluing two points of \mathbb{P}^{1}.

Below we will review the contexts mentioned above.
0.1.1. Work of [BBK18. Let G be defined over a number field and K be a nonArchimedean local field. In BBK18, the authors proved the following result about the derived category $G(K)$-mod of admissible representations of the p-adic group $G(K)$.

For any object $\mathcal{M} \in G(K)$-mod, consider the corresponding Deligne-Lusztig complex ${ }^{3}$

$$
\mathrm{DL}(\mathcal{M}):=\left[\mathcal{M} \rightarrow \bigoplus_{P} i_{P}^{G} \circ r_{P}^{G}(\mathcal{M}) \rightarrow \cdots \rightarrow i_{B}^{G} \circ r_{B}^{G}(\mathcal{M})\right],
$$

where $\left(r_{P}^{G}, i_{P}^{G}\right)$ is the adjoint pair for the parabolic induction and Jacquet functors, and where the direct sum in the k-th term of the complex is taken over standard parabolic subgroups of corank k. The main theorem of [BBK18] says that

$$
\mathrm{DL} \simeq \mathbb{D}^{\mathrm{coh}} \circ \mathbb{D}^{\mathrm{contr}}[\operatorname{rank}(G)],
$$

where $\mathbb{D}^{\text {contr }}$ and $\mathbb{D}^{\text {coh }}$ are the contravariant endofunctors on $G(K)$-mod for the contragredient and cohomological dualities. In other words,

$$
\mathbb{D}^{\text {contr }}(\mathcal{M}):=\mathcal{M}^{\vee}, \mathbb{D}^{\text {coh }}(\mathcal{M}):=\operatorname{RHom}_{G(K)}(\mathcal{M}, \mathcal{H})
$$

where \mathcal{M}^{\vee} is the admissible dual, and where $\mathcal{H}=C_{c}^{\infty}(G(K))$ is the regular bimodule for the Hecke algebra. The proof in loc. cit. used an explicit resolution for \mathcal{H} coming from the geometry of the wonderful compactification of G.

[^1]0.1.2. Work of YD19. Let G be defined over an algebraically closed field k of characteristic 0. In YD19, the author proved the following result about the DGcategor $\sqrt{4}^{4} \mathrm{D}(G / \operatorname{Ad}(G))$ of character D-modules on G.

Let P be a standard parabolic subgroup and M be its Levi quotient group. Consider the diagram

$$
G / \operatorname{Ad}(G) \stackrel{p}{\leftarrow} P / \operatorname{Ad}(P) \xrightarrow{q} M / \operatorname{Ad}(M) .
$$

The map p is projective and q is smooth. Hence we have the parabolic restriction functor

$$
\operatorname{res}_{P}=q_{*} \circ p^{!}: \mathrm{D}(G / \operatorname{Ad}(G)) \rightarrow \mathrm{D}(M / \operatorname{Ad}(M))
$$

and its left adjoint, a.k.a. the parabolic induction functor

$$
\operatorname{ind}_{P}=p_{*} \circ q^{!}: \mathrm{D}(M / \operatorname{Ad}(M)) \rightarrow \mathrm{D}(G / \operatorname{Ad}(G)) .
$$

These functors are t-exact by BYD21. Let P^{-}be an opposite parabolic subgroup 5 It is known (see DG14, §0.2.1]) that res_{P} is left adjoint to ind $P_{P^{-}}$. This is analogous to the well-known Bernstein's second adjointness.

Consider the diagonal map $\Delta: G / \operatorname{Ad}(G) \rightarrow G / \operatorname{Ad}(G) \times G / \operatorname{Ad}(G)$ and the endofunctor on $\mathrm{D}(G / \operatorname{Ad}(G))$ given by the kernel $\Delta_{!}\left(k_{G / \operatorname{Ad}(G)}\right)$, where $k_{G / \operatorname{Ad}(G)}$ is the constant D-module. Explicitly, this endofunctor is

$$
\operatorname{pr}_{1, \mathbf{\Delta}}\left(\Delta_{!}\left(k_{G / \operatorname{Ad}(G)}\right)\right)_{\left.\dot{\otimes} \operatorname{pr}_{2}^{!}(-)\right), ~}^{\text {, }}
$$

where $\mathrm{pr}_{1, \mathbf{\Delta}}$ is the renormalized pushforward functor in DG13. This endofunctor is the so-called Drinfeld-Gaitsgory functor for $\mathrm{D}(G / \operatorname{Ad}(G))$ in YD19.

One of the main results of YD19] says that the above Drinfeld-Gaitsgory functor can be "glued" ${ }^{6}$ from the functors

$$
\underset{\operatorname{rank}(P)=l}{\bigoplus} \operatorname{ind}_{P^{-}} \circ \operatorname{res}_{P}[l-\operatorname{dim}(T)] .
$$

The proof in loc. cit. used a filtration of $\Delta_{!}\left(k_{G / \operatorname{Ad}(G)}\right)$ coming from the geometry of the wonderful compactification of G.
0.1.3. The pseudo-identity functor(s). As explained in YD19, the above DrinfeldGaitsgory functor can be identified with

$$
{\mathrm{Ps}-\mathrm{Id}_{G / \operatorname{Ad}(G),!} \circ\left(\mathrm{Ps}-\operatorname{Id}_{G / \operatorname{Ad}(G), \text { naive }}\right)^{-1}, ., ~}
$$

where Ps-Id are the pseudo-identity functors constructed in DG13. Here are more details.

Let Y be a QCA algebraic stack ${ }^{7}$ in the sense of loc. cit. Consider the cocomplete DG-category $\mathrm{D}(Y)$ and its full subcategory $\mathrm{D}(Y)^{c}$ of compact objects. Verdier

[^2]duality provides an equivalence
$$
\mathbb{D}^{\mathrm{Ver}}: \mathrm{D}(Y)^{c} \rightarrow \mathrm{D}(Y)^{c, \text { op }} .
$$

Using ind-completion, we obtain an equivalence

$$
\text { Ps-Id }{ }_{Y, \text { naive }}: \mathrm{D}(Y)^{\vee} \simeq \mathrm{D}(Y),
$$

where $\mathrm{D}(Y)^{\vee}$ is the Lurie dual ${ }^{8}$ of $\mathrm{D}(Y)$.
On the other hand, we have the product formula:

$$
\mathrm{D}(Y \times Y) \simeq \mathrm{D}(Y) \underset{k}{\otimes} \mathrm{D}(Y),
$$

where \otimes_{k} is the Lurie tensor product of cocomplete DG-categories. The RHS can be identified with $\operatorname{LFun}_{k}\left(\mathrm{D}(Y)^{\vee}, \mathrm{D}(Y)\right.$), i.e., the category of k-linear colimitpreserving functors $\mathrm{D}(Y)^{\vee} \rightarrow \mathrm{D}(Y)$. Hence the object $\Delta_{!}\left(k_{Y}\right) \in \mathrm{D}(Y \times Y)$ provides a functor

$$
{\operatorname{Ps}-\operatorname{Id}_{Y,!}: \mathrm{D}(Y)^{\vee} \rightarrow \mathrm{D}(Y) .}
$$

In general, the functor $\mathrm{Ps}-\mathrm{Id}_{Y,!}$ is not an equivalence. We say Y is miraculous if it is an equivalence.

It is known that the equivalence $\mathrm{Ps}_{\mathrm{S}} \mathrm{Id}_{Y, \text { naive }}$ can be obtained in the same way by replacing $\Delta_{!}\left(k_{Y}\right)$ by $\Delta_{*}\left(\omega_{Y}\right)$, where ω_{Y} is the dualizing D-module on Y. For this reason, the functor $\mathrm{Ps}-\mathrm{Id}_{Y, \text { naive }}$ is also denoted by $\mathrm{Ps}^{\mathrm{I}} \mathrm{Id}_{Y, *}$ in the literature.

It follows from definitions that the composition $\operatorname{Ps-Id} \mathrm{I}_{Y,!} \circ\left(\mathrm{Ps}_{\mathrm{S}}-\mathrm{Id}_{Y \text {,naive }}\right)^{-1}$ is the functor given by the kernel $\Delta_{!}\left(k_{Y}\right)$. In other words, it is the Drinfeld-Gaitsgory functor for $\mathrm{D}(Y)$.

Remark 0.1.4. By YD19 Proposition 5.5], the Drinfeld-Gaitsgory functor for $\mathrm{D}(G / \operatorname{Ad}(G))$ is invertible, hence so is $\mathrm{Ps}-\mathrm{Id}_{!, G / \operatorname{Ad}(G)}$. In other words, $G / \operatorname{Ad}(G)$ is miraculous.
0.1.5. The current work. Let G be as in $\S 0.1 .2$ and X be a connected smooth projective curve over k. Let Bun_{G} be the moduli stack of G-torsors on X. The purpose of this paper is to describe the Deligne-Lusztig duality on the DG-category $\mathrm{D}\left(\mathrm{Bun}_{G}\right)$ of D-modules on Bun_{G}.

Unlike $G / \operatorname{Ad}(G)$, the stack Bun_{G} is not quasi-compact. Nevertheless, the main theorem of DG15 says that $\mathrm{D}\left(\mathrm{Bun}_{G}\right)$ is compactly generated and hence dualizable. Also, the product formula

$$
\mathrm{D}\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right) \simeq \mathrm{D}\left(\operatorname{Bun}_{G}\right) \underset{k}{\otimes} \mathrm{D}\left(\operatorname{Bun}_{G}\right)
$$

still holds (see DG15, Remark 2.2.9]). Hence as before, we have equivalences

$$
\begin{array}{r}
\operatorname{LFun}_{k}\left(\mathrm{D}\left(\operatorname{Bun}_{G}\right)^{\vee}, \mathrm{D}\left(\operatorname{Bun}_{G}\right)\right) \simeq \mathrm{D}\left(\operatorname{Bun}_{G}\right) \stackrel{\otimes}{k}\left(\mathrm{D}\left(\operatorname{Bun}_{G}\right)^{\vee}\right)^{\vee} \tag{0.1}\\
\simeq \mathrm{D}\left(\operatorname{Bun}_{G}\right) \underset{k}{\otimes} \mathrm{D}\left(\operatorname{Bun}_{G}\right) \simeq \mathrm{D}\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right),
\end{array}
$$

and we use the objects $\Delta_{*}\left(\omega_{\text {Bun }_{G}}\right), \Delta_{!}\left(k_{\text {Bun }_{G}}\right)$ in the RHS to define functors

$$
\mathrm{Ps}_{\mathrm{s}}-\mathrm{Id}_{\text {Bun }_{G}, \text { naive }},{\mathrm{Ps}-\mathrm{Id}_{\operatorname{Bun}_{G},!}: \mathrm{D}\left(\operatorname{Bun}_{G}\right)^{\vee} \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}\right) . . . ~}_{\text {. }}
$$

From now on, we write them just as $\mathrm{Ps}^{2} \mathrm{Id}_{\text {naive }}$, Ps-Id!.
Unlike the quasi-compact case, the functor $\mathrm{Ps}^{\mathrm{s}}-\mathrm{Id}_{\text {naive }}$ is not an equivalence. On the contrary, the main theorem of Gai17] says:

[^3]- The functor Ps-Id! $: \mathrm{D}\left(\operatorname{Bun}_{G}\right)^{\vee} \rightarrow \mathrm{D}\left(\mathrm{Bun}_{G}\right)$ is an equivalence, i.e., Bun_{G} is miraculous.
Accordingly, the Deligne-Lusztig duality for Bun_{G} in this paper is actually analogous to the "left adjoint version" of BBK18 and YD19 because our Eis-functor is left adjoint to the CT-functor but the contrary is true in their work. Namely, we will show
- Up to cohomological shifts, the endofunctor Ps- $\mathrm{Id}_{\text {naive }} \circ \mathrm{Ps}-\mathrm{Id}_{1}^{-1}$ on $\mathrm{D}\left(\mathrm{Bun}_{G}\right)$ can be "glued" from the functors

$$
\bigoplus_{\operatorname{corank}(P)=l} \operatorname{Eis}_{P \rightarrow G}^{\mathrm{enh}} \circ \mathrm{CT}_{G \leftarrow P}^{\mathrm{enh}}
$$

where $\operatorname{Eis}_{P \rightarrow G}^{\mathrm{enh}}\left(\right.$ resp. $\mathrm{CT}_{G \leftarrow P}^{\mathrm{enh}}$) is the enhanced Eisenstein series (resp. enhanced constant term) functor ${ }^{9}$ on $\mathrm{D}\left(\operatorname{Bun}_{G}\right)$.
The precise statement of our main theorem will be given in 0.3 . See Theorem 0.3 .1

Remark 0.1.6. For $G=\mathrm{SL}_{2}$, our main theorem was conjectured by V. Drinfeld and J. Wang in DW16, Conjecture C.2.1]. For general G, Wang made the following remark in Wan18, Remark 6.6.5]:
...describing the functor inverse to $\mathrm{Ps}^{-\mathrm{Id}_{\mathrm{Bun}_{G},!} \text { (we expect that one can }}$ mimic the construction of the Deligne-Lusztig complex using the functors Eis $\left.{ }_{P}^{\mathrm{enh}}, \mathrm{CT}_{P}^{\mathrm{enh}}\right)$.
However, as far as we know, the precise formulation 10 of the conjecture for general G was first made by D. Gaitsgory and recorded by D. Beraldo in [Ber21, §1.5.5].
0.1.7. Relation with the Drinfeld-Wang operator. Drinfeld and Wang made their conjecture according to an analogous result on the space of automorphic forms proved by them in DW16 and Wan18. Let us briefly explain their work.

Let F be a global function field over \mathbb{F}_{q} and \mathbb{A} be the adele ring of F. Let G be a split reductive group over \mathbb{F}_{q} and $G(\mathbb{O})$ be the maximal compact subgroup of $G(\mathbb{A})$. Let \mathcal{A}_{c} be the space of compactly supported smooth $G(\mathbb{O})$-finite functions on $G(\mathbb{A}) / G(F)$. As explained in [DW16, Appendix A], the DG-category $\mathrm{D}\left(\operatorname{Bun}_{G}\right)^{\vee}$ (when G is in characteristic 0) can be viewed as a geometric analogue of $\mathcal{A}_{c}^{G(\mathbb{O})}$ (the subspace of \mathcal{A}_{c} fixed by $\left.G(\mathbb{O})\right)$.

Drinfeld and Wang also defined a subspace $\mathcal{A}_{p c-c} \subset \mathcal{A}_{c}$ such that $\mathcal{A}_{p c-c}^{G(\mathbb{O})}$ is analogous to $\mathrm{D}\left(\operatorname{Bun}_{G}\right)$. They also constructed a $G(\mathbb{A})$-linear operator

$$
L: \mathcal{A}_{c} \rightarrow \mathcal{A}_{p c-c}
$$

such that $L^{G(\mathbb{O})}: \mathcal{A}_{c}^{G(\mathbb{O})} \rightarrow \mathcal{A}_{p c-c}^{G(\mathbb{O})}$ is analogous to the functor Ps-Id!. Moreover, they proved L is invertible and gave the following explicit formula for its inverse:

$$
L^{-1} f=\sum_{P}(-1)^{\operatorname{dim} Z_{M}} \operatorname{Eis}_{P} \circ \operatorname{CT}_{P}(f),
$$

where $\operatorname{Eis}_{P}, \mathrm{CT}_{P}$ are the Eisenstein and constant term operators, and where Z_{M} is the center of M.

[^4]Our main theorem can be viewed as a categorification of the above formula (when restricted to $G(\mathbb{O})$-invariant subspaces). We refer the reader to DW16, Appendix C] for more details on this analogy.
0.2 . Recollections: The parabolic category $\mathbf{I}(G, P)$. From now on, we fix a connected reductive groun ${ }^{111} G$ defined over an algebraically closed field k of characteristic 0 . For simplicity, we assume $[G, G]$ to be simply connected. We also fix a connected smooth projective curve X over k.

Let P be a parabolic subgroup of G and M be its Levi quotient group. Consider the diagram

$$
\operatorname{Bun}_{G} \stackrel{\mathfrak{p}_{P}}{\rightleftarrows} \operatorname{Bun}_{P} \xrightarrow{\mathfrak{q}_{P}} \operatorname{Bun}_{M}
$$

In BG02 and DG16, the authors constructed the geometric Eisenstein series functor and the geometric constant term functor

$$
\begin{aligned}
\operatorname{Eis}_{P,!} & =\mathfrak{p}_{P,!} \circ \mathfrak{q}_{P}^{*}: \mathrm{D}\left(\operatorname{Bun}_{M}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}\right), \\
\mathrm{CT}_{P, *} & =\mathfrak{q}_{P, *} \circ \mathfrak{p}_{P}^{!}: \mathrm{D}\left(\operatorname{Bun}_{G}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M}\right) .
\end{aligned}
$$

However, they are not the functors that we will use (otherwise the main theorem would be false). Instead, we need to replace $\mathrm{D}\left(\operatorname{Bun}_{M}\right)$ by the category $\mathbf{I}(G, P)$ defined in Gai15, §6], and accordingly use the "enhanced" functors (Eis enh, $\mathrm{CT}_{P}^{\mathrm{enh}}$) defined there. We review these functors in this subsection.

Remark 0.2.1. As explained in loc. cit., one can think of $\mathbf{I}(G, P)$ as the DG-category of D-modules on a non-existent stack obtained by gluing all the connected components of Bun_{M} together. Since this imaginary stack has the same field-valued points as Bun_{M}, the difference between $\mathbf{I}(G, P)$ and $\mathrm{D}\left(\operatorname{Bun}_{M}\right)$ cannot be seen in their "de-categorifications". In other words, both $\operatorname{Eis}_{P,!}$ and $\operatorname{Eis}_{P}^{\text {enh }}$ are analogous to the Eisenstein series operator for automorphic functions.
0.2.2. Prestack of generic reductions. Let K be any algebraic group and H be a subgroup of K. In Bar14 Example 2.2.5], J. Barlev constructed a prestack 12 $\operatorname{Bun}_{K}^{H \text {-gen }}$ classifying K-torsors on X equipped with a generic reduction to H. In the notation of loc. cit., it is defined by

$$
\operatorname{Bun}_{K}^{H-\text { gen }}:=\operatorname{Maps}(X, \mathbb{B} K) \underset{\operatorname{GMap}(X, \mathbb{B} K)}{\times} \operatorname{GMap}(X, \mathbb{B} H),
$$

where $\mathbf{G M a p}(X, Y)$ is the prestack classifying generic maps from X to Y. To simplify the notation, we write the RHS as $\operatorname{Maps}_{\text {gen }}(X, \mathbb{B} K \leftarrow \mathbb{B} H)$. More generally, for any map between lft prestacks $Y_{1} \rightarrow Y_{2}$, we define

$$
\operatorname{Maps}_{\operatorname{gen}}\left(X, Y_{2} \leftarrow Y_{1}\right):=\operatorname{Maps}\left(X, Y_{2}\right) \underset{\operatorname{GMap}\left(X, Y_{2}\right)}{\times} \operatorname{GMap}\left(X, Y_{1}\right) .
$$

For future use, let us mention that the functor $\operatorname{Maps}_{\text {gen }}(X,-)$ commutes with finite limits (see [Bar14, Remark 2.2.6]).

Applying the above construction to the diagram

$$
(G, P) \leftarrow(P, P) \rightarrow(M, M),
$$

we obtain a diagram

$$
\operatorname{Bun}_{G}^{P-\operatorname{gen}} \stackrel{\iota_{P}}{\rightleftarrows} \operatorname{Bun}_{P} \xrightarrow{\boldsymbol{q}_{P}} \operatorname{Bun}_{M} .
$$

[^5]Remark 0.2.3. The prestack $\operatorname{Bun}_{G}^{P-\text { gen }}$ has the same field-valued points as Bun_{P}.
Definition 0.2.4. The DG-category $\mathbf{I}(G, P)$ is defined as the fiber product of the following diagram:

Remark 0.2.5. Definition 0.2.4 is equivalent to that in Gai15, §6.1] by Gai15, Lemma 6.3.3].
Remark 0.2.6. By Gai15, Lemma 6.1.2], the functor $\iota_{P}^{!}$is conservative. By Gai15, $\S 6.2 .1]$, the functor \mathfrak{q}_{P}^{\star} is fully faithful. Therefore the functor

$$
\mathbf{I}(G, P) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\mathrm{gen}}\right)
$$

is fully faithful and the functor $\mathbf{I}(G, P) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M}\right)$ is conservative. Following loc. cit., we denote the last functor by

$$
\iota_{M}^{!}: \mathbf{I}(G, P) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M}\right)
$$

The following result was claimed in Gai15, §6.2.5]. We provide a proof in Appendix B.1.3
Proposition 0.2.7 (Gaitsgory). The partially defined left adjoint $\iota_{P,!}$ to $\iota_{P}^{!}$is welldefined on the essential image of \mathfrak{q}_{P}^{*}, and its image is contained in $\mathbf{I}(G, P)$.
Corollary 0.2.8. The functor $\iota_{M}^{!}: \mathbf{I}(G, P) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M}\right)$ has a left adjoint

$$
\iota_{M,!}: \mathrm{D}\left(\operatorname{Bun}_{M}\right) \rightarrow \mathbf{I}(G, P)
$$

Proof. By Proposition 0.2.7, the functor $\iota_{P,!} \circ \mathfrak{q}_{P}^{*}$ uniquely factors through a functor $\mathrm{D}\left(\operatorname{Bun}_{M}\right) \rightarrow \mathbf{I}(G, P)$, which is the desired left adjoint.
0.2.9. Enhanced Eisenstein series functor. Let Q be another parabolic subgroup of G that contains P. Consider the map

$$
\mathfrak{p}_{P \rightarrow Q}^{\mathrm{enh}}: \operatorname{Bun}_{G}^{P-\text { gen }} \rightarrow \operatorname{Bun}_{G}^{Q-\operatorname{gen}}
$$

and the functor

$$
\mathfrak{p}_{P \rightarrow Q}^{\mathrm{enh},!}: \mathrm{D}\left(\operatorname{Bun}_{G}^{Q-\mathrm{gen}}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }}\right)
$$

The special case (when $Q=G$) of the following result was claimed in Gai15, Lemma 6.3.3]. We provide a proof in Appendix B.1.4

Proposition 0.2.10 (Gaitsgory).
(1) The partially defined left adjoint $\mathfrak{p}_{P \rightarrow Q,!}^{\mathrm{enh}}$ to $\mathfrak{p}_{P \rightarrow Q}^{\mathrm{enh},!}$ is well-defined on $\mathbf{I}(G, P)$ $\subset \mathrm{D}\left(\operatorname{Bun}_{G}^{P-g e n}\right)$, and sends $\mathbf{I}(G, P)$ into $\mathbf{I}(G, Q)$.
(2) Let

$$
\operatorname{Eis}_{P \rightarrow Q}^{\mathrm{enh}}: \mathbf{I}(G, P) \rightarrow \mathbf{I}(G, Q)
$$

be the functor obtained from $\mathfrak{p}_{P \rightarrow Q,!}^{\mathrm{enh}}$. Then $\operatorname{Eis}_{P \rightarrow Q}^{\mathrm{enh}}$ has a continuous right adjoint

$$
\mathrm{CT}_{Q \leftarrow P}^{\mathrm{enh}}: \mathbf{I}(G, Q) \rightarrow \mathbf{I}(G, P)
$$

Remark 0.2.11. When $Q=G$, we also denote the adjoint pair ($\operatorname{Eis}_{P \rightarrow G}^{\mathrm{enh}}, \mathrm{CT}_{G \leftarrow P}^{\mathrm{enh}}$) by $\left(\mathrm{Eis}_{P}^{\mathrm{enh}}, \mathrm{CT}_{P}^{\mathrm{enh}}\right)$.

Warning 0.2.12. The functor $\mathfrak{p}_{P \rightarrow Q}^{\text {enh,! }}$ does not send $\mathbf{I}(G, Q)$ into $\mathbf{I}(G, P)$. Hence the functor $\mathrm{CT}_{Q \leftarrow P}^{\mathrm{enh}}$ is not the restriction of $\mathfrak{p}_{P \rightarrow Q}^{\mathrm{enh},!}$. Instead, it is given by $\mathrm{Av}^{\mathbf{U}_{P}} \circ_{P \rightarrow Q}^{\mathrm{enh},!}$, where $\mathrm{Av}^{\mathbf{U}_{P}}$ is the right adjoint to the inclusion $\mathbf{I}(G, P) \subset \mathrm{D}\left(\operatorname{Bun}_{G}^{P-g e n}\right)$. We refer the reader to [Gai15, §6.1.3] for the meaning of the symbol $\mathrm{Av}^{\mathrm{U}_{P}}$.
0.3 . The main theorem. We fix a Borel subgroup B of G. Let Par be the poset of standard parabolic subgroups (i.e., parabolic subgroups containing B) of G. Let $\operatorname{Par}^{\prime}$ be $\operatorname{Par}-\{G\}$. We view posets as categories in the standard way. It follows formally from Proposition 0.2 .10 that we have a functor

$$
\text { DL }: \operatorname{Par} \rightarrow \operatorname{LFun}_{k}\left(\mathrm{D}\left(\operatorname{Bun}_{G}\right), \mathrm{D}\left(\operatorname{Bun}_{G}\right)\right), P \mapsto \operatorname{Eis}_{P \rightarrow G}^{\mathrm{enh}} \circ \mathrm{CT}_{G \leftarrow P}^{\mathrm{enh}}
$$

such that a morphism $P \rightarrow Q$ in Par is sent to the composition

$$
\operatorname{Eis}_{P \rightarrow G}^{\mathrm{enh}} \circ \mathrm{CT}_{G \leftarrow P}^{\mathrm{enh}} \simeq \operatorname{Eis}_{Q \rightarrow G}^{\mathrm{enh}} \circ \operatorname{Eis}_{P \rightarrow Q}^{\mathrm{enh}} \circ \mathrm{CT}_{Q \leftarrow P}^{\mathrm{enh}} \circ \mathrm{CT}_{G \leftarrow Q}^{\mathrm{enh}} \rightarrow \operatorname{Eis}_{Q \rightarrow G}^{\mathrm{enh}} \circ \mathrm{CT}_{G \leftarrow Q}^{\mathrm{enh}}
$$

Note that $\mathbf{D L}(G)$ is the identity functor $\mathbf{I d}$ on $\mathrm{D}\left(\mathrm{Bun}_{G}\right)$.
Since G is the final object in Par. The above functor DL induces a natural transformation colim ${ }_{P \in \operatorname{Par}^{\prime}} \mathbf{D L}(P) \rightarrow \mathbf{D L}(G)$. Our main theorem is
Theorem 0.3.1. There is a canonical equivalence
(0.2)
in $\operatorname{LFun}_{k}\left(\mathrm{D}\left(\operatorname{Bun}_{G}\right), \mathrm{D}\left(\operatorname{Bun}_{G}\right)\right)$.
Remark 0.3.2. Let $\mathcal{F} \in \mathrm{D}\left(\operatorname{Bun}_{G}\right)^{\mathcal{D}}$ be an object in the heart of the t -structure. If the functors $\mathbf{D L}(P)$ were t-exact (which is not true), then the value of the LHS of (0.2) on \mathcal{F} could be calculated by a complex

$$
\mathbf{D L}(B)(\mathcal{F}) \rightarrow \cdots \rightarrow \bigoplus_{\operatorname{corank}(P)=1} \mathbf{D L}(P)(\mathcal{F}) \rightarrow \mathbf{D L}(G)(\mathcal{F})
$$

Hence the LHS of (0.2) can be viewed as an ∞-categorical analogue for the DeligneLusztig complex.
0.3.3. A stronger result. As mentioned in Ber21, Remark 1.5.6], Gaitsgory's strategy for the proof of Theorem 0.3 .1 is to express both sides via the Drinfeld's compactification $\overline{\operatorname{Bun}}_{G}:=\operatorname{VinBun}_{G} / T$, where

$$
\operatorname{VinBun}_{G}:=\operatorname{Maps}_{\operatorname{gen}}\left(X, G \backslash \operatorname{Vin}_{G} / G \supset G \backslash_{0} \operatorname{Vin}_{G} / G\right)
$$

We refer the reader to [Sch16, §2.2.4], [FKM20, §2.3.3] and Che21, §1] for a detailed discussion about Vin_{G} and $\operatorname{VinBun}_{G}$. For now, it is enough to know: 13

- $\overline{\mathrm{Bun}}_{G}$ is an algebraic stack;
- There is a canonical map $\overline{\operatorname{Bun}}_{G} \rightarrow T_{\text {ad }}^{+} / T$, where $T_{\text {ad }}^{+}:=\mathbb{A}^{\mathcal{I}} \supset \mathbb{G}_{m}^{\mathcal{I}} \simeq T_{\text {ad }}$ is the semi-group completior ${ }^{14}$ of the adjoint torus T_{ad};

[^6]- The diagonal map $\Delta: \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$ canonically factors as

$$
\operatorname{Bun}_{G} \xrightarrow{b} \overline{\operatorname{Bun}}_{G} \xrightarrow{\bar{\Delta}} \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}
$$

and the map $\bar{\Delta}$ is schematic and proper.

- Let Z_{G} be the center of G. The map $b: \operatorname{Bun}_{G} \rightarrow \overline{\mathrm{Bun}}_{G}$ canonically factors as

$$
\mathrm{Bun}_{G} \xrightarrow{r} \mathrm{Bun}_{G} \times \mathbb{B} Z_{G} \xrightarrow{j_{G}} \overline{\mathrm{Bun}}_{G}
$$

and the map j_{G} is a schematic open embedding onto

$$
\overline{\operatorname{Bun}}_{G, G}:=\overline{\operatorname{Bun}}_{G} \underset{T_{\mathrm{ad}}^{+} / T}{\times} T_{\mathrm{ad}} / T .
$$

The coordinate stratification on $T_{\mathrm{ad}}^{+}:=\mathbb{A}^{\mathcal{I}}$ can be labelled by Par such that the G-stratum is the open stratum $\mathbb{G}_{m}^{\mathcal{I}} \subset \mathbb{A}^{\mathcal{I}}$ while the B-stratum is the closed stratum $0 \rightarrow \mathbb{A}^{\mathcal{I}}$ (see Notation 0.5.10). This stratification induces a stratification on $\overline{\operatorname{Bun}}_{G}$ labelled by Par, known as the parabolic stratification.

For a standard parabolic $P \in \operatorname{Par}$, the P-stratum is defined as

$$
\overline{\operatorname{Bun}}_{G, P}:=\overline{\operatorname{Bun}}_{G} \underset{T_{\mathrm{ad}}^{+} / T}{\times} T_{\mathrm{ad}, P}^{+} / T .
$$

We denote the corresponding locally closed embedding by

$$
i_{P}: \overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\operatorname{Bun}}_{G} .
$$

Note that Par is isomorphic to the power poset $P(\mathcal{I})$ of \mathcal{I}. By a general construction (see Corollary C.1.3) for stacks stratified by power posets, we have a canonically defined functor ${ }^{15}$

$$
\begin{align*}
\mathbf{K} & : \operatorname{Par} \rightarrow \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G}\right), \tag{0.3}\\
& P \mapsto i_{P,!} \circ i_{P}^{*} \circ j_{G, *} \circ r_{!}\left(k_{\operatorname{Bun}_{G}}\right)[\operatorname{rank}(M)-\operatorname{rank}(G)],
\end{align*}
$$

and a canonical isomorphism (see Lemma C.1.5)

$$
\begin{equation*}
\operatorname{coFib}\left(\underset{P \in \operatorname{Par}^{\prime}}{\operatorname{col}} \lim \mathbf{K}(P) \rightarrow \mathbf{K}(G)\right) \simeq j_{G, *} \circ r_{!}\left(k_{\operatorname{Bun}_{G}}\right) \tag{0.4}
\end{equation*}
$$

Consider the composition

$$
\begin{align*}
\mathrm{E}: \operatorname{LFun}_{k}\left(\mathrm{D}\left(\operatorname{Bun}_{G}\right), \mathrm{D}\left(\operatorname{Bun}_{G}\right)\right) & \rightarrow \operatorname{LFun}_{k}\left(\mathrm{D}\left(\operatorname{Bun}_{G}\right)^{\vee}, \mathrm{D}\left(\operatorname{Bun}_{G}\right)\right) \tag{0.5}\\
& \simeq \mathrm{D}\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right),
\end{align*}
$$

where the first functor is given by precomposition with $\mathrm{Ps}_{\mathrm{S}} \mathrm{Id}_{!}$and the last equivalence is (0.1). Equivalently, \mathbf{E} sends an endo-functor F to

$$
\mathbf{E}(F) \simeq(F \otimes \mathbf{I} \mathbf{d}) \circ \Delta_{!}\left(k_{\mathrm{Bun}_{G}}\right),
$$

where we view $F \otimes \mathbf{I d}$ as an endo-functor of $\mathrm{D}\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right) \simeq \mathrm{D}\left(\operatorname{Bun}_{G}\right) \otimes_{k} \mathrm{D}\left(\operatorname{Bun}_{G}\right)$.
Let us first deduce Theorem 0.3 .1 from the following stronger result, which will be proved in $\S 1$ (but with some details postponed to the later sections).

[^7]Theorem 0.3.4. There is a canonical commutative diagram

0.3.5. Deduction of Theorem 0.3.1 from Theorem 0.3.4. We first deduce our main theorem from Theorem 0.3.4 This step is due to Gaitsgory.

First note that \mathbf{E} is an equivalence because $\mathrm{Ps}-\mathrm{Id}!$ is. By definition,

$$
\mathbf{E}^{-1}\left(\Delta_{*}\left(\omega_{\text {Bun }_{G}}\right)\right) \simeq \text { Ps-Id }_{\text {naive }} \circ \text { Ps-Id }_{1}^{-1} .
$$

On the other hand, as in [Gai17, §3.2.3], we have an isomorphism

$$
\Delta_{*}\left(\omega_{\operatorname{Bun}_{G}}\right)\left[-2 \operatorname{dim}\left(\operatorname{Bun}_{G}\right)-\operatorname{dim}\left(Z_{G}\right)\right] \simeq \bar{\Delta}_{!} \circ j_{G, *} \circ r_{!}\left(k_{\operatorname{Bun}_{G}}\right),
$$

where the cohomological shift by $-2 \operatorname{dim}\left(\operatorname{Bun}_{G}\right)$ is due to the difference between $\omega_{\text {Bun }_{G}}$ and $k_{\text {Bun }_{G}}$, while that by $-\operatorname{dim}\left(Z_{G}\right)$ is due to the difference between r_{*} and $r_{!}$. Hence the isomorphism (0.4) implies

$$
\begin{aligned}
& \operatorname{coFib}\left(\underset{P \in \operatorname{Par}^{\prime}}{\operatorname{colim}^{-1}} \circ \bar{\Delta}_{!} \circ \mathbf{K}(P) \rightarrow \mathbf{E}^{-1} \circ \bar{\Delta}_{!} \circ \mathbf{K}(G)\right)
\end{aligned}
$$

Then we are done because $\mathbf{E}^{-1} \circ \bar{\Delta}_{!} \circ \mathbf{K} \simeq \mathbf{D L}$.
Remark 0.3.6. As a first test for Theorem 0.3.4 let us evaluate the above diagram at $G \in$ Par. By definition, $\mathbf{K}(G) \simeq j_{G,!} \circ r_{!}\left(k_{\text {Bun }_{G}}\right)$. Hence $\bar{\Delta}_{!} \circ \mathbf{K}(G) \simeq \Delta_{!}\left(k_{\text {Bun }_{G}}\right)$. On the other hand $\mathbf{D L}(G) \simeq \mathbf{I d}$, hence $\mathbf{E} \circ \mathbf{D L}(G) \simeq \Delta_{!}\left(k_{\text {Bun }_{G}}\right)$ by the definition of Ps-Id!.

Remark 0.3.7. The statement of Theorem 0.3.1 depends on the miraculous duality on Bun_{G} (i.e., Ps-Id! is invertible) but that of Theorem 0.3.4 does not. Our proof of the latter will not depend on the miraculous duality either.

