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COSETS FROM EQUIVARIANT W-ALGEBRAS

THOMAS CREUTZIG AND SHIGENORI NAKATSUKA

Abstract. The equivariant W-algebra of a simple Lie algebra g is a BRST
reduction of the algebra of chiral differential operators on the Lie group of
g. We construct a family of vertex algebras A[g, κ, n] as subalgebras of the
equivariant W-algebra of g tensored with the integrable affine vertex algebra
Ln(ǧ) of the Langlands dual Lie algebra ǧ at level n ∈ Z>0. They are conformal
extensions of the tensor product of an affine vertex algebra and the principal
W-algebra whose levels satisfy a specific relation.

When g is of type ADE, we identify A[g, κ, 1] with the affine vertex algebra
V κ−1(g) ⊗ L1(g), giving a new and efficient proof of the coset realization of
the principal W-algebras of type ADE.

1. Motivation and Results

Let G be a connected simply-connected simple algebraic group with Lie algebra
g. Then the space C[G] of regular functions decomposes into

C[G] �
⊕
λ∈P+

Lλ ⊗ Lλ∗

as a g ⊕ g-module under the actions of the left and right invariant vector fields.
Here Lλ denotes the integrable g-module of highest weight λ, λ∗ the highest weight
of its dual representation, and P+ the set of dominant integral weights. This result
can be chiralized by using the algebra of chiral differential operators over G

Dch
G,κ = U(ĝκ)⊗U(g�t�) C[J∞G],

[AG,GMS1,GMS2]. Here J∞G is the jet scheme of G, on which g�t� acts as the
left invariant vector fields and ĝκ is the affine algebra of g at level κ ∈ C. This is a
deformable family of vertex algebras whose top subspace is C[G]. The g-action on
C[G] via the right invariant vector fields is chiralized to an another action of ĝκ∗

on Dch
G,κ at another specific level κ∗. Let V κ(g) denote the universal affine vertex

algebra associated with g at level κ ∈ C and Vκ
λ the Weyl module of V κ(g) whose

top space is Lλ. Let h∨ denote the dual Coxeter number of g, then for irrational
levels κ these two actions of the affine algebra decompose Dch

G,κ into

Dch
G,κ �

⊕
λ∈P+

Vκ
λ ⊗ Vκ∗

λ∗ ,
1

κ+ h∨ +
1

κ∗ + h∨ = 0.
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There is a variant of Dch
G,κ, called the quantum geometric Langlands kernel VOAs

A(n)[g, κ] [CG]. These are families of vertex algebras, similar to Dch
G,κ, but the

inverses of the shifted levels of κ, κ∗ do not add up to zero but to integers in
general. The existence of these algebras has been established by Moriwaki [M]
and the name has been partially justified as they serve as kernels for convolution
operations mapping W-algebras to the dual W-superalgebras [CLNS] as suggested
by S-duality [CG, Section 7.3].

A W-algebra is a vertex algebra obtained from V κ(g) via the BRST reduction
HDS,f , parametrized by nilpotent elements f in g and in this work we are concerned
with the principal W-algebras, Wκ(g), associated with the principal nilpotent ele-
ment f and we abbreviate HDS,f = HDS from now on. The equivariant W-algebra
has been introduced by Tomoyuki Arakawa [A1] and it is realized as the BRST
reduction of Dch

G,κ defined through the subalgebra V κ(g). By introducing Wκ(g)-

modules Tκ
λ,0 := H0

DS(V
κ
λ), we have for irrational levels κ

DW
κ,G �

⊕
λ∈P+

Tκ
λ,0 ⊗ Vκ∗

λ∗ .

Two important results on W-algebras have been established recently, motivated
in part by S-duality in the physics. The first one is the Arakawa–Frenkel duality
[AF]: Arakawa and Frenkel introduced a variant of the BRST reductions where
the differential is twisted by an automorphism associated to a coweight. They then
proved isomorphisms between modules thus defined, generalizing the Feigin–Frenkel
duality [FF2] for algebras themselves, see Section 2.2. The second one is the Urod
or translation property of the functor HDS [ACF], that is, HDS commutes with
tensoring with the integrable representations of the affine algebra.

