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CHARACTERS, COMMUTATORS AND CENTERS OF SYLOW

SUBGROUPS

GABRIEL NAVARRO AND BENJAMIN SAMBALE

Abstract. The character table of a finite group G determines whether |P :
P ′| = p2 and whether |P : Z(P )| = p2, where P is a Sylow p-subgroup of G.

To prove the latter, we give a detailed classification of those groups in terms
of the generalized Fitting subgroup.

1. Introduction

Richard Brauer’s Problem 12 from [B] is a source of inspiration for discovering
interactions between global and local properties of a finite group. Brauer asked
what properties of a Sylow p-subgroup P of a finite group G can be detected by
the irreducible complex characters of G. One of the main objectives was to find if
the irreducible characters of G knew whether P is abelian. This was first settled
in the affirmative in [KS], then in [NST2] with a precise algorithm, and finally in
[MN] (and [KM]) with the solution of Brauer’s Height Zero conjecture for principal
blocks. The next natural step is to study how the characters of G affect P/P ′, where
P ′ = [P, P ] is the commutator subgroup of P , and vice versa. It was discovered
in [Ma] that the character table of a p-group P does not even determine |P ′′|,
where P ′′ = [P ′, P ′], answering in the negative a question of Brauer. The group
P/P ′ is an object of interest if only by the McKay conjecture, which asserts that
the number of irreducible characters of G of degree not divisible by p equals the
number of conjugacy classes of the semidirect product of P/P ′ with NG(P )/P . In
fact, the Galois version of the McKay conjecture [N1] predicts that the exponent
of the group P/P ′ is known by the characters of G, and indeed, this question was
reduced to simple groups in [NT] and proved in [M] for p = 2. The non-abelian
2-groups with |P/P ′| = 22 are the well-known maximal class 2-groups: dihedral,
semidihedral and generalized quaternions. (For odd primes p, there are many p-
groups P with |P/P ′| = p2.) The character table of G does detect whether a Sylow
2-subgroup P of G is in this class (see [NST] and the related result [NRSV]). For
p = 3, it was discovered in [NST] that the Alperin–McKay conjecture indeed implies
that |P/P ′| = 32 if and only if the number of irreducible characters of degree not
divisible by 3 in the principal 3-block of G is 6 or 9. In general, it has remained a
challenge to see if the character table of G determines if |P/P ′| = p2.

In this paper, we solve this problem in the affirmative.
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Theorem A. Let G be a finite group, let p be a prime, and let P be a Sylow
p-subgroup of G. Then the character table of G determines whether |P : P ′| = p2.

Theorem A can be reformulated as follows: if G and H are finite groups with
the same character table, P ∈ Sylp(G) and Q ∈ Sylp(H), then |P : P ′| = p2 if and

only if |Q : Q′| = p2. Note that if |P : P ′| = p2, then the isomorphism type of
P/P ′ is determined as well, because P/P ′ is elementary abelian unless P is cyclic
of order p2.

Aside from the commutator subgroup of P , it is natural to turn our attention to
the center Z(P ) of P . Recall that P is non-abelian if and only if |P : Z(P )| ≥ p2.
The quantity |P : Z(P )| is naturally related to characters. For instance, a conjecture
of G. R. Robinson [R] (proved recently for p > 2 in [FLLMZ]) asserts that |P : Z(P )|
bounds the heights of the irreducible characters of G.

In our second main result, we prove the following.

Theorem B. Let G be a finite group, let p be a prime, and let P be a Sylow
p-subgroup of G. Then the character table of G determines if |P : Z(P )| = p2.

To prove Theorem B, we pin down the structure of G in terms of composition
factors under the assumption |P : Z(P )| = p2 (see Theorem 7.5). This extends the
celebrated structure theorem on groups with abelian Sylow p-subgroups.

The question on whether the character table of a finite group G determines |P ′|
or |Z(P )| seems very difficult to solve.

Finally, we discuss the algorithm to detect whether |P : P ′| = p2 from the char-
acter table, which leads to some interesting problems. Recall that the characters of
G determine the characters of G/N whenever N �G, and therefore, when studying
properties of a Sylow p-subgroup of G and characters, we may always assume that
Op′(G), the largest normal subgroup of G of order not divisible by p, is trivial. As
usual, we denote by Irrp′(G) to be the set of the irreducible complex characters of
G of degree not divisible by p. As we shall prove, the following holds.

Theorem C. Let G be a finite group, p a prime, P ∈ Sylp(G), with Op′(G) = 1.
Let K be the intersection of the kernels of the irreducible characters in Irrp′(G),
and write Ḡ = G/K. Assume that G is not almost simple. Then |P : P ′| = p2 if
and only if there is a p-element x̄ ∈ Ḡ such that |CḠ(x̄)|p = p2.

In the situation of Theorem C, we shall prove that K ≤ P ′ and P/K ∈ Sylp(Ḡ)
has maximal nilpotency class (see Theorem 6.1 and Lemma 2.1). But, in general,
if P has maximal class (and in particular |P : P ′| = p2), we do not necessarily find
some x ∈ P such that |CG(x)|p = p2. Counterexamples to this are SL(2, 9) for
p = 2, SL(3, 19) for p = 3 and SL(p, q) for p ≥ 5 where q − 1 is divisible by p just
once. This phenomenon is explained by the existence of pearls in fusion systems
(see [GP]).

Since the character table of G determines whether G is almost simple (see
Theorem 4.1) and, in this case, the isomorphism type of soc(G), we shall use ad-hoc
arguments to settle this situation. Interestingly, we have detected that something
might be occurring for this class of groups. If Irrp′(B0(G)) is the set of irreducible
characters of degree not divisible by p in the principal p-block of G almost simple,
is it true that |P/P ′| = p2 if and only if | Irrp′(B0(G))| ≤ p2? At the time of this
writing, we do not know the answer to this question.



CHARACTERS, COMMUTATORS AND CENTERS 719

2. Preliminaries on p-groups

In this section we collect some general results on p-groups, which we shall later
use.

Lemma 2.1.

(i) Let P be a Sylow p-subgroup of the finite group G. Then G′∩Z(G)∩P ≤ P ′.
(ii) Let P be a finite p-group. Then |P ′| = p if and only if max{|P : CP (x)| :

x ∈ P} = p. In particular, |P : Z(P )| ≤ p2 implies |P ′| ≤ p.
(iii) A non-abelian p-group P has maximal nilpotency class if and only if there

exists x ∈ P such that |CP (x)| = p2.