Remark 0.3.8. The following claim is neither proved nor used in this paper. The object $\mathbf{K}(P)$ can be obtained by the following nearby cycles construction. Choose a homomorphism $\gamma: \mathbb{A}^{1} \rightarrow T_{\text {ad }}^{+}$connecting the unit point C_{G} and the point C_{P}. In Sch16, S. Schieder calculated the nearby cycles of the constant D-module for the \mathbb{A}^{1}-family

$$
\operatorname{VinBun}_{G}^{\gamma}:=\operatorname{VinBun}_{G} \underset{T_{\text {ad }}^{+}}{ } \mathbb{A}^{1} .
$$

Denote this nearby cycles sheaf by $\Psi^{\gamma} \in \mathrm{D}_{\text {indhol }}\left(\left.\operatorname{VinBun}_{G}\right|_{C_{P}}\right)$. Then up to a cohomological shift, $\mathbf{K}(P)$ is isomorphic to the !-pushforward of Ψ^{γ} along $\left.\operatorname{VinBun}_{G}\right|_{C_{P}} \rightarrow$ $\overline{\operatorname{Bun}}_{G}$. Moreover, one can use Ψ^{γ} to construct a duality between $\mathbf{I}(G, P)$ and I $\left(G, P^{-}\right)$. See Che21, Theorem E, Theorem H] for more details.
0.4. Organization of this paper. The outline of the proof for Theorem 0.3.4 will be provided in $\$ 1]$ Each other section corresponds to a step in that proof.

In Appendix A, we review the theory of D-modules.
In Appendix B we provide proofs for the results mentioned in 80.2 (which are due to Gaitsgory).

In Appendix C we review the gluing functors for D-modules on stratified stacks.
In Appendix \mathbb{D}, we prove some results about the group scheme \widetilde{G}, which is the stabilizer of the canonical section $\mathfrak{s}: T_{\mathrm{ad}}^{+} \rightarrow \operatorname{Vin}_{G}$ for the $(G \times G)$-action on Vin_{G}.

0.5 . Notations and conventions.

Notation 0.5.1 (∞-Categories). We use the theory of $(\infty, 1)$-categories developed in Lur09. We use same symbols to denote a (1,1)-category and its simplicial nerve. The reader can distinguish them according to the context.

For two objects $c_{1}, c_{2} \in C$ in an $(\infty, 1)$-category C, we write $\operatorname{Maps}_{C}\left(c_{1}, c_{2}\right)$ for the mapping space between them, which is an object in the homotopy category of spaces. We omit the subscript C if there is no ambiguity.

A correspondence from c_{1} to c_{2} in C is a diagram $c_{2} \leftarrow d \rightarrow c_{1}$. The composition of two correspondences $c_{2} \leftarrow d \rightarrow c_{1}$ and $c_{3} \leftarrow e \rightarrow c_{2}$ is $c_{3} \leftarrow e \times_{c_{2}} d \rightarrow c_{1}$ (when the fiber product $e \times_{c_{2}} d$ exists). A 2 -morphism from $c_{2} \leftarrow d \rightarrow c_{1}$ to $c_{2} \leftarrow d^{\prime} \rightarrow c_{1}$ is a morphism $d \rightarrow d^{\prime}$ defined over c_{2} and c_{1}.

We also need the theory of $(\infty, 2)$-categories developed in GR17. For two objects $c_{1}, c_{2} \in \mathbb{S}$ in an $(\infty, 2)$-category \mathbb{S}, we write $\operatorname{Maps}_{\mathbb{S}}\left(c_{1}, c_{2}\right)$ for the mapping $(\infty, 1)$-category between them.

Definition 0.5.2 (Algebraic geometry). Unless otherwise stated, all algebro-geometric objects are defined over a fixed algebraically closed ground field k of characteristic 0 , and are classical (i.e. non-derived).

A locally finite type prestack or lft prestack is a contravariant (accessible) functor

$$
\left(\mathrm{Sch}_{\mathrm{ft}}^{\mathrm{aff}}\right)^{\mathrm{op}} \rightarrow \text { Groupoids }
$$

from the category of finite type affine k-schemes to the category of groupoids. The collection of them forms a $(2,1)$-category PreStk ${ }_{\mathrm{fft}}$.

An algebraic stack is a lft 1-Artin stack in the sense of GR17, Chapter 2, §4.1].
Following DG13, an algebraic stack Y is $Q C A$ if it is quasi-compact and the automorphism groups of geometric points are affine. Y is safe if it is QCA and the automorphism groups of geometric points are unipotent.

An algebraic stack Y is $Q C A D$ if it is QCA and the diagonal map $Y \rightarrow Y \times Y$ is affine.

A morphism $Y_{1} \rightarrow Y_{2}$ between lft prestacks is stacky (resp. $Q C A, Q C A D$, safe) if it is relatively represented by (resp. QCA, QCAD, safe) algebraic stacks, i.e., for any finite type affine scheme T over Y_{2}, the fiber product $Y_{1} \times_{Y_{2}} T$ is a (resp. QCA, QCAD, safe) algebraic stack.

Notation 0.5 .3 . We fix a connected smooth projective curve X over k.
Notation 0.5.4 (DG-categories). We study $D G$-categories over k. Unless otherwise stated, DG-categories are assumed to be cocomplete (i.e., containing small colimits), and functors between them are assumed to be k-linear and continuous (i.e. preserving small colimits). The $(\infty, 1)$-category formed by them is denoted by DGCat $_{\text {cont }}$. The corresponding $(\infty, 2)$-category is denoted by DGCat $_{\text {cont }}$.

DGCat $_{\text {cont }}$ carries a closed symmetric monoidal structure, known as the Lurie tensor product \otimes_{k}. The unit object for it is the DG-category Vect ${ }_{k}$ of k-vector spaces. For $\mathcal{C}, \mathcal{D} \in \mathrm{DGCat}_{\text {cont }}$, we write $\operatorname{LFun}_{k}(\mathcal{C}, \mathcal{D})$ for the object in DGCat ${ }_{\text {cont }}$ characterized by the universal property

$$
\operatorname{Maps}\left(\mathcal{E}, \operatorname{LFun}_{k}(\mathcal{C}, \mathcal{D})\right) \simeq \operatorname{Maps}(\mathcal{E} \underset{k}{\otimes} \mathcal{C}, \mathcal{D}) .
$$

A DG-category \mathcal{M} is dualizable if it is a dualizable object in DGCat ${ }_{\text {cont }}$. We write \mathcal{M}^{\vee} for its dual DG-category, which is canonically equivalent to $\operatorname{LFun}_{k}\left(\mathcal{M}, \operatorname{Vect}_{k}\right)$.

It is well-known that \mathcal{M} is dualizable if it is compactly generated, and there is a canonical identification $\mathcal{M}^{\vee} \simeq \operatorname{Ind}\left(\mathcal{M}^{c, \text { op }}\right)$.

Notation 0.5.5 (D-modules). We will use the theory of D-modules on lft prestacks, which is reviewed in Appendix A. Here are some notations for this theory.

Let Y be a lft prestack. We write $\mathrm{D}(Y)$ for the DG-category of D-modules on Y. We write ω_{Y} for the dualizing D-module on Y. When Y is an algebraic stack, we write k_{Y} for the constant D-module.

Let $f: Y_{1} \rightarrow Y_{2}$ be a morphism between lft prestacks. We have the !-pullback functor $f^{!}: \mathrm{D}\left(Y_{2}\right) \rightarrow \mathrm{D}\left(Y_{1}\right)$.

If f is QCA, we have the renormalized pushforward functor, or $\boldsymbol{\Delta}$-pushforward functor, $f_{\mathbf{\Delta}}: \mathrm{D}\left(Y_{1}\right) \rightarrow \mathrm{D}\left(Y_{2}\right)$ defined in DG13. When f is safe, $f_{\mathbf{\Delta}}$ coincides with the usual *-pushforward functor ${ }^{16} f_{*}$.

We have base-change isomorphisms between $\mathbf{\Delta}$-pushforward functors along QCAD morphisms and all !-pullback functors ${ }^{17}$ For any correspondence of lft prestacks $\alpha:\left(Y_{2} \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y_{1}\right)$ such that f is QCAD , we write $\operatorname{Dmod}^{\mathbf{\Delta}},!(\alpha):=$ $f_{\mathbf{\Delta}} \circ g^{!}: \mathrm{D}\left(Y_{1}\right) \rightarrow \mathrm{D}\left(Y_{2}\right)$. The assignment $\alpha \mapsto \operatorname{Dmod}^{\mathbf{\Delta}},(\alpha)$ is compatible with compositions of correspondences. For any 2-morphism from $\alpha:\left(Y_{2} \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y_{1}\right)$ to $\alpha^{\prime}:\left(Y_{2} \stackrel{f}{\leftarrow} Z^{\prime} \xrightarrow{g} Y_{1}\right)$ such that $Z \rightarrow Z^{\prime}$ is an open embedding, we have a natural transformation Dmod ${ }^{\mathbf{\Delta},!}\left(\alpha^{\prime}\right) \rightarrow \operatorname{Dmod}{ }^{\mathbf{\Delta},!}\left(\alpha^{\prime}\right)$.

The left adjoints of !-pullback and *-pushforward functors are not well-defined in general. Hence sometimes we restrict to the full subcategory $\mathrm{D}_{\text {indhol }}(Y) \subset \mathrm{D}(Y)$ of ind-holonomic D-modules on Y. For a morphism $f: Y_{1} \rightarrow Y_{2}$ between lft prestacks, we have the !-pushforward functor $f_{!}: \mathrm{D}_{\text {indhol }}\left(Y_{1}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{2}\right)$ which is left adjoint to the restriction of $f^{!}$. If f is stacky, we have the $*$-pullback functor $f^{*}: \mathrm{D}_{\text {indhol }}\left(Y_{2}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{1}\right)$. If f is safe, f^{*} is left adjoint to the restriction of $f_{*} \simeq f_{\boldsymbol{\Delta}}$.

We have base-change isomorphisms between all !-pushforward functors and *pullback functors along stacky maps. For any correspondence of lft prestacks $Y_{2} \stackrel{f}{\leftarrow}$ $Z \xrightarrow{g} Y_{1}$ such that g is stacky, we write $\operatorname{Dmod}^{!}, *(\alpha):=f_{!} \circ g^{*}: \mathrm{D}_{\text {indhol }}\left(Y_{1}\right) \rightarrow$ $\mathrm{D}_{\text {indhol }}\left(Y_{2}\right)$. The assignment $\left.\alpha \mapsto \operatorname{Dmod}_{\text {indhol }}^{!}, *\right)$ is compatible with compositions of correspondences. For any 2-morphism from $\alpha:\left(Y_{2} \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y_{1}\right)$ to $\alpha^{\prime}:\left(Y_{2} \stackrel{f}{\leftarrow} Z^{\prime} \xrightarrow{g}\right.$ Y_{1}) such that $Z \rightarrow Z^{\prime}$ is an open embedding, we have a natural transformation $\operatorname{Dmod}^{!, *}(\alpha) \rightarrow \operatorname{Dmod}^{!!, *}\left(\alpha^{\prime}\right)$.

Definition 0.5.6 (Stratifications). Let Y be an algebraic stack and I be a finite set. A stratification of Y labelled by the power poset $P(I)$ is an assignment of open substacks $U_{i} \subset Y$ for any $i \in I$. For such an assignment, we define $i_{J}: Y_{J} \rightarrow Y$ to be the reduced locally closed substack of Y given by

$$
\left(\bigcap_{j \in J} U_{j}\right)-\left(\bigcup_{i \notin J} U_{i}\right) .
$$

[^8]We call Y_{J} the stratum labelled by J. Every geometric point of Y is contained in exactly one stratum.

For any object $J \in P(I)$, there is a unique open substack $Y_{\geq J} \subset Y$ whose geometric points are exactly those contained in $\cup_{K \supset J} Y_{K}=\bigcap_{j \in J} U_{j}$. Similarly, we define the reduced closed substack $Y_{\leq J}$.

The stratum Y_{I} is an open substack of Y. Hence we also write $j_{I}:=i_{I}$ for this open embedding.

Convention 0.5.7. Sometimes we also use the notations Y_{J} and $Y_{\leq J}$ for certain stacks whose underlying reduced stacks are defined above. For example, if we have a map $Y \rightarrow Z$ and a stratification of Z labelled by $P(I)$, then we obtain a stratification of Y labelled by $P(I)$ by pulling back the open substacks. We often write $Y_{J}:=Y \times_{Z} Z_{J}$ although it is not necessarily reduced. This ambiguity is not a problem because the category of D-modules on a stack only depends on the underlying reduced stack.

Definition 0.5.8 (Coordinate stratification). Let Y be a finite type scheme and $\left\{f_{i}\right\}_{i \in I}$ be regular functions on Y. Then we obtain a stratification of Y labelled by $P(I)$ with U_{i} given by the non-vanishing locus of f_{i}. In particular, the coordinate functions induce a stratification of the affine space \mathbb{A}^{I} labelled by $P(I)$. This stratification is known as the coordinate stratification.

Notation 0.5.9 (Reductive groups). We fix a connected reductive group G. For simplicity, we assume $[G, G]$ to be simply connected ${ }^{18}$

We fix a pair of opposite Borel subgroups (B, B^{-}) of it, therefore a Cartan subgroup T. We write Z_{G} for the center of G and $T_{\mathrm{ad}}:=T / Z_{G}$ for the adjoint torus.

We write \mathcal{I} for the set of vertices in the Dynkin diagram of G, Λ_{G} (resp. $\check{\Lambda}_{G}$) for the coweight (resp. weight) lattice, and $\Lambda_{G}^{\text {pos }} \subset \Lambda_{G}$ for the submonoid spanned by all positive simple coroots $\left(\alpha_{i}\right)_{i \in \mathcal{I}}$.

We often use P to denote a standard parabolic subgroup of G (i.e. a parabolic subgroup containing B). We write P^{-}for the corresponding standard opposite parabolic subgroup and $M:=P \cap P^{-}$for the Levi subgroup. We write U (resp. U^{-}) for the unipotent radical of P (resp. P^{-}). When we need to use a different parabolic subgroup, we often denote it by Q and its Levi subgroup by L.

We write Par for the partially ordered set of standard parabolic subgroups of G. We write $\mathrm{Par}^{\prime}=\operatorname{Par}-\{G\}$. We view them as categories in the standard way.

Notation 0.5.10 (Semi-group completion). The collection of simple positive roots of G provides an identification $T_{\text {ad }} \simeq \mathbb{G}_{m}^{\mathcal{I}}:=\prod_{i \in \mathcal{I}} \mathbb{G}_{m}$. We define $T_{\text {ad }}^{+}:=\mathbb{A}^{\mathcal{I}} \supset \mathbb{G}_{m}^{\mathcal{I}} \simeq T_{\text {ad }}$, which is a semi-group completion of the adjoint torus $T_{\text {ad }}$.

Consider the coordinate stratification of the affine space $T_{\mathrm{ad}}^{+}:=\mathbb{A}^{\mathcal{I}}$. The poset of this stratification can be identified with Par such that for $P \subset$ Par corresponding to a subset $\mathcal{J} \subset \mathcal{I}$ of the Dynkin diagram, the P-stratum is given by $\mathbb{G}_{\mathcal{J}}^{\mathcal{J}} \times\{0\}^{\mathcal{I}-\mathcal{J}} \rightarrow \mathbb{A}^{\mathcal{I}}$. In particular, we have $T_{\mathrm{ad}, P}^{+} \simeq \mathbb{G}_{m}^{\mathcal{J}} \times\{0\}^{\mathcal{I}-\mathcal{J}}, T_{\mathrm{ad}, \geq P}^{+} \simeq \mathbb{G}_{m}^{\mathcal{J}} \times \mathbb{A}^{\mathcal{I}-\mathcal{J}}$ and $T_{\mathrm{ad}, \leq P}^{+} \simeq$ $\mathbb{A}^{\mathcal{J}} \times\{0\}^{\mathcal{I}-\mathcal{J}}$.

[^9]Write C_{P} for the unique point in $T_{\mathrm{ad}, P}^{+}$whose coordinates are either 0 or 1. In particular C_{B} is the zero element in $T_{\text {ad }}^{+}$and C_{G} is the unit element. We use the same symbols to denote the images of these points in the quotient stack $T_{\text {ad }}^{+} / T$.

Consider the homomorphism $Z_{M} / Z_{G} \rightarrow T_{\mathrm{ad}}$. Let $T_{\mathrm{ad}, \geq C_{P}}^{+}$be its closure in T_{ad}^{+}. In other words, we have $T_{\text {ad }, \geq C_{P}}^{+} \simeq\{1\}^{\mathcal{J}} \times \mathbb{A}^{\mathcal{I}-\mathcal{J}}$.

Note that it is a sub-semi-group of $T_{\mathrm{ad}, \geq P}^{+}$that contains C_{P} as an idempotent element.

1. Outline of the proof

In this subsection, we reduce Theorem 0.3.4 to a series of partial results, which will be proved in the later sections.
1.1. Step 1: Constructing the natural transformation. The first step is to construct a natural transformation from $\bar{\Delta}_{!} \circ \mathbf{K}$ to $\mathbf{E} \circ \mathbf{D L}$. Let us first explain how to construct the morphism

$$
\begin{equation*}
\bar{\Delta}_{!} \circ \mathbf{K}(P) \rightarrow \mathbf{E} \circ \mathbf{D L}(P) . \tag{1.1}
\end{equation*}
$$

For $P \in$ Par, let $\overline{\operatorname{Bun}}_{G, P}$ be the P-stratum of $\overline{\operatorname{Bun}}_{G}$. We will construct (see Proposition-Construction 1.1.2 and Remark (1.1.3) a canonical commutative diagram ${ }^{20}$

$$
\begin{gather*}
\overline{\operatorname{Bun}}_{G, P} \xrightarrow{\bar{\Delta}_{P}^{\mathrm{enh}, l}} \operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G} \tag{1.2}\\
\downarrow^{i_{P}} \\
\overline{\operatorname{Bun}}_{G} \xrightarrow{\bar{\Delta}} \operatorname{Bun}_{G} \times \operatorname{bun}_{G} .
\end{gather*}
$$

Consider the object

$$
\mathcal{F}_{P}:=\bar{\Delta}_{P,!}^{\mathrm{enh}, l} \circ i_{P}^{!} \circ \mathbf{K}(P) \in \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G}^{P \text {-gen }} \times \operatorname{Bun}_{G}\right) .
$$

Note that

$$
\begin{equation*}
\bar{\Delta}_{!} \circ \mathbf{K}(P) \simeq \mathfrak{p}_{P \times G \rightarrow G \times G,!}^{\mathrm{enh}}\left(\mathcal{F}_{P}\right) \tag{1.3}
\end{equation*}
$$

because $\mathbf{K}(P) \simeq i_{P,!} \circ i_{P}^{!}(\mathbf{K}(P))$.
The following result will be proved in $\$ 2.2$,
Proposition 1.1.1. The object $\mathcal{F}_{P}:=\bar{\Delta}_{P,!}^{\text {enh }, l} \circ i_{P}^{!} \circ \mathbf{K}(P) \in \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G}^{P \text {-gen }} \times \operatorname{Bun}_{G}\right)$ is contained in the full subcategory

$$
\mathbf{I}(G \times G, P \times G) \subset \mathrm{D}\left(\operatorname{Bun}_{G}^{P-g e n} \times \operatorname{Bun}_{G}\right) .
$$

Let \mathcal{F}_{P}^{\prime} be the corresponding object in $\mathbf{I}(G \times G, P \times G)$. By (1.3), we have

$$
\begin{equation*}
\bar{\Delta}_{!} \circ \mathbf{K}(P) \simeq \operatorname{Eis}_{P \times G \rightarrow G \times G}^{\operatorname{enh}}\left(\mathcal{F}_{P}^{\prime}\right) . \tag{1.4}
\end{equation*}
$$

Hence by functoriality of the LHS, we obtain a morphism

$$
\begin{equation*}
\operatorname{Eis}_{P \times G \rightarrow G \times G}^{\mathrm{enh}}\left(\mathcal{F}_{P}^{\prime}\right) \rightarrow \mathcal{F}_{G}^{\prime} . \tag{1.5}
\end{equation*}
$$

[^10]By adjunction, we have a morphism

$$
\begin{equation*}
\theta_{P}^{\prime}: \mathcal{F}_{P}^{\prime} \rightarrow \mathrm{CT}_{G \times G \leftarrow P \times G}^{\mathrm{enh}}\left(\mathcal{F}_{G}^{\prime}\right) \tag{1.6}
\end{equation*}
$$

Note that $\mathcal{F}_{G}^{\prime}=\mathcal{F}_{G} \simeq \Delta_{!}\left(k_{\text {Bung }_{G}}\right)$.
On the other hand, by definition we have

$$
\begin{array}{r}
\mathbf{E} \circ \mathbf{D L}(P) \simeq\left(\left(\operatorname{Eis}_{P \rightarrow G}^{\mathrm{enh}} \circ \mathrm{CT}_{G \leftarrow P}^{\mathrm{enh}}\right) \otimes \mathbf{I d}\right)\left(\Delta_{!}\left(k_{\mathrm{Bun}_{G}}\right)\right) \tag{1.7}\\
\simeq \operatorname{Eis}_{P \times G \rightarrow G \times G}^{\operatorname{enh}} \circ \mathrm{CT}_{G \times G \leftarrow P \times G}^{\mathrm{enh}}\left(\Delta_{!}\left(k_{\mathrm{Bun}_{G}}\right)\right),
\end{array}
$$

where the last isomorphism is because $\mathbf{I}(G, P) \otimes_{k} \mathrm{D}\left(\mathrm{Bun}_{G}\right) \simeq \mathbf{I}(G \times G, P \times G)$ (see Lemma (2.3.2). Now we declare the morphism (1.1) to be given by

$$
\begin{array}{r}
\bar{\Delta}_{!} \circ \mathbf{K}(P) \simeq \operatorname{Eis}_{P \times G \rightarrow G \times G}^{\mathrm{enh}}\left(\mathcal{F}_{P}^{\prime}\right) \\
\xrightarrow{\text { Eis }^{\mathrm{enh}}\left(\theta_{P}^{\prime}\right)} \text { Eis }_{P \times G \rightarrow G \times G}^{\mathrm{enh}} \circ \mathrm{CT}_{G \times G \leftarrow P \times G}^{\mathrm{enh}}\left(\mathcal{F}_{G}^{\prime}\right) \simeq \mathbf{E} \circ \mathbf{D L}(P) . \tag{1.8}
\end{array}
$$

In order to obtain the desired natural transformation, we need the following construction:

Proposition-Construction 1.1.2. Let $\overline{\mathrm{Bun}}_{G, \leq P}$ be the reduced closed substack of $\overline{\mathrm{Bun}}_{G}$ containing all the P^{\prime}-strata with $P^{\prime} \subset P$. Then there exist canonical maps

$$
\bar{\Delta}_{\leq P}^{\mathrm{enh}}: \overline{\operatorname{Bun}}_{G, \leq P} \rightarrow \operatorname{Bun}_{G}^{P-\operatorname{gen}} \times \operatorname{Bun}_{G}^{P^{-} \text {gen }}
$$

that are functoria ${ }^{211}$ in P such that when $P=G$ we have $\bar{\Delta}_{\leq G}^{\mathrm{enh}}=\bar{\Delta}: \overline{\mathrm{Bun}}_{G} \rightarrow$ $\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$.

Remark 1.1.3. In particular, we have functorial maps

$$
\bar{\Delta}_{\leq P}^{\mathrm{enh}, l}: \overline{\operatorname{Bun}}_{G, \leq P} \rightarrow \operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G} .
$$

The map $\bar{\Delta}_{P}^{\mathrm{enh}, l}$ in (1.2) is defined to be its restriction to the P-stratum.
Note that we also have

$$
\mathcal{F}_{P} \simeq \bar{\Delta}_{\leq P,!}^{\mathrm{enh}, l} \circ i_{\leq P}^{!} \circ \mathbf{K}(P) .
$$

Using this, it is purely formal to show that the morphisms (1.8) constructed above are functorial in P. Namely, in $\$ 2.3$, we will use the theory of (co)Cartesian fibrations to prove:

Proposition-Construction 1.1.4. There exists a canonical natural transformation $\bar{\Delta}_{!} \circ \mathbf{K} \rightarrow \mathbf{E} \circ \mathbf{D L}$ whose value at $P \in \operatorname{Par}$ is equivalent to the morphism (1.8).
1.2. Step 1.5: Reducing to compare two objects. After obtaining the natural transformation, we only need to show its value at each $P \in$ Par is invertible. From this step on, we fix such a standard parabolic P.

Unwinding the definitions, we need to show the morphism (1.6)

$$
\theta_{P}^{\prime}: \mathcal{F}_{P}^{\prime} \rightarrow \mathrm{CT}_{G \times G \leftarrow P \times G}^{\mathrm{enh}}\left(\mathcal{F}_{G}^{\prime}\right)
$$

is invertible. Recall (see Remark 0.2.6) that the functor

$$
\iota_{M \times G}^{!}: \mathbf{I}(G \times G, P \times G) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)
$$

[^11]is conservative. Hence we only need to show the map $\iota_{M \times G}^{!}\left(\theta_{P}^{\prime}\right)$ is invertible. By definition, $\iota_{M \times G}^{!}$is isomorphic to
\[

$$
\begin{array}{r}
\mathbf{I}(G \times G, P \times G) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}^{\left.P-\text { gen }^{\prime} \times \operatorname{Bun}_{G}\right)}\right. \\
\xrightarrow{\iota_{P \times G}^{\prime}} \mathrm{D}\left(\operatorname{Bun}_{P} \times \operatorname{Bun}_{G}\right) \xrightarrow{q_{P \times G, *}} \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right) .
\end{array}
$$
\]

We denote the composition of the latter two functors by
$\mathrm{CT}_{P \times G, *}^{\mathrm{gen}}: \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\mathrm{gen}} \times \mathrm{Bun}_{G}\right) \xrightarrow{\iota_{P \times G}^{!}} \mathrm{D}\left(\operatorname{Bun}_{P} \times \mathrm{Bun}_{G}\right) \xrightarrow{\mathfrak{q}_{P \times G, *}} \mathrm{D}\left(\mathrm{Bun}_{M} \times \mathrm{Bun}_{G}\right)$.
Then the source of $\iota_{M \times G}^{\prime}\left(\theta_{P}^{\prime}\right)$ is isomorphic to $\mathrm{CT}_{P \times G, *}^{\mathrm{gen}}\left(\mathcal{F}_{P}\right)$.
On the other hand, the functor $\iota_{M \times G}^{!} \circ \mathrm{CT}_{G \times G \leftarrow P \times G}^{\mathrm{enh}}$ is isomorphic to the usual geometric constant term functor

$$
\mathrm{CT}_{P \times G, *}: \mathrm{D}\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)
$$

(as can be seen by passing to left adjoints). Hence the target of $\iota_{M \times G}^{\prime}\left(\theta_{P}^{\prime}\right)$ is isomorphic to $\mathrm{CT}_{P \times G, *}\left(\mathcal{F}_{G}\right)$. Let ${ }^{22}$

$$
\begin{equation*}
\gamma_{P}: \mathrm{CT}_{P \times G, *}^{\mathrm{gen}}\left(\mathcal{F}_{P}\right) \rightarrow \mathrm{CT}_{P \times G, *}\left(\mathcal{F}_{G}\right) \tag{1.9}
\end{equation*}
$$

be the morphism obtained from $\iota_{M \times G}^{!}\left(\theta_{P}^{\prime}\right)$ via the above isomorphisms. Then we have reduced the main theorem to:

- We only need to show γ_{P} is invertible.
1.3. Step 2: Translating by the second adjointness. Recall that the main theorem of DG16 says that when restricted to each connected component Bun ${ }_{M, \lambda}$ of Bun_{M}, the functor

$$
\mathrm{CT}_{P, *, \lambda}: \mathrm{D}\left(\mathrm{Bun}_{G}\right) \xrightarrow{!\text {-pull }} \mathrm{D}\left(\operatorname{Bun}_{P, \lambda}\right) \xrightarrow{*-\text {-push }} \mathrm{D}\left(\mathrm{Bun}_{M, \lambda}\right)
$$

is canonically left adjoint to

$$
\operatorname{Eis}_{P^{-}, *, \lambda}: \mathrm{D}\left(\operatorname{Bun}_{M, \lambda}\right) \xrightarrow{!\text {-pull }} \mathrm{D}\left(\operatorname{Bun}_{P^{-}, \lambda}\right) \xrightarrow{*-\text { push }} \mathrm{D}\left(\operatorname{Bun}_{G}\right) .
$$

In particular, the functor $\mathrm{CT}_{P, *} \simeq \oplus \mathrm{CT}_{P, *, \lambda}$ preserves ind-holonomic objects and its restriction to $\mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G}\right)$ is isomorphic to

$$
\mathrm{CT}_{P^{-},!}: \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G}\right) \xrightarrow{\mathfrak{p}^{-, *}} \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{P^{-}}\right) \xrightarrow{\mathrm{q}_{!}^{-}} \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{M}\right) .
$$

Hence we obtain an isomorphism

$$
\mathrm{CT}_{P \times G, *}\left(\mathcal{F}_{G}\right) \simeq \mathrm{CT}_{P^{-\times G},!}\left(\mathcal{F}_{G}\right)
$$

As explained in loc. cit., this result is similar to Braden's theorem on hyperbolic localizations Bra03] because P, P^{-}and M are respectively the attractor, repeller and fixed loci for a certain \mathbb{G}_{m}-action on G.

Now there is a similar story when we replace Bun_{G} by $\operatorname{Bun}_{G}^{P \text {-gen }}$. To explain it, we view $\operatorname{Bun}_{G}^{P-\text { gen }}$ as applying Bun•-gen to the pair (G, P). Then the attractor, repeller and fixed loci for this pair are respectively $(P, P),\left(P^{-}, M\right)$ and (M, M). Therefore one would expect the main theorem of DG16 holds if $\mathrm{Bun}_{G}, \mathrm{Bun}_{P}$, $\operatorname{Bun}_{P^{-}}$and Bun_{M} are replaced by $\operatorname{Bun}_{G}^{P-\operatorname{gen}}, \operatorname{Bun}_{P}, \operatorname{Bun}_{P-}^{M-\operatorname{gen}}, \operatorname{Bun}_{M}$. We will prove the following result in $\S 3$, which says this expectation is correct:

[^12]Theorem 1.3.1. The functor

$$
\mathrm{CT}_{P, *, \lambda}^{\mathrm{gen}}: \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }}\right) \xrightarrow{!-\text { pull }} \mathrm{D}\left(\operatorname{Bun}_{P, \lambda}\right) \xrightarrow{*-\text { push }} \mathrm{D}\left(\operatorname{Bun}_{M, \lambda}\right)
$$

is canonically left adjoint to

$$
\mathrm{D}\left(\operatorname{Bun}_{M, \lambda}\right) \xrightarrow{!-\text { pull }} \mathrm{D}\left(\operatorname{Bun}_{P^{-}, \lambda}^{M-\text { gen }}\right) \xrightarrow{*-\text { push }} \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }}\right) .
$$

Therefore the restriction of $\mathrm{CT}_{P, *}^{\mathrm{gen}}$ on ind-holonomic objects is isomorphic to

$$
\mathrm{CT}_{P^{-},!}^{\text {gen }}: \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G}^{P-\text {-gen }}\right) \xrightarrow{*-\text {-pull }} \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{P-}^{M-\text { gen }}\right) \xrightarrow{!\text {-push }} \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{M}\right) .
$$

Remark 1.3.2. Part of the statement says all the functors in Theorem 1.3.1 are well-defined. For example, we need to show the map $\operatorname{Bun}_{P_{-}^{-}, \lambda}^{M \text {-gen }} \rightarrow \operatorname{Bun}_{G}^{P \text {-gen }}$ is safe.
Remark 1.3.3. Unlike the main theorem of DG16, Theorem 1.3.1 does not imply the similar result when Bun_{P} and $\operatorname{Bun}_{P-}^{M \text {-gen }}$ are exchanged.

Applying Theorem 1.3.1 to the reductive group $G \times G$ and its parabolic subgroup $P \times G$, we obtain an isomorphism

$$
\operatorname{CT}_{P \times G, *}^{\text {gen }}\left(\mathcal{F}_{G}\right) \simeq \operatorname{CT}_{P-\times G,!}^{\text {gen }}\left(\mathcal{F}_{G}\right)
$$

Hence the morphism (1.9) is equivalent to a certain morphism

$$
\gamma_{P}^{\prime}: \mathrm{CT}_{P^{-} \times G,!}^{\mathrm{gen}}\left(\mathcal{F}_{P}\right) \rightarrow \mathrm{CT}_{P^{-} \times G,!}\left(\mathcal{F}_{G}\right)
$$

Hence we have reduced the main theorem to the following problem:

- We only need to show γ_{P}^{\prime} is invertible.

Remark 1.3.4. It is easier to study γ_{P}^{\prime} than γ_{P} because we can use the base-change isomorphisms.

Remark 1.3.5. We believe Theorem 1.3.1 (and its proof) is of independent interest. For example, we can use them to give a description of the monad structure of $\widetilde{\Omega}_{P}:=\iota_{M}^{!} \circ \iota_{M,!}$ via Verdier (co)specialization along Schieder's local models. This monad was the central concept in the paper Gai11. The details of it will be provided elsewhere.
1.4. Step 3: Diagram chasing. Using the base-change isomorphisms, and using the facts that $\mathbf{K}(P)$ is a !-extension along $\overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\mathrm{Bun}}_{G}$, one can simplify the source and target of γ_{P}^{\prime}. Let us state the result directly ${ }^{23}$

Consider the correspondences

$$
\begin{aligned}
& \beta_{P}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P-}^{M-\operatorname{gen}} \underset{\operatorname{Bun}_{G}^{P-\operatorname{gen}}}{\left.\times \overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\operatorname{Bun}}_{G}\right),}\right. \\
& \beta_{G}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times \overline{\operatorname{Bun}}_{G, G}} \rightarrow \overline{\operatorname{Bun}}_{G}\right),
\end{aligned}
$$

where the map $\overline{\operatorname{Bun}}_{G, P} \rightarrow \operatorname{Bun}_{G}^{P \text {-gen }}$ was constructed in Proposition-Construction 1.1.2, and the left arm of β_{P} is given by

$$
\operatorname{Bun}_{P-}^{M-\operatorname{gen}} \underset{\operatorname{Bun}_{G}^{P-\text { gen }}}{\times} \overline{\operatorname{Bun}}_{G, P} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G} \times \operatorname{Bun}_{G} \xrightarrow{\operatorname{pr}_{13}} \operatorname{Bun}_{M} \times \operatorname{Bun}_{G} .
$$

[^13]Then the base-change isomorphisms provide

$$
\begin{aligned}
& \mathrm{CT}_{P-\times G,!}^{\text {gen }}\left(\mathcal{F}_{P}\right) \simeq \operatorname{Dmod}_{\text {indhol }}^{!!*}\left(\beta_{P}\right) \circ \mathbf{K}(P), \\
& \mathrm{CT}_{P^{-\times} \times G,!}\left(\mathcal{F}_{G}\right) \simeq \operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\beta_{G}\right) \circ \mathbf{K}(G) .
\end{aligned}
$$

This motivates the following construction (see \$4.1):
Proposition-Construction 1.4.1. There exists an open substac 24

$$
\left(\operatorname{Bun}_{P-} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\operatorname{gen}} \subset \operatorname{Bun}_{P-} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}
$$

such that the parameterized correspondence

captures $\beta_{P}\left(\right.$ resp. $\left.\beta_{G}\right)$ as its restriction to the P-stratum (resp. G-stratum) of $T_{\mathrm{ad}, \geq P}^{+} / T$.