These two results are the main ingredients in the proof of our first main theorem,
which states the existence of the A(n)[g, κ]-analogue for DW

κ,G with G replaced by

the Adjoint type Ad(G). We formulate it as a deformable family of vertex algebras
depending on κ, i.e. a vertex algebra over a localization of the polynomial ring
A = C[k] where k plays the role of the level κ, see Section 2.1 for the precise
definition. Denote by r∨ the lacity of g, by Q its root lattice and set Q+ := Q∩P+.

Theorem 1.1. For n ∈ Z>0, there exists a deformable family of vertex algebras
A[g, κ, n] over C which is simple at irrational levels κ and admits a vertex algebra
homomorphism from V κ(g)⊗Wκ∗

(g) at all levels inducing a decomposition

A[g, κ, n] �
⊕
λ∈Q+

Vκ
λ ⊗ Tκ∗

λ∗,0

at irrational levels. Here κ∗ ∈ C is defined by the relation

(1.1)
1

κ+ h∨ +
1

κ∗ + h∨ = r∨n.

See Section 3 for the explicit construction. In physics, vertex algebras appear
at corners of topological boundary conditions [GR,CG]. For g = slm the algebra
A[g, κ, n] is the Dm,n-corner VOA discussed in Section 6.2.2 of [CDGG]. Conjec-
turally a κ → ∞ limit of these algebras are Feigin–Tipunin algebras [FT] times a
big center. It is desirable to study large level limits of A[g, κ, n] and in particular
to settle this conjecture. Note that deformable families of vertex algebras were
introduced in order to study large level limits [CL1,CL4].
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Let Lκ(g) and L[g, κ, n] denote the unique simple quotients of V κ(g) and
A[g, κ, n].

Corollary 1.2. For n ∈ Z>0 and κ, κ∗ related by (1.1),

(i) If κ be admissible and κ∗ non-degenerate (co)principal admissible, then
L[g, κ, n] is a conformal extension of Lκ(g)⊗Wκ∗(g) with Com(Lκ(g), L[g, κ, n]) �
Wκ∗(g).

(ii) L[g, κ, n] is strongly rational for κ ∈ Z>0.

Proof. (i) The conformal weight h(λ) of the top subspace of Vκ
λ ⊗ Tκ∗

λ∗,0 is

h(λ) =
(λ, λ+ 2ρ)

2(κ+ h∨)
+

(λ, λ+ 2ρ)

2(κ∗ + h∨)
− (λ, ρ∨) =

(λ, λ)r∨n

2
+ (λ, nr∨ρ− ρ∨).(1.2)

ρ, ρ∨ are the Weyl and dual Weyl vectors. Hence, h(λ) > 0 for λ ∈ Q+ \ {0}
and L[g, κ, n] is a 1

2Z≥0-graded vertex operator algebra. Let Ṽ κ(g) and W̃κ∗
(g)

be the images of V κ(g) and Wκ∗
(g) in L[g, κ, n]. It follows from κ ∈ R≥0 that

Com(Ṽ κ(g), L[g, κ, n]) = W̃κ∗
(g) by [CL1, Theorem 8.1]. Then the simplicity of

L[g, κ, n] implies W̃κ∗
(g) is simple, i.e Wκ∗(g) by [ACK, Theorem 4.1]. Since κ∗

non-degenerate (co)principal admissible by assumption, Wκ∗(g) is strongly rational
[A2, A3]. Now, by [ACKL, Lemma 2.1], Com(Wκ∗(g), L[g, κ, n]) is simple, which

implies Ṽ κ(g) = Lκ(g) by [AvEM, Theorem 3.4] since the coset is a conformal

extension of Ṽ κ(g). (ii) For κ ∈ Z>0, κ
∗ is non-degenerate principal admissible and

thus we have (i). As Com(Wκ∗(g), L[g, κ, n]) is strongly rational as a conformal
extension of a strongly rational vertex operator algebra Lκ(g) of positive categorical
dimension [Mc, Theorem 1.1], so is L[g, κ, n] by [CKM, Corollary 1.1] �

In 1986, Goddard, Kent and Olive discussed how the Virasoro algebra, that is the
W-algebra of sl2, is realized as a coset [GKO]. The generalization to the principal
W-algebras of type ADE is usually referred as the GKO-coset realization of W-
algebras. It has been widely used in physics, however it has only recently been
proven [ACL]. For type A and D it has then been reproven [CL2,CL3]. A main
motivation of this work is to give a much shorter proof of this famous theorem:

Theorem 1.3. Let g be of type ADE. Then V κ−1(g)⊗L1(g) � A[g, κ, 1] as vertex
algebras over C for generic κ ∈ C\Q. In particular, Com(V κ(g), V κ−1(g)⊗L1(g)) �
Wκ∗

(g) holds where κ∗ is defined by 1
κ+h∨ + 1

κ∗+h∨ = 1.

See Section 4 for the proof. The proof says that we have a map V κ−1
S (g) ⊗C

L1(g) → A[g, κ, 1]S as deformable families over an étale cover SpecS of a Zariski
open subset of C.

Corollary 1.4. Let g be of type ADE and κ− 1 admissible. Then

Com(Lκ(g), Lκ−1(g)⊗ L1(g)) � Wκ∗(g),

where κ∗ is defined by 1
κ+h∨ + 1

κ∗+h∨ = 1.

Proof. The argument is the same as in the beginning of the proof of Corollary 1.2.
Combining Theorems 1.1 and 1.3 we have for generic level

V κ−1(g)⊗ L1(g) � A[g, κ, 1] �
⊕
λ∈Q+

Vκ
λ ⊗ Tκ∗

λ∗,0
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with κ∗ ∈ C defined by the relation (1.1). The simple quotient of V κ−1(g)⊗ L1(g)

is Lκ−1(g) ⊗ L1(g). As any affine vertex algebra it is Z≥0-graded. Let Ṽ κ(g)

and W̃κ∗
(g) be the images of V κ(g) and Wκ∗

(g) in Lκ−1(g) ⊗ L1(g). Now, if
κ− 1 is admissible then κ is admissible as well and κ∗ is non-degenerate principal

admissible. It follows from κ ∈ R≥0 that Com(Ṽ κ(g), Lκ−1(g) ⊗ L1(g)) = W̃κ∗
(g)

by [CL1, Theorem 8.1]. Then the simplicity of Lκ−1(g)⊗ L1(g) implies W̃κ∗
(g) is

simple, i.e Wκ∗(g) by [ACK, Theorem 4.1]. �

Remark 1.5. A variant of the method for g of type C shows that V κ(osp1|2n) is

an extension of V κ(sp2n) and Wκ∗
(sp2n) with

1
κ+h∨ + 1

κ∗+h∨ = 2, which is key for

understanding ordinary modules of Lκ(osp1|2n) in [CGL].

2. Integral form of the equivariant W-algebra

We follow the notation in Section 1. In particular, we denote by g a simple Lie
algebra and by Q ⊂ P the root and weight lattice, respectively. Switching to the
Langlands dual Lie algebra ǧ of g, we use the symbol X̌ for ǧ corresponding to X
for g, e.g. Q̌ stands for the root lattice of ǧ.

2.1. Deformable family of vertex algebras. Let A = C[k] denote the polyno-
mial ring in the variable k and F = C(k) the field of rational functions. Given a
subset U ⊂ C, consider a family of vertex algebras (or its modules) V κ depending
on the parameter κ ∈ C\U . We say that it is a deformable family of vertex alge-
bras [CL1] if there exists a vertex algebra VAU

over AU := A[ 1
k−a | a ∈ U ] which is

AU -free and satisfies VAU
⊗AU

Cκ � V κ (κ ∈ C\U). We often write V κ
AU

to keep the
parameter κ explicit. It is useful to view V κ

F
:= V κ

AU
⊗AU

F as the vertex algebra
capturing the behavior of V κ for generic κ. When U is empty, i.e. AU = A, we
call V κ

A
the integral form of V κ. Note that the affine vertex algebra V κ(g) (κ ∈ C)

has an integral form V κ
A
(g) = UA(ĝA) ⊗U(g�t�) C where ĝA is the affine Lie algebra

over A whose level κ is replaced by k and UA(ĝA) is its enveloping algebra over A.
Similarly, we have the integral forms of Weyl modules Vκ

λ,A := UA(ĝA)⊗U(g�t�) Lλ.