Proof. These statements can be found in Huppert [H, Satz IV.2.2, Aufgabe III.24b,
Satz III.14.23]. �

Corollary 2.2. Let P be a p-group of order p4.

(i) We have that |P ′| = p if and only if |P : Z(P )| = p2.
(ii) We have that |P : P ′| = p2 if and only if P has maximal nilpotency class.

Proof. By Lemma 2.1, |P : Z(P )| = p2 implies |P ′| = p. Suppose by way of
contradiction that |P ′| = |Z(P )| = p. Then P ′ = Z(P ) is the intersection of
the centralizers of P . By Lemma 2.1, the centralizers of non-central elements are
maximal subgroups. Hence, P ′ = Φ(P ), but there is no extraspecial group of order
p4.

Suppose that |P : P ′| = p2. Then, by Lemma 2.1, there exists x ∈ P with
|CP (x)| = p2 and consequently P has maximal nilpotency class. Conversely, every
group of maximal class satisfies |P : P ′| = p2. �

Lemma 2.3. Let P be a p-group with a normal subgroup N of index p. Then
|P : P ′| = p2 if and only if |CN/N ′(x)| = p for one (hence for every) x ∈ P \N .

Proof. Note thatN ′�P and |P : P ′| = |P/N ′ : P ′/N ′| = |P/N ′ : (P/N ′)′|. We may
therefore assume thatN is abelian. Now the claim follows from [I2, Lemma 4.6]. �

3. Theorem A and non almost simple groups

In this section we start the proof of Theorem A for non almost simple groups.
Recall that the core of a subgroup H ≤ G is defined by coreG(H) =

⋂
g∈G Hg where

Hg = g−1Hg.

Theorem 3.1. Let G be a finite group, p a prime, P ∈ Sylp(G). Assume that

Op′(G) = 1 = coreG(P
′). If |P/P ′| = p2 and P is not abelian, then one of the

following occurs:

(a) G has a minimal normal subgroup N such that |G/N |p = p. Moreover, the
simple components of N have cyclic Sylow p-subgroups.

(b) G is almost simple.

Proof. Assume that G is not almost simple.
First, we claim that we may assume that Op′

(G) = G. Indeed, assume that K =

Op′
(G) < G (recall that K is the smallest normal subgroup with p′-index). Notice

that P ⊆ K and Op′(K) = 1. Since G = KNG(P ), we also have E = coreK(P ′)�G
and E = 1. Suppose that K is almost simple and S = K∞ � G. Then CK(S) = 1
and CG(S) � G is a p′-group. Hence, CG(S) = 1 and G would be almost simple.
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Now by induction, we have that K has a minimal normal subgroup L such that
|G : L|p = |K/L|p = p. Moreover, the simple components of L have cyclic Sylow
p-subgroups. If |L|p = p, then |G|p = p2, and G has abelian Sylow p-subgroups,
against our assumption. Let g ∈ G. Then Lg is a minimal normal subgroup of
K. If Lg �= L, then L ∩ Lg = 1 and p2 would divide |K/L|, which cannot hold.
Therefore Lg = L for all g ∈ G, and we see that L is a minimal normal subgroup
of G too.

Let N be a minimal normal subgroup of G. Note that

|PN/N : (PN/N)′| = |P/P ∩N : (P/P ∩N)′| = |P : P ′(P ∩N)| ≤ |P : P ′| = p2.

If |P : P ′(P ∩ N)| = p2, then P ∩ N ≤ P ′. By Tate’s theorem, N has a normal
p-complement. Thus N is a p-group and N ⊆ P ′. This is not possible. If G/N is
a p′-group, then N = G, and N is simple, which is against the hypothesis.

So we may assume that PN/N has order p. If N is elementary abelian, then the
simple components of N are indeed cyclic. We may therefore assume that N is a
direct product of isomorphic non-abelian simple groups.

If M is another minimal normal subgroup, then N ∩M = 1, and |M |p = p (be-
cause Op′(G) = 1 and |G/N |p = p). Then we are done by the previous paragraph.
So we have that N is the unique minimal normal subgroup of G.

WriteN = T1×· · ·×Tn, where Ti are simple groups which are G-conjugate. Since
G is not almost-simple, we have that n > 1. WriteQ = P∩N = Q1×· · ·×Qn, where
Qi = Ti ∩ P . By way of contradiction, suppose that the Qi are non-cyclic. Take
x ∈ P −Q. Since we have that |P : P ′| = p2, then it follows that |CQ/Q′(x)| = p by
Lemma 2.3. If 〈x〉 does not act transitively on {Q1, . . . , Qn}, then we could write
Q/Q′ = U × V for non-trivial x-invariant subgroups U and V . Then CU (x) and
CV (x) are two non-trivial subgroups of CQ/Q′(x), which is impossible. Therefore,

we can assume that Qi = (Q1)
xi−1

, and that n = p. Since Q1 is non-cyclic, so is
Q1/Q

′
1. Hence, there are 1 �= y, z ∈ Q1 such that the subgroups 〈yQ′

1〉 �= 〈zQ′
1〉

have order p. Then 〈
∏p

i=1 y
xi

Q′〉 and 〈
∏p

i=1 z
xi

Q′〉 are two different subgroups of
CQ/Q′(x), and this is the final contradiction. �

Theorem 3.2. Let G be a finite group, p a prime, P ∈ Sylp(G) with |P | ≥ p2.
Assume that Op′(G) = 1 = coreG(P

′). Suppose that G is not almost simple. Then
|P/P ′| = p2 if and only if there is a p-element x ∈ G such that |CG(x)|p = p2.

Proof. Assume that there is a p-element x ∈ G such that |CG(x)|p = p2. By
replacing x by some G-conjugate, we may assume that x ∈ P . Then |CP (x)| ≤ p2.
By Lemma 2.1, we have either |P | = p2 or P has maximal class. In any case,
|P : P ′| = p2.

Assume now that Op′(G) = 1 = coreG(P
′), that G is not almost simple and that

|P : P ′| = p2. We show that there is a p-element x ∈ G such that |CG(x)|p = p2.
This is clear if P is abelian, so assume that P is not abelian.