Using the fact that $\mathbf{K}(P)$ is a !-extension along $\overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\operatorname{Bun}}_{G}$ again, we obtain isomorphisms ${ }^{25}$

$$
\begin{aligned}
& \operatorname{Dmod}_{\text {indhol }}^{!!, *}\left(\beta_{P}\right) \circ \mathbf{K}(P) \simeq \operatorname{Dmod}_{\text {indhol }}^{!, *}(\beta) \circ \mathbf{K}(P), \\
& \operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\beta_{G}\right) \circ \mathbf{K}(G) \simeq \operatorname{Dmod}_{\text {indhol }}^{!, *}(\beta) \circ \mathbf{K}(G) .
\end{aligned}
$$

We will prove the following result in $\$ 4.2$ by a routine diagram chasing:
Lemma 1.4.2. The morphisms γ_{P} and γ_{P}^{\prime} are both equivalent to the morphism

$$
\operatorname{Dmod}_{\text {indhol }}^{!, *}(\beta) \circ \mathbf{K}(P) \rightarrow \operatorname{Dmod}_{\text {indhol }}^{!, *}(\beta) \circ \mathbf{K}(G)
$$

given by the functor $\operatorname{Dmod}_{\text {indhol }}^{1, *}(\beta) \circ \mathbf{K}: \operatorname{Par} \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)$.
Hence we have reduced the main theorem to the following problem:

- We only need to show the functor $\operatorname{Dmod}_{\text {indhol }}^{!!*}(\beta) \circ \mathbf{K}$ sends the arrow $P \rightarrow G$ to an isomorphism.
1.5. Step 4: Restoring the symmetry. In the previous step, we have reduced the main theorem to proving a morphism in $\mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)$ is invertible. Note that we have broken the symmetry in the sense that the two factors Bun_{M} and Bun_{G} are different. In this step, we restore the symmetry and reducing the main theorem to proving a morphism in $\mathrm{D}\left(\operatorname{Bun}_{M} \times \mathrm{Bun}_{M}\right)$ is invertible. In fact, we think the previous steps are more or less natural to people familiar with this field, but it is the desire to restore this symmetry that led us to discover the proof of the main theorem.

In $\$ 5.1$, we will show

[^14]Proposition-Construction 1.5.1. There exists a canonical factorization of the $m a{ }^{26}$

$$
\left(\operatorname{Bun}_{P-} \underset{\operatorname{Bun}_{G}}{\left.\times \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G},}\right.
$$

via $\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}$.
In particular we obtain a correspondence

$$
\beta^{\prime}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \leftarrow\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{ } \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \rightarrow \overline{\operatorname{Bun}}_{G}\right)
$$

and we only need to show $\operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\beta^{\prime}\right) \circ \mathbf{K}$ sends the arrow $P \rightarrow G$ to an isomorphism.

The following result will be proved in $\$ 5.2$,
Proposition 1.5.2. The objects $\operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\beta^{\prime}\right) \circ \mathbf{K}(P)$ and $\operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\beta^{\prime}\right) \circ \mathbf{K}(G)$ are both contained in the full subcategory

$$
\mathbf{I}\left(M \times G, M \times P^{-}\right) \subset \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\mathrm{gen}}\right) .
$$

Consider the functor

$$
\begin{aligned}
\mathrm{CT}_{M \times P^{-}, *}^{\text {gen }}: \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}\right) & \xrightarrow{!-\text { pull }} \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{P^{-}}\right) \\
& \xrightarrow{*-\text {-push }} \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{M}\right) .
\end{aligned}
$$

By definition, its restriction to $\mathbf{I}\left(M \times G, M \times P^{-}\right)$is the conservative functor $\iota^{!}$: $\mathbf{I}\left(M \times G, M \times P^{-}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{M}\right)$. Hence we only need to show

$$
\mathrm{CT}_{M \times P^{-}, *}^{\mathrm{gen}} \circ \operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\beta^{\prime}\right) \circ \mathbf{K}
$$

sends the arrow $P \rightarrow G$ to an isomorphism.
Now consider the correspondence

$$
\delta:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{M} \leftarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{P}^{M-\operatorname{gen}} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\mathrm{gen}}\right)
$$

and the functor

$$
\mathrm{CT}_{M \times P,!}^{\mathrm{gen}}:=\mathrm{D}_{\text {indhol }}^{!, *}(\delta)
$$

Applying Theorem 1.3 .1 to the reductive group $M \times G$ and its parabolic subgroup $M \times P^{-}$, we obtain $\mathrm{CT}_{M \times P^{-}, *}^{\mathrm{gen}} \simeq \mathrm{CT}_{M \times P,!}^{\mathrm{gen}}$. Hence we have reduced the main theorem to the following problem:

- We only need to show the functor $\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\delta \circ \beta^{\prime}\right) \circ \mathbf{K}$ sends the arrow $P \rightarrow G$ to an isomorphism.
1.6. Step 5: Calculating via the local models. Now comes the fruit of the symmetry restored in Step 4. Namely, the correspondence $\delta \circ \beta^{\prime}$ was in fact studied in the literature. To describe it, we need to use Vinberg semi-group Vin_{G}. We refer the reader to DG16, Appendix D], Wan17, [Che23, §1.2] for details about it. To continue our proof, it is enough to know the following:
- Vin_{G} is an affine normal semi-group equipped with a flat homomorphism to $T_{\text {ad }}^{+}$.
- Vin_{G} is equipped with a T-action compatible with the T-action on $T_{\text {ad }}^{+}$.

[^15]- Vin_{G} is equipped with a (G, G)-action which preserves the fibers of $\operatorname{Vin}_{G} \rightarrow$ $T_{\text {ad }}^{+}$.
- $\operatorname{Vin}_{G} \rightarrow T_{\text {ad }}^{+}$is equipped with a semi-group splitting $\mathfrak{s}: T_{\text {ad }}^{+} \rightarrow \operatorname{Vin}_{G}$.
- The open subgroup of invertible elements of Vin_{G} can be identified with $G_{\text {enh }} \simeq(G \times T) / Z_{G}$ in a way compatible with the T-action, (G, G)-action and the projection to $T / Z_{G} \subset T_{\mathrm{ad}}^{+}$. Via this identification, the section \mathfrak{s} sends $t \in T / Z_{G}$ to $\left(t^{-1}, t\right) \in(G \times T) / Z_{G}$.
- The (G, G)-orbit of the section \mathfrak{s} is an open subscheme ${ }_{0} \operatorname{Vin}_{G} \subset \operatorname{Vin}_{G}$.
- In the case $G=\mathrm{SL}_{2}, \operatorname{Vin}_{G}$ is the semi-group of 2×2 matrices.

We also need Schieder's (relative) local mode ${ }^{27}$ in Sch16:

$$
Y_{\mathrm{rel}}^{P}:=\operatorname{Maps}_{\mathrm{gen}}\left(X, P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}} / P \supset P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}}^{\text {Bruhat }} / P\right)
$$

where (see Notation 0.5.10)

$$
\operatorname{Vin}_{G, \geq C_{P}}:=\operatorname{Vin}_{G} \times T_{T_{\mathrm{ad}}^{+}}^{+} T_{\mathrm{ad}, \geq C_{P}}
$$

and $\operatorname{Vin}_{G, \geq C_{P}}^{\text {Bruhat }} \subset \operatorname{Vin}_{G, \geq C_{P}}$ is the open subscheme $P^{-} \mathfrak{s}\left(T_{\text {ad, }, \geq C_{P}}^{+}\right) P$.
The T-action on $G \backslash \operatorname{Vin}_{G, \geq P} / G$ induces a $Z_{M^{-}}$action on $P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}} / P$ which preserves $P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}}^{\text {Bruhat }} / P$, hence we obtain a Z_{M}-action on $Y_{\text {rel }}^{P}$. Note that we have the following diagram of stacks equipped with group actions:

$$
\left(\mathrm{pt} \curvearrowright \operatorname{Bun}_{M} \times \operatorname{Bun}_{M}\right) \leftarrow\left(Z_{M} \frown Y_{\mathrm{rel}}^{P}\right) \rightarrow\left(T \curvearrowright \operatorname{VinBun}_{G}\right) .
$$

By taking quotients, we obtain

$$
\operatorname{Bun}_{M} \times \operatorname{Bun}_{M} \leftarrow Y_{\mathrm{rel}}^{P} / Z_{M} \rightarrow \overline{\operatorname{Bun}}_{G} .
$$

The following result is proved in $\$ 5.1$
Lemma 1.6.1. The composition $\delta \circ \beta^{\prime}$ is isomorphic to

$$
\operatorname{Bun}_{M} \times \operatorname{Bun}_{M} \leftarrow Y_{\mathrm{rel}}^{P} / Z_{M} \rightarrow \overline{\operatorname{Bun}}_{G} .
$$

It is known (see Construction 6.1.2) that $Y_{\text {rel }}^{P} / Z_{M} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{M}$ factors via $H_{M . G-\text { pos }} / Z_{M}$, where $H_{M, G \text { - pos }}$ is the G-positive part of Hecke stack for M torsors ${ }^{28}$

$$
H_{M, G-\text { - pos }}:=\operatorname{Maps}_{\mathrm{gen}}(X, M \backslash \bar{M} / M \supset M \backslash M / M)
$$

Here $\bar{M} \simeq \mathfrak{s}\left(C_{P}\right) \cdot \operatorname{Vin}_{G, C_{P}} \cdot \mathfrak{s}\left(C_{P}\right)$ is a closed subscheme of $\operatorname{Vin}_{G, C_{P}}$ (see Wan17).
Consider the correspondence

$$
\psi_{P}: H_{M, G-\mathrm{pos}} / Z_{M} \leftarrow Y_{\mathrm{rel}}^{P} / Z_{M} \rightarrow \overline{\operatorname{Bun}}_{G} .
$$

We have reduced the main theorem to
Goal 1.6.2. The functor $\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{P}\right) \circ \mathbf{K}$ sends the arrow $P \rightarrow G$ to an isomorphism.

We will prove a stronger result:

[^16]Goal 1.6.3. For any $Q \in \operatorname{Par}_{\geq P}$, the functor $\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{P}\right) \circ \mathbf{K}$ sends the arrow $Q \rightarrow G$ to an isomorphism.

We prove this by induction on the relative rank between Q and G. When $Q=G$, there is nothing to prove. Hence we assume $Q \neq G$ and assume the above claim is correct for any Q^{\prime} strictly greater than Q. Let L be the Levi subgroup of Q.

Consider the object

$$
\mathcal{D}_{Q}:=\operatorname{coFib}\left(\underset{Q^{\prime} \in \operatorname{Par}^{\prime} \cap \operatorname{Par}_{\geq Q}}{\operatorname{colim}} \mathbf{K}\left(Q^{\prime}\right) \rightarrow \mathbf{K}(G)\right) .
$$

We claim

$$
\begin{equation*}
\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{P}\right)\left(\mathcal{D}_{Q}\right) \simeq 0 . \tag{1.10}
\end{equation*}
$$

Let us execute the induction step using this claim. Note that the underlying simplicial set of the category $\operatorname{Par}^{\prime} \cap \operatorname{Par}_{\geq Q}$ is weakly contractible, hence by Lur09, Corollary 4.4.4.10]

$$
\underset{Q^{\prime} \in \operatorname{Par}^{\prime} \cap \operatorname{Par}_{\geq Q}}{\operatorname{colim}} \mathbf{K}(G) \simeq \mathbf{K}(G) .
$$

Hence

$$
\mathcal{D}_{Q} \simeq \underset{Q^{\prime} \in \operatorname{Par}^{\prime} \cap \operatorname{Par}_{\geq Q}}{\operatorname{colim}} \operatorname{coFib}\left(\mathbf{K}\left(Q^{\prime}\right) \rightarrow \mathbf{K}(G)\right) .
$$

By induction hypothesis, the functor $\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{P}\right)$ sends $\operatorname{coFib}\left(\mathbf{K}\left(Q^{\prime}\right) \rightarrow \mathbf{K}(G)\right)$ to 0 unless $Q^{\prime}=Q$. Hence $\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{P}\right)\left(\mathcal{D}_{Q}\right)$ is isomorphic t^{29}

$$
\operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\psi_{P}\right)(\operatorname{coFib}(\mathbf{K}(Q) \rightarrow \mathbf{K}(G))[\operatorname{rank}(G)-\operatorname{rank}(L)+1] .
$$

Then the claim (1.10) implies

$$
\operatorname{Dmod}_{\text {indhol }}^{!!*}\left(\psi_{P}\right) \circ \mathbf{K}(Q) \rightarrow \operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{P}\right) \circ \mathbf{K}(G)
$$

is an isomorphism as desired.
It remains to prove (1.10). Consider the maps

$$
\overline{\mathrm{Bun}}_{G, G} \xrightarrow{j_{G, \geq Q}} \overline{\mathrm{Bun}}_{G, \geq Q} \xrightarrow{j_{2 Q}} \overline{\mathrm{Bun}}_{G} .
$$

By Lemma C.1.5 we have $\mathcal{D}_{Q} \simeq j_{\geq Q,!}(\mathcal{F})$, where

$$
\mathcal{F}:=\left(j_{G, \geq Q}\right)_{*} \circ r_{!}\left(k_{\text {Bun }_{G}}\right) .
$$

Hence by the base-change isomorphism, $\operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\psi_{P}\right)\left(\mathcal{D}_{Q}\right)$ is isomorphic to $\operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\psi_{P, \geq Q}\right)(\mathcal{F})$, where

$$
\psi_{P, \geq Q}:\left(H_{M, G-\mathrm{pos}} / Z_{M} \leftarrow\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{\geq Q} \rightarrow \overline{\operatorname{Bun}}_{G, \geq Q}\right)
$$

and $\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{\geq Q}$ is the open substack of $Y_{\mathrm{rel}}^{P} / Z_{M}$ containing those Q^{\prime}-strata with $Q^{\prime} \supset Q$. The following construction will be provided in $\$ 6.1$
Proposition-Construction 1.6.4. The correspondence $\psi_{P, \geq Q}$ is isomorphic to the composition of

$$
\psi_{Q, \geq Q}:\left(H_{L, G-\mathrm{pos}} / Z_{L} \leftarrow Y_{\mathrm{rel}}^{Q} / Z_{L} \rightarrow \overline{\operatorname{Bun}}_{G, \geq Q}\right)
$$

with a certain correspondence from $H_{L, G-\mathrm{pos}} / Z_{L}$ to $H_{M, G \text {-pos }} / Z_{M}$.

[^17]Therefore we only need to show $\operatorname{Dmod}_{\text {indhol }}^{!}, *\left(\psi_{Q, \geq Q}\right)(\mathcal{F}) \simeq 0$. We will prove the following stronger claim: for any $Q \in \operatorname{Par}$, we have

$$
\operatorname{Dmod}_{\text {indhol }}^{1, *}\left(\psi_{Q, \geq Q}\right) \circ\left(j_{G, \geq Q}\right)_{*} \simeq 0
$$

where recall

$$
j_{G, \geq Q}: \overline{\operatorname{Bun}}_{G, G} \rightarrow \overline{\operatorname{Bun}}_{G, \geq Q}, \psi_{Q, \geq Q}:\left(H_{L, G-\mathrm{pos}} / Z_{L} \leftarrow Y_{\mathrm{rel}}^{Q} / Z_{L} \rightarrow \overline{\operatorname{Bun}}_{G, \geq Q}\right) .
$$

To finish the proof, we need one more geometric input. In Sch16], the author constructed a defect stratification on the P-stratum $\overline{\operatorname{Bun}}_{G, P}$. Let dfstr $\overline{\operatorname{Bun}}_{G, P}$ be the disjoint union of all the defect strata. It is known (see 82.2 .2) that

$$
\operatorname{dfstr}_{\overline{\operatorname{Bun}}_{G, P} \simeq \operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times}\left(H_{M, G-\operatorname{pos}} / Z_{M}\right) \underset{\operatorname{Bun}_{M}}{\times} \operatorname{Bun}_{P^{-}} .}
$$

Consider the diagram

$$
\begin{array}{ll}
H_{M, G-\operatorname{pos}} / Z_{M} \stackrel{\mathfrak{q}_{P, V \mathrm{Vin}}^{+}}{\longleftrightarrow} \text { dfstr }^{\mathrm{Bun}_{G, P} \xrightarrow{\mathfrak{p}_{P, \mathrm{Vin}}^{+}}} & \overline{\mathrm{Bun}}_{G, \geq P}, \\
H_{M, G-\mathrm{pos}} / Z_{M} \stackrel{\mathfrak{q}_{P, \mathrm{Vin}}^{-}}{\longleftrightarrow} Y_{\text {rel }}^{P} / Z_{M} \xrightarrow{\mathfrak{p}_{P, V \mathrm{Vin}}^{-}} & \overline{\mathrm{Bun}}_{G, \geq P}
\end{array}
$$

In 86.2 , we will prove the following "second-adjointness-style" result:
Theorem 1.6.5. The functor

$$
\mathfrak{q}_{P, \text { Vin },!}^{\mp} \circ \mathfrak{p}_{P, \text { Vin }}^{\mp, *}: \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, \geq P}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(H_{M, G-\mathrm{pos}} / Z_{M}\right)
$$

is isomorphic to the restriction of the functor

$$
\mathfrak{q}_{P, \mathrm{Vin}, *}^{ \pm} \circ \mathfrak{p}_{P, \mathrm{Vin}}^{ \pm,!}: \mathrm{D}\left(\overline{\operatorname{Bun}}_{G, \geq P}\right) \rightarrow \mathrm{D}\left(H_{M, G-\operatorname{pos}} / Z_{M}\right) .
$$

Now the Q-version of Theorem 1.6 .5 says

$$
\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{Q, \geq Q}\right) \simeq \mathfrak{q}_{Q, \operatorname{Vin}, *}^{+} \circ \mathfrak{p}_{Q, \operatorname{Vin}}^{+,!} .
$$

Hence we have

$$
\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\psi_{Q, \geq Q}\right) \circ\left(j_{G, \geq Q}\right)_{*} \simeq \mathfrak{q}_{Q, \operatorname{Vin}, *}^{+} \circ \mathfrak{p}_{Q, \operatorname{Vin}}^{+,!} \circ\left(j_{G, \geq Q}\right)_{*} .
$$

Note that ${ }_{\text {dfstr }} \overline{\operatorname{Bun}}_{G, Q}$ and $\overline{\operatorname{Bun}}_{G, G}$ have empty intersection (because $Q \neq G$). Hence $\mathfrak{p}_{Q, \text { Vin }}^{+!} \circ\left(j_{G, \geq Q}\right)_{*} \simeq 0$. This finishes the proof.

Remark 1.6.6. In the case $G=\mathrm{SL}_{2}$, one can use Theorem 1.6.5 to give a quicker proof of Goal 1.6.2. Namely, using the theorem, we only need to show $\mathfrak{q}_{B, V i n, *}^{+} \circ$ $\mathfrak{p}_{B, V i n}^{+,!} \circ \mathbf{K}$ sends the arrow $B \rightarrow G$ to an isomorphism. Recall that $\mathfrak{p}_{B, \text { Vin }}^{+}$factors through

$$
i_{B}: \overline{\operatorname{Bun}}_{G, B} \rightarrow \overline{\operatorname{Bun}}_{G} .
$$

Hence we only need to show $i_{B}^{!} \circ \mathbf{K}$ sends $B \rightarrow G$ to an isomorphism. However, this is obvious because the image of this arrow is the map (see Remark C.1.4):

$$
i_{B}^{*} \circ j_{G, *}\left(r_{!}\left(k_{\operatorname{Bun}_{G}}\right)\right)[-1] \rightarrow i_{B}^{!} \circ j_{G,!}\left(r_{!}\left(k_{\operatorname{Bun}_{G}}\right)\right)
$$

which is an isomorphism because i_{B} and j_{G} are complementary to each other.

2. Step 1

We have three results to prove in this step: Proposition-Construction 1.1.2, Proposition 1.1.1 and Proposition-Construction 1.1.4. Each subsection corresponds to a result. Note that we have to do them in this order because the statement of the second result depends on the construction of the first.

The main idea of the proof of Proposition-Construction 1.1.2 is to construct a canonical map $G \backslash_{0} \operatorname{Vin}_{G, \leq P} / G \rightarrow \mathbb{B} P \times \mathbb{B} P^{-}$, which is achieved by studying the stabilizer group \widetilde{G} (reviewed in Appendix (D).

The main ingredient of the proof of Proposition 1.1.1 is the defect stratification on $\overline{\operatorname{Bun}}_{G}$ defined in [Sch16] which allows us to define certain full subcategory $\mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right){ }^{\mathbf{U} \times \mathbf{U}^{-}} \subset \mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right)$ closely connected to the category $\mathbf{I}(G \times G, P \times G)$. Such connection is due to a comparison of the defect stratification of $\overline{\operatorname{Bun}}_{G}$ and that of the Drinfeld compactification $\widetilde{\mathrm{Bun}}_{P}$ defined in BG02.

The proof of Proposition 1.1.4 is purely formal.

2.1. Proof of Proposition-Construction 1.1.2, Our goal is:

Goal 2.1.1. Construct canonical maps

$$
\overline{\boldsymbol{\Delta}}_{\leq P}^{\mathrm{enh}}: \overline{\operatorname{Bun}}_{G, \leq P} \rightarrow \operatorname{Bun}_{G}^{P-\mathrm{gen}} \times \operatorname{Bun}_{G}^{P^{-} \text {gen }}
$$

that are functorial in P such that when $P=G$ we have $\bar{\Delta}_{\leq G}^{\mathrm{enh}}=\bar{\Delta}$.
By definition, we have $\overline{\operatorname{Bun}}_{G, \leq P} \simeq \operatorname{VinBun}_{G, \leq P} / T$ and

$$
\operatorname{VinBun}_{G, \leq P} \simeq \operatorname{Maps}_{\mathrm{gen}}\left(X, G \backslash \operatorname{Vin}_{G, \leq P} / G \supset G \backslash_{0} \operatorname{Vin}_{G, \leq P} / G\right),
$$

where the T-action on $\operatorname{VinBun}_{G, \leq P}$ is induced from the T-action on $\operatorname{Vin}_{G, \leq P}$. By Fact D.1.1(2), we have

$$
\begin{equation*}
G \backslash_{0} \operatorname{Vin}_{G, \leq P} / G \simeq \mathbb{B} \widetilde{G}_{\leq P}, \tag{2.1}
\end{equation*}
$$

where $\widetilde{G}_{\leq P}$ is a subgroup scheme of $G \times G \times T_{\text {ad }, \leq P}^{+} \rightarrow T_{\text {ad }, \leq P}^{+}$.
By Lemma D.1.5, the map $\mathbb{B} \widetilde{G}_{\leq P} \rightarrow \mathbb{B} G \times \mathbb{B} G$ factors as $\mathbb{B} \widetilde{G}_{\leq P} \rightarrow \mathbb{B} P \times \mathbb{B} P^{-} \rightarrow$ $\mathbb{B} G \times \mathbb{B} G$. Also, the maps

$$
\begin{equation*}
\mathbb{B} \widetilde{G}_{\leq P} \rightarrow \mathbb{B} P \times \mathbb{B} P^{-} \tag{2.2}
\end{equation*}
$$

are functorial in P. Now we have the following commutative diagram of algebraic stacks:

Taking $\operatorname{Maps}_{\text {gen }}(X,-)$, we obtain maps

$$
\operatorname{VinBun}_{G, \leq P} \rightarrow \operatorname{Bun}_{G}^{P \text {-gen }} \times \operatorname{Bun}_{G}^{P^{-} \text {gen }}
$$

functorial in P. To finish the construction, we only need to show:
Lemma 2.1.2. The map $G \backslash_{0} \operatorname{Vin}_{G, \leq P} / G \rightarrow \mathbb{B} P \times \mathbb{B} P^{-}$constructed above can be uniquely lifted to a morphism

$$
\left(T \triangleleft G \backslash_{0} \operatorname{Vin}_{G, \leq P} / G\right) \rightarrow\left(\mathrm{pt} \triangleleft \mathbb{B} P \times \mathbb{B} P^{-}\right)
$$

fitting into the following commutative diagram

Proof. The uniqueness follows from the fact that $\mathbb{B} P \times \mathbb{B} P^{-} \rightarrow \mathbb{B} G \times \mathbb{B} G$ is schematic. It remains to prove the existence.

The map $G \backslash_{0} \operatorname{Vin}_{G, \leq P} / G \rightarrow \mathbb{B} P \times \mathbb{B} P^{-}$induces a $(G \times G)$-equivariant map

$$
\begin{equation*}
{ }_{0} \operatorname{Vin}_{G, \leq P} \rightarrow G / P \times G / P^{-} . \tag{2.4}
\end{equation*}
$$

We only need to show the T-action on ${ }_{0} \mathrm{Vin}_{G, \leq P}$ preserves the fibers of this map.
Recall that any closed point in ${ }_{0} \operatorname{Vin}_{G, \leq P}$ is of the form $g_{1} \cdot \mathfrak{s}(s) \cdot g_{2}^{-1}$ where g_{1} and g_{2} are closed points of G, s is a closed point of $T_{\mathrm{ad}, \leq P}^{+}$and \mathfrak{s} is the canonical section. Unwinding the definitions, the map (2.4) sends this point to (g_{1}, g_{2}). Now consider the T-action on Vin_{G}. It follows from definition that a closed point t of T sends the point $\mathfrak{s}(s)$ to the point $\iota(t) \cdot \mathfrak{s}(t s)$, where $\iota: T \hookrightarrow G$ is the embedding. Since the T-action commutes with the $(G \times G)$-action, the element t sends $g_{1} \cdot \mathfrak{s}(s) \cdot g_{2}^{-1}$ to $g_{1} \iota(t) \cdot \mathfrak{s}(s) \cdot g_{2}^{-1}$. This makes the desired claim manifest.

2.2. Proof of Proposition 1.1.1.

Goal 2.2.1. The object \mathcal{F}_{P} is contained in the full subcategory

$$
\mathbf{I}(G \times G, P \times G) \subset \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\operatorname{gen}} \times \operatorname{Bun}_{G}\right) .
$$

2.2.2. The $\left(\mathbf{U}, \mathbf{U}^{-}\right)$-equivariant categories. In order to prove Proposition 1.1.1, we will introduce a subcategory

$$
\mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right)^{\mathbf{U} \times \mathbf{U}^{-}} \subset \mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right),
$$

whose definition is similar to

$$
\mathbf{I}\left(G \times G, P \times P^{-}\right) \subset \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}\right)
$$

To define this subcategory, we use the defect stratification on $\overline{\mathrm{Bun}}_{G, P}$ defined 3 in Sch16. Recall the disjoint union of its strata is given by ${ }^{31}$

$$
\operatorname{dfstr}_{\overline{\operatorname{Bun}}_{G, P} \simeq \operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times}\left(H_{M, G-\operatorname{pos}} / Z_{M}\right) \underset{\operatorname{Bun}_{M}}{\times} \operatorname{Bun}_{P^{-}},}
$$

or more abstractly

$$
\mathrm{dfstr}^{\overline{\operatorname{Bun}}_{G, P} \simeq \operatorname{Maps}_{\mathrm{gen}}\left(X, P \backslash \bar{M} / P^{-} \supset P \backslash M / P^{-}\right) / Z_{M}, ~}
$$

where \bar{M} is the closure of the locally closed embedding

$$
M \simeq\left(P \times P^{-}\right) /\left(P \times{ }_{M}^{\times}\right) \hookrightarrow(G \times G) /\left(P \times{ }_{M}^{-} P^{-}\right) \simeq{ }_{0} \operatorname{Vin}_{G, C_{P}} .
$$

[^18]It is well-known that the map $\operatorname{Bun}_{P} \rightarrow \operatorname{Bun}_{M}$ is universally homological contractible, or UHC. In other words, for any lft prestack $Y \rightarrow \operatorname{Bun}_{M}$, the !-pullback functor $\mathrm{D}(Y) \rightarrow \mathrm{D}\left(Y \times_{\operatorname{Bun}_{M}} \operatorname{Bun}_{P}\right)$ is fully faithful. In particular, the following !-pullback functor is fully faithful

$$
\operatorname{dfstr}^{\overline{\mathrm{Bun}}_{G, P} \rightarrow\left(H_{M, G-\operatorname{pos}} / Z_{M}\right) \underset{\operatorname{Bun}_{M}}{\times} \operatorname{Bun}_{P^{-}} .}
$$

We denote its essential image by $\mathrm{D}\left({ }_{\mathrm{dfstr}} \overline{\operatorname{Bun}}_{G, P}\right)^{\mathrm{U}_{P}}$. Similarly we define $\mathrm{D}\left({ }_{\mathrm{dfstr}} \overline{\mathrm{Bun}}_{G, P}\right) \mathrm{U}_{P}^{-}$and $\left.\mathrm{D}\left({ }_{\mathrm{dfstr}} \overline{\mathrm{Bun}}_{G, P}\right)\right)^{\mathbf{U}_{P} \times \mathrm{U}_{P}^{-}}$.

Since $\operatorname{Bun}_{P} \rightarrow \operatorname{Bun}_{M}$ is smooth, in the previous definition, we can also use *-pullbacks instead of the !-pullbacks. The resulting subcategories are the same.

We define $\mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right){ }^{\mathbf{U}_{P}}$ to fit into the following pullback diagram

$$
\begin{gathered}
\mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right)^{\mathrm{U}_{P}} \xrightarrow{c} \mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right) \\
\downarrow \\
\mathrm{D}\left(\mathrm{dfstr} \overline{\operatorname{Bun}}_{G, P}\right) \mathrm{U}_{P} \xrightarrow{\llcorner } \mathrm{D}\left(\mathrm{dfstr}^{\downarrow} \overline{\operatorname{Bun}}_{G, P}\right) .
\end{gathered}
$$

Similarly we define $\mathrm{D}\left(\overline{\operatorname{Bun}}_{G, P}\right) \mathbf{U}_{P}^{-}$and $\mathrm{D}\left(\overline{\mathrm{Bun}}_{G, P}\right)^{\mathbf{U}_{P} \times \mathbf{U}_{P}^{-}}$. We also define the version of these subcategories for ind-holonomic D-modules.

We will deduce Proposition 1.1 .1 from Lemmas 2.2.3 2.2.5. The proof of the first one is completely similar to that in [Che21, Appendix § G.1]. We provide the proofs for the other two.

Lemma 2.2.3. For any morphism $P \in \operatorname{Par}$, the object

$$
i_{P}^{*} \circ j_{G, *} \circ r!\left(k_{\operatorname{Bun}_{G}}\right) \in \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right)
$$

is contained in $\mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right) \mathbf{U}_{P} \times \mathbf{U}_{P}^{-}$.
Lemma 2.2.4. The !-pushforward functor

$$
\mathrm{D}_{\text {indhol }}\left(\mathrm{dfstr}^{\left.\overline{\operatorname{Bun}}_{G, P}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right), ~}\right.
$$

preserves $\left(\mathbf{U}_{P} \times \mathbf{U}_{P}^{-}\right)$-equivariant objects.
Proof. It suffices to prove the similar version after replacing $\overline{\operatorname{Bun}}_{G, P}$ by its smooth cover $\operatorname{VinBun}_{G, C_{P}}$. By [Sch16, §3.3.2], the map $f:{ }_{\mathrm{dfstr}} \operatorname{VinBun}_{G, C_{P}} \rightarrow \operatorname{VinBun}_{G, C_{P}}$ factors as

$$
\mathrm{dfstr} \operatorname{VinBun}_{G, C_{P}} \xrightarrow{j} \widetilde{\operatorname{Bun}}_{P} \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\operatorname{pos}}^{\operatorname{Bun}_{M}} \underset{\operatorname{Bun}_{P^{-}}}{ } \stackrel{\bar{f}}{\rightarrow} \operatorname{VinBun}_{G, C_{P}}
$$

such that j is a schematic open embedding and \bar{f} is proper on each connected component. Recall that $\widetilde{\operatorname{Bun}}_{P}$ also has a defect stratification with

$$
\mathrm{dfstr}_{\mathrm{Bun}_{P}}^{\widetilde{\operatorname{Bun}}_{P} \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\mathrm{pos}} .}
$$

We define $\left.\mathrm{D}\left({ }_{\mathrm{dfstr}} \widetilde{\operatorname{Bun}}_{P}\right)\right)^{\mathrm{U}_{P}}$ to be the full subcategory of $\mathrm{D}\left({ }_{\mathrm{dfstr}} \widetilde{\mathrm{Bun}}_{P}\right)$ consisting of objects that are !-pullbacks from $\mathrm{D}\left(H_{M, G-\mathrm{pos}}\right)$. We define $\mathrm{D}\left(\widetilde{\operatorname{Bun}}_{P}\right) \mathrm{U}_{P}$ similarly as before. We also define

$$
\mathrm{D}\left(\widetilde{\operatorname{Bun}}_{P} \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\operatorname{pos}} \underset{\operatorname{Bun}_{M}}{\times} \widetilde{\operatorname{Bun}}_{P^{-}}\right)^{\mathbf{U}_{P} \times \mathbf{U}_{P}^{-}} .
$$

We claim the functor $\bar{f}_{!}$preserves $\left(\mathbf{U}_{P} \times \mathbf{U}_{P}^{-}\right)$-equivariant objects. To prove the claim, we use the fact that \bar{f} is compatible with the defect stratifications. In other words, we have

$$
\begin{array}{r}
\mathrm{dfstr} \operatorname{VinBun}_{G, C_{P}} \underset{\operatorname{VinBun}_{G, C_{P}}}{\times}\left(\widetilde{\operatorname{Bun}}_{P} \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\operatorname{pos}} \underset{\operatorname{Bun}_{M}}{\times} \widetilde{\operatorname{Bun}}_{P^{-}}\right) \\
\simeq\left(\operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\operatorname{pos}}\right) \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\operatorname{pos}}^{\times} \underset{\operatorname{Bun}_{M}}{\times}\left(H_{M, G-\text { pos }}^{\times} \underset{\operatorname{Bun}_{M}}{\times} \operatorname{Bun}_{P^{-}}\right),
\end{array}
$$

such that the projection from the RHS to
is induced by the "composition" map

$$
H_{M, G-\text { pos }}^{\underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\text { pos }}^{\operatorname{Bun}_{M}} \times H_{M, G-\text { pos }} \rightarrow H_{M, G-\text { pos }} .}
$$

Then the claim follows from the base-change isomorphisms (which exist because \bar{f} is proper on each connected component).

It remains to show j ! preserves $\left(\mathbf{U}_{P} \times \mathbf{U}_{P}^{-}\right)$-equivariant objects. Using the basechange isomorphism, it suffices to show that the !-pushforward functor

$$
\mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{P}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(\widetilde{\operatorname{Bun}}_{P}\right)
$$

preserves \mathbf{U}_{P}-equivariant object. However, this is well-known and was proved in B.1.3

Lemma 2.2.5. The functor

$$
\bar{\Delta}_{P,!}^{\text {enh }, l}: \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G}\right)
$$

sends objects in $\mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right)^{\mathbf{U}_{P}}$ to objects in $\mathbf{I}(G \times G, P \times G)$.
Proof. Lemma 2.2.4 formally implies $\mathrm{D}_{\text {indhol }}\left(\overline{\mathrm{Bun}}_{G, P}\right)^{\mathbf{U}_{P}}$ is generated under colimits and extensions by the image of the !-pushforward functor

$$
\mathrm{D}_{\text {indhol }}\left(\mathrm{dfstr}^{\left.\overline{\operatorname{Bun}}_{G, P}\right)}\right)^{\mathrm{U}_{P}} \rightarrow \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right)^{\mathbf{U}_{P}} .
$$

Hence it suffices to show the !-pushforward along
sends $\mathbf{U}_{P \text {-equivariant objects into }} \mathbf{I}(G \times G, P \times G)$. Unwinding the definitions, this map is isomorphic to

$$
\operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times}\left(H_{M, G-\operatorname{pos}} / Z_{M}\right) \underset{\operatorname{Bun}_{M}}{\times} \operatorname{Bun}_{P^{-}} \xrightarrow{a} \operatorname{Bun}_{P} \times \operatorname{Bun}_{G} \xrightarrow{b} \operatorname{Bun}_{G}^{P-\operatorname{gen}^{\prime}} \times \operatorname{Bun}_{G}
$$

By the base-change isomorphism, $a_{!}$preserves \mathbf{U}_{P}-equivariant objects. Then we are done because $b_{!}$sends \mathbf{U}_{P}-equivariant objects into $\mathbf{I}(G \times G, P \times G)$ by Proposition 0.2 .10 (1).
2.2.6. Finish the proof. Recall

$$
\mathcal{F}_{P} \simeq \overline{\boldsymbol{\Delta}}_{P,!}^{\mathrm{enh}, l} \circ i_{P}^{!} \circ \mathbf{K}(P)
$$

By definition, we have

$$
i_{P}^{!} \circ \mathbf{K}(P) \simeq i_{P}^{*} \circ j_{G, *} \circ r_{!}\left(k_{\operatorname{Bun}_{G}}\right)[\operatorname{rank}(M)-\operatorname{rank}(G)] .
$$

By Lemma 2.2.3, this is a \mathbf{U}_{P}-equivariant object. Then we are done by Lemma 2.2.5.