2.2. Principal W-algebra. Let us recall the BRST reduction functor HDS. For
this, let h ⊂ g denote the Cartan subalgebra, g = n+ ⊕ h ⊕ n− the triangular
decomposition, and n+ = ⊕α∈Δ+

gα the decomposition into root subspaces with
Δ+ the set of positive roots. We denote by Π ⊂ Δ+ the set of simple roots. We fix
(non-zero) root vectors eα ∈ gα with structure constants cγα,β . Then given a V κ(g)-

module M , the BRST reduction HDS(M) with coefficients in M is, by definition,
the cohomology of the complex

C(M) = M ⊗
∧ ∞

2 +•(n+)

equipped with the differential d = dst + dχ given by

dst =

∫
dz

∑
α∈Δ+

eα(z)⊗ ψ∗
αi
(z)− 1

2

∑
α,β,γ∈Δ+

cγα,β : ψγ(z)ψ
∗
α(z)ψ

∗
β(z) :,

dχ =

∫
dz

∑
α∈Π

ψ∗
α(z) =

∑
α∈Π

ψ∗
α,1.

Here
∧ ∞

2 +•(n+) is a tensor product of bc-systems generated by the fields ψα(z),
ψ∗
α(z), (α ∈ Δ+), satisfying the OPE ψα(z)ψ

∗
β(w) ∼ δα,β/(z−w). In particular, the
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vertex algebra Wκ(g) = H0
DS(V

κ(g)) is called the principal W-algebra and enjoys
the Feigin–Frenkel duality [FF2]

Wκ(g) � Wκ̌(ǧ), r∨(κ+ h∨)(κ̌+ ȟ∨) = 1.(2.1)

Note that the functorHDS is well-defined over A. By [BFN, Appendix B],Wκ
A
(g) :=

H0
DS(VA(g)) gives the integral form of Wκ(g) and (2.1) is refined to Wκ

F
(g) � Wκ̌

F
(ǧ)

with r∨(k+ h∨)(ǩ+ ȟ∨) = 1, see [ACL,BFN] for more on the duality for integral
forms. We also have the integral forms of HDS(V

κ
λ):

Proposition 2.1.

(i) Hn
DS(Vλ,A) = 0 if n �= 0.

(ii) H0
DS(Vλ,A) is A-free and satisfies H0

DS(Vλ,A)⊗A Cκ � H0
DS(V

κ
λ) for κ ∈ C.

Proof. The case λ = 0, i.e. Vλ,A = VA(g) is proven in [BFN, Appendix B] by
upgrading the proof in [FBZ, Chapter 15] for the case over C to the case over
A. As the proof in [FBZ, Chapter 15] is straightforwardly generalized to the case
λ ∈ P+ [AF, Section 4.2], the assertion is proven by word-by-word translation of
the argument in [BFN, Appendix B] to the case λ ∈ P+, following [AF, Section
4.2]. �

To introduce more Wκ(g)-modules, we use the twisted BRST reduction HDS,μ̌

(μ̌ ∈ P̌+). Given a V κ(g)-module M , we introduce a C(V κ(g))-module σ∗
μ̌(C(M))

on the vector space C(M) by using the Li’s Δ-operator Δ(−μ̌Δ, z) with

μ̌Δ(z) = μ̌(z) +
∑

α∈Δ+

(μ̌, α) : ψα(z)ψ
∗
α(z) : .