By Theorem 3.1, let N be a minimal normal subgroup of G such that PN/N
has order p and such that the Sylow subgroups of N are abelian. Let x ∈ P −N .
Let Q ∈ Sylp(G) such that CQ(x) ∈ Sylp(CG(x)). Then Q = 〈x〉(Q ∩ N). By
Lemma 2.3, |CQ∩N (x)| = p and

|CG(x)|p = |CQ(x)| = |〈x〉CQ∩N (x)| = p2. �
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If |P : P ′| = p2, then the Alperin–McKay conjecture (together with the k(GV )-
theorem) implies that | Irrp′(B0(G))| ≤ p2 where B0(G) denotes the principal p-
block of G. In the situation of Theorem 3.2 we can prove this without relying on
the Alperin–McKay conjecture.

Theorem 3.3. Let G be a finite group with a p-element x ∈ G such that |CG(x)|p ≤
p2. Then | Irrp′(B0(G))| ≤ p2.

Proof. Let P be a Sylow p-subgroup of G containing x. Then CP (x) is a Sy-
low p-subgroup of CG(x). Hence, CP (x) is a defect group of the principal block
b0 of CG(x). By Brauer’s third main theorem, (x, b0) is a B0-subsection. Since
CP (x)/〈x〉 is cyclic, the claim follows from [S, Proposition 4.3]. �

4. Character tables

As is well-known, the character table of G determines the sizes of the conjugacy
classes of G (by the second orthogonality relation), and the lattice of normal sub-
groups of G, together with their orders. (This is obtained by looking at all the
intersections of kernels of the irreducible characters.) In particular, it is easy to
detect from the character table the orders of the chief factors of G, or if a normal
subgroup is nilpotent or solvable. (As we already said, it is not possible to know if
this normal subgroup is abelian or not, by [Ma].) Also, as we have mentioned, the
character table of G determines the character table of its factor groups.

We now recall a theorem of Higman (see [N2, Corollary 7.18]) asserting that the
character table of G determines the prime divisors of the order of elements x ∈ G
(strictly speaking x represents a column of the character table). In particular, we
can tell which columns of the character table belong to p-elements or to p′-elements.

To detect the non-abelian composition factors of a group is something much
more subtle. In the following we denote the generalized Fitting subgroup of G by
F∗(G) = F(G) ∗ E(G), where E(G) is the layer of G. The following collects what
we shall need.

Theorem 4.1. Let G be a finite group.

(i) Let S, T be finite simple groups and s, t positive integers such that |S|s =
|T |t. Then s = t and one of the following holds

• S ∼= T .
• {S, T} = {A8,PSL(3, 4)}.
• {S, T} = {Bn(q), Cn(q)} for some n ≥ 3 and an odd prime power q.

(ii) Let N be a minimal normal subgroup of G such that |N | = |A8|k. Then
N ∼= Ak

8 if and only if there exists a 2-element x ∈ N such that |G :
CG(x)| = 105k.

(iii) Let N be a minimal normal subgroup of G such that |N | = |Bn(q)|k. Then
N ∼= Bn(q)

k if and only if there exists a 2-element x ∈ N such that
|G : CG(x)| = 1

2q
n(qn ± 1) where qn ≡ ±1 (mod 4).

(iv) The character table of G determines the isomorphism types of all minimal
normal subgroups.

(v) The character table of G determines all chief series of G, that is, the
isomorphism type of the chief factors and the order in which they appear.

(vi) The character table of G determines the composition factors of G.
(vii) The isomorphism type of a quasisimple group is determined by its character

table.
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(viii) The character table of G determines the size and the composition factors
of the generalized Fitting subgroup F∗(G).

Proof.

(i) This is a theorem of Cameron–Teague (see [KLST, Theorem 6.1]).
(ii),(iii) See [K, Proposition 6.5, 6.6]. A weaker version is given in [KS, Lemma 1.9].

(iv) This follows from (i)–(iii).
(v) This follows from (iv) by induction on |G|. It is also stated in [KS, Theo-

rem 5].
(vi) Every chief series can be refined to a composition series (but not every

composition series arises in this way).
(vii) Let G be quasisimple. By (vi), the character table of G determines the

isomorphism type of the simple group Ḡ := G/Z(G). If Ḡ has cyclic Schur
multiplier, then |G| is uniquely determined by its order. We may therefore
assume that Ḡ is a simple group of Lie type with exceptional Schur multi-
plier. Recall that the exceptional part of the Schur multiplier (called e in
the Atlas [A, Table 5]) is a power of the defining characteristic p. On the
other hand, the generic part of the Schur multiplier (called d) is always co-
prime to p. Thus, we may assume that e is non-cyclic. This only leaves six
exceptional groups Ḡ. If Ḡ ∈ {PSU(6, 2), Sz(8),PΩ+(8, 2), 2E6(2)}, then
e is a Klein four-group and its involutions are permuted transitively by an
outer automorphism of order 3. It follows that there is only one quasisimple
group up to isomorphism for each possible order. Now let Ḡ ∼= PSL(3, 4).
Then the Schur multiplier is isomorphic to C12 × C4 and the universal
covering group can be constructed as PerfectGroup(967680, 4) in [GAP].
In this way we can check that there are 14 quasisimple groups and they
have distinct character tables. Finally let Ḡ ∼= PSU(4, 3). Here the Schur
multiplier is M ∼= C12 ×C3 and Out(Ḡ) ∼= D8. The Atlas tells us that D8

acts faithfully on O3(M) ∼= C2
3 . Hence, the four subgroups of order 3 in

M fall into two orbits under D8. This leads to 12 quasisimple groups and
the corresponding character tables are available in [GAP]. Again we check
that the character tables are different.