2.3. Proof of Proposition-Construction 1.1.4.

Goal 2.3.1. Construct a canonical natural transformation $\bar{\Delta}_{!} \circ \mathbf{K} \rightarrow \mathbf{E} \circ \mathbf{D L}$ whose value at $P \in \operatorname{Par}$ is equivalent to the morphism (1.8).

Proposition 0.2.10 provides a functor

$$
\mathbf{I}(G,-): \operatorname{Par} \rightarrow \text { DGCat }_{\text {cont }}
$$

that sends an arrow $P \rightarrow Q$ to the functor $\operatorname{Eis}_{P \rightarrow Q}^{\mathrm{enh}}$. Hence we also have a functor

$$
\begin{equation*}
\mathbf{I}(G \times G,-\times G): \operatorname{Par} \rightarrow \text { DGCat }_{\text {cont }} \tag{2.5}
\end{equation*}
$$

that sends an arrow $P \rightarrow Q$ to the functor Eis $_{P \times G \rightarrow Q \times G}^{\mathrm{enh}}$.
Lemma 2.3.2. The functor (2.5) is canonically isomorphic to the functor

$$
\text { Par } \rightarrow \mathrm{DGCat}_{\text {cont }}, P \mapsto \mathbf{I}(G, P) \underset{k}{\otimes} \mathrm{D}\left(\operatorname{Bun}_{G}\right) .
$$

Proof. By the proof of [DG13, Corollary 2.3.4], the functor $\mathrm{D}(Y) \otimes_{k} \mathrm{D}\left(\mathrm{Bun}_{G}\right) \rightarrow$ $\mathrm{D}\left(Y \times \operatorname{Bun}_{G}\right)$ is an equivalence for any lft prestack Y. Then the lemma follows from definitions.

Let $\widetilde{\mathbf{I}} \rightarrow$ Par be the presentable fibration ${ }^{32}$ classifying the functor (2.5). Note that Par has a final object G, and the fiber of $\widetilde{\mathbf{I}}$ at this object is $\widetilde{\mathbf{I}}_{G}:=\mathrm{D}\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right)$. Consider the trivial fibration $\widetilde{\mathbf{I}}_{G} \times \operatorname{Par} \rightarrow$ Par. It follows formally that we have an adjoint pair

$$
\text { Eis }^{\text {enh }}: \widetilde{\mathbf{I}} \rightleftarrows \widetilde{\mathbf{I}}_{G} \times{\text { Par }: \mathrm{CT}^{\mathrm{enh}}, ~}_{\text {en }}
$$

where Eis ${ }^{\text {enh }}$ (resp. CT ${ }^{\text {enh }}$) preserves co-Cartesian (resp. Cartesian) arrows and its fiber at $P \in \operatorname{Par}$ is $\mathrm{Eis}_{P \times G \rightarrow G \times G}^{\mathrm{enh}}$ (resp. $\mathrm{CT}_{G \times G \leftarrow P \times G}^{\mathrm{enh}}$). Using Lemma 2.3.2, the functor $\mathbf{E} \circ \mathbf{D L}$ is isomorphic to

$$
\operatorname{Par} \xrightarrow{\left(\Delta_{!}\left(k_{\mathrm{Bun}_{G}}\right),-\right)} \widetilde{\mathbf{I}}_{G} \times \operatorname{Par} \xrightarrow{\mathrm{CT}^{\mathrm{enh}}} \widetilde{\mathbf{I}} \xrightarrow{\mathrm{Eis}^{\mathrm{enh}}} \widetilde{\mathbf{I}}_{G} \times \operatorname{Par} \xrightarrow{\mathrm{pr}} \widetilde{\mathbf{I}}_{G} .
$$

Denote the composition of the first two functors by $\mathbf{S}_{\mathrm{CT}}: \operatorname{Par} \rightarrow \widetilde{\mathbf{I}}$. Note that it is the unique Cartesian section whose value at $G \in \operatorname{Par}$ is $\Delta_{!}\left(k_{\text {Bun }_{G}}\right) \in \widetilde{\mathbf{I}}_{G}$.

We also have a functor

$$
\operatorname{Par}^{\mathrm{op}} \rightarrow \mathrm{DGCat}_{\text {cont }}, P \mapsto \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\operatorname{gen}} \times \operatorname{Bun}_{G}\right)
$$

that sends an arrow to the corresponding !-pullback functor. Let $\mathcal{D}_{\text {gen }} \rightarrow$ Par be the corresponding Cartesian fibration. By Proposition 0.2.10(1), we have a fully faithful functor $\widetilde{\mathbf{I}} \rightarrow \mathcal{D}_{\text {gen }}$ that preserves co-Cartesian arrows (although $\mathcal{D}_{\text {gen }}$ is not a co-Cartesian fibration).

On the other hand, consider the functor

$$
\text { Par } \rightarrow \mathrm{DGCat}_{\mathrm{cont}}, P \mapsto \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, \leq P}\right)
$$

that sends an arrow to the corresponding !-extension functor. Let $\overline{\mathcal{D}} \rightarrow$ Par be the presentable fibration classifying this functor. We have a fully faithful functor

$$
\overline{\mathcal{D}} \rightarrow \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G}\right) \times \operatorname{Par}
$$

whose fiber at $P \in \mathrm{Par}$ is the corresponding !-extension functor. The graph of the functor \mathbf{K} :

$$
\operatorname{Par} \rightarrow \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G}\right) \times \operatorname{Par}, P \mapsto(\mathbf{K}(P), P)
$$

[^19]is contained in the above full subcategory $\overline{\mathcal{D}}$. Hence we obtain a section $\mathbf{S}_{\mathbf{K}}: \operatorname{Par} \rightarrow$ $\overline{\mathcal{D}}$ to the projection $\overline{\mathcal{D}} \rightarrow$ Par.

By Proposition-Construction 1.1.2, we also have functorial maps

$$
\bar{\Delta}_{\leq P}^{\mathrm{enh}, l}: \overline{\operatorname{Bun}}_{G, \leq P} \rightarrow \operatorname{Bun}_{G}^{P-\mathrm{gen}} \times \operatorname{Bun}_{G}
$$

Hence there is a functor

$$
\overline{\mathcal{D}} \rightarrow \mathcal{D}_{\text {gen }}
$$

that preserves co-Cartesian arrows such that its fiber at $P \in \operatorname{Par}$ is the composition

$$
\mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, \leq P}\right) \xrightarrow{{\overline{\Delta_{\leq P, l}^{\mathrm{enh}, l}}}^{\mathrm{D}_{\text {indhol }}}\left(\operatorname{Bun}_{G}^{P \text {-gen }} \times \operatorname{Bun}_{G}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G}\right)}
$$

By construction, the composition

$$
\operatorname{Par} \xrightarrow{\mathbf{s}_{\mathrm{K}}} \overline{\mathcal{D}} \rightarrow \mathcal{D}_{\mathrm{gen}}
$$

sends P to \mathcal{F}_{P}, viewed as an object in $\mathcal{D}_{\text {gen }}$ over $P \in$ Par. Hence by Proposition 1.1.1, this functor factors through the full subcategory $\widetilde{\mathbf{I}} \subset \mathcal{D}_{\text {gen }}$. Let $\mathbf{S}_{\mathbf{K}}^{\prime}: \operatorname{Par} \rightarrow \widetilde{\mathbf{I}}$ be the corresponding functor. By construction, $\bar{\Delta}_{!} \circ \mathbf{K}$ is isomorphic to the composition

$$
\operatorname{Par} \xrightarrow{\mathbf{S}_{\mathbf{K}}^{\prime}} \widetilde{\mathbf{I}} \xrightarrow{\text { Eis }{ }^{\mathrm{enh}}} \widetilde{\mathbf{I}}_{G} \times \operatorname{Par} \xrightarrow{\mathrm{pr}} \widetilde{\mathbf{I}}_{G}
$$

In summary, we have obtained two sections \mathbf{S}_{CT} and $\mathbf{S}_{\mathbf{K}}^{\prime}$ to the Cartesian fibration $\widetilde{\mathbf{I}} \rightarrow$ Par such that $\bar{\Delta}_{!} \circ \mathbf{K}$ and $\mathbf{E} \circ \mathbf{D L}$ are obtained respectively by composing them with

$$
\widetilde{\mathbf{I}} \xrightarrow{\mathrm{Eis}^{\mathrm{enh}}} \widetilde{\mathbf{I}}_{G} \times \operatorname{Par} \xrightarrow{\mathrm{pr}} \widetilde{\mathbf{I}}_{G}
$$

Now the identification $\mathcal{F}_{G}^{\prime}=\mathcal{F}_{G} \simeq \Delta_{!}\left(k_{\text {Bun }_{G}}\right)$ provides an isomorphism $\mathbf{S}_{\mathbf{K}}^{\prime}(G) \simeq$ $\mathbf{S}_{\mathrm{CT}}(G)$. Since $G \in$ Par is the final object and since \mathbf{S}_{CT} is a Cartesian section, we obtain a natural transformation $\mathbf{S}_{\mathbf{K}}^{\prime} \rightarrow \mathbf{S}_{\mathrm{CT}}$ whose value at $P \in$ Par is the unique arrow $\mathbf{S}_{\mathbf{K}}^{\prime}(P) \rightarrow \mathbf{S}_{\mathrm{CT}}(P)$ fitting into the following commutative diagram

By construction, when viewed as a morphism in $\widetilde{\mathbf{I}}_{P} \simeq \mathbf{I}(G \times G, P \times G)$, the arrow $\mathbf{S}_{\mathbf{K}}^{\prime}(P) \rightarrow \mathbf{S}_{\mathrm{CT}}(P)$ is equivalent to (1.6). Now the desired natural transformation $\bar{\Delta}_{!} \circ \mathbf{K} \rightarrow \mathbf{E} \circ \mathbf{D L}$ is given by composing the above natural transformation $\mathbf{S}_{\mathbf{K}}^{\prime} \rightarrow \mathbf{S}_{\mathrm{CT}}$ with the functor

$$
\widetilde{\mathbf{I}} \xrightarrow{\mathrm{Eis}^{\mathrm{enh}}} \widetilde{\mathbf{I}}_{G} \times \operatorname{Par} \xrightarrow{\mathrm{pr}} \widetilde{\mathbf{I}}_{G}
$$

3. Step 2

The goal of this section is to prove Theorem 1.3.1. We first show the functors in the statement is well-defined in $\$ 3.1$. Then in $\$ 3.2$ we review a general framework of Drinfeld in Dri13 for proving adjointness. Finally, we verify Theorem 1.3.1fits into the Drinfeld's framework in $\$ 3.3$.
Remark 3.0.1. Drinfeld's framework is highly abstract and uses $(\infty, 2)$-categories. The readers might wonder why we use it rather than mimicking the second proof in DG16] or just applying the Braden's theorem. In this remark, we justify our choice.

First, Theorem 1.3.1 as well as the main theorem of DG16 is not a corollary of the Braden's theorem because Bun_{P} is not the attractor locus of any \mathbb{G}_{m}-action on $\operatorname{Bun}_{G}^{P \text {-gen }}\left(\right.$ resp. $\left.\operatorname{Bun}_{G}\right)$. The action on Bun_{G} induced by the \mathbb{G}_{m}-action on G (whose attractor is P) is in fact trivial because the \mathbb{G}_{m}-action on G is an innerautomorphism.

Then we explain why we do not mimic the second proof in DG16. In that proof, the authors use smooth descents to reduce to a problem about certain smooth atlases of $\operatorname{Bun}_{G}, \operatorname{Bun}_{P^{ \pm}}, \operatorname{Bun}_{M}$ where Braden's theorem can be applied. The problem for this method is $\operatorname{Bun}_{G}^{P-\text { gen }}$ is not an algebraic stack and it does not have a smooth cover by schemes.

Let us also comment on the first proof in DG16. As explained in Dri13, this proof, as well as Braden's proof of his theorem, in essence is an example of Drinfeld's framework. The general abstract framework has the advantage that one does not need to do the tedious and unmotivated step of verifying the adjunctions (like in [DG16. Section 3]).

3.1. Well-definedness.

Lemma 3.1.1. We have:
(1) The correspondences

$$
\begin{aligned}
& \alpha_{P, \lambda}^{+, \text {gen }}:\left(\operatorname{Bun}_{M, \lambda} \leftarrow \operatorname{Bun}_{P, \lambda} \rightarrow \operatorname{Bun}_{G}^{P-\text { gen }}\right), \\
& \alpha_{P, \lambda}^{-, \text {gen }}:\left(\operatorname{Bun}_{G}^{P-\text { gen }} \leftarrow \operatorname{Bun}_{P^{-}, \lambda}^{M-\text { gen }} \rightarrow \operatorname{Bun}_{M, \lambda}\right)
\end{aligned}
$$

are morphisms in $\operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\mathrm{QCAD}, \mathrm{all}}^{\mathrm{open}, 2-\mathrm{op}}$. In fact, the first leftward map is safe and the second leftward map is quasi-compact and schematic. In particular, the functors in the statement of Theorem 1.3 .1 are well-defined.
(2) There is a 2 -morphism $\alpha_{P, \lambda}^{+, \text {gen }} \circ \alpha_{P, \lambda}^{-, \text {gen }} \rightarrow \operatorname{Id}_{\mathrm{Bun}_{M, \lambda}}$ given by the map

$$
\operatorname{Bun}_{M, \lambda} \rightarrow \operatorname{Bun}_{P, \lambda} \underset{\operatorname{Bun}_{G}^{P-\operatorname{sen}}}{\times} \operatorname{Bun}_{P^{-}, \lambda}^{M-\operatorname{gen}} .
$$

In other words, this map is a schematic open embedding 33
The map $\operatorname{Bun}_{P, \lambda} \rightarrow \operatorname{Bun}_{M, \lambda}$ is safe by [DG16, Footnote 2]. To prove the claim for the map $\operatorname{Bun}_{G}^{P \text {-gen }} \leftarrow \operatorname{Bun}_{P-, \lambda}^{M \text {-gen }}$, consider the following commutative diagram

We claim it induces a schematic open embedding

$$
\operatorname{Bun}_{P^{-}}^{M \text {-gen }} \rightarrow \operatorname{Bun}_{G}^{P-\text { gen }} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{Bun}_{P^{-}} .
$$

Indeed, the RHS is isomorphic to $\operatorname{Maps}_{\text {gen }}\left(X, \mathbb{B} P^{-} \leftarrow \mathbb{B} P \times_{\mathbb{B} G} \mathbb{B} P^{-}\right)$and the above map is isomorphic to the map

$$
\operatorname{Maps}_{\text {gen }}\left(X, \mathbb{B} P^{-} \leftarrow \mathbb{B} M\right) \rightarrow \operatorname{Maps}_{\text {gen }}\left(X, \mathbb{B} P^{-} \leftarrow \mathbb{B} P \times \mathbb{B} \mathbb{B}^{-}\right)
$$

induced by the map $\mathbb{B} M \rightarrow \mathbb{B} P \times_{\mathbb{B} G} \mathbb{B} P^{-}$. Then the claim follows from the fact that $\mathbb{B} M \rightarrow \mathbb{B} P \times_{\mathbb{B} G} \mathbb{B} P^{-}$is a schematic open embedding.

[^20]Now (1) follows from the above claim and the well-known fact that $\operatorname{Bun}_{P^{-}, \lambda} \rightarrow$ Bun $_{G}$ is quasi-compact and schematic.

To prove (2), we only need to show

$$
\operatorname{Bun}_{M} \rightarrow \operatorname{Bun}_{P} \underset{\operatorname{Bun}_{G}^{P-\operatorname{gen}^{-}}}{\times} \operatorname{Bun}_{P^{-}}^{M-\text { gen }}
$$

is a schematic open embedding. As before, this follows from the fact that it is isomorphic to

$$
\operatorname{Maps}_{\mathrm{gen}}(X, \mathbb{B} M \leftarrow \mathbb{B} M) \rightarrow \operatorname{Maps}_{\mathrm{gen}}\left(X, \mathbb{B} P \underset{\mathbb{B} G}{\times} \mathbb{B} P^{-} \leftarrow \mathbb{B} M\right)
$$

and the fact that $\mathbb{B} M \rightarrow \mathbb{B} P \times_{\mathbb{B} G} \mathbb{B} P^{-}$is a schematic open embedding.
3.2. Recollections: Drinfeld's framework. In Dri13, Appendix C], Drinfeld set up a general framework to prove results like Theorem 1.3.1. We review this framework in this subsection. In fact, we slightly generalize it to the case of lft prestacks.
Definition 3.2.1. We equip the category $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$ with the Cartesian symmetric monoidal structure. Recall the notion of enriched categories. Following loc. cit., we define a category $\mathbf{P}_{\mathbb{A}^{1}}$ enriched in $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$ as follows:

- It has two objects: the "big" one b and the "small" one s.
- The mapping scheme $\operatorname{Hom}_{\mathbf{P}_{A^{1}}}(\mathbf{b}, \mathbf{b})$ is defined to be \mathbb{A}^{1}. The other three mapping schemes are defined to be pt, viewed as the zero point in \mathbb{A}^{1}. The composition laws are all induced by the semi-group structure on \mathbb{A}^{1}.
The unique morphism $\mathbf{s} \rightarrow \mathbf{b}$ is denoted by α^{+}and the unique morphism $\mathbf{b} \rightarrow \mathbf{s}$ is denoted by α^{-}.
Definition 3.2.2. Let $\operatorname{AlgStk}_{\text {QCAD }}$ be the (2,1)-category of QCAD algebraic stacks equipped with the Cartesian symmetric monoidal structure. We define a category ${ }^{34}$ Dri enriched in $\operatorname{AlgStk}_{\mathrm{QCAD}}$ by replacing \mathbb{A}^{1} in Definition 3.2.1 by the quotient stack $\mathbb{A}^{1} / \mathbb{G}_{m}$, and replacing the zero map pt $\rightarrow \mathbb{A}^{1}$ by the map $\mathbb{B} \mathbb{G}_{m} \rightarrow \mathbb{A}^{1} / \mathbb{G}_{m}$ obtained by taking quotients.

Note that there is an obvious functor $\mathbf{P}_{\mathbb{A}^{1}} \rightarrow$ Dri. We use the same symbols α^{+} and α^{-}to denote the corresponding morphisms in Dri.

Definition 3.2.3. Let \mathcal{O} be a monoidal ($\infty, 1$)-category, \mathcal{A} be a category enriched in \mathcal{O} and \mathcal{C} be a module $(\infty, 2)$-category of \mathcal{O}. As explained in [Dri13, § C.13.1], there is a notion of weakly \mathcal{O}-enriched (unital) right-lax functor ${ }^{35}$ from \mathcal{A} to \mathcal{C}. We will review its explicit meaning later in our particular examples. For now, let us give the formal definition.

We assume \mathcal{O} is small. Consider the ($\infty, 1$)-category Funct $\left(\mathcal{O}^{\text {op }},(\infty, 1)\right.$-Cat) equipped with the Day convolution monoidal structure (see [Lur12, §2.2.6]). Then \mathcal{C} has a Funct $\left(\mathcal{O}^{\text {op }},(\infty, 1)\right.$-Cat)-enriched structure such that for any $x, y \in \mathcal{C}$, the object

$$
\operatorname{Hom}_{\mathcal{C}}(x, y) \in \operatorname{Funct}\left(\mathcal{O}^{\mathrm{op}},(\infty, 1)-\mathrm{Cat}\right)
$$

is the functor $o \mapsto \operatorname{Maps}_{\mathcal{C}}(o \otimes x, y)$.
On the other hand, there is a right-lax monoidal structure on the Yoneda functor

$$
\mathcal{O} \rightarrow \operatorname{Funct}\left(\mathcal{O}^{\text {op }},(\infty, 1) \text {-Cat }\right) .
$$

[^21]Then a weakly \mathcal{O}-enriched functor (resp. right-lax functor) $F: \mathcal{A} \rightarrow \mathcal{C}$ is defined to be a functor (resp. right-lax functor) F that intertwines the enrichment via the above right-lax monoidal functor.
Notation 3.2.4. Consider the (3,2)-category $\operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\mathrm{QCAD}, \mathrm{all}}^{\mathrm{open}, 2 \text { op }}$. We equip it with the obvious $\mathrm{AlgStk}_{\mathrm{QCAD}}$-action.

A Drinfeld preinput is a weakly $\operatorname{AlgStk}_{\mathrm{QCAD}^{-}}$-enriched right-lax functor $F: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow$ Corr such that it is strict at the composition $\alpha^{+} \circ \alpha^{-}$, i.e., the 2-morphism $F\left(\alpha^{+}\right) \circ$ $F\left(\alpha^{-}\right) \rightarrow F\left(\alpha^{+} \circ \alpha^{-}\right)$is invertible.

A Drinfeld input is a weakly $\mathrm{AlgStk}_{\mathrm{QCAD}}$-enriched right-lax functor $F^{\sharp}:$ Dri \rightarrow Corr such that the composition $\mathbf{P}_{\mathbb{A}^{1}} \rightarrow \mathbf{D r i} \rightarrow$ Corr is a Drinfeld preinput.

Remark 3.2.5. Unwinding the definitions, a Drinfeld preinput provides

- Two lft prestacks $Z:=F(\mathbf{b})$ and $Z^{0}:=F(\mathbf{s})$;
- Two correspondences

$$
F\left(\alpha^{+}\right):\left(Z \stackrel{p^{+}}{\leftarrow} Z^{+} \xrightarrow{q^{+}} Z^{0}\right) \text { and } F\left(\alpha^{-}\right):\left(Z^{0} \stackrel{q^{-}}{\longleftrightarrow} Z^{-} \xrightarrow{p^{-}} Z\right)
$$

whose left arms are QCAD maps;

- An \mathbb{A}^{1}-family of correspondences:

given by $\operatorname{Hom}(\mathbf{b}, \mathbf{b}) \times F(\mathbf{b}) \rightarrow F(\mathbf{b}) ;$
- Isomorphisms

$$
Z^{+} \underset{Z^{0}}{\times} Z^{-} \simeq \underset{\mathbb{A}^{1}}{\widetilde{~}} 0 \text { and } Z \simeq \underset{\mathbb{A}^{1}}{\widetilde{~}} \underset{\sim}{x}
$$

defined over $Z \times Z$, given respectively by the invertible 2 -morphism $F\left(\alpha^{+}\right)$。 $F\left(\alpha^{-}\right) \rightarrow F\left(\alpha^{+} \circ \alpha^{-}\right)$and $\operatorname{Id}_{F(\mathbf{b})} \simeq F\left(\operatorname{Id}_{\mathbf{b}}\right)$

- An open embedding

$$
j: Z^{0} \rightarrow Z_{Z}^{-} \times Z^{+}
$$

defined over $Z^{0} \times Z^{0}$, given by the lax composition law for $\mathbf{s} \leftarrow \mathbf{b} \leftarrow \mathbf{s}$;

- Open embeddings

$$
Z^{+} \times \mathbb{A}^{1} \rightarrow \underset{Z}{\widetilde{Z}} Z^{+} \text {and } Z^{-} \times \mathbb{A}^{1} \rightarrow Z^{-} \times \underset{Z}{\widetilde{Z}},
$$

defined respectively over $Z \times Z^{0} \times \mathbb{A}^{1}$ and $Z^{0} \times Z \times \mathbb{A}^{1}$, given respectively by the lax composition laws for $\mathbf{b} \leftarrow \mathbf{b} \leftarrow \mathbf{s}$ and $\mathbf{s} \leftarrow \mathbf{b} \leftarrow \mathbf{b}$;

- An open embedding ${ }^{36}$

$$
\widetilde{Z} \underset{\mathbb{A}^{1}}{ } \times \mathbb{A}^{2} \rightarrow \widetilde{Z} \times \widetilde{Z}
$$

defined over $Z \times Z \times \mathbb{A}^{2}$, given by the lax composition law for $\mathbf{b} \leftarrow \mathbf{b} \leftarrow \mathbf{b}$.

- Some higher compatibilities.

Example 3.2.6. For any finite type scheme Z equipped with a \mathbb{G}_{m}-action, Dri13 constructed a Drinfeld preinput such that Z^{+}, Z^{-}and Z^{0} are respectively the attractor, repeller and fixed loci of Z. Also, \widetilde{Z} is the so-called Drinfeld-Gaitsgory

[^22]interpolation, which is an \mathbb{A}^{1}-degeneration from Z to $Z^{\text {att }} \times_{Z}$ fix $Z^{\text {rep }}$. Moreover, this construction is functorial in Z and compatible with Cartesian products.

When Z is affine, the corresponding right-lax functor $\mathbf{P}_{\mathbb{A}^{1}} \rightarrow$ Corr is strict. In particular, we obtain a functor $\mathbf{P}_{\mathbb{A}^{1}} \rightarrow$ Corr.

It was also shown in loc. cit. that there is a Drinfeld input with $F^{\sharp}(\mathbf{b})=Z / \mathbb{G}_{m}$ and $F^{\sharp}(\mathbf{s})=Z^{\text {fix }} / \mathbb{G}_{m}$.
3.2.7. Drinfeld's theorem on adjunctions. Let $F^{\sharp}: \operatorname{Dri} \rightarrow \operatorname{Corr}\left(\operatorname{PreStk}_{1 \mathrm{lft}}{ }_{\mathrm{QCAD}, \mathrm{all}}^{\text {open,2-op }}\right.$ be a Drinfeld input and F be the corresponding Drinfeld preinput. We use the notations in Remark 3.2.5. Consider the composition

$$
\mathbf{P}_{\mathbb{A}^{1}} \xrightarrow{F} \operatorname{Corr}\left(\text { PreStk }_{\mathrm{lft}}\right)_{\mathrm{QCAD}, \text { all }}^{\text {open,2-op }} \xrightarrow{\operatorname{Dmod}^{\boldsymbol{\Delta},!}} \mathbf{D G C a t}_{\text {cont }} .
$$

By construction, it sends α^{+}and α^{-}respectively to the functors

$$
\operatorname{Dmod}^{\mathbf{\Delta}}!\circ F\left(\alpha^{+}\right) \simeq p_{\mathbf{\Delta}}^{+} \circ q^{+,!}, \operatorname{Dmod} \boldsymbol{\Delta},!\circ F\left(\alpha^{-}\right) \simeq q_{\mathbf{\Delta}}^{-} \circ p^{-,!} .
$$

The 2-morphism: $F\left(\alpha^{-}\right) \circ F\left(\alpha^{+}\right) \rightarrow F\left(\alpha^{-} \circ \alpha^{+}\right)=F\left(\mathrm{Id}_{\mathbf{s}}\right)$ gives a natural transformation ${ }^{37}$

$$
\begin{equation*}
q_{\mathbf{\Delta}}^{-} \circ p^{-,!} \circ p_{\mathbf{\Delta}}^{+} \circ q^{+,!} \rightarrow \mathbf{I d}_{\mathrm{D}\left(Z^{0}\right)} \tag{3.1}
\end{equation*}
$$

The following result was proved in [Dri13, Appendix C].
Theorem 3.2.8 (Drinfeld). In the above setting, there is an adjoint pair

$$
q_{\mathbf{\Delta}}^{-} \circ p^{-,!}: \mathrm{D}(Z) \rightleftarrows \mathrm{D}\left(Z^{0}\right): p_{\mathbf{\Delta}}^{+} \circ q^{+,!}
$$

with the counit adjunction natural transformation given by (3.1).
Remark 3.2.9. The unit adjunction is given by a specialization construction along $\widetilde{Z} \rightarrow \mathbb{A}^{1}$. We do not need it in this paper.
Remark 3.2.10. More precisely, loc. cit. focused on the problem of reproving the Braden's theorem (see [Bra03]) using the Drinfeld input in Example 3.2.6. However, the proof there works for any Drinfeld input.
3.3. Proof of Theorem 1.3.1, Throughout this subsection, we fix a cocharacter $\gamma: \mathbb{G}_{m} \rightarrow Z_{M}$ dominant and regular with respect to P. Note that the homomorphism $\mathbb{G}_{m} \rightarrow Z_{M} \rightarrow Z_{M} / Z_{G}$ can be uniquely extended to a homomorphism between semi-groups $\bar{\gamma}: \mathbb{A}^{1} \rightarrow T_{\text {ad }, \geq C_{P}}^{+}$. Via γ, the adjoint action $T_{\text {ad }} \curvearrowright G$ induces an action $\mathbb{G}_{m} \curvearrowright G$.

We first deduce the theorem from the following result:
Proposition-Construction 3.3.1. There exists a canonical Drinfeld input

$$
F^{\sharp}: \operatorname{Dri} \rightarrow \operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\mathrm{QCAD}, \mathrm{all}}^{\text {open,2-op }}
$$

such tha ${ }^{38}$ it sends α^{+}and α^{-}respectively to

$$
\begin{aligned}
& \operatorname{Bun}_{G}^{P^{-}-\text {gen }} / \mathbb{G}_{m} \leftarrow \operatorname{Bun}_{P, \lambda}^{M-\text { gen }} / \mathbb{G}_{m} \rightarrow \operatorname{Bun}_{M, \lambda} / \mathbb{G}_{m} \\
& \operatorname{Bun}_{M, \lambda} / \mathbb{G}_{m} \leftarrow \operatorname{Bun}_{P^{-}, \lambda} / \mathbb{G}_{m} \rightarrow \operatorname{Bun}_{G}^{P^{-}-\text {gen }} / \mathbb{G}_{m}
\end{aligned}
$$

[^23]3.3.2. Deduction of Theorem 1.3.1. We will use the mirror version of PropositionConstruction 3.3.1 by exchanging P and P^{-}. Using Theorem 3.2.8 we obtain the version of Theorem 1.3.1 after replacing the relevant stacks by their \mathbb{G}_{m}-quotients. The same proof of [DG14, Theorem 3.4.3] implies the following adjoint pair
$$
\operatorname{Dmod}^{\mathbf{\Delta},!}\left(\alpha_{P, \lambda}^{+, \operatorname{gen}}\right): \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\operatorname{gen}}\right)^{\mathbb{G}_{m}-\operatorname{mon}} \rightleftarrows \mathrm{D}\left(\operatorname{Bun}_{M}\right): \operatorname{Dmod}^{\mathbf{\Delta},!}\left(\alpha_{P, \lambda}^{-, \text {gen }}\right),
$$
where
$$
\mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }}\right)^{\mathbb{G}_{m}-\text { mon }} \subset \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }}\right)
$$
is the full subcategory generated by the essential image of the !-pullback functor
$$
\mathrm{D}\left(\operatorname{Bun}_{G}^{P-\mathrm{gen}} / \mathbb{G}_{m}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\mathrm{gen}}\right) .
$$

Then we are done because the \mathbb{G}_{m}-action on $\operatorname{Bun}_{G}^{P \text {-gen }}$ can be trivialized.
It remains to construct the Drinfeld input in Proposition-Construction 3.3.1,
Notation 3.3.3. Let $\mathrm{Grp}_{\mathrm{ft}}^{\mathrm{aff}}$ be the category of group schemes $H \rightarrow S$ with H and S being finite type affine schemes. Consider its arrow category $\operatorname{Arr}\left(\mathrm{Grp}_{\mathrm{ft}}^{\text {aff }}\right)$. We equip the category

$$
\operatorname{Corr}\left(\operatorname{Arr}\left(\operatorname{Grp}_{\mathrm{ft}}^{\mathrm{aff}}\right)\right)_{\text {all,all }}
$$

with the obvious $\mathrm{Sch}_{\mathrm{ft}}^{\mathrm{aff}}$-action.
Construction 3.3.4. Via the cocharacter γ, the adjoint actions $Z_{M} \frown G$ and $Z_{M} \frown$ P induce actions $\mathbb{G}_{m} \curvearrowright G$ and $\mathbb{G}_{m} \curvearrowright P$. The corresponding attractor, repeller and fixed loci are:
$G^{\text {att }, \gamma}=P, G^{\mathrm{rep}, \gamma}=P^{-}, G^{\mathrm{fix}, \gamma}=M,\left(P^{-}\right)^{\mathrm{att}, \gamma}=M,\left(P^{-}\right)^{\mathrm{rep}, \gamma}=P^{-},\left(P^{-}\right)^{\mathrm{fix}, \gamma}=M$.
Using Example 3.2.6, we obtain a weakly $\mathrm{Sch}_{\mathrm{ft}}^{\mathrm{aff}}$-enriched functor

$$
\Theta_{P^{-\rightarrow G}}: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\operatorname{Arr}\left(\operatorname{Grp}_{\mathrm{ft}}^{\mathrm{aff}}\right)\right)_{\text {all,all }}
$$

sending α^{+}and α^{-}respectively to

$$
\left(P^{-} \rightarrow G\right) \leftarrow(M \rightarrow P) \rightarrow(M \rightarrow M),(M \rightarrow M) \leftarrow\left(P^{-} \rightarrow P^{-}\right) \rightarrow\left(P^{-} \rightarrow G\right) .
$$

Remark 3.3.5. By construction, $\operatorname{Hom}(\mathbf{b}, \mathbf{b}) \times \Theta_{P^{-} \rightarrow G}(\mathbf{b}) \rightarrow \Theta_{P^{-} \rightarrow G}(\mathbf{b})$ corresponds to the following diagram

where \widetilde{G}^{γ} (resp. ${\widetilde{P^{-}}}^{\gamma}$) is the Drinfeld-Gaitsgory interpolation for the action $\mathbb{G}_{m} \frown G$ (resp. $\mathbb{G}_{m} \frown P$). Note that we have

$$
\widetilde{G}^{\gamma} \simeq \widetilde{G} \underset{T_{\text {ad }}^{+}, \bar{\gamma}}{\times} \mathbb{A}^{1},{\widetilde{P^{-}}}^{\gamma} \simeq P_{G}^{-} \times \widetilde{G}^{\gamma} .
$$

Construction 3.3.6. Consider the functor

$$
\mathbb{B}: \operatorname{Grp}_{\mathrm{ft}}^{\mathrm{aff}} \rightarrow \operatorname{AlgStk}_{\mathrm{lft}},(H \rightarrow S) \mapsto \mathbb{B} H,
$$

where $\mathbb{B} H:=S / H$ is the quotient stack. Similarly we have a functor $\operatorname{Arr}\left(\operatorname{Grp}_{\mathrm{ft}}^{\text {aff }}\right) \rightarrow$ $\operatorname{Arr}\left(\mathrm{AlgStk}_{\mathrm{lft}}\right)$. This functor does not commute with fiber products, hence we only have a right-lax functor

$$
\operatorname{Corr}\left(\operatorname{Arr}\left(\operatorname{Grp}_{\mathrm{ft}}^{\text {aff }}\right)\right)_{\text {all,all }} \rightarrow \operatorname{Corr}\left(\operatorname{Arr}\left(\operatorname{AlgStk}_{\mathrm{lft}}\right)\right)_{\text {all,all }}^{\text {all } 2 \text { op }}
$$

This right-lax functor has an $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$-linear structure. Hence by composing with $\Theta_{P^{-} \rightarrow G}$, we obtain a weakly $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$-enriched right-lax functor

$$
\Theta_{\mathbb{B} P^{-\rightarrow} \rightarrow \mathbb{B} G}: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\operatorname{Arr}\left(\operatorname{AlgStk}_{\mathrm{lft}}\right)\right)_{\mathrm{all}, \text { all }}^{\text {all }}
$$

Definition 3.3.7. A morphism $\left(Y_{1} \rightarrow Y_{2}\right) \rightarrow\left(Y_{1}^{\prime} \rightarrow Y_{2}^{\prime}\right)$ in $\operatorname{Arr}\left(\operatorname{AlgStk}_{\mathrm{fft}}\right)$ is called an open embedding if both $Y_{1} \rightarrow Y_{1}^{\prime}$ and $Y_{2} \rightarrow Y_{2}^{\prime}$ are schematic open embeddings.
Lemma 3.3.8. The right-lax functor $\Theta_{\mathbb{B} P^{--} \rightarrow \mathbb{B} G}$ factors through $\operatorname{Corr}\left(\operatorname{Arr}\left(\operatorname{AlgStk}_{1 \mathrm{ft}}\right)\right)_{\mathrm{all}, \mathrm{all}}^{\mathrm{open}, 2-\mathrm{op}}$ and is strict at the composition $\alpha^{+} \circ \alpha^{-}$.
Proof. Consider the two forgetful functors $\operatorname{Arr}\left(\operatorname{AlgStk}_{\mathrm{ftt}}\right) \rightarrow \operatorname{AlgStk}_{\mathrm{lft}},\left(Y_{1} \rightarrow Y_{2}\right) \mapsto$ Y_{i}. We only need to prove the similar claims after applying these forgetful functors. Those claims for the first forgetful functor are obvious (because $\widetilde{P^{-}}{ }^{\gamma} \simeq P^{-} \times \mathbb{A}^{1}$). It remains to prove those for the second forgetful functor.