More explicity, we set Δ(−μ̌Δ, z) = z−μ̌Δ,0exp(
∑∞

n=1
μ̌Δ,n

n (−z)−n) and

C(V κ(g)) → End(C(M))�z±1�, A �→ YC(M) (Δ(−μ̌Δ, z)A, z) .(2.2)

The twisted BRST reduction HDS,μ̌ is defined as the cohomology HDS,μ̌(M) =
HDS(σ

∗
μ̌(M)), which is naturally a module over Wκ(g) by (2.2). Equivalently, we

modify the differential d as dμ̌ = dst + dχ,μ̌ with

dχ,μ̌ =
∑
α∈Π

ψ∗
α,(μ̌,α)+1.

Proposition 2.2 ([AF]). Let λ ∈ P+, μ̌ ∈ P̌+ and set Tκ
λ,μ̌ = H0

DS,μ̌(V
κ
λ).

(i) For κ ∈ C, Hn
DS,μ̌(V

κ
λ) = 0 if n �= 0.

(ii) For κ ∈ C\Q, there is an isomorphism

Tκ
λ,μ̌ � Ť κ̌

μ̌,λ

of modules over Wκ(g) � Wκ̌(ǧ) (2.1).

We note that the proposition also holds over F.

2.3. Equivariant W-algebra. We construct the integral form of the equivariant
vertex algebra DW

G,A over A for DW
G,κ by using the following integral form of the

algebra of chiral differential operators

Dch
G,A = UA(ĝA)⊗U(g�t�) C[J∞G].

Theorem 2.3.

(i) Hn
DS(D

ch
G,A) = 0 if n �= 0.
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(ii) H0
DS(D

ch
G,A) is A-free and satisfies H0

DS(D
ch
G,A)⊗A Cκ � DW

G,κ.

Therefore, H0
DS(D

ch
G,A) is the integral form DW

G,A of DW
G,κ.

The vertex algebra Dch
G,A has a conformal vector ω(z), [GMS1]. After the base

change Dch
G,A ⊗A A[ 1

k+h∨ ], it is the sum of the Sugawara vectors of affine vertex

subalgebras V κ
A
(gL) and V −κ−2h∨

A
(gR) over A corresponding to the left and right

invariant vector fields. Since the PBW base theorem implies

Dch
G,A � A⊗C U(g[t−1]t−1)⊗C C[J∞G]

as A-modules, each homogeneous subspace of the conformal weight decomposition

Dch
G,A =

⊕
Δ≥0

Dch
G,A[Δ]

is A-free and seen as the base change A ⊗C M [Δ] of some semisimple (gL, gR)-
bimodule M [Δ] ⊂ U(g[t−1]t−1)⊗C C[J∞G] over C. In particular, we have

M [0] = C[G] �
⊕
λ∈P+

Lλ ⊗C Lλ∗ .

It follows that M [Δ] (Δ ≥ 0) decomposes into

M [Δ] �
⊕
λ∈P+

Mλ[Δ]⊗ Lλ∗(2.3)

as a (gL, gR)-bimodule where Mλ[Δ] is a finite dimensional semisimple gL-module
consisting of the highest weight vectors of weight λ for the gR-action. Now, let

M̂A[≤ Δ] denote the (V L
A
(g), gR)-sub-bimodule of Dch

G,A generated by M [p] with
p ≤ Δ. In partucular, we have

M̂A[≤ 0] �
⊕
λ∈P+

Vλ,A ⊗C Lλ∗ ⊂ Dch
G,A.(2.4)

Here Vλ,A = UA(ĝA)⊗U(g�t�) Lλ is the integral form of the Weyl module of highest

weight λ. By using the decomposition (2.3), we find that M̂A[≤ Δ] decomposes
into

M̂A[≤ Δ] �
⊕
λ

M̂λ
A [≤ Δ]⊗C Lλ∗

where M̂λ
A
[≤ Δ] is a finite successive extension of Vλ,A by Weyl modules Vμ,A.