(viii) Since the Fitting subgroup F(G) is the largest nilpotent normal subgroup,
|F(G)| is determined by the character table. Recall that the layer E(G) is
a central product of normal subgroups N such that N ′ = N and N/Z(N)
is a direct product of isomorphic non-abelian simple groups. It is easy
to spot chief factors N/Z ∼= T1 × . . . × Tn from the character table such
that N ′ = N , Z is nilpotent and T1

∼= . . . ∼= Tn are non-abelian simple.
It remains to decide if Z(N) = Z. This is obvious if Z = 1. Hence,
let Z �= 1. Since the isomorphism type of T1 is known, so is the Schur
multiplier M(N/Z) ∼= M(T1)

n. Let Z/W be another chief factor of G.
Then Z/W is elementary abelian, say Z/W ∼= Cr

p for some prime p. As
in (vii) we see that the Sylow p-subgroup of M(T1) is cyclic, apart from
finitely many cases where p ≤ 3 and the p-rank of M(T1) is 2. If r > 2n,
then Z(N) < Z and we are done. Now let r ≤ 2n. Suppose that some
Ti acts non-trivially on Z/W . Since T1, . . . , Tn are conjugate in G, they
all act non-trivially, i.e. N/Z acts faithfully on Z/W . Since the minimal
degree of a faithfully representation of N/Z over Fp is at least 2n, it follows
that r = 2n and therefore p ≤ 3. However, T1 cannot embed into the
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solvable group GL(2, p). This contradiction shows that N/Z acts trivially
on Z/W . We can now consider the action of N/W on the next lower chief
factor W/W1. It is well-known that a Schur cover of N/W is also a Schur
cover of N/Z. Hence, |W/W1| is bounded in the same way as Z/W . So we
can figure out whether N/W acts trivially on W/W1. Continuing in this
way shows whether N/Z acts trivially on Z and in this case Z = Z(N)
and N ≤ E(G). �

5. Theorem A and almost simple groups

In this section we provide the tools for the proof of Theorem A.
As is customary, we adopt the notation

GLε(k, qf ) :=

{
GL(k, qf ) if ε = 1,

GU(k, qf ) ≤ GL(k, q2f ) if ε = −1

and similarly, SLε(k, qf ), PSLε(k, qf ) (here GU stands for the general unitary
group).

Lemma 5.1. Let p �= q be primes such that p > 2. Let S := PSLε(k, qf ) where
p | gcd(k, f, qf − ε). Let S ≤ G ≤ Aut(S) such that |G : S|p = p. Let P be a
Sylow p-subgroup of G. Then |P : P ′| = p2 if and only if k = p and there exists a
q-element s ∈ S such that |CG(s)| is not divisible by p.

Proof. We start by constructing a Sylow p-subgroup Q of S following [We]. Note
first that

|S| = qfk(k−1)/2

gcd(k, qf − ε)

k∏
i=2

(qfi − εi).

Let pr be the largest p-power dividing qf − ε. Since qf/p ≡ qf ≡ ε (mod p), we
have r ≥ 2. Note that the p-part of qfi − εi depends only on r and i. If ε = 1,
let Y ≤ F×

qf
be of order pr. If ε = −1, take Y ≤ F×

q2f
of order pr. Let Y1 ≤ Y be

of order gcd(k, pr). The diagonal matrices in SLε(k, qf ) with entries in Y can be
realized by k-tuples

D := {(y1, . . . , yk) ∈ Y k : y1 . . . yk = 1}.
Modulo scalars, we obtain

D := D/〈(y, . . . , y) : y ∈ Y1〉.
We denote the elements in D by (y1, . . . , yk) as usual. Finally, let L be a Sylow
p-subgroup of the symmetric group Sk. Then L acts on D by permuting the coor-
dinates and Q ∼= D � L (it can be checked that Q has indeed the correct order).
Recall that L is a direct product of iterated wreath products corresponding to the
p-adic expansion of k.

By the Atlas [A, Table 5], we have

G/S ≤ Out(S) ∼=
{
Cd � (Cf × C2) if ε = 1,

Cd � C2f if ε = −1

where d = gcd(k, qf − ε) denotes the order of the diagonal automorphism group,
Cf or C2f stands for the field automorphism group and the graph automorphism
group C2 acts by inversion on Cd (if ε = 1). Let γ ∈ Out(S) be a diagonal
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automorphism induced by diag(ζ, 1, . . . , 1) ∈ GLε(k, qf ) for some ζ ∈ Y such that

γp is an inner automorphism of S. Let δ be the field automorphism λ → λqf/p

for λ ∈ Fqf (respectively λ → λq2f/p

for λ ∈ Fq2f if ε = −1). Then P induces an

automorphism α = γiδj on Q with 0 ≤ i, j ≤ p − 1. Observe that α normalizes
D and acts trivially on Q/D ∼= L. Moreover γp corresponds to some element of
D. Hence, P/D ∼= L × Cp. Now |P : P ′| = p2 forces |L| = p by [H, Satz III.15.3],
i.e. k = p = |Y1|. So we can assume that Y = 〈ζ〉 and γp is identified with

(ζp−1, ζ−1, . . . , ζ−1) ∈ D. Since D is generated by the elements (ζ, ζ−1, 1, . . . , 1),
(1, ζ, ζ−1, 1, . . . , 1), . . . , (1, . . . , 1, ζ, ζ−1), we have

Q′ = 〈(ζ, ζ−2, ζ, 1, . . . , 1), . . .〉.
Let t := (ζ, ζ−1, 1, . . . , 1) ∈ D. We compute

t
p
= (ζ, ζ−2, ζ, 1, . . . , 1)

p−1
(1, ζ, ζ−2, ζ, 1, . . . , 1)

p−2
. . .

. . . (1, . . . , 1, ζ, ζ2, ζ)
2
(ζ, 1, . . . , 1, ζ, ζ−2) ∈ Q′

and deduce

Q/Q′ = L× 〈t〉Q′/Q′ ∼= Cp × Cp.

By Lemma 2.3, |P : P ′| = p2 if and only if |CQ/Q′(α)| = p. Setting σ = (1, . . . , p) ∈
L, we have

γ(σ) = σ(ζ−1, 1, . . . , 1, ζ) ≡ σt (mod Q′).

This yields CQ/Q′(γ) = 〈t〉Q′/Q′. On the other hand, δ(σ) = σ and δ(t) ≡ t

(mod Q′) since qf/p ≡ ε (mod p). We conclude that CQ/Q′(α) = CQ/Q′(γi).
Therefore, |CQ/Q′(α)| = p if and only if i �= 0, i.e. P/Q = 〈α〉 does not induce a
field automorphism.