To prove the claim on strictness, we only need to check $\mathbb{B}\left(P \times_{M} P^{-}\right) \rightarrow$ $\mathbb{B} P \times_{\mathbb{B} M} \mathbb{B} P^{-}$is an isomorphism. The target is just $P \backslash M / P^{-}$. Hence this isomorphism follows from the fact $M \simeq\left(P \times P^{-}\right) /\left(P \times_{M} P^{-}\right)$.

To prove the claim on openness, we only need to check that the following four maps are schematic open embeddings:

$$
\begin{gathered}
\mathbb{B}\left(P^{-} \times \widetilde{G}^{\gamma}\right) \rightarrow \mathbb{B} P^{-} \times \mathbb{B} \widetilde{G}^{\gamma}, \mathbb{B}\left(\widetilde{G}^{\gamma} \times P\right) \rightarrow \mathbb{B}\left(\widetilde{G}^{\gamma} \times \mathbb{B} P,\right. \\
\mathbb{B}\left(\widetilde{G}^{\gamma} \underset{G}{\times} \widetilde{G}^{\gamma}\right) \rightarrow \mathbb{B} \widetilde{G}^{\gamma} \underset{\mathbb{B} G}{\times} \mathbb{B} \widetilde{G}^{\gamma} \mathbb{B}\left(P^{-} \times \underset{G}{\times} P\right) \rightarrow \mathbb{B} P^{-} \times \mathbb{B} G P .
\end{gathered}
$$

We first prove the claim for the last one. The target is just $P^{-} \backslash G / P$, it contains $P^{-} \backslash P^{-} P / P$ as an open substack, which is isomorphic to $\mathbb{B}\left(P^{-} \times_{G} P\right)$ because $P^{-} \times P$ acts transitively on $P^{-} P$ and the stabilizer group at the unit element is $P^{-} \times_{G} P$. The claims for the first two maps follow from Corollary D.1.9. The proof for the third one is similar. Namely, consider the action

$$
(G \times G \times G) \frown{ }_{0} \operatorname{Vin}_{G}^{\gamma} \times{ }_{0} \operatorname{Vin}_{G}^{\gamma},\left(g_{1}, g_{2}, g_{3}\right) \cdot\left(x_{1}, x_{2}\right) \mapsto\left(g_{1} x_{1} g_{2}^{-1}, g_{2} x_{2} g_{3}^{-1}\right) .
$$

Its stabilizer for the canonical section is the group scheme $\widetilde{G}^{\gamma} \times_{G} \widetilde{G}^{\gamma}$. We only need to prove the similar version of Lemma D.1.8, i.e., to show

$$
\left(G \times G \times G \times \mathbb{A}^{2}\right) /\left(\widetilde{G}^{\gamma} \underset{G}{\times} \widetilde{G}^{\gamma}\right) \rightarrow{ }_{0} \operatorname{Vin}_{G}^{\gamma} \times{ }_{0} \operatorname{Vin}_{G}^{\gamma}
$$

is an open embedding. As before, we only need to show the LHS is smooth. Now the functor $\Theta_{P^{-\rightarrow G}}$ provides an isomorphism $\widetilde{G}^{\gamma} \times_{G} \widetilde{G}^{\gamma} \simeq \widetilde{G}^{\gamma} \times_{\mathbb{A}^{1}} \mathbb{A}^{2}$ covering the map

$$
\operatorname{pr}_{13} \times \operatorname{Id}_{\mathbb{A}^{2}}:(G \times G \times G) \times \mathbb{A}^{2} \rightarrow(G \times G) \times \mathbb{A}^{2} .
$$

Hence we have a map

$$
\left(G \times G \times G \times \mathbb{A}^{2}\right) /\left(\widetilde{G}_{G}^{\gamma} \times \widetilde{G}^{\gamma}\right) \rightarrow\left(G \times G \times \mathbb{A}^{2}\right) /\left(\widetilde{G}^{\gamma} \times \mathbb{A}^{1} \mathbb{A}^{2}\right) \simeq{ }_{0} \operatorname{Vin}_{G}^{\gamma} \times \mathbb{A}^{1} \mathbb{A}^{2} .
$$

Then we are done because it is a smooth map to a smooth scheme.
Construction 3.3.9. Consider the functor

$$
\operatorname{Maps}_{\mathrm{gen}}(X,-): \operatorname{Arr}\left(\operatorname{AlgStk}_{\mathrm{lft}}\right) \rightarrow \operatorname{PreStk}_{\mathrm{lft}},\left(Y_{1} \rightarrow Y_{2}\right) \mapsto \operatorname{Maps}_{\mathrm{gen}}\left(X, Y_{1} \leftarrow Y_{2}\right) .
$$

It is easy to see that it sends open embeddings to schematic open embeddings. Hence we obtain a functor

$$
\operatorname{Corr}\left(\operatorname{Arr}\left(\operatorname{AlgStk}_{1 \mathrm{ltt}}\right)\right)_{\mathrm{all}, \mathrm{all}}^{\mathrm{open}, 2-\mathrm{op}} \rightarrow \operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\mathrm{all}, \mathrm{all}}^{\text {open,2-op }}
$$

This functor has an $\mathrm{Sch}_{\mathrm{ft}}^{\mathrm{aff}}$-linear structure ${ }^{39}$ Hence by composing with $\Theta_{\mathbb{B} P^{-} \rightarrow \mathbb{B} G}$, we obtain a weakly $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$-enriched right-lax functor

$$
\Theta: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \mathbf{C o r r}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\text {all,all }}^{\text {open, } 2 \text {-op }}
$$

that is strict at the composition $\alpha^{+} \circ \alpha^{-}$.
Remark 3.3.10. Explicitly, we have:

- The right-lax functor Θ sends α^{+}and α^{-}respectively to

$$
\operatorname{Bun}_{G}^{P^{-}-\text {gen }} \leftarrow \operatorname{Bun}_{P}^{M \text {-gen }} \rightarrow \operatorname{Bun}_{M}, \operatorname{Bun}_{M} \leftarrow \operatorname{Bun}_{P^{-}} \rightarrow \operatorname{Bun}_{G}^{P^{-}-\text {gen }} .
$$

- The map $\operatorname{Hom}(\mathbf{b}, \mathbf{b}) \times \Theta(\mathbf{b}) \rightarrow \Theta(\mathbf{b})$ is provided by the \mathbb{A}^{1}-family of correspondences:

Construction 3.3.11. We write

$$
\begin{aligned}
\operatorname{VinBun}_{G}^{P^{-}-\operatorname{gen}, \gamma} & :=\operatorname{Maps}_{\text {gen }}\left(X, \mathbb{B} \widetilde{G}^{\gamma} \leftarrow \mathbb{B}{\widetilde{P^{-}}}^{\gamma}\right), \\
\operatorname{VinBun}_{G}^{\gamma} & :=\operatorname{Maps}\left(X, \mathbb{B} \widetilde{G}^{\gamma}\right) .
\end{aligned}
$$

There is a map

$$
\operatorname{VinBun}_{G}^{P^{--} \text {-gen }, \gamma} \rightarrow \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{VinBun}_{G}^{\gamma}
$$

induced by the map

$$
\mathbb{B}{\widetilde{P^{-}}}^{\gamma} \simeq \mathbb{B}\left(P^{-} \underset{G}{\times} \widetilde{G}^{\gamma}\right) \rightarrow \mathbb{B} P_{\mathbb{B} G}^{\times} \underset{\mathbb{B}}{\widetilde{G}^{\gamma}} .
$$

By Corollary D.1.9 these maps are schematic open embeddings.
Construction 3.3.12. Recall that $\operatorname{VinBun}_{G, C_{P}} \simeq \operatorname{Bun}_{P} \times_{\operatorname{Bun}_{M}} \operatorname{Bun}_{P^{-}}$. Hence there is a unique open substack $\operatorname{VinBun}_{G, \lambda}^{\gamma}$ of $\operatorname{VinBun}_{G}^{\gamma}$ obtained by removing all the connected components

$$
\operatorname{Bun}_{P, \mu} \underset{\operatorname{Bun}_{M, \mu}}{\times} \operatorname{Bun}_{P^{-}, \mu} \subset \operatorname{VinBun}_{G, C_{P}}
$$

with $\mu \neq \lambda$ from its 0 -fiber. Let $\operatorname{VinBun}{ }_{G, \lambda}^{P^{-}-\operatorname{gen}, \gamma}$ be the corresponding open subprestack. It is easy to see we can modify Θ to obtain

$$
\Theta_{\lambda}: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\text { PreStk }_{\mathrm{lft}} \text { all,all }_{\text {open } 2 \text { op }}\right.
$$

such that

- It sends α^{+}and α^{-}respectively to

$$
\operatorname{Bun}_{G}^{P^{-}-\text {gen }} \leftarrow \operatorname{Bun}_{P, \lambda}^{M-\text { gen }} \rightarrow \operatorname{Bun}_{M, \lambda}, \operatorname{Bun}_{M, \lambda} \leftarrow \operatorname{Bun}_{P^{-}, \lambda} \rightarrow \operatorname{Bun}_{G}^{P^{-}-\text {gen }} .
$$

- The map $\operatorname{Hom}(\mathbf{b}, \mathbf{b}) \times \Theta_{\lambda}(\mathbf{b}) \rightarrow \Theta_{\lambda}(\mathbf{b})$ is provided by the \mathbb{A}^{1}-family of correspondences:

[^24]- The other data are induced from Θ.

Lemma 3.3.13. The right-lax functor Θ_{λ} factors through $\operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\mathrm{QCAD}, \mathrm{all}}^{\text {open, } 2 \text {-op }}$.
Proof. We only need to check all the three left arms in the above three correspondences are QCAD. The claims for the first two arms are just (the mirror version of) Lemma 3.1.1(1). To prove the claim for the third arm, using the open embedding in Construction 3.3.11, we only need to show $\operatorname{Bun}_{G} \leftarrow \operatorname{VinBun}_{G, \lambda}^{\gamma}$ is QCAD. It is well-known that $\operatorname{VinBun}_{G}$ is locally QCAD. Hence we only need to show $\operatorname{VinBun}_{G, \lambda}^{\gamma} \rightarrow \operatorname{Bun}_{G}$ is quasi-compact. Then we are done because both the $\mathbb{G}_{m^{-}}$ locus and the 0 -fiber of $\operatorname{VinBun}_{G, \lambda}^{\gamma}$ are quasi-compact over Bun_{G}.

We are going to construct a Drinfeld input from Θ_{λ} by taking quotients for the torus actions. We first introduce some notations.
Notation 3.3.14. Let ActSch $\mathrm{fft}_{\text {aff }}^{\text {a }}$ be the category whose objects are $(H \frown Y)$, where H is an affine algebraic group and $Y \in \operatorname{Sch}_{\mathrm{ft}}^{\text {aff }}$. We equip ActSch $\mathrm{ft}_{\mathrm{ft}}^{\text {aff }}$ with the Cartesian symmetric monoidal structure. Note that the monoidal unit for it is (pt $\sim \mathrm{pt}$). Also note that there is a symmetric monoidal forgetful functor oblv ${ }_{\text {Act }}:$ ActSch $_{\mathrm{ft}}^{\mathrm{aff}} \rightarrow$ $\mathrm{Sch}_{\mathrm{ft}}^{\mathrm{aff}}$.

As in Definition 3.2.1 we define a category $\mathbf{P}_{\mathbb{G}_{m} \leadsto \mathbb{A}^{1}}$ enriched in ActSch $_{\mathrm{ft}}^{\text {aff }}$ such that

$$
\operatorname{Hom}_{\mathbf{P}_{\mathbb{G}_{m} \sim A^{1}}}(\mathbf{b}, \mathbf{b})=\left(\mathbb{G}_{m} \curvearrowright \mathbb{A}^{1}\right)
$$

and the other three mapping objects are ($\mathbb{G}_{m} \leadsto 0$). We use the same symbols α^{+} and α^{-}to denote the canonical morphisms.

Note that $\mathbf{P}_{\mathbb{A}^{1}}$ can be obtained from $\mathbf{P}_{\mathbb{G}_{m} \sim \mathbb{A}^{1}}$ by the procedure of changing of enrichment along oblv Act . In particular, there is a forgetful functor $\mathbf{P}_{G_{m} \sim \mathbb{A}^{1}} \rightarrow \mathbf{P}_{\mathbb{A}^{1}}$ that intertwines the enrichment via oblv ${ }_{\text {Act }}$.

Let ActPreStk ${ }_{\mathrm{lft}}$ be the similarly defined category. A morphism $\left(H \curvearrowright Y_{1}\right) \rightarrow$ ($H_{2} \leadsto Y_{2}$) is said to be an open embedding if $H_{1} \simeq H_{2}$ and $Y_{1} \rightarrow Y_{2}$ is a schematic open embedding. It is said to be QCAD if $Y_{1} \rightarrow Y_{2}$ is QCAD.

Construction 3.3.15 (c.f. Dri13, § C.13.4]). In Construction 3.3.12 of Θ_{λ}, we ignored the various \mathbb{G}_{m}-actions. If we keep tracking them, we can obtain a weakly ActSch ${ }_{\mathrm{ft}}^{\mathrm{aff}}$-enriched right-lax functor

$$
\Theta_{\lambda}^{\text {Act }}: \mathbf{P}_{\mathbb{G}_{m} \sim \mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\text { ActPreStk }_{\mathrm{lft}}\right)_{\mathrm{QCAD}, \mathrm{all}}^{\text {open,2-op }}
$$

such that

- It sends α^{+}and α^{-}respectively to

$$
\begin{aligned}
& \left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{G}^{P^{-}-\mathrm{gen}}\right) \leftarrow\left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{P, \lambda}^{M-\text {-gen }}\right) \rightarrow\left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{M, \lambda}\right), \\
& \left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{M, \lambda}\right) \leftarrow\left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{P^{-}, \lambda}\right) \rightarrow\left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{G}^{P^{-}-\mathrm{gen}}\right) .
\end{aligned}
$$

- The map $\operatorname{Hom}(\mathbf{b}, \mathbf{b}) \times \Theta_{\lambda}^{\text {Act }}(\mathbf{b}) \rightarrow \Theta_{\lambda}^{\text {Act }}(\mathbf{b})$ is provided by the diagram:

$$
\begin{gathered}
\left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{G}^{P^{-}-\mathrm{gen}}\right) \longleftarrow\left(\mathbb{G}_{m} \times \mathbb{G}_{m} \curvearrowright \operatorname{VinBun}_{G, \lambda}^{P^{-}-\mathrm{gen}, \gamma}\right) \longrightarrow\left(\mathbb{G}_{m} \curvearrowright \operatorname{Bun}_{G}^{P^{-}-\mathrm{gen}}\right), \\
\downarrow \\
\left(\mathbb{G}_{m} \curvearrowright \mathbb{A}^{1}\right)
\end{gathered}
$$

which is induced by the morphism

$$
\left(\mathbb{G}_{m} \times \mathbb{G}_{m} \curvearrowright \widetilde{Z}\right) \rightarrow\left(\mathbb{G}_{m} \curvearrowright Z\right) \times\left(\mathbb{G}_{m} \curvearrowright Z\right) \times\left(\mathbb{G}_{m} \curvearrowright \mathbb{A}^{1}\right)
$$

that exists for any Drinfeld-Gaitsgory interpolation \widetilde{Z} (see DG14, §2.2.3]).

- It is compatible with Θ_{λ} via the forgetful functors.

Then as in Dri13, Footnote 41], we obtain the desired Drinfeld input by passing to quotients and changing enrichment.

4. Step 3

We have two results to prove in this step: Proposition-Construction 1.4.1 and Lemma 1.4.2. Each subsection corresponds to a result.

The main idea of the proof of Proposition-Construction 1.4.1 is to find a suitable open substack of $P^{-} \backslash_{0} \operatorname{Vin}_{G, \geq C_{P}} / G$ whose fibers over $T_{\text {ad }}^{+}, \geq C_{P}$ are all isomorphic to $\mathbb{B} P^{-}$. This is achieved by studying the stabilizer group \widetilde{G} (reviewed in Appendix (D).

The proof of Lemma 1.4.2 is a tedious diagram-chasing.

4.1. Proof of Proposition-Construction 1.4.1.

Goal 4.1.1. Construct a certain open embedding

$$
\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}
$$

whose restriction to the G-stratum and P-stratum are canonically isomorphic to the maps

$$
\begin{aligned}
\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, G} \rightarrow \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, G}, \\
\operatorname{Bun}_{P-}^{M-\text { gen }} \underset{\underset{\operatorname{Bun}_{G}^{P-\text { gen }}}{\times}}{\times \overline{\operatorname{Bun}}_{G, P}} \rightarrow \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, P .} .
\end{aligned}
$$

By definition, we have

$$
\operatorname{Bun}_{P^{-}} \underset{\text { Bun }_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}} \simeq \operatorname{Maps}_{\operatorname{gen}}\left(X, P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}} / G \supset P^{-} \backslash_{0} \operatorname{Vin}_{G, \geq C_{P}} / G\right) .
$$

Note that

$$
P^{-} \backslash_{0} \operatorname{Vin}_{G, \geq C_{P}} / G \simeq \mathbb{B} P_{\mathbb{B} G}^{-} \times \mathbb{B} \widetilde{G}_{\geq C_{P}}
$$

where $\widetilde{G}_{\geq C_{P}}:=\widetilde{G} \times_{T_{\text {ad }}^{+}} T_{\text {ad }, \geq C_{P}}^{+}$. By Corollary D.1.9 the map

$$
\mathbb{B}\left(P^{-} \underset{G}{\times} \widetilde{G}_{\geq C_{P}}\right) \rightarrow \mathbb{B} P_{\mathbb{B} G}^{\times} \mathbb{B} \widetilde{G}_{\geq C_{P}} \simeq P^{-} \backslash_{0} \operatorname{Vin}_{G, \geq C_{P}} / G
$$

is a schematic open embedding. We define

$$
\left(\operatorname{Bun}_{P^{-}} \underset{\text { Bun }_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}}\right)^{\text {gen }}:=\operatorname{Maps}_{\operatorname{gen}}\left(X, P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}} / G \leftarrow \mathbb{B}\left(P_{G}^{-} \times \widetilde{G}_{\geq C_{P}}\right)\right) .
$$

Then we have a schematic open embedding

$$
\left(\operatorname{Bun}_{P-} \underset{\text { Bun }_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}} .
$$

As in the proof of Lemma 2.1.2, a direct calculation shows that the Z_{M}-action on ${ }_{0} \operatorname{Vin}_{G, \geq C_{P}}$ preserves the open substack

$$
\mathbb{B}\left(P^{-} \underset{G}{\times} \widetilde{G}_{\geq C_{P}}\right) \underset{\left(P-\backslash_{0} \operatorname{Vin}_{\left.G, \geq C_{P} / G\right)}\right.}{\times}{ }^{\circ} \operatorname{Vin}_{G, \geq C_{P}} .
$$

Hence it makes sense to define

$$
\left(\operatorname{Bun}_{P-} \underset{\text { Bun }_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }}:=\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}}\right)^{\operatorname{gen}} / Z_{M} .
$$

It is obvious that the restriction of

$$
\left(\operatorname{Bun}_{P-} \underset{\operatorname{Bun}_{G}}{\left.\times \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{P-} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}}\right.
$$

to the G-stratum is an isomorphism. It remains to identify its restriction to the P-stratum with the map

$$
\operatorname{Bun}_{P-}^{M-\operatorname{gen}} \underset{\substack{\times \\ \operatorname{Bun}_{G}^{P-\operatorname{gen}}} \overline{\operatorname{Bun}}_{G, P} \rightarrow \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, P} .}{ }
$$

Unwinding the definitions, we only need to identify the C_{P}-fiber of the open embedding

$$
\mathbb{B}\left(P_{G}^{-} \times \widetilde{G}_{\geq C_{P}}\right) \rightarrow \mathbb{B} P_{\mathbb{B} G}^{-} \times \mathbb{B} \widetilde{G}_{\geq C_{P}}
$$

with the C_{P}-fiber of the map

$$
\mathbb{B} M \underset{\mathbb{B} P}{\times} \mathbb{B} \widetilde{G}_{\leq P} \rightarrow \mathbb{B} P^{-} \underset{\mathbb{B} G}{\times} \mathbb{B} \widetilde{G}_{\leq P}
$$

However, this follows from $\widetilde{G}_{C_{P}} \simeq P \times_{M} P^{-}$.
4.2. Proof of Lemma 1.4.2, We will introduce many temporary notations in this subsection. When we use an English letter, like c, to denote a correspondence, or when we use a letter of plain font, like K, to denote a D-module, it means such notations are only used in this subsection.

Goal 4.2.1. The morphism γ_{P} and/or γ_{P}^{\prime} are equivalent to the morphism

$$
\operatorname{Dmod}_{\text {indhol }}^{!, *}(\beta) \circ \mathbf{K}(P) \rightarrow \operatorname{Dmod}_{\text {indhol }}^{!, *}(\beta) \circ \mathbf{K}(G)
$$

4.2.2. The arrow γ_{P}. We first give the following tautological description of

$$
\gamma_{P}: \mathrm{CT}_{P \times G, *}^{\mathrm{gen}}\left(\mathcal{F}_{P}\right) \rightarrow \mathrm{CT}_{P \times G, *}\left(\mathcal{F}_{G}\right)
$$

Recall the morphism (1.5):

$$
\text { Eis }_{P \times G \rightarrow G \times G}^{\mathrm{enh}}\left(\mathcal{F}_{P}^{\prime}\right) \rightarrow \mathcal{F}_{G}^{\prime}
$$

Its underlying morphism in $\mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right)$ is a map

$$
\vartheta_{P}: \mathfrak{p}_{P \times G,!}^{\mathrm{enh}}\left(\mathcal{F}_{P}\right) \rightarrow \mathcal{F}_{G},
$$

which by adjunction induces a morphism

$$
\theta_{P}: \mathcal{F}_{P} \rightarrow \mathfrak{p}_{P \times G}^{\mathrm{enh},!}\left(\mathcal{F}_{G}\right)
$$

Then we have

$$
\gamma_{P} \simeq \mathrm{CT}_{P \times G, *}^{\mathrm{gen}}\left(\theta_{P}\right)
$$

Note that we indeed have $\mathrm{CT}_{P \times G, *} \simeq \mathrm{CT}_{P \times G, *}^{\text {gen }} \mathfrak{p}_{P \times G}^{\mathrm{enh},!}$.
4.2.3. Second adjointness for left functors. Next, we give a more convenient description for the second adjointness, when restricted to ind-holonomic objects.

Let $\mathrm{CT}_{P, *}$ be the restriction of $\mathrm{CT}_{P, *}$ to the full subcategory of ind-holonomic objects. By construction, the natural transformation $\mathrm{CT}_{P, *} \simeq \mathrm{CT}_{P^{-},!}$is obtained as follows. We apply Dmod ${ }^{\mathbf{\Delta}}$! to the 2-morphism

$$
\alpha_{P, \lambda}^{+} \circ \alpha_{P, \lambda}^{-} \rightarrow \operatorname{Id}_{\operatorname{Bun}_{M, \lambda}}
$$

in $\operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{fft}}\right)_{\mathrm{QCAD}, \text { all }}^{\text {open, } 2 \text {-op }}$ and obtain a natural transformation

$$
\mathrm{CT}_{P, *, \lambda} \circ\left(\mathrm{CT}_{P^{-},!, \lambda}\right)^{R} \rightarrow \mathbf{I d}_{\mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{M}\right)}
$$

Then we obtain the natural transformation $\mathrm{CT}_{P, *, \lambda} \rightarrow \mathrm{CT}_{P^{-},!, \lambda}$ by adjunction. Equivalently, we have the left adjoint version of the above picture. Namely, we start from the 2-morphism 40

$$
\operatorname{Id}_{\text {Bun }_{M}} \rightarrow\left(\alpha_{P}^{-}\right)^{\mathrm{rev}} \circ\left(\alpha_{P}^{+}\right)^{\mathrm{rev}}
$$

in $\operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\text {all,Stacky }}^{\text {open }}$, and use $\mathrm{D}_{\text {indhol }}^{1, *}$ to obtain a natural transformation

$$
\mathbf{I d} \rightarrow \mathrm{CT}_{P^{-},!} \circ\left(\mathrm{CT}_{P, *}\right)^{L}
$$

Then we can obtain the same natural transformation $\mathrm{CT}_{P, *} \rightarrow \mathrm{CT}_{P^{-},!}$by adjunction.

The advantage is: if we use left functors, we can work with all the connected components simultaneously.

Similarly, the natural transformation of $\mathrm{CT}_{P \times G, *} \simeq \mathrm{CT}_{P^{-} \times G,!}$ can be obtained by the same procedure from the correspondences

$$
\begin{aligned}
& c^{+}:\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P} \times \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right), \\
& c^{-}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P^{-}} \times \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}\right),
\end{aligned}
$$

and the 2-morphism

$$
\begin{equation*}
\operatorname{Id}_{\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)} \rightarrow c^{-} \circ c^{+} \tag{4.1}
\end{equation*}
$$

in $\operatorname{Corr}\left(\text { PreStk }_{\mathrm{lft}}\right)_{\text {all,Stacky }}^{\text {open }}$.
Similarly, the natural transformation of $\mathrm{CT}_{P \times G, *}^{\mathrm{gen}} \simeq \mathrm{CT}_{P^{-} \times G,!}^{\text {gen }}$ can be obtained by the same procedure from the correspondences

$$
\begin{aligned}
& c^{+, \text {gen }}:\left(\operatorname{Bun}_{G}^{P-\text {-gen }} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P} \times \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right), \\
& c^{-, \text {gen }}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P-}^{M-\operatorname{gen}} \times \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{G}^{\left.P-\text { gen } \times \operatorname{Bun}_{G}\right) .}\right.
\end{aligned}
$$

and the 2-morphism

$$
\begin{equation*}
\operatorname{Id}_{\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)} \rightarrow c^{-, \text {gen }} \circ c^{+, \text {gen }} \tag{4.2}
\end{equation*}
$$

in $\operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\text {all,Stacky }}^{\text {open }}$.
Notation 4.2.4. To simplify the notations, for a correspondence c (in English letter), we use the symbol \mathbf{c} to denote the corresponding functor $\operatorname{Dmod}_{\text {indhol }}^{1, *}(c)$. These shorthands are only used in this subsection.

[^25]4.2.5. Translation. Using the above shorthands, the results in $\$ 4.2 .3$ are translated as below. The 2 -morphisms (4.1) and (4.2) induce natural transformation 41
$$
\mu: \mathbf{I d} \rightarrow c^{-} \circ c^{+} \text {and } \mu^{\text {gen }}: \mathbf{I d} \rightarrow c^{-, \text {gen }} \circ c^{+, \text {gen }}
$$
such that the following compositions are isomorphisms
\[

$$
\begin{align*}
& \left(\mathbf{c}^{+, \text {gen }}\right)^{R} \xrightarrow{\mu^{\text {gen }}} \mathbf{c}^{-, \text {gen }} \circ \mathbf{c}^{+, \text {gen }} \circ\left(\mathbf{c}^{+, \text {gen }}\right)^{R} \xrightarrow{\text { counit }} \mathbf{c}^{-, \text {gen }}, \tag{4.3}\\
& \quad\left(\mathbf{c}^{+}\right)^{R} \xrightarrow{\mu} \mathbf{c}^{-} \circ \mathbf{c}^{+} \circ\left(\mathbf{c}^{+}\right)^{R} \xrightarrow{\text { counit }} \mathbf{c}^{-} . \tag{4.4}
\end{align*}
$$
\]

4.2.6. Consider the map $\mathfrak{p}_{P \times G}^{\mathrm{enh}}: \operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$. Let

$$
p:\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{G}^{P-\operatorname{gen}^{2}} \times \operatorname{Bun}_{G} \xrightarrow{\Xi} \operatorname{Bun}_{G}^{P-\operatorname{gen}^{2}} \times \operatorname{Bun}_{G}\right)
$$

be the corresponding correspondence. Note that we have $\mathbf{p} \simeq \mathfrak{p}_{P \times G,!}^{\mathrm{enh}}$.
By definition, we have $c^{+} \simeq p \circ c^{+, \text {gen }}$, which provides

$$
\mathbf{c}^{+} \simeq \mathbf{p} \circ \mathbf{c}^{+, g e n} .
$$

We proved in 3.1 that the map $\operatorname{Bun}_{P_{-}}^{M-\text { gen }} \rightarrow \operatorname{Bun}_{P^{-}} \times_{\operatorname{Bun}_{G}} \operatorname{Bun}_{G}^{P-\text { gen }}$ is a schematic open embedding. Hence we also have a 2 -morphism $c^{-, \text {gen }} \rightarrow c^{-} \circ p$, which provides

$$
\nu: \mathbf{c}^{-, \text {gen }} \rightarrow \mathbf{c}^{-} \circ \mathbf{p}
$$

By construction, the 2-morphism (4.1) is equivalent to the composition

$$
\operatorname{Id}_{\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)} \xrightarrow{\sqrt[4.2 \mid]{ }} c^{-, \text {gen }} \circ c^{+, \text {gen }} \rightarrow c^{-} \circ p \circ c^{+, \text {gen }} \simeq c^{-} \circ c^{+} .
$$

Hence μ is isomorphic to

$$
\begin{equation*}
\mathbf{I d} \xrightarrow{\mu^{\mathrm{gen}}} \mathbf{c}^{-, \mathrm{gen}} \circ \mathbf{c}^{+, \text {gen }} \xrightarrow{\nu\left(\mathbf{c}^{+, \mathrm{gen}}\right)} \mathbf{c}^{-} \circ \mathbf{p} \circ \mathbf{c}^{+, \text {gen }} \simeq \mathbf{c}^{-} \circ \mathbf{c}^{+} . \tag{4.5}
\end{equation*}
$$

Lemma 4.2.7. The arrow γ_{P} is equivalent to the composition

$$
\left(\mathbf{c}^{-, \text {gen }}\right)\left(\mathcal{F}_{P}\right) \xrightarrow{\nu} \mathbf{c}^{-} \circ \mathbf{p}\left(\mathcal{F}_{P}\right) \xrightarrow{\mathbf{c}^{-}\left(\vartheta_{P}\right)} \mathbf{c}^{-}\left(\mathcal{F}_{G}\right) .
$$

Proof. By definition, the arrow $\theta_{P}: \mathcal{F}_{P} \rightarrow \mathbf{p}^{R}\left(\mathcal{F}_{G}\right)$ is isomorphic to

$$
\mathcal{F}_{P} \xrightarrow{\text { unit }} \mathbf{p}^{R} \circ \mathbf{p}\left(\mathcal{F}_{P}\right) \xrightarrow{\mathbf{p}^{R}\left(\vartheta_{P}\right)} \mathbf{p}^{R}\left(\mathcal{F}_{G}\right) .
$$

Hence by definition, γ_{P} is isomorphic to

$$
\left(\mathbf{c}^{+, \text {gen }}\right)^{R}\left(\mathcal{F}_{P}\right) \xrightarrow{\text { unit }}\left(\mathbf{c}^{+, \text {gen }}\right)^{R} \circ \mathbf{p}^{R} \circ \mathbf{p}\left(\mathcal{F}_{P}\right) \simeq\left(\mathbf{c}^{+}\right)^{R} \circ \mathbf{p}\left(\mathcal{F}_{P}\right) \xrightarrow{\left(\mathbf{c}^{+}\right)^{R}\left(\vartheta_{P}\right)}\left(\mathbf{c}^{+}\right)^{R}\left(\mathcal{F}_{G}\right) .
$$

Hence we only need to show the following diagram of functors commutes

Note that we have

$$
\operatorname{Maps}\left(\left(\mathbf{c}^{+, \text {gen }}\right)^{R}, \mathbf{c}^{-} \circ \mathbf{p}\right) \simeq \operatorname{Maps}\left(\mathbf{I d}, \mathbf{c}^{-} \circ \mathbf{p} \circ \mathbf{c}^{+, \text {gen }}\right) \simeq \operatorname{Maps}\left(\mathbf{I d}, \mathbf{c}^{-} \circ \mathbf{c}^{+}\right)
$$

[^26]Via this isomorphism, the top arc in (4.6), which is a point of the LHS, is given by the following point of the RHS:

$$
\begin{array}{r}
\text { Id } \xrightarrow{\text { unit }}\left(\mathbf{c}^{+, \text {gen }}\right)^{R} \circ \mathbf{c}^{+, \text {gen }} \xrightarrow{\text { unit }}\left(\mathbf{c}^{+, \text {gen }}\right)^{R} \circ \mathbf{p}^{R} \circ \mathbf{p} \circ \mathbf{c}^{+, \text {gen }} \simeq\left(\mathbf{c}^{+}\right)^{R} \circ \mathbf{c}^{+} \rightarrow \\
\xrightarrow{\mu} \mathbf{c}^{-} \circ \mathbf{c}^{+} \circ\left(\mathbf{c}^{+}\right)^{R} \circ \mathbf{c}^{+} \xrightarrow{\text { counit }} \mathbf{c}^{-} \circ \mathbf{c}^{+} .
\end{array}
$$