We now translate this condition into some character table property. By
Theorem 4.1, the character table of G determines the isomorphism type of S and
in turn also k and qf (there are no exceptional isomorphisms for the given pa-
rameters). We aim to count q-elements s ∈ S such that |CG(s)| is not divisible
by p. Recall that every unitriangular matrix in SL(p, qf ) is similar to a matrix in
SU(p, qf ) and two matrices in SU(p, qf ) are similar if and only if they are conjugate
in GU(p, qf ) (see [Wa, p. 34, Case (A)]). We can therefore think of s as a unitri-
angular matrix. Let V be the p-dimensional vector space over Fqf (Fq2f if ε = −1)
corresponding to S. Suppose that there is a non-trivial s-invariant decomposition
V = U ⊕ W and s = sU ⊕ sW such that sU acts on U and sW acts on W . Let
dU := dimU and dW := dimW . Then ζdW sU⊕ζ−dU sW ∈ CS(s) has order divisible
by p. Now assume that s acts indecomposably on V . Then s is similar to a single
unitriangular Jordan block s′. Recall that the centralizer of s′ in GL(p, qf ) consists
of unitriangular matrices. It follows that CS(s) is a q-group. Since the elements in
CGLε(p,qf )(s) have only one eigenvalue (with multiplicity p), it follows that

|GLε(p, qf ) : CGLε(p,qf )(s)|
| SLε(p, qf ) : CSLε(p,qf )(s)|

= |GLε(p, qf ) : CGLε(p,qf )(s) SL
ε(p, qf )| = p.

Hence, S has precisely p conjugacy classes of such elements and they are represented
by γi(s) where i = 0, . . . , p − 1. We may choose s ∈ PSLε(p, q). If α is a field
automorphism, it commutes with γ and fixes the S-conjugacy class of each γi(s).
Hence in this case, for every q-element s ∈ S, |CG(s)| is divisible by p. If, on the
other hand, α is not a field automorphism, the elements γi(s) are fused in G. In
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particular there is a q-element s ∈ S (unique up to conjugation) such that |CG(s)|
is not divisible by p. �

The two cases in Lemma 5.1 arise for example when p = 3, S ∼= PSU(3, 8) and
|G/S| = 3. The relevant groups can be constructed by PrimitiveGroup(513, a)
with a = 3, 4, 5 in [GAP]. The character tables have the names U3(8).3_1, U3(8).3_2
and U3(8).3_3 respectively. Here |P : P ′| = 9 if and only if a ∈ {4, 5}.

The following proof was kindly provided to us by Gunter Malle.

Lemma 5.2. Let G be an almost simple group with socle S ∈ {D4(q), E6(q),
2E6(q)}

and |G/S|3 = 3. Let P ∈ Syl3(G). Then |P : P ′| > 9 or the isomorphism type of
P can be deduced from the character table of G.

Proof. Let q = pf be a prime power. Suppose first that S = Eε
6(q) (where E

+
6 (q) =

E6(q) and E−
6 (q) = 2E6(q)). If 3 � q − ε, then P induces a field automorphism

on S and if 3 � f , then P induces a diagonal automorphism. This determines the
isomorphism type of P . Hence, we may assume that 3 | (q − ε, f). Now Out(S)
has Sylow 3-subgroups isomorphic to C3 × Cm where m is the 3-part of f . In
Out(S) the graph automorphism of order 2 inverts the diagonal automorphism and
centralizes the field automorphism, so there are three Out(S)-conjugacy classes of
subgroups of order 3 in Out(S), generated by a diagonal automorphism, by a field
automorphism and by their product, respectively. Correspondingly, there are three
possible candidates for a Sylow 3-subgroup P of G.

Assume first that ε = 1. Since the adjoint group of type E6 has a 3-element s
with disconnected centralizer of type D4(q).(q−1)2.3 lying in the derived subgroup,
S has three irreducible characters of degree q9Φ2

3Φ5Φ6Φ8Φ9Φ12/3, corresponding
to the Steinberg character of D4(q) under Jordan decomposition. According to
Lusztig’s parametrization these are the only irreducible characters of S of this
degree. The field automorphisms of S leave these characters invariant, while the
diagonal automorphism of order 3 permutes them transitively. Thus, the existence
of characters of degree bq9Φ2

3Φ5Φ6Φ8Φ9Φ12/3, with b dividing |Out(S)| and prime
to 3, allows one to identify the case when G induces a field automorphism. If G
induces the diagonal automorphism of order 3, it contains the adjoint group of type
E6. This also contains an element of order 3 with centralizer of type A2(q)

3.3,
which in turn contains a Sylow 3-subgroup P of G. From this it is easy to check
that |P : P ′| ≥ 27. This completes the proof for the case ε = 1. When ε = −1 an
entirely similar argument applies.

Now assume S = D4(p
f ). Again, Sylow 3-subgroups of Out(S) are isomorphic

to C3×Cm where m is the 3-part of f . Clearly we may assume m > 1. Again, there
are three Out(S)-conjugacy classes of subgroups of order 3 in Out(S), generated
by a graph automorphism, by a field automorphism and by their product, respec-
tively. If q = 3f is a 3-power, then a Sylow 3-subgroup of S has commutator factor
group generated by the images of the root subgroups of order q for the four simple
roots. The field automorphism stabilizes each root subgroup, while the graph au-
tomorphism stabilizes one and interchanges the other three. Hence in either case,
|P : P ′| > 9.

Finally assume that q is not a 3-power. By Lusztig’s Jordan decomposition of
characters, the only irreducible characters χ of S with χ(1)p = q6 and χ(1) not
divisible by Φ2

4 are three unipotent characters of degree q6Φ3Φ6. These are fixed by
the field automorphisms but permuted transitively by the graph and the graph-field
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automorphism. Thus the existence of irreducible characters of degree bq6Φ3Φ6 with
b dividing |Out(S)| and prime to 3 allows one to identify the case when G induces
a field automorphism. The extension H of S by the graph automorphism occurs
as a subgroup of F4(q). The latter group contains a subsystem subgroup of type
A2(q)

2 which in turn contains a Sylow 3-subgroup P of F4(q). The latter clearly
has |P : P ′| > 9. Comparing orders, it is also a Sylow 3-subgroup of H. �

6. Proof of Theorem A

The following slightly extends a theorem of Berkovich (see [N2, Theorem 7.7]).

Theorem 6.1. Let G be a finite group, p a prime and P ∈ Sylp(G). Let

K =
⋂

χ∈Irrp′ (G)

ker(χ).

Then K = coreG(NP ′), where N is the largest normal subgroup of G such that
CN (P ) = 1.