The first row in the above composition is just unit : Id $\rightarrow\left(\mathbf{c}^{+}\right)^{R} \circ \mathbf{c}^{+}$. Hence this composition is isomorphic to

$$
\mathbf{I d} \xrightarrow{\mu} \mathbf{c}^{-} \circ \mathbf{c}^{+} \xrightarrow{\text { unit }} \mathbf{c}^{-} \circ \mathbf{c}^{+} \circ\left(\mathbf{c}^{+}\right)^{R} \circ \mathbf{c}^{+} \xrightarrow{\text { counit }} \mathbf{c}^{-} \circ \mathbf{c}^{+},
$$

which is just $\mathbf{I d} \rightarrow \mathbf{c}^{-} \circ \mathbf{c}^{+}$by the axioms for unit and counit.
Similarly, one shows that the bottom arc corresponds to natural transformation (4.5). Then we are done by the discussion above the lemma.
4.2.8. Finishing the proof. We give temporary labels to the following correspondences

$$
\begin{aligned}
& i:\left(\overline{\operatorname{Bun}}_{G, \geq P}\right.\left.\leftarrow \overline{\operatorname{Bun}}_{G, P} \xrightarrow{\stackrel{=}{\operatorname{Bun}}} \overline{\operatorname{Bu}}_{G, P}\right), \\
& d^{\text {gen }}:\left(\operatorname{Bun}_{G}^{P-\operatorname{gen}^{\prime} \times \operatorname{Bun}_{G}} \leftarrow \overline{\operatorname{Bun}}_{G, P} \stackrel{=}{\rightarrow} \overline{\operatorname{Bun}}_{G, P}\right), \\
& d:\left(\operatorname{Bun}_{G} \times \operatorname{Bun}_{G} \leftarrow \overline{\operatorname{Bun}}_{G, \geq P} \stackrel{=}{\rightarrow} \overline{\operatorname{Bun}}_{G, \geq P}\right), \\
& j:\left(\overline{\operatorname{Bun}}_{G, \geq P}\right.\left.\leftarrow \overline{\operatorname{Bun}}_{G, \geq P} \rightarrow \overline{\operatorname{Bun}}_{G}\right), \\
& b:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right.\left.\leftarrow\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\operatorname{Bun}_{G, \geq P}}\right)^{\text {gen }} \rightarrow \overline{\operatorname{Bun}}_{G, \geq P}\right) .
\end{aligned}
$$

Note that we have an obvious isomorphism $\beta \simeq b \circ j$, hence

$$
\mathrm{D}_{\mathrm{indhol}}^{!, *}(\beta) \simeq \mathbf{b} \circ \mathbf{j} .
$$

We have an isomorphism $p \circ d^{\text {gen }} \simeq d \circ i$ because both sides are just

$$
\operatorname{Bun}_{G} \times \operatorname{Bun}_{G} \leftarrow \overline{\operatorname{Bun}}_{G, P} \xrightarrow{\equiv} \overline{\operatorname{Bun}}_{G, P} .
$$

Hence $\mathbf{p} \circ \mathbf{d}^{\text {gen }} \simeq \mathbf{d} \circ \mathbf{i}$. We have an isomorphism $b \circ i \simeq c^{-, \text {gen }} \circ d^{\text {gen }}$ because both sides are just

$$
\operatorname{Bun}_{M} \times \operatorname{Bun}_{G} \leftarrow \operatorname{Bun}_{P-}^{M-\operatorname{gen}} \underset{\operatorname{Bun}_{G}^{P-\operatorname{gen}}}{\times} \overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\operatorname{Bun}}_{G, P} .
$$

Hence $\mathbf{b} \circ \mathbf{i} \simeq \mathbf{c}^{-, \text {gen }} \circ \mathbf{d}^{\text {gen }}$. We have a 2-morphism $b \rightarrow c^{-} \circ d$ induced by the open embedding

$$
\left(\operatorname{Bun}_{P-} \underset{\text { Bun }_{G}}{\left.\times \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \subset \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P} .}\right.
$$

Hence we have a natural transformation

$$
\xi: \mathbf{b} \rightarrow \mathbf{c}^{-} \circ \mathbf{d} .
$$

Moreover, the 2-morphism

$$
b \circ i \simeq c^{-, \text {gen }} \circ d^{\text {gen }} \rightarrow c^{-} \circ p \circ d^{\text {gen }} \simeq c^{-} \circ d \circ i
$$

is isomorphic to the 2-morphism induced from $b \rightarrow c^{-} \circ d$. Hence we have the following commutative diagram of functors

After these preparations, we are ready to finish the proof. Recall that $\mathbf{K}(P)$ is a !-extension along $\overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\operatorname{Bun}}_{G}$. Let K_{1} be the corresponding object in $\mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right)$. We also write $K_{2}:=j_{\geq P}^{*}(\mathbf{K}(G))$, where $j_{\geq P}^{*}: \overline{\mathrm{Bun}}_{G, \geq P} \rightarrow \overline{\mathrm{Bun}}_{G}$ is the open embedding. The morphism $\mathbf{K}(P) \rightarrow \mathbf{K}(G)$ is sent by $\mathbf{j}=j_{\geq P}^{*}$ to a morphism

$$
\eta: \mathbf{i}\left(K_{1}\right) \rightarrow K_{2} .
$$

It follows from definition that the arrow $\vartheta_{P}: \mathbf{p}\left(\mathcal{F}_{P}\right) \rightarrow \mathcal{F}_{G}$ is equivalent to

$$
\mathbf{p} \circ \mathbf{d}^{\operatorname{gen}}\left(K_{1}\right) \simeq \mathbf{d} \circ \mathbf{i}\left(K_{1}\right) \xrightarrow{\mathbf{d}(\eta)} \mathbf{d}\left(K_{2}\right),
$$

where $\mathcal{F}_{P} \simeq \mathbf{d}^{\text {gen }}\left(K_{1}\right)$ and $\mathcal{F}_{G} \simeq \mathbf{d}\left(K_{2}\right)$. Hence by Lemma 4.2.7 the arrow γ_{P} is equivalent to

$$
\mathbf{c}^{-, \text {gen }} \circ \mathbf{d}^{\mathrm{gen}}\left(K_{1}\right) \xrightarrow{\nu\left(\mathbf{d}^{\mathrm{gen}}\right)} \mathbf{c}^{-} \circ \mathbf{p} \circ \mathbf{d}^{\operatorname{gen}}\left(K_{1}\right) \simeq \mathbf{c}^{-} \circ \mathbf{d} \circ \mathbf{i}\left(K_{1}\right) \xrightarrow{\mathbf{c}^{-} \circ \mathbf{d}(\eta)} \mathbf{c}^{-} \circ \mathbf{d}\left(K_{2}\right) .
$$

By (4.7), this arrow is equivalent to

$$
\mathbf{b} \circ \mathbf{i}\left(K_{1}\right) \xrightarrow{\xi\left(\mathbf{i}\left(K_{1}\right)\right)} \mathbf{c}^{-} \circ \mathbf{d} \circ \mathbf{i}\left(K_{1}\right) \xrightarrow{\mathbf{c}^{-} \circ \mathbf{d}(\eta)} \mathbf{c}^{-} \circ \mathbf{d}\left(K_{2}\right),
$$

or equivalently

$$
\mathbf{b} \circ \mathbf{i}\left(K_{1}\right) \xrightarrow{\mathbf{b}(\eta)} \mathbf{b}\left(K_{2}\right) \xrightarrow{\xi\left(K_{2}\right)} \mathbf{c}^{-} \circ \mathbf{d}\left(K_{2}\right) .
$$

We claim $\xi\left(K_{2}\right)$ is invertible. Indeed, this is because K_{2} is a !-extension from the G-stratum, and the open embedding

$$
\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\operatorname{gen}} \subset \operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}
$$

is an isomorphism when restricted to the G-stratum. Hence γ_{P} is equivalent to $\mathbf{b}(\eta)$, which by definition is the image of $\mathbf{K}(P) \rightarrow \mathbf{K}(G)$ under $\left.\mathbf{b} \circ \mathbf{j} \simeq \mathrm{D}_{\text {indhol }}^{!}, *\right)$.

5. Step 4

We have two results to prove in this step: Proposition-Construction 1.5.1 and Proposition 1.5.2 Each subsection corresponds to a result.

To avoid jumping between topics, we also prove Lemma 1.6 .1 (from Step 5) in $\$ 5.1$

The proofs are similar to those in Step 1: Proposition-Construction 1.5.1 is similar to Proposition-Construction 1.1.2 while Proposition 1.5 .2 is similar to Proposition 1.1.1

5.1. Proof of Proposition-Construction 1.5.1 and Lemma 1.6.1.

Goal 5.1.1. Construct a canonical factorization of the map

$$
\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{ } \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}
$$

via $\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}$ such that we have an isomorphism

$$
\begin{equation*}
\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \underset{\operatorname{Bun}_{G}^{P^{---g e n}}}{\times} \operatorname{Bun}_{P}^{M \text {-gen }} \simeq Y_{\text {rel }}^{P} / Z_{M} \tag{5.1}
\end{equation*}
$$

defined over $\operatorname{Bun}_{M} \times \overline{\operatorname{Bun}}_{G} \times \operatorname{Bun}_{M}$.

The proof below is similar to that in $\$ 2.1$. Hence we omit some details.
Recall in \$4.1 we defined
$\left(\operatorname{Bun}_{P^{-}} \underset{\text { Bun }_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}}\right)^{\text {gen }}:=\operatorname{Maps}_{\text {gen }}\left(X, P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}} / G \leftarrow \mathbb{B}\left(P_{G}^{-} \times \widetilde{G}_{\geq C_{P}}\right)\right)$.
By Lemma D.1.6 the right projection map $P^{-} \times_{G} \widetilde{G}_{\geq C_{P}} \rightarrow G$ factors through P^{-}. Hence we obtain the following commutative diagram of algebraic stacks

Taking $\operatorname{Maps}_{\text {gen }}(X,-)$, we obtain a map

$$
\left(\operatorname{Bun}_{P-} \underset{\text { Bun }_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P-\text { gen }} .
$$

To obtain the map $\left(\operatorname{Bun}_{P^{-}} \times_{\text {Bun }_{G}} \overline{\operatorname{Bun}}_{G, \geq P}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P \text {-gen }}$, as before, we show that the map $\mathbb{B}\left(P^{-} \times_{G} \widetilde{G}_{\geq C_{P}}\right) \rightarrow \mathbb{B} M \times \mathbb{B} P^{-}$can be uniquely lifted to a morphism

$$
\left(Z_{M} \triangleleft \mathbb{B}\left(P_{G}^{-} \times \widetilde{G}_{\geq C_{P}}\right)\right) \rightarrow\left(\mathrm{pt} \frown \mathbb{B} M \times \mathbb{B} P^{-}\right)
$$

fitting into the diagram

It remains to compare both sides of (5.1). By construction,

$$
\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}}\right)^{\operatorname{gen}} \underset{\operatorname{Bun}_{G}^{P--\operatorname{gen}}}{\times} \operatorname{Bun}_{P}^{M-\text {-gen }}
$$

is isomorphic to the image of

$$
P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}} / P \leftarrow \mathbb{B}\left(P^{-} \times \widetilde{G}_{\geq C_{P}}\right) \underset{\mathbb{B} P^{-}}{\times} \mathbb{B} M
$$

under the functor $\operatorname{Maps}_{\text {gen }}(X,-)$. Using Lemma D.1.6 (1), the map

$$
\mathbb{B}\left(P^{-} \underset{G}{\times} \widetilde{G}_{\geq C_{P}} \underset{P^{-}}{\times} M\right) \rightarrow \mathbb{B}\left(P_{G}^{-} \times \widetilde{G}_{\geq C_{P}}\right) \underset{\mathbb{B} P^{-}}{\times} \mathbb{B} M
$$

is an isomorphism. Also, the LHS is just

$$
\mathbb{B}\left(P^{-} \underset{G}{\times} \widetilde{G}_{\geq C_{P}} \underset{P^{-}}{\times} M\right) \simeq \mathbb{B}\left(P^{-} \underset{G}{\times} \widetilde{G}_{\geq C_{P}} \underset{G}{\times} P\right) \simeq P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}}^{\text {Bruhat }} / P^{-} .
$$

Hence we obtain a Z_{M}-equivariant isomorphism

$$
\left(\operatorname{Bun}_{P^{-}} \underset{\operatorname{Bun}_{G}}{\times} \operatorname{VinBun}_{G, \geq C_{P}}\right)^{\text {gen }} \underset{\operatorname{Bun}_{G}^{P--g e n}}{\times} \operatorname{Bun}_{P}^{M-\mathrm{gen}} \simeq Y_{\mathrm{rel}}^{P} .
$$

It follows from construction that it is defined over $\operatorname{Bun}_{M} \times \operatorname{VinBun}_{G} \times \operatorname{Bun}_{M}$. Then we obtain the isomorphism (5.1) by taking quotients for the Z_{M}-actions.

5.2. Proof of Proposition 1.5.2,

Goal 5.2.1. The objects $\operatorname{Dmod}_{\text {indhol }}^{!!, *}\left(\beta^{\prime}\right) \circ \mathbf{K}(P)$ and $\operatorname{Dmod}_{\text {indhol }}^{!, * *}\left(\beta^{\prime}\right) \circ \mathbf{K}(G)$ are both contained in the full subcategory

$$
\mathbf{I}\left(M \times G, M \times P^{-}\right) \subset \mathrm{D}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}\right) .
$$

We first prove the claim for the second object. Using the base-change isomorphisms, it is easy to see $\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\beta^{\prime}\right) \circ \mathbf{K}(G)$ is isomorphic to the image of $k_{\text {Bun }_{P^{-}}}$ under the !-pushforward functor along

$$
\operatorname{Bun}_{P^{-}} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} .
$$

This map has a factorization

$$
\operatorname{Bun}_{P^{-}} \xrightarrow{f} \operatorname{Bun}_{M} \times \operatorname{Bun}_{P^{-}} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} .
$$

It is clear that $f_{!}\left(k_{\mathrm{Bun}_{P^{-}}}\right)$is \mathbf{U}_{P}^{-}-equivariant, i.e., is a $*$-pullback along

$$
\operatorname{Bun}_{M} \times \operatorname{Bun}_{P^{-}} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{M} .
$$

Then we are done by applying Proposition 0.2 .10 (1) to the reductive group $M \times G$ and the parabolic subgroup $M \times P^{-}$.

Now we prove the claim for the first object. Consider the restriction of β on the P-stratum:

$$
\beta_{P}^{\prime}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\operatorname{gen}} \leftarrow \operatorname{Bun}_{P-}^{M-\operatorname{gen}} \underset{\operatorname{Bun}_{G}^{P-\text { gen }}}{\times} \overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\operatorname{Bun}}_{G, P}\right) .
$$

Since $\mathbf{K}(P)$ is a !-extension along $i_{P}: \overline{\operatorname{Bun}}_{G, P} \rightarrow \overline{\operatorname{Bun}}_{G}$,

$$
\operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\beta^{\prime}\right) \circ \mathbf{K}(P) \simeq \operatorname{Dmod}_{\text {indhol }}^{!, *}\left(\beta_{P}^{\prime}\right) \circ i_{P}^{*}(\mathbf{K}(P)) .
$$

It follows from construction that β_{P}^{\prime} is isomorphic to the composition of

$$
\operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \stackrel{\bar{\Delta}_{P}^{\mathrm{enh}}}{\longleftrightarrow} \overline{\mathrm{Bun}}_{G, P} \stackrel{\stackrel{ }{\longrightarrow} \overline{\mathrm{Bun}}_{G, P}}{ }
$$

and

$$
\delta^{-}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \leftarrow \operatorname{Bun}_{P-}^{M-\operatorname{gen}} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \rightarrow \operatorname{Bun}_{G}^{P-\text { gen }} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}\right),
$$

where the map $\overline{\boldsymbol{\Delta}}_{P}^{\mathrm{enh}}$ is provided by Proposition-Construction 1.1.2. Hence we only need to show

$$
\begin{equation*}
\mathrm{D}_{\mathrm{indhol}}^{!, *}\left(\delta^{-}\right) \circ \overline{\boldsymbol{\Delta}}_{P,!}^{\mathrm{enh}} \circ i_{P}^{*}(\mathbf{K}(P)) \tag{5.2}
\end{equation*}
$$

is contained in $\mathbf{I}\left(M \times G, M \times P^{-}\right)$. In other words, we need to show its !-pullback along

$$
\iota_{M \times P^{-}}: \operatorname{Bun}_{M} \times \operatorname{Bun}_{P^{-}} \rightarrow \operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}
$$

is \mathbf{U}_{P}^{-}-equivariant.
Consider the correspondence

$$
\delta^{+}:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \leftarrow \operatorname{Bun}_{P} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \rightarrow \operatorname{Bun}_{G}^{\left.P^{- \text {gen }} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }}\right) . ~ . ~}\right.
$$

As before, $\mathrm{D}_{\text {indhol }}^{!, *}\left(\delta^{-}\right)$is isomorphic to the restriction of $\mathrm{D}^{\mathbf{\Delta},!}\left(\delta^{+}\right)$. Hence we can rewrite (5.2) as $\mathrm{D}^{\boldsymbol{\Delta},!}\left(\delta^{+}\right) \circ \overline{\boldsymbol{\Delta}}_{P,!}^{\mathrm{enh}} \circ i_{P}^{*}(\mathbf{K}(P))$.

Consider the correspondence

$$
e:\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{P^{-}} \leftarrow \operatorname{Bun}_{P} \times \operatorname{Bun}_{P^{-}} \rightarrow \operatorname{Bun}_{G}^{\left.P^{-\operatorname{gen}} \times \operatorname{Bun}_{G}^{P^{-}-\operatorname{gen}}\right) ~}\right.
$$

By the base-change isomorphisms, the functor $\iota_{M \times P^{-}}^{!} \circ \mathrm{D}^{\boldsymbol{\Delta},!}\left(\delta^{+}\right)$is just $\mathrm{D}^{\boldsymbol{\Delta},!}(e)$. Hence we only need to show $\overline{\boldsymbol{\Delta}}_{P!!}^{\mathrm{enh}} \circ i_{P}^{*}(\mathbf{K}(P))$ is contained in the full subcategory

$$
\mathbf{I}\left(G \times G, P \times P^{-}\right) \subset \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\operatorname{gen}} \times \operatorname{Bun}_{G}^{P^{-}-\mathrm{gen}}\right) .
$$

Now this can be proved similarly to that in $\$ 2.2$ Namely, one only needs to replace Lemma 2.2.5 by Lemma 5.2.2, whose proof is similar.

Lemma 5.2.2. The functor

$$
\bar{\Delta}_{P,!}^{\mathrm{enh}}: \mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{G}^{P \text {-gen }} \times \operatorname{Bun}_{G}^{P^{-} \text {-gen }}\right)
$$

sends objects contained in $\mathrm{D}_{\text {indhol }}\left(\overline{\operatorname{Bun}}_{G, P}\right)^{\mathbf{U}_{P} \times \mathbf{U}_{P}^{-}}$into objects contained in $\mathbf{I}\left(G \times G, P \times P^{-}\right)$.

6. Step 5

We have two results to prove in this step: Proposition-Construction 1.6 .4 and Theorem 1.6 .5 (Lemma 1.6 .1 was proved in $\S 5.1$). Each subsection corresponds to a result.

The main ingredient of the proof of Proposition-Construction 1.6.4 is the monoid \bar{M} associated to P in Wan17. For parabolic subgroups $P \subset Q$, we will construct a map $\bar{L} \rightarrow \bar{M}$ from the monoid associated to Q to that associated to P. This map will allow us to construct the desired correspondence from $H_{L, G \text {-pos }} / Z_{L}$ to $H_{M, G-\mathrm{pos}} / Z_{M}$.

The proof of Theorem 1.6 .5 is similar to that of Theorem 1.3.1 Namely, we prove it using Drinfeld's framework.

6.1. Proof of Proposition-Construction 1.6.4,

Goal 6.1.1. The correspondence

$$
\psi_{P, \geq Q}:\left(H_{M, G-\mathrm{pos}} / Z_{M} \leftarrow\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{\geq Q} \rightarrow \overline{\operatorname{Bun}}_{G, \geq Q}\right)
$$

is isomorphic to the composition of

$$
\psi_{Q, \geq Q}:\left(H_{L, G-\mathrm{pos}} / Z_{L} \leftarrow Y_{\mathrm{rel}}^{Q} / Z_{L} \rightarrow \overline{\operatorname{Bun}}_{G, \geq Q}\right)
$$

by a certain correspondence from $H_{L, G \text {-pos }} / Z_{L}$ to $H_{M, G \text {-pos }} / Z_{M}$.
Let us first recall the definition of the map $Y_{\text {rel }}^{P} \rightarrow H_{M, G \text { - pos }}$.
Construction 6.1.2. By theorem Wan17, Theorem 4.2.10], the closed subscheme $\bar{M} \rightarrow \operatorname{Vin}_{G, C_{P}}$ is equal to $\mathfrak{s}\left(C_{P}\right) \cdot \operatorname{Vin}_{G, C_{P}} \cdot \mathfrak{s}\left(C_{P}\right)$, where $\mathfrak{s}: T_{\text {ad }}^{+} \rightarrow \operatorname{Vin}_{G}$ is the canonical section. Hence the map

$$
\operatorname{Vin}_{G, \geq C_{P}} \rightarrow \operatorname{Vin}_{G, C_{P}}, x \mapsto \mathfrak{s}\left(C_{P}\right) \cdot x \cdot \mathfrak{s}\left(C_{P}\right)
$$

factors through \bar{M}. It is easy to see the obtained map $\operatorname{Vin}_{G, \geq C_{P}} \rightarrow \bar{M}$ intertwines the actions of $P^{-} \times P \rightarrow M \times M$ and is Z_{M}-equivariant ${ }^{42}$ Moreover, the map

$$
P^{-} \backslash \operatorname{Vin}_{G, \geq C_{P}} / P \rightarrow M \backslash \bar{M} / M
$$

sends $P^{-} \backslash \operatorname{Vin}_{G, C_{P}}^{\text {Bruhat }} / P$ into $M \backslash M / M$. Hence we obtain a map

$$
\mathfrak{q}_{P, \mathrm{Vin}}^{-}: Y_{\mathrm{rel}}^{P} / Z_{M} \rightarrow H_{M, G-\mathrm{pos}} / Z_{M}
$$

[^27]Notation 6.1.3. Recall L is the Levi subgroup of Q. We write Z_{L} for the center of L. Let $P_{L}=P \cap L$ and $P_{L}^{-}=P^{-} \cap L$ be the parabolic subgroups of L corresponding to P and P^{-}. Let $L^{P \text { - Bruhat }}$ be the open Bruhat cell $P_{L}^{-} P_{L}$ in L.

Notation 6.1.4. The projection map

$$
Y_{\mathrm{rel}}^{P} / Z_{M} \rightarrow T_{\mathrm{ad}, \geq C_{P}}^{+} / Z_{M} \simeq T_{\mathrm{ad}, \geq P}^{+} / T
$$

induces a stratification on $Y_{\text {rel }}^{P} / Z_{M}$ labelled by the poset $\operatorname{Par}_{\geq P}$. As usual, for $Q \in \operatorname{Par}_{\geq P}$ we use the notation:

$$
\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{\geq Q}:=\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{T_{\mathrm{ad}, \geq P}^{+} / T}^{\times}\left(T_{\mathrm{ad}, \geq Q}^{+} / T\right) .
$$

The stack

$$
Y_{\mathrm{rel}, \geq C_{Q}}^{P}:=Y_{\mathrm{rel}}^{P} \underset{T_{\mathrm{ad}, \geq C_{P}}^{+}}{\times} T_{\mathrm{ad}, \geq C_{Q}}^{+}
$$

inherits a Z_{L}-action from the Z_{M}-action on Y_{rel}^{P}. Note that we have an isomorphism

$$
Y_{\mathrm{rel}, \geq C_{Q}}^{P} / Z_{L} \simeq\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{\geq Q} .
$$

Construction 6.1.5. By construction, we have

$$
Y_{\mathrm{rel}, \geq C_{Q}}^{P} \simeq \operatorname{Maps}_{\mathrm{gen}}\left(X, P^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}} / P \supset P^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}}^{P-\text { Bruhat }} / P\right),
$$

where

$$
\operatorname{Vin}_{G, \geq C_{Q}}^{P-\text { Bruhat }}:=\operatorname{Vin}_{G, \geq C_{P}}^{\text {Bruhat }} \cap \operatorname{Vin}_{G, \geq C_{Q}} .
$$

Note that the open locus $\operatorname{Vin}_{G, \geq C_{Q}}^{P-B r u h a t ~}$ is contained in $\operatorname{Vin}_{G, \geq C_{Q}}^{\text {Bruhat }}$. Indeed, the former is the $\left(P^{-} \times P\right)$-orbit of the canonical section, while the latter is the $\left(Q^{-} \times Q\right)$-orbit. Hence the map

$$
P^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}} / P \rightarrow Q^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}} / Q
$$

induces a Z_{L}-equivariant map $Y_{\mathrm{rel}, \geq C_{Q}}^{P} \rightarrow Y_{\mathrm{rel}}^{Q}$. Hence we obtain a map

$$
\pi_{P, Q}:\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{\geq Q} \simeq Y_{\mathrm{rel}, \geq C_{Q}}^{P} / Z_{L} \rightarrow Y_{\mathrm{rel}}^{Q} / Z_{L} .
$$

By construction, we have the following commutative diagram

where the left square is Cartesian.
Proposition-Construction 6.1.6. Consider the lft algebraic stac ${ }^{43}$

$$
W_{P, Q}:=\operatorname{Maps}_{\text {gen }}\left(X, P_{L}^{-} \backslash \bar{L} / P_{L} \supset P_{L}^{-} \backslash L^{P-\text { Bruhat }} / P_{L}\right)
$$

Then there exists a canonical commutative diagram
such that the right square in it is Cartesian.

[^28]Proof. Via the identification

$$
P_{L}^{-} \backslash \bar{L} / P_{L} \simeq \mathbb{B} P_{L}^{-} \times \underset{\mathbb{B} L}{\times}(L \backslash \bar{L} / L) \underset{\mathbb{B} L}{\times} \mathbb{B} P_{L},
$$

the open substack $P_{L}^{-} \backslash L^{\text {Bruhat }} / P_{L}$ of the LHS is contained in the open substack $\mathbb{B} P_{L}^{-} \times_{\mathbb{B} L} \mathbb{B} L \times_{\mathbb{B} L} \mathbb{B} P_{L}$ of the RHS. Hence we obtain a Z_{L}-equivariant schematic open embedding

$$
W_{P, Q} \rightarrow \operatorname{Bun}_{P_{\bar{L}}^{-}} \underset{\operatorname{Bun}_{L}}{\times} H_{L, G-\operatorname{pos}} \underset{\operatorname{Bun}_{L}}{\times} \operatorname{Bun}_{P_{L}} .
$$

In particular, we obtain a map

$$
\begin{equation*}
W_{P, Q} / Z_{L} \rightarrow H_{L, G-\mathrm{pos}} / Z_{L} . \tag{6.3}
\end{equation*}
$$

As explained in Construction 6.1.2, the map

$$
\operatorname{Vin}_{G, \geq C_{Q}} \rightarrow \operatorname{Vin}_{G, C_{Q}}, x \mapsto \mathfrak{s}\left(C_{Q}\right) \cdot x \cdot \mathfrak{s}\left(C_{Q}\right)
$$

factors through \bar{L}. It is easy to see the obtained map $\operatorname{Vin}_{G, \geq C_{Q}} \rightarrow \bar{L}$ intertwines the actions of $Q^{-} \times Q \rightarrow L \times L$ and is Z_{L}-equivariant 44 Moreover, the map

$$
P^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}} / P \rightarrow P_{L}^{-} \backslash \bar{L} / P_{L}
$$

sends the P-Bruhat cell to the P-Bruhat cell. Hence we obtain a Z_{L}-linear map $Y_{\text {rel }, \geq C_{Q}}^{P} \rightarrow W_{P, Q}$. By taking quotient, we obtain a map

$$
\begin{equation*}
\left(Y_{\mathrm{rel}}^{P} / Z_{M}\right)_{\geq Q} \simeq Y_{\mathrm{rel}, \geq C_{Q}}^{P} / Z_{L} \rightarrow W_{P, Q} / Z_{L} . \tag{6.4}
\end{equation*}
$$

Note that we have $\mathfrak{s}\left(C_{P}\right) \cdot x \cdot \mathfrak{s}\left(C_{P}\right)=\mathfrak{s}\left(C_{P}\right) \cdot \mathfrak{s}\left(C_{Q}\right) \cdot x \cdot \mathfrak{s}\left(C_{Q}\right) \cdot \mathfrak{s}\left(C_{P}\right)$ for $x \in$ $\operatorname{Vin}_{G, \geq C_{Q}}$. Hence the composition

$$
\operatorname{Vin}_{G, \geq C_{Q}} \rightarrow \operatorname{Vin}_{G, \geq C_{P}} \rightarrow \bar{M}
$$

factors through \bar{L}. Since the above composition intertwines the action of $P^{-} \times P \rightarrow$ $M \times M$ and is Z_{L}-equivariant, the obtained map $\bar{L} \rightarrow \bar{M}$ intertwines the actions of $P_{L}^{-} \times P_{L} \rightarrow M \times M$ and is Z_{L}-equivariant. Moreover, the map

$$
P_{L}^{-} \backslash \bar{L} / P_{L} \rightarrow M \backslash \bar{M} / M
$$

sends the P-Bruhat cell into $M \backslash M / M$. Hence we obtain a map

$$
\begin{equation*}
W_{P, Q} / Z_{L} \rightarrow H_{M, G-\operatorname{pos}} / Z_{L} \rightarrow H_{M, G-\mathrm{pos}} / Z_{M} . \tag{6.5}
\end{equation*}
$$

It follows from constructions that the maps (6.3), (6.4) and (6.5) fit into a commutative diagram (6.2). It remains to show its right square is Cartesian. We only need to show the maps

$$
\begin{aligned}
P^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}} / P & \rightarrow\left(Q^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}} / Q\right)_{(L \backslash \bar{L} / L)}^{\times}\left(P_{L}^{-} \backslash \bar{L} / P_{L}\right), \\
P^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}}^{P-\text { Bruhat }} / P & \rightarrow\left(Q^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}}^{\text {Bruhat }} / Q\right)_{(L \backslash L / L)}^{\times}\left(P_{L}^{-} \backslash L^{P-\text { Bruhat }} / P_{L}\right)
\end{aligned}
$$

are isomorphisms. To prove the claim for the first map, we only need to show $\mathbb{B} P \simeq \mathbb{B} Q \times_{\mathbb{B} L} \mathbb{B} P_{L}$, but this follows from the fact that $Q \rightarrow L$ is surjective. The claim for the second map follows from the fact that the maps

$$
\begin{aligned}
P^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}}^{P-\text { Bruhat }} / P & \rightarrow M \backslash M / M \times T_{\mathrm{ad}, \geq C_{Q}}, \\
Q^{-} \backslash \operatorname{Vin}_{G, \geq C_{Q}}^{\text {Bruhat }} / Q & \rightarrow L \backslash L / L \times T_{\mathrm{ad}, \geq C_{Q}}, \\
P_{L}^{-} \backslash L^{P-\text { Bruhat }} / P_{L} & \rightarrow M \backslash M / M
\end{aligned}
$$

[^29]are all isomorphisms.
6.1.7. Proof of Proposition-Construction 1.6.4. The desired correspondence is
$$
H_{M, G-\mathrm{pos}} / Z_{M} \leftarrow W_{P, Q} / Z_{L} \rightarrow H_{L, G-\mathrm{pos}} / Z_{L}
$$

It satisfies the requirement because of (6.1) and (6.2).

6.2. Proof of Theorem 1.6.5.

Goal 6.2.1. Consider the diagram

$$
\begin{aligned}
& H_{M, G-\operatorname{pos}} / Z_{M} \stackrel{\mathfrak{q}_{P, V i n}^{+}}{\rightleftarrows} \text { dfstr }^{\mathrm{Bun}_{G, P} \xrightarrow{\mathfrak{p}_{P, \mathrm{Vin}}^{+}} \overline{\mathrm{Bun}}_{G, \geq P},} \\
& H_{M, G-\mathrm{pos}} / Z_{M} \stackrel{\mathfrak{q}_{P, V \mathrm{in}}^{-}}{\longleftrightarrow} Y_{\mathrm{rel}}^{P} / Z_{M} \xrightarrow{\mathfrak{p}_{P, V \mathrm{Vin}}^{-}} \overline{\mathrm{Bun}}_{G, \geq P} .
\end{aligned}
$$

Then

$$
\mathfrak{q}_{P, \text { Vin },!}^{\mp} \circ \mathfrak{p}_{P, \text { Vin }}^{\mp, *} \simeq \mathfrak{q}_{P, \text { Vin }, *}^{ \pm} \circ \mathfrak{p}_{P, \text { Vin }}^{ \pm!!}
$$

on ind-holonomic objects.
The proof is similar to that of Theorem 1.3.1 hence we omit some details.
Let γ and $\bar{\gamma}$ be as in 93.3 . Using the homomorphism

$$
\mathbb{G}_{m} \xrightarrow{\gamma} Z_{M} \rightarrow T_{\mathrm{ad}} \xrightarrow{t \leftrightarrow\left(t^{-1}, t\right)} T_{\mathrm{ad}} \times T_{\mathrm{ad}},
$$

we obtain a \mathbb{G}_{m}-action on $G \times G$, whose attractor, repeller and fixed loci are respectively given by $P^{-} \times P, P \times P^{-}$and $M \times M$.

On the other hand, consider the action

$$
\mathbb{G}_{m} \times \operatorname{Vin}_{G, \geq C_{P}},(s, x) \mapsto \mathfrak{s}(\bar{\gamma}(s)) \cdot x \cdot \mathfrak{s}(\bar{\gamma}(s)) .
$$

This action can actually be extended to an \mathbb{A}^{1}-action using the same formula. Hence its attractor, repeller and fixed loci are respectively given by $\operatorname{Vin}_{G, \geq C_{P}}, \bar{M}$ and \bar{M}. Also, the attractor, repeller and fixed loci for the restricted action on $\operatorname{Vin}_{G, \geq C_{P}}^{\text {Bruhat }}$ are respectively given by $\operatorname{Vin}_{G, \geq C_{P}}^{\text {Bruhat }}, M$ and M.

We claim the above \mathbb{G}_{m}-actions are compatible with the action $G \times G \frown \operatorname{Vin}_{G, \geq C_{P}}$. Indeed, one only needs to prove this claim for the restricted actions on $\operatorname{Vin}_{G, \geq C_{P}} \times_{T_{\text {ad }}^{+}} T_{\text {ad }}$, which can be checked directly (see Lemma 6.2.3). As a corollary of this claim, we obtain an action (relative to \mathbb{A}^{1}) of the Drinfeld-Gaitsgory interpolation for $G \times G$ on that for $\operatorname{Vin}_{G, \geq C_{P}}$.

Let $\left(\text { ActSch }_{\mathrm{ft}}^{\text {aff }}\right)_{\text {rel }}$ be the category defined similarly as ActSch $_{\mathrm{ft}}^{\text {aff }}$ (see Notation 3.3.14) but we replace "algebraic groups" by "affine group schemes over an affine base scheme". In other words, its objects are $(H \curvearrowright Y)_{\mid S}$, where S is an affine scheme, $H \rightarrow S$ is an affine group scheme and $Y \rightarrow S$ is an affine scheme equipped with an H-action. There is an obvious $\operatorname{Sch}_{\mathrm{ft}}^{\mathrm{aff}}$-action on $\left(\mathrm{ActSch}_{\mathrm{ft}}^{\mathrm{aff}}\right)_{\mathrm{rel}}$. By the previous discussion,

$$
\left(G \times G \frown \operatorname{Vin}_{G, \geq C_{P}}\right)_{/ \mathrm{pt}}
$$

is a \mathbb{G}_{m}-module object. Then Example 3.2 .6 provides a weakly $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$-enriched functor

$$
\Theta_{\left(G \times G \leadsto \operatorname{Vin}_{G, 2 C_{P}}\right)}: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\left(\operatorname{ActSch}_{\mathrm{ft}}^{\mathrm{aff}}\right)_{\mathrm{rel}}\right)_{\mathrm{all}, \mathrm{all}},
$$

sending α^{+}and α^{-}respectively to

$$
\begin{aligned}
\left(G \times G \frown \operatorname{Vin}_{G, \geq C_{P}}\right) & \leftarrow\left(P^{-} \times P \frown \operatorname{Vin}_{G, \geq C_{P}}\right) \rightarrow(M \times M \frown \bar{M}), \\
(M \times M \frown \bar{M}) & \leftarrow\left(P \times P^{-} \frown \bar{M}\right) \rightarrow\left(G \times G \frown \operatorname{Vin}_{G, \geq C_{P}}\right) .
\end{aligned}
$$

Passing to quotients, we obtain a weakly $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$-enriched right-lax functor

$$
\Theta_{\left(G \backslash \operatorname{Vin}_{G, 2 C_{P}} / G\right)}: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\operatorname{AlgStk}_{\text {lft }}\right)_{\text {all, all }}^{\text {all } 2 \text {-op } .}
$$

It is easy to see it is strict at the composition $\alpha^{+} \circ \alpha^{-}$. Moreover, we claim it factors through $\operatorname{Corr}\left(\operatorname{AlgSt}_{\mathrm{lft}}\right)_{\mathrm{all}, \mathrm{all}}^{\text {open, } 2 \mathrm{op}}$. To prove the claim, one first proves Fact 6.2.2, then uses it to deduce the desired claim from Lemma 3.3.8.