Proof. IfM�G, then notice thatCM (P ) = 1 implies thatM is a p′-group. Indeed, if
p divides |M |, then 1 < Q = P ∩M�P and by elementary group theory, Q∩Z(P ) >
1. Now, if L,M�G, andCL(P ) = 1 = CM (P ), thenCLM (P ) = CL(P )CM (P ) = 1,
by coprime action. Therefore, there is a largest normal subgroup N of G such that
CN (P ) = 1. Of course, N does not depend on P , since CN (P g) = CN (P )g = 1
for g ∈ G. Also, N is characteristic in G. If we denote X(G) := N , notice that
X(G/N) = 1, by coprime action.

Let χ ∈ Irrp′(G). Let θ ∈ Irr(N) be P -invariant under χ. Since CN (P ) = 1, we
have that θ = 1N by the Glauberman correspondence. Thus N ⊆ K. Notice that
it is no loss to assume that N = 1. We want to prove that K = coreG(P

′).
By Theorem 7.7 of [N2], we have that K has a normal p-complement R. Suppose

that γ ∈ Irr(R) is P -invariant. Then γ has an extension θ ∈ Irr(RP ). Since θ has p′-
degree and |G : RP | is not divisible by p, then θG contains an irreducible character
χ of p′-degree. Then R ⊆ ker(χ), and therefore γ = 1R. Therefore CR(P ) = 1, and
thus R ⊆ N = 1. We have then that K is a p-group. If χ ∈ Irrp′(G), then χP has a
linear constituent λ ∈ Irr(P ). Then χP ′ contains 1P ′ , and thus coreG(P

′) ⊆ ker(χ).
Finally, if λ ∈ Irr(P ) is linear, then λG contains a p′-degree χ ∈ Irr(G). Thus
χP = λ+Δ for some character Δ of P or Δ = 0. Then ker(χ)∩P ⊆ ker(λ). Hence
K ∩P ⊆ ker(λ) for all λ. Therefore K = K ∩P ⊆ P ′ and the theorem follows. �

Assuming Op′(G) = 1, the proof of Theorem 6.1 shows that K = coreG(P
′).

Hence, the condition Op′(G) = 1 = coreG(P
′) can be read off from the character

table. Thus, in order to prove Theorem A we may assume that Op′(G) = 1 =
coreG(P

′). Moreover, by Theorem 3.2, we may assume that G is almost simple.
Now Theorem A follows from the next result.

Theorem 6.2. Let G be an almost simple group with Sylow p-subgroup P . Then
the character table of G determines whether |P : P ′| = p2.

Proof. For p = 2, the claim was already shown in [NST]. Thus, let p > 2. By
Theorem 4.1, the character table of G determines the isomorphism type of the
simple socle S of G. Therefore, we may assume that P � S. It follows that S must
be a simple group of Lie type. By the same argument as in the proof of Theorem 3.1,
we may assume that |PS/S| = p. According to the Atlas [A, Table 5], in most cases
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G/S ≤ Out(S) has a unique subgroup of order p up to conjugation. In these cases
P is uniquely determined by S and we are done. If S ∼= PSLε(k, qf ), then we may
assume that p | gcd(k, q − ε, f) and the claim follows from Lemma 5.1. The only
remaining exceptional cases are settled in Lemma 5.2. �

Let G = An be an alternating group with non-abelian Sylow p-subgroup P and
|P : P ′| = p2. Then either p = 2, n ∈ {6, 7} or p > 2, n = a+p2 with 0 ≤ a ≤ p−1.
In either case P ∼= Cp � Cp has maximal nilpotency class (see [H, Satz III.15.3]).
The sporadic groups G such that |P | ≥ p4 and |P : P ′| = p2 are

(G, p) ∈ {(M11, 2), (J3, 3), (Ly, 5), (Co1, 5), (HN, 5), (B, 5), (M, 7)}
(this can be derived from the structure of the Sylow normalizer described in [Wi1]).
In all cases, except G = J3, P has maximal nilpotency class.

7. Detecting the center

Let P be a p-group. For Q ≤ P and N � P we have |Q : Z(Q)| ≤ |P : Z(P )|
and |P/N : Z(P/N)| ≤ |P : Z(P )| by elementary group theory. This often allows
inductive arguments in the following.

Lemma 7.1. Let G be a finite group with a normal p-subgroup N such that G/N
has cyclic Sylow p-subgroups. Then the character table of G determines whether N
is abelian.

Proof. By [I1, Corollary 11.22], every ψ ∈ Irr(N) extends to a Sylow p-subgroup
P of the stabilizer Gψ since P/N is cyclic. By [I1, Corollary 8.16], ψ also extends
to every Sylow q-subgroup of Gψ where q �= p. Hence, ψ extends to Gψ by [I1,
Corollary 11.31].

Now define an equivalence relation on Irr(G) by χ ∼ ψ : ⇐⇒ [χN , ψN ] �= 0 (note
that this relation is indeed transitive). Choose representatives χ1, . . . , χk ∈ Irr(G)
for each equivalence class such that χi(1) is as small as possible for i = 1, . . . , k. By
Clifford theory, (χi)N is a sum of G-conjugates of some ψ ∈ Irr(N). In particular,
θ := χ1 + . . . + χk satisfies θN =

∑
ψ∈Irr(N) ψ. Since |N | =

∑
ψ∈Irr(N) ψ(1)

2, it

follows that N is abelian if and only if θ(1) = |N |. �
The next result is taken from Gross [Gr, Theorem C] and Glauberman [Gl,

Corollary 5] respectively.

Lemma 7.2.

(i) Let p > 2 be a prime and G a finite group with Op′(G) = 1. Let P be a
Sylow p-subgroup of G and Q := P ∩ F∗(G). Then CP (Q) = Z(Q).

(ii) Let G be a finite group with O2′(G) = 1 = Z(G). Suppose G has an abelian
Sylow 2-subgroup P . Let α ∈ Aut(G) be a 2-element that centralizes P .
Then α is an inner automorphism of G.

Lemma 7.3. Let G be a quasisimple group with a non-abelian Sylow 2-subgroup P
such that |P : Z(P )| = 4. Then the following holds:

(i) G ∼= A7, 3.A7 or G/Z(G) ∼= PSL(2, q) for some odd prime power q.
(ii) |P | = 8.
(iii) |CAut(G)(P ) : CInn(G)(P )|2 ≤ 2 with equality if and only if G ∼= A7 or

G ∼= PSL(2, p2f ) with p2f ≡ 9 (mod 16). In the latter case

O2(CAut(G)(P )/CInn(G)(P ))
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is generated by the field automorphism x → xpf

.

Proof.