In the previous construction, we ignored the open Bruhat cell. If we keep tracking it, we would obtain a certain weakly $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$-enriched right-lax functor

$$
\mathbf{P}_{\mathbb{A}^{1}} \rightarrow \mathbf{C o r r}\left(\operatorname{Arr}\left(\operatorname{AlgStk}_{\mathrm{lft}}\right)\right)_{\text {all,all }}^{\text {open, } 2 \text { op }}
$$

By taking $\operatorname{Maps}_{\mathrm{gen}}(X,-)$ for it, we obtain a weakly $\mathrm{Sch}_{\mathrm{ft}}^{\text {aff }}$-enriched right-lax functor

$$
\Theta: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\mathrm{all}, \mathrm{all}}^{\text {open,2-op }}
$$

sending α^{+}and α^{-}respectively to

$$
\begin{aligned}
\operatorname{VinBun}_{G, \geq C_{P}} & \leftarrow Y_{\mathrm{rel}}^{P} \rightarrow H_{M, G-\mathrm{pos}}, \\
H_{M, G-\mathrm{pos}} & \leftarrow \mathrm{dfstr} \operatorname{VinBun}_{G, C_{P}} \rightarrow \operatorname{VinBun}_{G, \geq C_{P}} .
\end{aligned}
$$

Also, Θ is strict at the composition $\alpha^{+} \circ \alpha^{-}$.
As before, we can restrict to each connected component $H_{M, G-\operatorname{pos}}^{\lambda, \mu}$ of $H_{M, G \text { - pos }}^{\lambda, \mu}$ and obtain a Drinfeld preinput

$$
\Theta_{\lambda, \mu}: \mathbf{P}_{\mathbb{A}^{1}} \rightarrow \operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\text {safe,safe }}^{\text {open, } 2 \text {-op }}
$$

In fact, the right arms of the relevant correspondences are schematic.
Also, by taking quotients for the \mathbb{G}_{m}-actions, we can obtain a Drinfeld input sending α^{+}and α^{-}respectively to

$$
\begin{aligned}
\operatorname{VinBun}_{G, \geq C_{P}} / \mathbb{G}_{m} & \leftarrow Y_{\mathrm{rel}}^{P, \lambda, \mu} / \mathbb{G}_{m} \rightarrow H_{M, G-\mathrm{pos}}^{\lambda, \mu} / \mathbb{G}_{m} \\
H_{M, G-\mathrm{pos}}^{\lambda, \mu} / \mathbb{G}_{m} & \leftarrow \mathrm{dfstr} \operatorname{VinBun}_{G, C_{P}}^{\lambda, \mu} / \mathbb{G}_{m} \rightarrow \operatorname{VinBun}_{G, \geq C_{P}} / \mathbb{G}_{m} .
\end{aligned}
$$

By Lemma 6.2.4 we see that the above \mathbb{G}_{m}-action on $\operatorname{VinBun}_{G, \geq C_{P}}$ can be obtained from the Z_{M}-actions by restriction along $2 \gamma: \mathbb{G}_{m} \rightarrow Z_{M}$. Hence Theorem 3.2.8 implies $\mathfrak{q}_{P, \text { Vin }, *}^{+} \circ \mathfrak{p}_{P, \text { Vin }}^{+,!}$is left adjoint to

$$
\prod_{\lambda, \mu} \mathfrak{p}_{P, \text { Vin }, *}^{-, \lambda, \mu} \circ \mathfrak{q}_{P, \text { Vin }}^{-, \lambda, \mu,!} .
$$

Note that the above functor is also the right adjoint of $\mathfrak{q}_{P, \text { Vin },!}^{-} \circ \mathfrak{p}_{P, \text { Vin }}^{-, *}$. Hence we obtain

$$
\mathfrak{q}_{P, \text { Vin }, *}^{+} \circ \mathfrak{p}_{P, \text { Vin }}^{+,!} \simeq \mathfrak{q}_{P, \text { Vin },!}^{-} \circ \mathfrak{p}_{P, \text { Vin }}^{-, *}
$$

The equivalence $\mathfrak{q}_{P, \mathrm{Vin}, *}^{-} \circ \mathfrak{p}_{P, \mathrm{Vin}}^{-,!} \simeq \mathfrak{q}_{P, \mathrm{Vin},!}^{+} \circ \mathfrak{p}_{P, \mathrm{Vin}}^{+, *}$ can be obtained by exchanging the roles of α^{+}and α^{-}.

Fact 6.2.2. For a diagram

$$
\left(H_{1} \curvearrowright Y_{1}\right)_{/ S_{1}} \rightarrow\left(H_{2} \curvearrowright Y_{2}\right)_{/ S_{2}} \leftarrow\left(H_{3} \curvearrowright Y_{3}\right)_{/ S_{3}}
$$

in $\left(\operatorname{ActSch}_{\mathrm{ft}}^{\mathrm{aff}}\right)_{\text {rel }}$, if H_{1}, H_{2}, H_{3} and $H_{1} \times_{H_{2}} H_{3}$ are all flat over their base schemes, then the following square is Cartesian

Lemma 6.2.3. Consider the actions

$$
\begin{gathered}
T_{\text {ad }} \frown \operatorname{Vin}_{G}, t \cdot x:=\mathfrak{s}(t) \cdot x \cdot \mathfrak{s}(t), \\
T_{\text {ad }} \curvearrowright\left(G \times \operatorname{Vin}_{G} \times G\right), t \cdot\left(g_{1}, x, g_{2}\right):=\left(\operatorname{Ad}_{t^{-1}}\left(g_{1}\right), \mathfrak{s}(t) \cdot x \cdot \mathfrak{s}(t), \operatorname{Ad}_{t}\left(g_{2}\right)\right) .
\end{gathered}
$$

The map

$$
G \times \operatorname{Vin}_{G} \times G \rightarrow \operatorname{Vin}_{G},\left(g_{1}, x, g_{2}\right) \mapsto g_{1} \cdot x \cdot g_{2}^{-1}
$$

is equivariant for these actions.
Proof. We only need to prove the lemma after restricting to the subgroup of invertible elements in Vin_{G}, which is given by $G_{\text {enh }}:=(G \times T) / Z_{G}$. Then we are done by a direct calculation. (Recall that the canonical section $T / Z_{G} \rightarrow(G \times T) / Z_{G}$ is given by $t \mapsto\left(t^{-1}, t\right)$.)
Lemma 6.2.4. Consider the following two T-actions on $G \backslash \operatorname{Vin}_{G} / G$:
(i) The action provided by Lemma 6.2 .3 via the homomorphism $T \rightarrow T_{\text {ad }}$.
(ii) The one obtained from the T-action on Vin_{G}, which commutes with the $(G \times G)$-action.
The action in (i) is isomorphic to the square of the action in (ii).
Proof. Recall that the subgroup of invertible elements in Vin_{G} is isomorphic to $G_{\text {enh }}:=(G \times T) / Z_{G}$. We have a short exact sequence $1 \rightarrow G \rightarrow G_{\text {enh }} \rightarrow T_{\mathrm{ad}} \rightarrow 1$. The canonical section $\mathfrak{s}: T_{\text {ad }}^{+} \rightarrow \operatorname{Vin}_{G}$ provides a splitting to the above sequence. Explicitly, this splitting is given by $t \mapsto\left(t^{-1}, t\right)$. Note that the corresponding T_{ad} on G is the inverse of the usual adjoint action.

Consider the sequence:

$$
1 \rightarrow G \times G \rightarrow G_{\mathrm{enh}} \times G_{\mathrm{enh}} \rightarrow T_{\mathrm{ad}} \times T_{\mathrm{ad}} \rightarrow 1
$$

Recall that the $(G \times G)$-action on Vin_{G} is defined to be the restriction of the $\left(G_{\text {enh }} \times G_{\text {enh }}\right)$-action on Vin_{G}. Hence the quotient stack $G \backslash \operatorname{Vin}_{G} / G$ inherits a ($T_{\text {ad }} \times T_{\text {ad }}$)-action. By the last paragraph, the action in (i) is obtained from this ($T_{\mathrm{ad}} \times T_{\mathrm{ad}}$)-action by restriction along the homomorphism

$$
\begin{equation*}
a: T \rightarrow T_{\mathrm{ad}} \times T_{\mathrm{ad}}, t \mapsto\left(t, t^{-1}\right) \tag{6.6}
\end{equation*}
$$

On the other hand, consider the center $Z\left(G_{\text {enh }}\right) \times Z\left(G_{\text {enh }}\right)$ of $G_{\text {enh }} \times G_{\text {enh }}$. Then $G_{\text {enh }} \times G_{\text {enh }}$-action on Vin_{G} induces a $Z\left(G_{\text {enh }}\right) \times Z\left(G_{\text {enh }}\right)$-action on $G \backslash \operatorname{Vin}_{G} / G$. By construction, this action factors through the homomorphism

$$
q: Z\left(G_{\mathrm{enh}}\right) \times Z\left(G_{\mathrm{enh}}\right) \rightarrow Z\left(G_{\mathrm{enh}}\right),\left(s_{1}, s_{2}\right) \mapsto s_{1} s_{2}^{-1}
$$

In summary, we obtain compatible actions on $G \backslash \operatorname{Vin}_{G} / G$ by

$$
Z\left(G_{\mathrm{enh}}\right) \stackrel{q}{\leftarrow} Z\left(G_{\mathrm{enh}}\right) \times Z\left(G_{\mathrm{enh}}\right) \xrightarrow{p} T_{\mathrm{ad}} \times T_{\mathrm{ad}},
$$

where p is the composition $Z\left(G_{\text {enh }}\right) \times Z\left(G_{\text {enh }}\right) \rightarrow G_{\text {enh }} \times G_{\text {enh }} \rightarrow T_{\text {ad }} \times T_{\text {ad }}$.
Recall that the homomorphism $T \rightarrow(G \times T) / Z_{G}, t \mapsto(1, t)$ provides an isomorphism between $T \simeq Z\left(G_{\text {enh }}\right)$ and the T-action on Vin_{G} is defined by using this identification. Hence the square of the action in (ii) can be obtained from the $Z\left(G_{\text {enh }}\right) \times Z\left(G_{\text {enh }}\right)$-action via the homomorphism

$$
T \simeq Z\left(G_{\text {enh }}\right) \xrightarrow{s \mapsto\left(s, s^{-1}\right)} Z\left(G_{\text {enh }}\right) \times Z\left(G_{\text {enh }}\right)
$$

(because its composition with q is the square map). Then we are done because the composition of this map by p is equal to a.

Appendix A. Theory of D-modules

We use the theory of 2-categories of correspondences developed in GR17, Part III] to encode the theory of D-modules. We will use two types of this theory:

- We study all the D-modules and mainly work with the right (or standard) functors, i.e., !-pullbacks and *-pushforwards. See \$A.1.1
- We study ind-holonomic D-modules and mainly work with the left functors, i.e. *-pullbacks and !-pushforwards. See \$A.1.2,
A.1.1. Standard functors. Consider the (3,2)-category

$$
\operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\mathrm{QCAD}, \mathrm{all}}^{\text {open }}
$$

defined as follows:

- Its objects are lft prestacks;
- The (2,1)-category $\operatorname{Maps}_{\text {Corr }}\left(Y_{1}, Y_{2}\right)$ is the 1-full subcategory of $\left(\text { PreStk }_{1 \mathrm{ft}}\right)_{/ Y_{1} \times Y_{2}}$ where:
- we restrict to those objects $Y_{2} \leftarrow Z \rightarrow Y_{1}$ such that $Z \rightarrow Y_{2}$ is $Q C A D$;
- we restrict to those morphisms $Z_{1} \rightarrow Z_{2}$ in $\left(\operatorname{PreStk}_{\mathrm{ft}}\right)_{/ Y_{1} \times Y_{2}}$ that are schematic open embeddings;
- the composition functor

$$
\begin{gathered}
\operatorname{Maps}_{\mathbf{C o r r}}\left(Y_{1}, Y_{2}\right) \times \operatorname{Maps}_{\mathbf{C o r r}}\left(Y_{2}, Y_{3}\right) \rightarrow \operatorname{Maps}_{\mathbf{C o r r}}\left(Y_{1}, Y_{3}\right) \\
\text { sends } Y_{2} \leftarrow U \rightarrow Y_{1} \text { and } Y_{3} \leftarrow V \rightarrow Y_{2} \text { to } \\
Y_{3} \leftarrow V \underset{Y_{2}}{\times} U \rightarrow Y_{1} .
\end{gathered}
$$

There exist: 45 a canonical functor

$$
\begin{align*}
& \operatorname{Dmod}^{\mathbf{A},!}: \operatorname{Corr}\left(\text { PreStk }_{\text {lft }}\right)_{\text {QCAD }, \text { all }}^{\text {open,2-op }} \rightarrow \text { DGCat }_{\text {cont }} ; \tag{A.1}\\
& Y \mapsto \mathrm{D}(Y),\left(Y_{2} \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y_{1}\right) \mapsto\left(f_{\mathbf{\Delta}} \circ g^{!}: \mathrm{D}\left(Y_{1}\right) \rightarrow \mathrm{D}\left(Y_{2}\right)\right) .
\end{align*}
$$

The content of the claim is:

- for any lft prestack Y, there is a DG-category $\mathrm{D}(Y)$;
- for any morphism $f: Y_{1} \rightarrow Y_{2}$, there is a !-pullback functor $f^{!}$;
- for any QCAD morphism $f: Y_{1} \rightarrow Y_{2}$, there is a renormalized pushforward functor f_{Δ} defined in DG13;
- there are base-change isomorphisms for these !-pullback and $\boldsymbol{\triangle}$-pushforward functors;

[^30]- for any schematic open embedding $f: Y_{1} \rightarrow Y_{2}$, there is an adjoint pair $\left(f^{!}, f_{\mathbf{A}}\right)$;
- there are certain higher compatibilities for the above data.

As shown in loc. cit., for a safe map $f: Y_{1} \rightarrow Y_{2}$, the renormalized pushforward functor $f_{\mathbf{\Delta}}$ can be identified with the usual de-Rham pushforward functor f_{*}. Therefore we keep the notation f_{*} and only use $f_{\mathbf{\Delta}}$ for non-safe map f.
A.1.2. Holonomic D-modules. For any finite type affine scheme $S \in \operatorname{Sch}_{\mathrm{ft}}^{\mathrm{aff}}$, we write $\mathrm{D}_{\text {indhol }}(S)$ for the full subcategory of $\mathrm{D}(S)$ generated by holonomic objects (under extensions and colimits).

For any lft prestack Y, we write $\mathrm{D}_{\text {indhol }}(Y)$ for the full subcategory of $\mathrm{D}(Y)$ containing objects \mathcal{F} such that $f^{!}(\mathcal{F}) \in \mathrm{D}_{\text {indhol }}(S)$ for any map $f: S \rightarrow Y$ with $S \in \operatorname{Sch}_{\mathrm{ft}}^{\mathrm{aff}}$. Equivalently, we define

$$
\mathrm{D}_{\text {indhol }}(Y):=\lim _{S \in\left(\text { AffSch }_{\mathrm{ft}}\right)_{/ Y}} \mathrm{D}_{\text {indhol }}(S),
$$

with the connecting functors given by !-pullbacks. An object in $\mathrm{D}_{\text {indhol }}(Y)$ is called an ind-holonomic object in $\mathrm{D}(Y)$.

The following results are either well-known or formal ${ }^{46}$
(1) For any map $f: Y_{1} \rightarrow Y_{2}$ between lft prestacks, the functor $f^{!}$preserves ind-holonomic objects. Also, the partially defined left adjoint $f_{!}$of $f^{!}$is well-defined on $\mathrm{D}_{\text {indhol }}\left(Y_{1}\right)$ and sends it into $\mathrm{D}_{\text {indhol }}\left(Y_{2}\right)$. Hence we have a functor

$$
\begin{equation*}
\mathrm{D}_{\text {indhol }}: \text { PreStk }_{\mathrm{lft}} \rightarrow \text { DGCat } \tag{A.2}
\end{equation*}
$$

sending morphisms to !-pushforward functors.
(2) For any lft prestack Y, we have an equivalence

$$
\mathrm{D}_{\text {indhol }}(Y):=\underset{S \in\left(\text { AffSch }_{\mathrm{ft}}\right)_{/ Y}}{\operatorname{colim}_{\text {indhol }}} \mathrm{D}_{\text {ind }}(S),
$$

with the connecting functors given by !-pushforwards. In particular, $\mathrm{D}_{\text {indhol }}(Y)$ is compactly generated by objects of the form $g_{!}(\mathcal{F})$, where $g: S \rightarrow Y$ is an object in $\left(\text { AffSch }_{\mathrm{ft}}\right)_{/ Y}$ and \mathcal{F} is a compact object in $\mathrm{D}_{\text {indhol }}(S)$.
(3) For any quasi-compact schematic map $f: Y_{1} \rightarrow Y_{2}$ between lft prestacks, the functor f_{*} preserves ind-holonomic objects. Also, the partially defined left adjoint f^{*} of f_{*} is well-defined on $\mathrm{D}_{\text {indhol }}\left(Y_{2}\right)$ and sends it into $\mathrm{D}_{\text {indhol }}\left(Y_{1}\right)$.
(4) For any lft algebraic stacks, there is an equivalence

$$
\mathrm{D}_{\text {indhol }}(Y):=\lim _{S \in\left(\text { AffSch }_{\text {ft }}\right) / Y} \mathrm{D}_{\text {indhol }}(S)
$$

with the connecting functors given by *-pullbacks. This is implicit in DG13, §6.2.1-6.2.2].
(5) For any map $f: Y_{1} \rightarrow Y_{2}$ between lft algebraic stacks, there is a functor

$$
f^{*}: \mathrm{D}_{\text {indhol }}\left(Y_{2}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{1}\right)
$$

[^31]uniquely characterized by its compatibility with (4). Moreover, there exists a functor
\[

$$
\begin{align*}
& \operatorname{Dmod}_{\text {indhol }}^{!, *}: \operatorname{Corr}\left(\text { AlgStk }_{\text {lft }}\right)_{\text {all, all }} \rightarrow \mathrm{DGCat}_{\text {cont }}, Y \mapsto \mathrm{D}_{\text {indhol }}(Y), \tag{A.3}\\
& \quad\left(Y_{2} \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y_{1}\right) \mapsto\left(f_{!} \circ g^{*}: \mathrm{D}_{\text {indhol }}\left(Y_{1}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{2}\right)\right) .
\end{align*}
$$
\]

We also have its $(\infty, 2)$-categorical enrichment

$$
\operatorname{Dmod}_{\text {indhol }}^{1, *}: \operatorname{Corr}\left(\operatorname{AlgStk}_{\mathrm{lft}}\right)_{\text {all, all }}^{\text {open }} \rightarrow \mathbf{D G C a t}_{\text {cont }}
$$

obtained by using the "no cost" extension in GR17, Chapter 7, §4].
(6) For any stacky map $f: Y_{1} \rightarrow Y_{2}$ between lft prestacks, (2) and (5) imply there is a functor $f^{*}: \mathrm{D}_{\text {indhol }}\left(Y_{2}\right) \rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{1}\right)$ equipped with base-change isomorphisms against !-pushforwards. In fact, by left Kan extension along

$$
\operatorname{Corr}\left(\mathrm{AlgStk}_{\mathrm{lft}}\right)_{\mathrm{all}, \mathrm{all}} \rightarrow \operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\text {all,Stacky }}
$$

we obtain from (A.3) a functor

$$
\operatorname{Dmod}_{\text {indhol }}^{!, *}: \operatorname{Corr}\left(\text { PreStk }_{\text {lft }}\right)_{\text {all,Stacky }} \rightarrow \text { DGCat }_{\text {cont }} .
$$

It follows from (2) that its restriction on $\operatorname{PreStk}_{\mathrm{lft}} \simeq \operatorname{Corr}\left(\operatorname{PreStk}_{\mathrm{lft}}\right)_{\text {all, iso }}$ can be identified with (A.2). We also have its "no cost" extension

$$
\begin{equation*}
\operatorname{Dmod}_{\text {indhol }}^{!, *}: \operatorname{Corr}\left(\text { PreStk }_{\mathrm{lft}}\right)_{\text {all,Stacky }}^{\text {open }} \rightarrow \text { DGCat }_{\text {cont }} . \tag{A.5}
\end{equation*}
$$

Appendix B. Well-definedness results in Gai15

Lemma B.1.1. The category $\mathbf{I}(G, P)$ is compactly generated by the image of compact objects under the functor $\iota_{M,!}: \mathrm{D}\left(\operatorname{Bun}_{M}\right) \rightarrow \mathbf{I}(G, P)$. Also, the fully faithful functor $\mathbf{I}(G, P) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }}\right)$ preserves compact objects.

Proof. Since $\iota_{M}^{!}$is conservative, the image of its left adjoint $\iota_{M,!}$ generates $\mathbf{I}(G, P)$. Hence the first claim follows from compact generation of $\mathrm{D}\left(\operatorname{Bun}_{M}\right)$. The second claim follows from the fact that $\iota_{P,!} \circ \mathfrak{q}_{P}^{*}$ preserves compact objects.
Remark B.1.2. Hence $\mathbf{I}(G, P)$ is compactly generated because so is $\mathrm{D}\left(\operatorname{Bun}_{M}\right)$ (see DG15). Note that $\mathbf{I}(G, P) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{G}^{P-\text { gen }}\right)$ preserves compact objects because so is $\iota_{P,!} \circ \mathfrak{q}_{P}^{*}$.
B.1.3. Proof of Proposition 0.2.7. Let $\widetilde{\operatorname{Bun}}_{P}$ be the Drinfeld's compactification constructed in BG02. Recall it is defined as

$$
\widetilde{\operatorname{Bun}}_{P}:=\operatorname{Maps}_{\mathrm{gen}}(G \backslash \overline{G / U} / M \supset G \backslash(G / U) / M),
$$

where $\overline{G / U}$ is the affine closure of G / U. By [Bar14, Remark 4.1.9], the map $\operatorname{Bun}_{P} \rightarrow$ $\operatorname{Bun}_{G}^{P \text {-gen }}$ factors as

$$
\operatorname{Bun}_{P} \xrightarrow{j} \widetilde{\operatorname{Bun}}_{P} \xrightarrow{\tau_{P}} \operatorname{Bun}_{G}^{P-\text { gen }},
$$

and the restriction of the map $\widetilde{\iota}_{P}$ on each connected component of $\widetilde{\operatorname{Bun}}_{P}$ is proper. Also, the map $\widetilde{\iota}_{P}$ is obtained by applying $\operatorname{Maps}_{\mathrm{gen}}(X,-)$ to the morphism

$$
(G \backslash \overline{G / U} / M \supset G \backslash(G / U) / M) \rightarrow(\mathbb{B} G \leftarrow \mathbb{B} P) .
$$

The above properness implies $\tau_{P,!}$ is well-defined. On the other hand, it was proved in [DG16, §1.1.6] that the composition

$$
\mathrm{D}\left(\widetilde{\operatorname{Bun}}_{P}\right) \xrightarrow{j^{!}} \mathrm{D}\left(\operatorname{Bun}_{P}\right) \xrightarrow{\mathfrak{q}_{P, *}} \mathrm{D}\left(\operatorname{Bun}_{M}\right)
$$

has a left adjoint isomorphic to

$$
\begin{equation*}
j!\circ \mathfrak{q}_{P}^{*}(-) \simeq j!\left(k_{\operatorname{Bun}_{P}}\right) \stackrel{!}{\otimes} \mathfrak{q}_{P}^{\prime}(-)[\text { shift }], \tag{B.1}
\end{equation*}
$$

where [shift] is a cohomological shift locally constant on Bun $_{M}$. Combining the above two results, we obtain the well-definedness of $\iota_{P,!} \circ \mathfrak{q}_{P}^{*}$.

To prove the second claim, we need to calculate $\iota_{P}^{!} \circ \iota_{P,!} \circ \mathfrak{q}_{P}^{*}$. Consider the diagram

$$
\begin{array}{r}
\operatorname{Bun}_{P} \times{ }_{\mathrm{Bun}_{G}^{P-\text { gen }}}^{\widetilde{\operatorname{Bun}}_{P}} \xrightarrow{\mathrm{pr}_{1}} \operatorname{Bun}_{P} \tag{B.2}\\
\underset{\mathrm{Bun}_{P}}{\mathrm{pr}_{2}} \quad \underset{\tau_{P}}{\downarrow^{\iota_{P}}} \\
\operatorname{Bun}_{G}^{P \text {-gen }} .
\end{array}
$$

By the base-change isomorphism, we have

$$
\iota_{P}^{!} \circ \widetilde{\tau}_{P,!} \simeq \operatorname{pr}_{1,!} \circ \mathrm{pr}_{2}^{!} .
$$

A direct calculation shows

$$
\operatorname{Bun}_{P} \underset{\operatorname{Bun}_{G}^{P-\text { gen }}}{\times} \widetilde{\operatorname{Bun}}_{P} \simeq \operatorname{Maps}_{\text {gen }}(X, P \backslash \overline{G / U} / M \leftarrow P \backslash(P / U) / M) .
$$

Let \bar{M} be the closure of P / U in $\overline{G / U}$, then we have
$\operatorname{Maps}_{\text {gen }}(X, P \backslash \overline{G / U} / M \leftarrow P \backslash(P / U) / M) \simeq \operatorname{Maps}_{\text {gen }}(X, P \backslash \bar{M} / M \leftarrow P \backslash(P / U) / M)$.
Now the RHS is isomorphic to $\operatorname{Bun}_{P} \times_{\operatorname{Bun}_{M}} H_{M, G \text {-pos }}$, where

$$
H_{M, G-\text { pos }}:=\operatorname{Maps}_{\mathrm{gen}}(X, M \backslash \bar{M} / M \supset M \backslash M / M)
$$

is the G-positive Hecke stack for M-torsors (see [Sch16, §3.1.5]). Recall that the map

$$
i: \operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\operatorname{pos}} \rightarrow \widetilde{\operatorname{Bun}}_{P}
$$

is bijective on geometric points, and the connected components of the source provide a stratification on $\widetilde{\mathrm{Bun}}_{P}$ (known as the defect stratification, see [BG02]).

Now the diagram B. 2 induces

We obtain

$$
\iota_{P}^{!} \circ \iota_{P,!} \circ \mathfrak{q}_{P}^{*} \simeq \iota_{P}^{!} \circ \widetilde{\iota}_{P,!} \circ j_{!} \circ \mathfrak{q}_{P}^{*} \simeq \operatorname{pr}_{1,!} \circ \dot{j}^{!} \circ j_{!} \circ \mathfrak{q}_{P}^{*},
$$

where the last isomorphism is due to the proper base-change isomorphism. Hence it remains to show the functor $i^{!} \circ j!\circ \mathfrak{q}_{P}^{*}$ factors through

$$
\begin{equation*}
\mathrm{D}\left(H_{M, G-\text { pos }}\right) \xrightarrow{*-\text { pull }} \mathrm{D}\left(\operatorname{Bun}_{P} \underset{\operatorname{Bun}_{M}}{\times} H_{M, G-\text { pos }}\right) . \tag{B.3}
\end{equation*}
$$

By (B.1), we only need to show $i^{!} \circ j_{!}\left(k_{\mathrm{Bun}_{P}}\right)$ is contained in the image of (B.3)). However, this is well-known and can be proved using the Hecke actions in BG02, §6.2].
B.1.4. Proof of Proposition 0.2.10, Let M (resp. L) be the Levi quotient group of $P($ resp. $Q)$. Let P_{L} be the image of P in L, which is a parabolic subgroup of L. Consider the correspondence

$$
\operatorname{Bun}_{L} \leftarrow \operatorname{Bun}_{P_{L}} \rightarrow \operatorname{Bun}_{M}
$$

and the corresponding geometric Eisenstein series functor

$$
\operatorname{Eis}_{P_{L},!}: \mathrm{D}\left(\operatorname{Bun}_{M}\right) \rightarrow \mathrm{D}\left(\operatorname{Bun}_{L}\right)
$$

defined in BG02]. Recall that it is defined as the *-pull-!-push along the above correspondence.

It is easy to check the compositior ${ }^{47}$ of the correspondences

$$
\begin{gathered}
\operatorname{Bun}_{L} \leftarrow \operatorname{Bun}_{P_{L}} \rightarrow \operatorname{Bun}_{M}, \\
\operatorname{Bun}_{G}^{Q-\operatorname{gen}} \stackrel{\iota_{Q}}{\leftarrow} \operatorname{Bun}_{Q} \xrightarrow{\mathfrak{q}_{Q}} \operatorname{Bun}_{L}
\end{gathered}
$$

is isomorphic to the composition of the correspondences

$$
\begin{aligned}
& \operatorname{Bun}_{G}^{P-\text { gen }} \stackrel{\iota_{P}}{\longleftrightarrow} \operatorname{Bun}_{P} \xrightarrow{\mathfrak{q}_{P}} \operatorname{Bun}_{M}, \\
& \operatorname{Bun}_{G}^{Q \text {-gen }} \stackrel{\mathfrak{p}_{P \rightarrow Q}^{\text {enh }}}{\longleftrightarrow} \operatorname{Bun}_{G}^{P \text {-gen }} \stackrel{=}{\longrightarrow} \operatorname{Bun}_{G}^{P \text {-gen }} .
\end{aligned}
$$

Hence by the base-change isomorphisms, we have

$$
\begin{equation*}
\mathfrak{p}_{P \rightarrow Q,!}^{\mathrm{enh}} \circ \iota_{P,!} \circ \mathfrak{q}_{P}^{*} \simeq \iota_{Q,!} \circ \mathfrak{q}_{Q}^{*} \circ \operatorname{Eis}_{P_{L},!} \tag{B.4}
\end{equation*}
$$

In particular, the LHS is well-defined. Hence by Lemma B.1.1, $\mathfrak{p}_{P \rightarrow Q,!}^{\mathrm{enh}}$ is welldefined. This proves (1).

To prove (2), since $\mathbf{I}(G, P)$ is compactly generated (see Lemma B.1.1), we only need to prove Eis ${ }_{P \rightarrow Q}^{\mathrm{enh}}$ preserves compact objects. By LemmaB.1.1 again, it suffices to prove $\operatorname{Eis}_{P \rightarrow Q}^{\mathrm{enh}}{ }^{\circ} \iota_{M,!}$ preserves compact objects. By (B.4), we have

$$
\operatorname{Eis}_{P \rightarrow Q}^{\operatorname{enh}} \circ \iota_{M,!} \simeq \iota_{L,!} \circ \operatorname{Eis}_{P_{L},!}
$$

Then we are done because both $\iota_{L,!}$ and $\operatorname{Eis}_{P_{L},!}$ preserve compact objects.

Appendix C. D-modules on stacks stratified by power sets

We begin with Definition C.1.1.
Definition C.1.1. Let Y be an algebraic stack stratified by a power poset $P(I)$. We define

$$
\text { Funct }\left(P(I), \mathrm{D}_{\text {indhol }}(Y)\right)!\subset \operatorname{Funct}\left(P(I), \mathrm{D}_{\text {indhol }}(Y)\right)
$$

to be the full subcategory consisting of those functors $F: P(I) \rightarrow \mathrm{D}(Y)$ such that $F(J)$ is !-extended from the stratum Y_{J}.
Lemma C.1.2. Let Y be an algebraic stack stratified by a power poset $P(I)$. The functor

$$
\begin{aligned}
& \mathbf{C}_{Y}: \operatorname{Funct}(\left.P(I), \mathrm{D}_{\text {indhol }}(Y)\right)! \\
& F \rightarrow \mathrm{D}_{\text {indhol }}(Y), \\
& F \operatorname{coFib}(\underset{J \mp I}{\operatorname{colim}} F(J) \rightarrow F(I))
\end{aligned}
$$

is an equivalence. Also, its inverse sends an object $\mathcal{F} \in \mathrm{D}_{\text {indhol }}(Y)$ to a certain functor

$$
P(I) \rightarrow \mathrm{D}_{\text {indhol }}(Y), J \mapsto i_{J,!} \circ i_{J}^{*}(\mathcal{F})[|J|-|I|] .
$$

[^32]Proof. We first recall the following formal fact. Let [1] be the poset $\{0,1\}$ and I be an index category obtained by removing the final object from [1] ${ }^{r}(r \geq 1)$. Let C be any stable category. Suppose $F: I \rightarrow C$ is a functor such that $F(x) \simeq 0$ unless x is the initial object i_{0}. Then colim $F \simeq F\left(i_{0}\right)[r-1]$. This fact can be proven by induction on r.

It follows that

$$
i_{K}^{*}(\operatorname{coFib}(\underset{J \nsubseteq I}{\operatorname{colim}} F(J) \rightarrow F(I))) \simeq i_{K}^{*}(F(K))[|I|-|K|] .
$$

Hence the second claim follows from the first one.
It remains to show \mathbf{C}_{Y} is an equivalence.
The case $I=\{*\}$ is well-known. Namely, for any open substack $j: U \rightarrow Y$ and its complement $i: Z \rightarrow Y$, we have $j!\circ j^{!} \simeq \operatorname{Fib}\left(\mathbf{I d} \rightarrow i!\circ i^{*}\right)$ and therefore the two functors in the statement of lemma are inverse to each other.

The general case can be proved by induction as follows. Suppose $I=I^{\mathrm{b}} \bigsqcup\{a\}$ and I is non-empty. Note that apart from the embedding $P\left(I^{b}\right) \subset P(I)$, we also have a map

$$
P\left(I^{b}\right) \rightarrow P(I), J \mapsto J^{\sharp}:=J \bigsqcup\{a\} .
$$

The open substacks $\left\{U_{i}\right\}_{i \in I^{b}}$ provide a stratification of Y labelled by $P\left(I^{b}\right)$. We use the notation Z to denote the same stack Y equipped with this new stratification. For any $K \in P\left(I^{\mathrm{b}}\right)$, the stratum Z_{K} inherits a stratification by $P(\{a\})$. The stratum $\left(Z_{K}\right)_{\{a\}}$ labelled by $\{a\}$ is isomorphic to $Y_{K^{\sharp}}$ and the stratum $\left(Z_{K}\right)_{\{\varnothing\}}$ labelled by \varnothing is isomorphic to Y_{K}. Consider the functor

$$
A: \operatorname{Funct}\left(P(I), \mathrm{D}_{\text {indhol }}(Y)\right)!\rightarrow \operatorname{Funct}\left(P\left(I^{b}\right), \mathrm{D}_{\text {indhol }}(Z)\right)!, F \mapsto A(F),
$$

where $A(F)(K):=\operatorname{coFib}\left(F(K) \rightarrow F\left(K^{\sharp}\right)\right)$. Note that this is well-defined, i.e. $A(F)(K)$ is indeed a !-extension from Z_{K}. Moreover, A is an equivalence by the $I=\{*\}$ case of the lemma (applying to each Z_{K}).

Hence by induction hypothesis, $\mathbf{C}_{Z} \circ A$ is also an equivalence. It remains to show $\mathbf{C}_{Y} \simeq \mathbf{C}_{Z} \circ A$. Note that we have the following pushout diagram

which is obtained by writing the simplicial nerve of $P(I)-\{I\}$ as a pushout. By cofinality, the above diagram is equivalent to

Then we have

$$
\begin{aligned}
& \operatorname{coFib}(\underset{J \mp I}{\operatorname{colim}} F(J) \rightarrow F(I)) \\
& \simeq \operatorname{coFib}\left(\operatorname{coFib}\left(\underset{K q I^{b}}{\operatorname{colim}} F(K) \rightarrow \underset{K q I^{b}}{\operatorname{colim}} F\left(K^{\sharp}\right)\right) \rightarrow \operatorname{coFib}\left(F\left(I^{b}\right) \rightarrow F(I)\right)\right) \\
& \simeq \operatorname{coFib}\left(\operatorname{colim}_{K \not I^{b}}\left(\operatorname{coFib}\left(F(K) \rightarrow F\left(K^{\sharp}\right)\right)\right) \rightarrow \operatorname{coFib}\left(F\left(I^{b}\right) \rightarrow F(I)\right)\right) \\
& \simeq \operatorname{coFib}\left(\operatorname{colim}_{K q I^{b}} A(F)(K) \rightarrow A(F)\left(I^{b}\right)\right)
\end{aligned}
$$

as desired. This proves the claim.
Lemma C.1.2 implies
Corollary C.1.3. Let Y be an algebraic stack stratified by a power poset $P(I)$. The functor

$$
\mathbf{J}_{Y}: \operatorname{Funct}\left(P(I), \mathrm{D}_{\text {indhol }}(Y)\right)!\rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{I}\right), F \mapsto j_{I}^{*} \circ F(I)
$$

has a right adjoint sending an object $\mathcal{F} \in \mathrm{D}_{\text {indhol }}\left(Y_{I}\right)$ to a certain functor

$$
\mathbf{G}_{\mathcal{F}, Y}^{*}: P(I) \rightarrow \mathrm{D}_{\text {indhol }}(Y), J \mapsto i_{J,!} \circ i_{J}^{*} \circ j_{I, *}(\mathcal{F})[|J|-|I|] .
$$

Proof. Follows from the fact that $\mathbf{J}_{Y} \simeq j_{I}^{*} \circ \mathbf{C}_{Y}$.
Remark C.1.4. Note that the functor $\mathbf{G}_{\mathcal{F}, Y}^{*}$ sends the arrow $J \subset I$ to a morphism

$$
i_{J,!} \circ i_{J}^{*} \circ j_{I, *}(\mathcal{F})[|J|-|I|] \rightarrow i_{I,!}(\mathcal{F}) .
$$

Applying i_{J} to this map, we obtain a map

$$
i_{J}^{*} \circ j_{I, *}(\mathcal{F})[|J|-|I|] \rightarrow i_{J}^{!} \circ i_{I,!}(\mathcal{F}) .
$$

Note that this map is invertible if $|J|=|I|-1$, but not for general J.
Lemma C.1.5. Let Y be an algebraic stack stratified by a power poset $P(I)$ and $J \in P(I)$. Consider the maps

$$
Y_{I} \xrightarrow{j_{I, \geq J}} \rightarrow Y_{\geq J} \xrightarrow{j_{2 J}} Y .
$$

For any $\mathcal{F} \in \mathrm{D}_{\text {indhol }}\left(Y_{I}\right)$, we have

$$
\operatorname{coFib}\left(\operatorname{colim}_{J \subset K q I} \mathbf{G}_{\mathcal{F}, Y}^{*}(K) \rightarrow \mathbf{G}_{\mathcal{F}, Y}^{*}(I)\right) \simeq\left(j_{\geq J}\right)!\circ\left(j_{I, \geq J}\right)_{*}(\mathcal{F}) .
$$

Proof. The case $J=I$ follows from definition. Indeed, the LHS is given by

$$
\mathbf{C}_{Y} \circ\left(\mathbf{J}_{Y}\right)^{R} \simeq \mathbf{C}_{Y} \circ\left(j_{I}^{*} \circ \mathbf{C}_{Y}\right)^{R} \simeq\left(j_{I}^{*}\right)^{R} \simeq j_{I, *} .
$$

In the general case, note that both sides are contained in the image of the functor $\left(j_{\geq J}\right)$!. Hence we only need to show

$$
\operatorname{coFib}\left(\underset{J \subset K \mp I}{\operatorname{colim}} j_{\geq J}^{*} \circ \mathbf{G}_{\mathcal{F}, Y}^{*}(K) \rightarrow j_{\geq J}^{*} \circ \mathbf{G}_{\mathcal{F}, Y}^{*}(I)\right) \simeq\left(j_{I, \geq J}\right)_{*}(\mathcal{F}) .
$$

Consider the open substack $Y_{\geq J}$. It inherits a stratification by the poset $P(I-J)$ with $\left(Y_{\geq J}\right)_{K} \simeq Y_{J \sqcup K}$. Hence we also have a functor

$$
\mathbf{G}_{\mathcal{F}, Y_{2 J}}^{*}: P(I-J) \rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{\geq J}\right) .
$$

It follows from construction that this functor is isomorphic to

$$
P(I-J) \xrightarrow{-\sqcup J} P(I) \xrightarrow{\mathbf{G}_{\mathcal{F}, Y}^{*}} \rightarrow \mathrm{D}_{\text {indhol }}(Y) \xrightarrow{j_{\geq J}^{*}} \rightarrow \mathrm{D}_{\text {indhol }}\left(Y_{\geq J}\right) .
$$

Hence we only need to show

$$
\operatorname{coFib}\left(\underset{K q I-J}{\operatorname{colim}} \mathbf{G}_{\mathcal{F}, Y_{2},}^{*}(K) \rightarrow \mathbf{G}_{\mathcal{F}, Y_{2},}^{*}(I-J)\right) \simeq\left(j_{I, \geq J}\right)_{*}(\mathcal{F}) .
$$

In other words, we have reduced the lemma to the case $J=I$.

Appendix D. The group scheme \widetilde{G}

Consider the $(G \times G)$-action on Vin_{G}. Note that it preserves the fibers of $\operatorname{Vin}_{G} \rightarrow$ $T_{\text {ad }}^{+}$. We write \widetilde{G} for the corresponding stabilizer of the canonical section $\mathfrak{s}: T_{\text {ad }}^{+} \rightarrow$ Vin_{G}. In this appendix, we review some results about \widetilde{G}.

We begin by reviewing some facts:
Fact D.1.1. We have the following facts ${ }^{48}$
(1) \widetilde{G} is a closed subgroup of $G \times G \times T_{\text {ad }}^{+}$(relative to $T_{\text {ad }}^{+}$), whose fiber at C_{P} is

$$
\widetilde{G}_{C_{P}} \simeq P \underset{M}{\times} P^{-} .
$$

(2) By DG16, Corollary D.5.4], \widetilde{G} is smooth over T_{ad}^{+}, and we have

$$
\begin{equation*}
{ }_{0} \operatorname{Vin}_{G} \simeq\left(G \times G \times T_{\mathrm{ad}}^{+}\right) / \widetilde{G}, G \backslash_{0} \operatorname{Vin}_{G} / G \simeq \mathbb{B} \widetilde{G} \tag{D.1}
\end{equation*}
$$

where \mathbb{B} means taking relative classifying stack.
(3) By (2), the T-action on Vin_{G} (which commutes with the $G \times G$-action) induces a diagram between group actions:

$$
(\mathrm{pt} \triangleleft \mathbb{B} G \times \mathbb{B} G) \leftarrow(T \triangleleft \mathbb{B} \widetilde{G}) \rightarrow\left(T \triangleleft T_{\mathrm{ad}}^{+}\right)
$$

(4) \widetilde{G} contains the locally closed subscheme

$$
\Gamma: G \times T_{\mathrm{ad}} \rightarrow G \times G \times T_{\mathrm{ad}}^{+}, \quad(g, t) \mapsto\left(g, \operatorname{Ad}_{t}(g), t\right)
$$

(5) \widetilde{G} is preserved by the action

$$
\left(T_{\mathrm{ad}} \times T_{\mathrm{ad}}\right) \curvearrowright\left(G \times G \times T_{\mathrm{ad}}^{+}\right),\left(t_{1}, t_{2}\right) \cdot\left(g_{1}, g_{2}, s\right) \mapsto\left(\operatorname{Ad}_{t_{1}^{-1}}\left(g_{1}\right), \operatorname{Ad}_{t_{2}^{-1}}\left(g_{2}\right), t_{1} \cdot s \cdot t_{2}^{-1}\right) .
$$

Warning D.1.2. The T-action on Vin_{G} does not induce a T-action on \widetilde{G} because this action does not preserve the canonical section $\mathfrak{s}: T_{\mathrm{ad}}^{+} \rightarrow \widetilde{G}$.

Remark D.1.3. In the rest of this appendix, we prove some new results about \widetilde{G}. If we replace \widetilde{G} by the fibers of the map $\widetilde{G} \rightarrow T_{\text {ad }}^{+}$, then all these results become obvious because of the explicit description of the fibers $\widetilde{G}_{C_{P}}$ in Fact D.1.1(1). Hence we focus on how to make the arguments work in family (over T_{ad}^{+}).

The following result generalizes [DG16, Proposition D.6.4]:
Lemma D.1.4. \widetilde{G} is isomorphic to the closure of the locally closed embedding

$$
\Gamma: G \times T_{\mathrm{ad}} \rightarrow G \times G \times T_{\mathrm{ad}}^{+}, \quad(g, t) \mapsto\left(g, \operatorname{Ad}_{t}(g), t\right)
$$

Proof. Let $\bar{\Gamma}$ be the desired closure. Hence we obtain a closed embedding $\bar{\Gamma} \rightarrow \widetilde{G}$. Since \widetilde{G} is reduced, it remains to show $\bar{\Gamma} \rightarrow \widetilde{G}$ is surjective. Note that $\bar{\Gamma}$ is also preserved by the action in Fact D.1.1(5). Hence we only need to check the fiber of $\bar{\Gamma} \rightarrow \widetilde{G}$ at $C_{P} \in T_{\mathrm{ad}}^{+}$is surjective. Then we are done by DG16, Proposition D.6.4].

[^33]Lemma D.1.5. The closed subscheme

$$
\widetilde{G}_{\leq P}:=\widetilde{G} \times T_{T_{\mathrm{ad}}^{+}} T_{\mathrm{ad}, \leq P}^{+} \hookrightarrow G \times G \times T_{\mathrm{ad}, \leq P}^{+}
$$

is contained in $P \times P^{-} \times T_{\mathrm{ad}, \leq P}^{+}$.
Proof. Using the action in Fact D.1.1(5), we only need to show $\widetilde{G}_{C_{Q}}$ is contained in $P \times P^{-}$for any $Q \subset P$. But this is obvious.
Lemma D.1.6. We write $\widetilde{G}_{\geq C_{P}}:=\widetilde{G} \times_{T_{\text {ad }}^{+}} T_{\text {ad }, \geq C_{P}}^{+}$. We have:
(1) The closed subscheme

$$
P^{-} \underset{G}{\times} \widetilde{G}_{\geq C_{P}} \hookrightarrow P^{-} \times G \times T_{\mathrm{ad}, \geq C_{P}}^{+}
$$

is contained in $P^{-} \times P^{-} \times T_{\mathrm{ad}, \geq C_{P}}^{+}$.
(2) The composition

$$
\begin{equation*}
P_{G}^{-} \times \underset{G}{\widetilde{G}} \underset{T_{\text {ad }}^{+}}{\times} T_{\mathrm{ad}, \geq C_{P}}^{+} \rightarrow P^{-} \times P^{-} \times T_{\mathrm{ad}, \geq C_{P}}^{+} \xrightarrow{\mathrm{pr}_{23}} P^{-} \times T_{\mathrm{ad}, \geq C_{P}}^{+} \tag{D.2}
\end{equation*}
$$

is an isomorphism, where the first map is obtained by (1).
Warning D.1.7. The similar statement for pr_{13} is false.
Proof. We first prove (1). Using the action in Fact D.1.1(5), we only need to check the similar claim at any $C_{P^{\prime}} \in T_{\mathrm{ad}, \geq C_{P}}^{+}$. But this is obvious.

Similarly, it is easy to see (D.2) induces isomorphisms between fibers at any closed point of $T_{\text {ad, } \geq C_{P}}^{+}$. To prove (2), we only need to show $P^{-} \times{ }_{G} \widetilde{G} \times{ }_{T_{\text {ad }}^{+}} T_{\text {ad, } \geq C_{P}}^{+}$ is smooth over $T_{\mathrm{ad}, \geq C_{P}}^{+}$.

We claim $P^{-} \times G \times T_{\text {ad }, \geq C_{P}}^{+}$and $\widetilde{G}_{\geq C_{P}}$ are transversal in $G \times G \times T_{\text {add }, \geq C_{P}}^{+}$. Indeed, by the last paragraph, the dimension of any irreducible component of their intersection is at most $\operatorname{dim}\left(P^{-}\right)+\operatorname{dim}\left(T_{\text {ad }, \geq C_{P}}^{+}\right)$. But this number is equal to

$$
\operatorname{dim}\left(P^{-} \times G \times T_{\mathrm{ad}, \geq C_{P}}^{+}\right)+\operatorname{dim}\left(\widetilde{G}_{\geq C_{P}}\right)-\operatorname{dim}\left(G \times G \times T_{\mathrm{ad}, \geq C_{P}}^{+}\right) .
$$

This proves the transversity. In particular, we obtain that $P^{-} \times_{G} \widetilde{G} \times_{T_{\text {ad }}^{+}} T_{\text {ad, } \geq C_{P}}$ is smooth.

It remains to show $f: P^{-} \times{ }_{G} \widetilde{G} \times_{T_{\text {ad }}^{+}} T_{\text {ad }, \geq C_{P}}^{+} \rightarrow T_{\text {ad }, \geq C_{P}}^{+}$induces surjections between tangent spaces. Note that the fibers of this map are smooth and of dimension $\operatorname{dim}\left(P^{-}\right)$. Hence at any closed point x of the source, we have

$$
\operatorname{dim}\left(\operatorname{ker}\left(d f_{x}\right)\right)=\operatorname{dim}\left(P^{-}\right)=\operatorname{dim}\left(P_{G}^{-} \underset{G}{\widetilde{G}} \underset{T_{\mathrm{ad}}^{+}}{ } T_{\mathrm{ad}, \geq C_{P}}^{+}\right)-\operatorname{dim}\left(T_{\mathrm{ad}, \geq C_{P}}^{+}\right) .
$$

This implies $d f_{x}$ is surjective.
Lemma D.1.8. Consider the $\left(P^{-} \times G\right)$-action on $\operatorname{Vin}_{G, \geq C_{P}}$. Its stabilizer for the canonical section is $P^{-} \times{ }_{G} \widetilde{G}_{\geq C_{P}}$. Then the map

$$
\begin{equation*}
\left(P^{-} \times G \times T_{\mathrm{ad}, \geq C_{P}}^{+}\right) /\left(P_{G}^{-} \times \widetilde{G}_{\geq C_{P}}\right) \rightarrow{ }_{0} \operatorname{Vin}_{G, \geq C_{P}} \tag{D.3}
\end{equation*}
$$

induced by this action is an open embedding.
Proof. We claim the LHS is a smooth scheme. By Lemma D.1.6 there is an isomorphism

$$
\begin{equation*}
P^{-} \times \widetilde{G}_{Z C_{P}} \simeq P^{-} \times T_{\mathrm{ad}, \geq C_{P}}^{+} \tag{D.4}
\end{equation*}
$$

between group schemes over $T_{\text {ad }, \geq C_{P}}^{+}$. Moreover, the projection map $P^{-} \times G \times T_{\text {ad }, \geq C_{P}}^{+}$ $\rightarrow G \times T_{\mathrm{ad}, \geq C_{P}}^{+}$intertwines the actions of (D.4). Hence we obtain a map

$$
\left(P^{-} \times G \times T_{\mathrm{ad}, \geq C_{P}}^{+}\right) /\left(P_{G}^{-} \times \widetilde{G}_{\geq C_{P}}\right) \rightarrow\left(G \times T_{\mathrm{ad}, \geq C_{P}}^{+}\right) /\left(P^{-} \times T_{\mathrm{ad}, \geq C_{P}}^{+}\right) \simeq G / P^{-} \times T_{\mathrm{ad}, \geq C_{P}}^{+}
$$

Since $P^{-} \times G \times T_{\text {ad }, \geq C_{P}}^{+} \rightarrow G \times T_{\text {ad }, \geq C_{P}}^{+}$is affine and smooth, the above map is also affine and smooth. This proves the claim on smoothness. Then the lemma follows from the fact that both sides of (D.3) have the same dimension and that this map is injective on the level of closed points.

Corollary D.1.9. The map

$$
\mathbb{B}\left(P^{-} \underset{G}{\times} \widetilde{G}_{\geq C_{P}}\right) \rightarrow \mathbb{B} P_{\mathbb{B} G}^{-} \underset{\mathbb{B}}{\times \widetilde{G}_{\geq C_{P}}}
$$

is a schematic open embedding
Proof. Follows from Lemma D.1.8 by taking quotients for the ($P^{-} \times G$)-actions.

Acknowledgments

I want to thank my advisor Dennis Gaitsgory for teaching me all the important concepts in this paper, such as the pseudo-identity functor, the Vinbergdegeneration, Braden's theorem, etc. I am also grateful for his sharing of notes on the category $\mathbf{I}(G, P)$ and his comments on the first draft of this paper.

I am very grateful to the anonymous referees for their numerous comments and suggestions.

References

[Alv79] Dean Alvis, The duality operation in the character ring of a finite Chevalley group, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 907-911, DOI 10.1090/S0273-0979-1979-14690-1. MR546315
[Bar14] Jonathan Barlev, D-modules on spaces of rational maps, Compos. Math. 150 (2014), no. 5, 835-876, DOI 10.1112/S0010437X13007707. MR3209797
[Ber21] Dario Beraldo, Deligne-Lusztig duality on the stack of local systems, J. Reine Angew. Math. 778 (2021), 31-63, DOI 10.1515/crelle-2021-0030. MR 4308619
[BBK18] Joseph Bernstein, Roman Bezrukavnikov, and David Kazhdan, Deligne-Lusztig duality and wonderful compactification, Selecta Math. (N.S.) 24 (2018), no. 1, 7-20, DOI 10.1007/s00029-018-0391-5. MR3769724
[BYD21] Roman Bezrukavnikov and Alexander Yom Din, On parabolic restriction of perverse sheaves, Publ. Res. Inst. Math. Sci. 57 (2021), no. 3-4, 1089-1107, DOI 10.4171/prims/57-3-12. MR4322008
[Bra03] Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209-216, DOI 10.1007/s00031-003-0606-4. MR 1996415
[BG02] A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287-384, DOI 10.1007/s00222-002-0237-8. MR1933587
[Che23] Lin Chen, Nearby cycles on Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian and long intertwining functor, Duke Math. J. 172 (2023), no. 3, 447-543, DOI 10.1215/00127094-2022-0042. MR4548416
[Che21] Lin Chen, Nearby cycles and dualities in geometric Langlands program, Ph.D. Thesis, 2021.
[Cur80] Charles W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), no. 2, 320-332, DOI 10.1016/0021-8693(80)90185-4. MR563231
[DL82] Pierre Deligne and George Lusztig, Duality for representations of a reductive group over a finite field, J. Algebra 74 (1982), no. 1, 284-291, DOI 10.1016/0021-8693(82)90023-0. MR644236
[Dri13] Vladimir Drinfeld, On algebraic spaces with an action of G_{m}, Preprint, arXiv:1308.2604 (2013).
[DG13] Vladimir Drinfeld and Dennis Gaitsgory, On some finiteness questions for algebraic stacks, Geom. Funct. Anal. 23 (2013), no. 1, 149-294, DOI 10.1007/s00039-012-0204-5. MR3037900
[DG14] Vladimir Drinfeld and Dennis Gaitsgory, On a theorem of Braden, Transformation groups 19 (2014), no. 2, 313-358.
[DG15] V. Drinfeld and D. Gaitsgory, Compact generation of the category of D-modules on the stack of G-bundles on a curve, Camb. J. Math. 3 (2015), no. 1-2, 19-125, DOI 10.4310/CJM.2015.v3.n1.a2. MR3356356
[DG16] Vladimir Drinfeld and Dennis Gaitsgory, Geometric constant term functor(s), Selecta Math. (N.S.) 22 (2016), no. 4, 1881-1951, DOI 10.1007/s00029-016-0269-3. MR3573949
[DW16] Vladimir Drinfeld and Jonathan Wang, On a strange invariant bilinear form on the space of automorphic forms, Selecta Math. (N.S.) 22 (2016), no. 4, 1825-1880, DOI 10.1007/s00029-016-0262-x. MR3573948
[FKM20] Michael Finkelberg, Vasily Krylov, and Ivan Mirković, Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian and geometric Satake equivalence, J. Topol. 13 (2020), no. 2, $683-729$, DOI 10.1112/topo.12143. With an appendix by Dennis Gaitsgory. MR 4092778
[Gai11] Dennis Gaitsgory, What acts on geometric Eisenstein series, available on the author's website, 2011.
[Gai15] Dennis Gaitsgory, Outline of the proof of the geometric Langlands conjecture for GL(2), Astérisque, 370 (2015).
[Gai17] Dennis Gaitsgory, A "strange" functional equation for Eisenstein series and miraculous duality on the moduli stack of bundles, Ann. Sci. Éc. Norm. Supér., Societe Mathematique de France, (4) 2017.
[GR17] Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017, DOI 10.1090/surv/221.1. MR 3701352
[Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009, DOI 10.1515/9781400830558. MR2522659
[Lur12] Jacob Lurie, Higher algebra, available on the author's website, 2012.
[Sch15] Simon Schieder, The Harder-Narasimhan stratification of the moduli stack of G-bundles via Drinfeld's compactifications, Selecta Math. (N.S.) 21 (2015), no. 3, 763-831, DOI 10.1007/s00029-014-0161-y. MR3366920
[Sch16] Simon Schieder, Geometric Bernstein asymptotics and the Drinfeld-Lafforgue-Vinberg degeneration for arbitrary reductive groups, Preprint, arXiv:1607.00586 2016.
[Wan17] Jonathan Wang, On the reductive monoid associated to a parabolic subgroup, J. Lie Theory 27 (2017), no. 3, 637-655. MR3592284
[Wan18] Jonathan Wang, On an invariant bilinear form on the space of automorphic forms via asymptotics, Duke Math. J. 167 (2018), no. 16, 2965-3057, DOI 10.1215/00127094-2018-0025. MR3870080
[YD19] Alexander Yom Din, On the Deligne-Lusztig involution for character sheaves, Selecta Math. (N.S.) 25 (2019), no. 3, Paper No. 49, 21, DOI 10.1007/s00029-019-0495-6. MR3984107

Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MasSAChusetts 02138

Current address: Yau Mathematical Sciences Center, Jingzhai, Tsinghua University, Haidian District, Beijing, People's Republic of China

Email address: kylinjchen@gmail.com

[^0]: Received by the editors September 12, 2021, and, in revised form, January 23, 2022, February 13, 2023, and February 22, 2023.

 2020 Mathematics Subject Classification. Primary 14D24.
 ${ }^{1}$ We fix a Borel subgroup B of G. A parabolic subgroup is standard if it contains B.

[^1]: ${ }^{2}$ Our method can also be applied to the category of automorphic sheaves with suitable modifications.
 ${ }^{3}$ Analogous complexes for finite Chevalley group were firstly studied by Deligne and Lusztig in DL82.

[^2]: ${ }^{4}$ See Notation 0.5.4 for our conventions for DG-categories.
 ${ }^{5}$ In order to define P^{-}, we fix a Carton subgroup of G.
 ${ }^{6}$ Roughly speaking, this means that up to a cohomological shift, the Drinfeld-Gaitsgory functor sends an object $\mathcal{F} \in \mathrm{D}(G / \operatorname{Ad}(G))^{\ominus}$ in the heart of the t-structure to a certain complex

 $$
 \mathcal{F} \rightarrow \bigoplus_{P} \operatorname{ind}_{P^{-}} \circ \operatorname{res}_{P}(\mathcal{F}) \rightarrow \cdots \rightarrow \operatorname{ind}_{B^{-}} \circ \operatorname{res}_{B}(\mathcal{F}) .
 $$

 However, YD19 did not describe the connecting morphisms in the above complex. Nevertheless, we have confidence that one can use the method in the current paper to show that these connecting maps are given by the adjunction natural transformations of the second adjointness.
 ${ }^{7}$ This means Y is a quasi-compact algebraic stack whose automorphism groups of geometric points are affine.

[^3]: ${ }^{8}$ See Notation 0.5 .4 for what this means.

[^4]: ${ }^{9}$ We review the definitions of them in 80.2
 ${ }^{10}$ Since the functors Eis $P_{P}^{\text {enh }}, \mathrm{CT}_{P}^{\mathrm{enh}}$ are not t-exact, the naïve formation of the Deligne-Lusztig complex is not a well-defined object in the DG-category $\mathrm{D}\left(\right.$ Bun $\left._{G}\right)$.

[^5]: ${ }^{11}$ See Notation 0.5 .9 for our notations for concepts related to G.
 ${ }^{12}$ See Definition 0.5.2 for what this means.

[^6]: ${ }^{13}$ It is helpful to have the case $G=\mathrm{SL}_{2}$ in mind. In this case, $\operatorname{VinBun}_{G}(S)$ classifies $\phi: E_{1} \rightarrow$ E_{2}, where E_{1} and E_{2} are rank 2 vector bundles on $X \times S$ with trivialized determinant line bundles, and ϕ is a map between coherent $\mathcal{O}_{X \times S}$-modules such that for any geometric point s of S, the map $\left.\phi\right|_{X \times s}$ is non-zero. The Cartan subgroup \mathbb{G}_{m} acts on VinBun SL_{2} by scalar multiplication on ϕ.

 We warn the reader that the projection $\operatorname{VinBun}_{G} \rightarrow \operatorname{Bun}_{G} \times \operatorname{Bun}_{G}$ below sends the above data to (E_{2}, E_{1}) rather than $\left(E_{1}, E_{2}\right)$. See Che21 Warning 1.1.3] for the reason of this convention.
 ${ }^{14}$ See Notation 0.5 .10 for more information about T_{ad}^{+}.

[^7]: ${ }^{15}$ The functor \mathbf{K} is given by $\mathbf{G}_{r!\left(k_{\operatorname{Bun}_{G}}\right), \overline{\operatorname{Bun}}_{G}}^{*}$, which is defined in Corollary C.1.3 Here we use the full category $\mathrm{D}_{\text {indhol }}\left(\overline{\mathrm{Bun}}_{G}\right) \subset \mathrm{D}\left(\overline{\mathrm{Bun}}_{G}\right)$ of ind-holonomic D-modules to make sure the *-pullback and !-pushforward are well-defined.

[^8]: ${ }^{16}$ In fact, in this paper we only use $\boldsymbol{\Delta}$-pushforward functors along safe maps, hence the reader can safely ignore the difference between them and usual *-pushforward functor. However, the theory of $\boldsymbol{\Delta}$-pushforward functors allows us to prove results for a priori non-safe maps.
 ${ }^{17}$ The higher compatibilities for base-change isomorphisms are claimed in DG13 Remark 9.3.13] for $\mathbf{\triangle}$-pushforward functors along any QCA maps. However, we cannot verify their claim unless restricting to QCAD maps. See Appendix A for more details.

[^9]: ${ }^{18}$ Such assumption was made in many references that we cite, but our proof depends on such assumption only because they use the geometric constructions in BG02. However, Sch15. Section 7] explained how to modify such constructions such that they work for any reductive group. Applying such modifications, our proof works for any reductive group.

[^10]: ${ }^{19}$ It was denoted by $T_{\text {ad }, \geq P, \text { strict }}^{+}$in Sch16.
 ${ }^{20}$ In the case $G=\mathrm{SL}_{2}$, using the notations in Footnote 13 VinBun $_{G, B}$ classifies (up to nilisomorphisms) objects ($\phi: E_{1} \rightarrow E_{2}$) with $\operatorname{det}(\phi)=0$. It follows from the definition that the subsheaf $\operatorname{im}(\phi)$ is a generic line bundle. Then the map $\operatorname{im}(\phi) \rightarrow E_{2}$ provides a generic B-reduction to the SL_{2}-torsor for E_{2}. This provides a map $\operatorname{VinBun}_{G, B} \rightarrow \operatorname{Bun}_{G}^{B \text {-gen }}$ that factors through the quotient $\operatorname{VinBun}_{G, B} / T=\overline{\operatorname{Bun}}_{G, B}$.

[^11]: ${ }^{21}$ Note that for any $P \subset Q$, we have maps

 $$
 \overline{\operatorname{Bun}}_{G, \leq P} \rightarrow \overline{\operatorname{Bun}}_{G, \leq Q} \text { and } \operatorname{Bun}_{G}^{P-\operatorname{gen}} \times \operatorname{Bun}_{G}^{P^{-}-\text {gen }} \rightarrow \operatorname{Bun}_{G}^{Q \text {-gen }} \times \operatorname{Bun}_{G}^{Q^{-}-\text {gen }} .
 $$

[^12]: ${ }^{22}$ We will give a more direct description of γ_{P} in 4.2 .2

[^13]: ${ }^{23}$ The result below only serves as motivation and will be incorporated into Lemma 1.4.2

[^14]: ${ }^{24}$ In the case $G=\mathrm{SL}_{2}$, recall that $\operatorname{Bun}_{B^{-}} \times_{\operatorname{Bun}_{G}} \overline{\operatorname{Bun}}_{G}$ classifies certain chains $E_{1} \rightarrow E_{2} \rightarrow L_{2}$. Then the desired open substack classifies those chains such that the restriction of $E_{1} \rightarrow L_{2}$ at any geometric point of S is non-zero.
 ${ }^{25}$ See (A.5) for the notation Dmodind ${ }_{\text {indhol }}^{1}$.

[^15]: ${ }^{26}$ In the case $G=\mathrm{SL}_{2}$, the map $\left(\operatorname{Bun}_{B^{-}} \times \text {Bun }_{G} \overline{\operatorname{Bun}}_{G}\right)^{\text {gen }} \rightarrow \operatorname{Bun}_{G}^{B^{-} \text {-gen }}$ sends a chain $E_{1} \rightarrow$ $E_{2} \rightarrow L_{2}$ in Footnote 24 to the generic B^{-}-reduction provided by the map $E_{1} \rightarrow L_{2}$.

[^16]: ${ }^{27}$ In the case $G=\mathrm{SL}_{2}, Y_{\text {rel }}^{B}$ classifies chains $L_{1} \rightarrow E_{1} \rightarrow E_{2} \rightarrow L_{2}$ where $L_{1} \rightarrow E_{1}, E_{1} \rightarrow E_{2}$ and $E_{2} \rightarrow L_{2}$ are respectively S-points of $\operatorname{Bun}_{B}, \operatorname{VinBun}_{G}$ and $\operatorname{Bun}_{B^{-}}$such that the restriction of $L_{1} \rightarrow L_{2}$ at any geometric point of S is non-zero.
 ${ }^{28}$ In the case $G=\mathrm{SL}_{2}, H_{T, G \text {-pos }}$ classifies morphisms between line bundles $L_{1} \rightarrow L_{2}$ whose restriction at any geometric point of S is non-zero. The map $Y_{\text {rel }}^{P} \rightarrow H_{M, G \text { - pos }}$ sends the chain $L_{1} \rightarrow E_{1} \rightarrow E_{2} \rightarrow L_{2}$ in Footnote 27 to $L_{1} \rightarrow L_{2}$.

[^17]: ${ }^{29} \mathrm{We}$ use the following formal fact. Let [1] be the poset $\{0,1\}$ and I be an index category obtained by removing the final object from [1] ${ }^{r}(r \geq 1)$. Let C be any stable category. Suppose F : $I \rightarrow C$ is a functor such that $F(x) \simeq 0$ unless x is the initial object i_{0}. Then colim $F \simeq F\left(i_{0}\right)[r-1]$. This fact can be proven by induction on r.

[^18]: ${ }^{30}$ More precisely, Sch16 constructed the defect stratification on $\operatorname{VinBun}_{G, C_{P}}$. It follows from the construction that the Z_{M}-action on $\operatorname{VinBun}_{G, C_{P}}$ preserves the defect strata. Hence we obtain a stratification on

 $$
 \overline{\operatorname{Bun}}_{G, P} \simeq \operatorname{VinBun}_{G, P} / T \simeq \operatorname{VinBun}_{G, C_{P}} / Z_{M}
 $$

 ${ }^{31}$ The corresponding Z_{M}-action on $\operatorname{Bun}_{P} \times{ }_{\operatorname{Bun}_{M}} H_{M, G-\operatorname{pos}} \times{ }_{\operatorname{Bun}_{M}} \operatorname{Bun}_{P^{-}}$is the one induced
 equivariant for this action and the trivial action on $\operatorname{Bun}_{M} \times \operatorname{Bun}_{M}$.

[^19]: ${ }^{32}$ A presentable fibration is both a Cartesian fibration and a co-Cartesian fibration whose fibers are presentable $(\infty, 1)$-categories. See Lur09, Definition 5.5.3.2].

[^20]: ${ }^{33}$ In fact, $\operatorname{Bun}_{P} \times{ }^{\operatorname{Bun}}{ }_{G}^{P-\text { gen }} \operatorname{Bun}_{P^{-}}^{M-\text { gen }}$ is the open Zastava space in the literature.

[^21]: ${ }^{34}$ It was denoted by $\mathbf{P}_{\mathbb{A}^{1}} / \mathbb{B} \mathbb{G}_{m}$ in Dri13.
 ${ }^{35}$ It was called just by lax functors in loc. cit.

[^22]: ${ }^{36}$ The map $\mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$ in the formula is the multiplication map.

[^23]: ${ }^{37}$ Explicitly, the LHS is the !-pull- $\mathbf{\Delta}$-push along $Z^{0} \leftarrow Z^{-}{ }_{{ }_{Z}} Z^{+} \rightarrow Z^{0}$, while the RHS is that along $Z^{0} \leftarrow Z^{0} \rightarrow Z^{0}$. The desired natural transformation is induced by the adjoint pair $\left(j^{!}, j_{\mathbf{\Delta}}\right)$ for the open embedding $j: Z^{0} \rightarrow Z^{-} \times{ }_{Z} Z^{+}$.
 ${ }^{38} \mathrm{We}$ also require that the 2 -morphism $F^{\sharp}\left(\alpha^{+}\right) \circ F^{\sharp}\left(\alpha^{-}\right) \rightarrow F^{\sharp}\left(\mathrm{Id}_{\mathbf{s}}\right)$ is given by the obvious open embedding.

[^24]: ${ }^{39}$ This is because for affine schemes Y, we have $\operatorname{Maps}(X, Y) \simeq Y$.

[^25]: ${ }^{40}$ The superscript "rev" means exchanging the two arms of a correspondence.

[^26]: ${ }^{41}$ The functor $\mathbf{I d}$ below is the identity functor for $\mathrm{D}_{\text {indhol }}\left(\operatorname{Bun}_{M} \times \operatorname{Bun}_{G}\right)$.

[^27]: ${ }^{42}$ This Z_{M}-action on $\operatorname{Vin}_{G, \geq C_{P}}$ is induced by the T-action on Vin_{G}.

[^28]: ${ }^{43}$ When $Q=G, W_{P, G}$ is just the open Zastava stack. When $Q=P, W_{P, P}$ is $H_{M, G \text { - pos }}$.

[^29]: ${ }^{44}$ This Z_{L}-action on $\operatorname{Vin}_{G, \geq C_{Q}}$ is induced by the T-action on Vin_{G}.

[^30]: ${ }^{45}$ This claim was made in DG13 Remark 9.3.13] even for QCA maps. A detailed construction for QCAD maps is provided in the author's thesis, see Che21, Construction C.2.13].

[^31]: ${ }^{46}$ More details are provided in the author's thesis, see Che21 § C.5].

[^32]: ${ }^{47}$ See Appendix \AA for the definition of compositions of correspondences.

[^33]: ${ }^{48}(1)$ and (2) are well-known, (4) and (5) follow from the identification $\operatorname{Vin}_{G} \times{ }_{T_{\mathrm{ad}}^{+}} T_{\mathrm{ad}} \simeq$ $(G \times T) / Z_{G}$.