(i) Suppose first that O2(Z(G)) �= 1. Then by Lemma 2.1, O2(Z(G)) = P ′ ∼=
C2. Hence, the simple group G := G/Z(G) has abelian Sylow 2-subgroup
P . Those are classified by Walter’s theorem. The case G = PSL(2, 4) ∼=
PSL(2, 5) fulfills our claim. On the other hand, G = PSL(2, 2f ) with f ≥ 3,
G = 2G2(3

f ) or G = J1 are impossible since then O2(Z(G)) = 1.
Now let O2(Z(G)) = 1. Without loss of generality, let Z(G) = 1. The

simple groups with Sylow 2-subgroup of nilpotency class 2 were classified
in [GG]. We need to dismiss the last four groups mentioned there. The
Suzuki groups Sz(2n) for n ≥ 3 have Suzuki 2-groups as Sylow subgroup
with |P : Z(P )| = |Z(P )| > 4. The group G = PSL(3, 2) ∼= PSL(2, 7) is
on our list. For G = PSLε(3, 2n) with n ≥ 2, P consists of unitriangular
matrices and |P : Z(P )| = 22n > 4. Finally, let G = Sp(4, 2n) with n ≥ 2.
If n is odd, then Sz(2n) ≤ G by [Wi2, Theorem 3.7]. This was already
excluded above. If n is even, then Sp(4, 4) ≤ G. By computer we check
that Sp(4, 4) has a Sylow 2-subgroup Q such that |Q : Z(Q)| > 4. Hence,
also |P : Z(P )| > 4.

(ii) For G ∼= A7 we have P ∼= D8. Recall that SL(2, q) has (generalized) quater-
nion Sylow 2-subgroups and PSL(2, q) has dihedral Sylow 2-subgroups
when q is odd. In both cases |P | = |P : Z(P )||Z(P )| = 8. We also note that
q ≡ ±3 (mod 8) if G = SL(2, q) and q ≡ ±7 (mod 16) if G = PSL(2, q).

(iii) If G = A7, then Aut(G) = S7 and |CS7
(P ) : CA7

(P )| = 2. If G =
3.A7, then Aut(G) = Inn(G). Now let G = SL(2, q) with q = pf ≡ ±3
(mod 8). Then f is odd and Out(G) ∼= C2×Cf . The unique diagonal outer
automorphism of order 2 has an abelian centralizer in G, so it cannot fix
P . Next, let G = PSL(2, q) with q = pf ≡ ±7 (mod 16). Suppose first
that q ≡ 7 (mod 16). Then again f is odd and there is only one outer
automorphism α of order 2. Since q − 1 is not divisible by 4, we may
assume that α is the conjugation with diag(−1, 1). But now α cannot fix
an element of order 4 in G. Finally, assume that q = pf ≡ −7 (mod 16).
Here an outer diagonal automorphism α is induced by diag(ζ, 1) where
ζ ∈ F×

q has order 8. Now CG(α) can only contain diagonal matrices.
Hence, α does not centralize P . If f is odd, there are no other choices.
Thus, let f = 2f ′. Since q ≡ 9 (mod 16), f ′ is odd. We may assume that

P = 〈
(
ζ 0
0 ζ−1

)
,

(
0 1
−1 0

)
〉/〈−12〉.

Let β be the field automorphism x → xpf′
. Since ζp

f′
= ζ±3 = −ζ±1,

β induces an inner automorphism on P . So there must be another outer
automorphism of 2-power order in the coset of α, which centralizes P . �

The case PSL(2, 9) ∼= A6 leads to S6 with Sylow 2-subgroup P and |P : Z(P )| =
4. This example and PSL(2, q2f ) were pointed out in Gross [Gr]. In Lemma 7.4 we
denote the extraspecial group of order p3 and exponent p by p1+2

+ .

Lemma 7.4. Let p > 2 be a prime and G be a finite quasisimple group such that
|P : Z(P )| = p2 for some non-abelian Sylow p-subgroup P of G. Then P ∼= p1+2

+ .
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Proof. The extraspecial group p1+2
− of exponent p2 cannot be a Sylow subgroup

of a perfect group, since the focal subgroup would be too small. Hence, we may
assume by way of contradiction that |P | ≥ p4. Without loss of generality, let
Op′(G) = 1. Let F = FP (G) be the fusion system on P induced by G. Following
the proof of [O, Theorem 2.1], we find that Z(P ) = P ′ × A where 1 �= A� F . By
[AKO, Corollary I.4.7], A is strongly closed in G with respect to P , i.e. gAg−1∩P ≤
P for every g ∈ G. By Lemma 2.1, Z := Z(G) ≤ P ′ and |Z| ≤ p. Then AZ/Z is
strongly closed in the simple group G := G/Z with respect to the abelian Sylow
subgroup P := P/Z.

Suppose that Z �= 1. Then G is not an alternating group, since p > 2 and |P | ≥
p4. If G is a sporadic group, then p = 3 and G ∈ {Suz,McL, F i22, F i′24, ON, J3}.
Of those, only G ∼= ON has abelian Sylow 3-subgroups. But here P is extraspecial
of order 35. Hence, suppose that G is of Lie type. By [FF, Proposition 2.5], NG(P )

acts irreducibly on P/Φ(P ). Since |P : A| = p2, it follows that Z(P ) = Φ(P ) and
P has rank 2. One can check from the Atlas [A, Table 5] that Z does not lie in
the exceptional part of the Schur multiplier (in this case p would be the defining
characteristic). If G = PSLε(d, q), then p must divide (d, q − ε). This can only
happen for p = 3 = d, since otherwise P has rank larger than 2 (take diagonal
matrices). Now if 9 divides q − ε, then P is non-abelian and otherwise |P | = 9. In
the remaining cases we have p = 3 and G = E6(q) or

2E6(q) by [A, Table 5]. Here
F4(q) ≤ G and P is never abelian (see [Wi2, Section 4.8.9]).

Thus, Z = 1 and G is simple. The (simple) groups with a strongly closed
subgroup are classified by Flores–Foote [FF] and the results are summarized in
[AKO, Theorems II.12.12, II.12.10]. If S is of Lie rank 1, then only PSU(3, pn)
and 2G2(3

n) for n ≥ 2 have non-abelian Sylow p-subgroups of order ≥ p4. In both
cases |P : Z(P )| = p2n > p2. The only remaining case is G = J3 with p = 3. Here
|P : Z(P )| = 27. �

By [KS, Theorem 2.1], a finite group G has abelian Sylow p-subgroups if and only

if Op′
(G/Op′(G)) ∼= A×S, where A is an abelian p-group and S is a direct product

of simple groups with abelian Sylow p-subgroups. Theorem 7.5 is a generalization.

Theorem 7.5. Let G be a finite group with non-abelian Sylow p-subgroup P and
Op′(G) = 1. Then |P : Z(P )| = p2 if and only if one of the following holds:

(A) Op′
(G) = Op(G)×S where Op(G) is non-abelian with |Op(G) : Z(Op(G))|

= p2 and S is a direct product of simple groups with abelian Sylow p-
subgroups (S = 1 allowed).

(B) Op′
(G) = (Op(G) ∗ C)× S where Op(G) is abelian, S is a direct product

of simple groups with abelian Sylow p-subgroups and C is a quasisimple
group with non-abelian Sylow p-subgroup of order p3 and |Z(C)| ≤ p.

(C) F∗(G) = Op(G)×S where Op(G) is abelian, S is a direct product of simple
groups with abelian Sylow p-subgroups and |G/F∗(G)|p = p. There exists
x ∈ P \ F∗(G) such that |G : CG(x)|p = p.

(D) p = 2 and F∗(G) = O2(G)× S × T where O2(G) is abelian, S is a direct
product of simple groups with abelian Sylow 2-subgroups and T = A7 or
T = PSL(2, q2f ) where q2f ≡ 9 (mod 16). Moreover, O2′(G) = PF∗(G).
There exists x ∈ P \ F∗(G) such that |CG(x)|2 = |P |. If T = A7, then x
acts as a transposition on T and if T = PSL(2, q2f ), then x acts as the

field automorphism x → xqf on T .
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Consequently, the property |P : Z(P )| = p2 can be read off from the character table.

Proof. In each step of the proof we make sure that the conclusion is detectable
from the character table of G. By Lemma 2.1, we may assume that |P ′| = p
(although this is a priori not visible from the character table). Let N := F∗(G) =
Op(G) ∗E(G) be the generalized Fitting subgroup. By Theorem 4.1, the character
table determines |N | and the non-abelian composition factors of E(G).

Case 1. P ≤ N .

Then N = Op′
(G). By comparing the minimal non-abelian subgroups of G with

E(G), the character table detects whether Op(G) ∩E(G) �= 1.

Case 1.1. N = Op(G)×E(G).

Here E(G) is a direct product of simple groups and therefore the isomorphism
type of E(G) is determined from the character table. Going over to G/E(G), the
character table tells us whether Op(G) is abelian. If this is the case, then exactly
one of the simple factors of E(G) has a non-abelian Sylow p-subgroup. We are
in Case (B) by Lemma 7.4. Now let P ∩ E(G) be abelian. Then we may assume
E(G) = 1. Here N = P is the only Sylow p-subgroup of G and |Z(P )| = |Z(N)|
is the number of p-elements x ∈ G such that |CG(x)|p = |P |. Hence, |P : Z(P )| is
detected from the character table and we are in Case (A).

Case 1.2. Z = Op(G) ∩E(G) �= 1.

There must be a component C ≤ G with Z ≤ Z(C). By Lemma 2.1, C has
a non-abelian Sylow p-subgroup Q, |Z| = p and |Q| = p3 by Lemma 7.3 and
Lemma 7.4. If C is not normal in G, then there is a conjugate component C1 ≤ G
and C ∗C1 has an extraspecial Sylow p-subgroup Q∗Q1 of order p5. Then |Q∗Q1 :
Z(Q ∗ Q1)| = p4 contradicts |P : Z(P )| = p2. Hence, the character table should
tell us that C � G is the only component with Z ≤ C. We are in Case (B). Note
that P = (Op(G) ∗Q) × P1 where P1 is abelian. Now |P : Z(P )| = p2 if and only
if Op(G) is abelian. This happens if and only if |CG(x)|p = |P | for all x ∈ Op(G).

Case 2. Q := P ∩N < P .

The character table detects whether E(G) has abelian Sylow p-subgroups since
this can only happen if all components are (known) simple groups.

Case 2.1. Q1 := Q ∩E(G) is abelian.

Again by Lemma 2.1, N = Op(G) × E(G). If p > 2, then CP (Q) = Z(Q) and
Z(P ) < Q by Lemma 7.2. If p = 2 and x ∈ CP (Q) ⊆ CG(Q1), then by Lemma 7.2
there exists y ∈ E(G) such that xy ∈ CG(E(G)). But then xy ∈ CG(N) ≤ N and
we obtain x ∈ P ∩ N = Q. Therefore, we have CP (Q) = Z(Q) and Z(P ) < Q
independent of p. Hence, we may assume that Q is abelian and |P : Q| = p. This is
detected by the character table of G/E(G) using Lemma 7.1. We are in Case (C).
Let x ∈ P \ Q. Then Z(P ) = CQ(x). If x lies in the center of some Sylow p-
subgroup P1, then x would centralize P1 ∩N which was already excluded. Hence,
|P : Z(P )| = p2 if and only if |G : CG(x)|p = p.

Case 2.2. Q1 is non-abelian.
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Here P = CP (Q1)Q1. This is only possible for p = 2 by Lemma 7.2. As in
Case 1.2 there exists a unique component C ≤ G with non-abelian Sylow 2-subgroup
Q2 := Q1 ∩ C. It follows from Lemma 7.3 that C ∼= A7 or C ∼= PSL(2, q2f ) with
q2f ≡ 9 (mod 16). In particular, Q2

∼= D8 and N = O2(G) × C × D where D is
a direct product of simple groups with abelian Sylow 2-subgroups. We check with
the character table that G/C has abelian Sylow 2-subgroups. We are in Case (D).
Now we go over to G/O2(G)D. Then |P | = 16. By Corollary 2.2, |P : Z(P )| = 4
if and only if |P ′| = 2. This is determined by the character table according to
Theorem A. Finally, observe that

PN/N ≤ CG(O2(G)D)N/N ≤ Out(C) ∼= C2 × C2f

(or Out(C) ∼= C2 if C = A7). This shows that NP = O2′(G). �

The example G = S4 with p = 2 in Case (C) shows that |Op′
(G)/N | is not

necessarily p. The group A7 �C4 with non-faithful action shows that O2′(G) does
not necessarily split over N in Case (D).
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