In order to apply Proposition 2.1 to Dch
G,A, we use an inductive argument which

is verified by the following easy lemma:

Lemma 2.4. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of VA(g)-modules
such that the following property holds for i = 1, 3:

(P1) Hn
DS(Mi) = 0 (n �= 0) and H0

DS(Mi) is A-free.
(P2) H0

DS(Mi)⊗A Cκ � H0
DS(Mi ⊗A Cκ).

Then (P1)–(P2) also hold for i = 2.

Proof. (P1) is immediate from the long exact sequence for the functor HDS. Then
the Künneth spectral sequence implies that H0

DS commutes with the base change
and thus (P2). �
Proof of Theorem 2.3. It follows from (2.4) and Proposition 2.1 that

• Hn
DS(M̂A[≤ p]) = 0 if n �= 0.
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• H0
DS(M̂A[≤ p]) is A-free and H0

DS(M̂A[≤ p])⊗ACκ � H0
DS(M̂A[≤ p]⊗ACκ),

hold for p = 0. Then the case for general p follows by induction (Lemma 2.4)

since M̂A[≤ p] is a finite successive extension of M̂A[≤ 0] by Weyl modules. The
assertion hold since the direct limit commutes with base change -⊗ACκ and taking

cohomology Hn
DS(D

W
G,A) � lim−→Hn

DS(M̂A[≤ p]). �

3. Proof of Theorem 1.1

We first work over the field F. The argument will be completely the same as
working over C for irrational levels, which will verify the assertion in Theorem 1.1
for irrational levels.

Let Ln(ǧ) be the simple affine vertex algebra (over C) with n ∈ Z≥0. Then we
have a decomposition

V κ̌
F (ǧ)⊗C Ln(ǧ) �

⊕
μ̌∈Q̌+

Vκ̌+n
μ̌,F ⊗F Cμ̌,F(3.1)

as a module over the diagonal V κ̌+n
F

(ǧ)-action. Here Cμ̌,F is the multiplicity space
consisting of highest weight vectors of weight μ̌ at level κ̌ + n, which is a simple
module over the coset Com(V κ̌+n

F
(ǧ), V κ̌

F
(ǧ)⊗CLn(ǧ)) by [CL2, Theorem 4.12]. For

λ ∈ P , we have by [ACF, Theorem 7.1] (which is stated over C, but also holds over
localizations of A, e.g. F ) an isomorphism of modules

H0
DS,λ(V

κ̌
F (ǧ)⊗C Ln(ǧ)) � H0

DS,λ(V
κ̌
F (ǧ))⊗C (σ∗

λLn(ǧ))(3.2)

over H0
DS(V

κ̌
F
(ǧ) ⊗C Ln(ǧ)) � H0

DS(V
κ̌
F
(ǧ)) ⊗C Ln(ǧ). Here σ∗

λ is the twist defined
similarly to (2.2). Then by setting λ ∈ Q+, (3.1) implies

H0
DS,λ(V

κ̌
F (ǧ))⊗C Ln(ǧ) � H0

DS,λ(V
κ̌
F (ǧ)⊗C Ln(ǧ))

�
⊕

μ̌∈Q̌+

H0
DS,λ(V

κ̌+n
μ̌,F )⊗F Cμ̌,F �

⊕
μ̌∈Q̌+

Ť κ̌+n
μ̌,λ,F ⊗F Cμ̌,F.(3.3)

Combining it with Proposition 2.2 (ii), we find

Tκ
λ,0,F ⊗C Ln(ǧ) �

⊕
μ̌∈Q̌+

Tκ

λ,μ̌,F ⊗F Cμ̌,F(3.4)

where the levels κ, κ are defined by the relations

r∨(κ+ h∨)(κ̌+ ȟ∨) = 1, r∨(κ̌+ n+ ȟ∨)(κ + h∨) = 1.(3.5)

Next, we invoke the equivariant W-algebra DW
Ad(G),A associated with the alge-

braic group Ad(G) of Adjoint type. It is the fixed point of DW
G,A for the center

Z(G) = Ker(G � Ad(G)) and thus its base change DW
Ad(G),F decomposes into

DW
Ad(G),F �

⊕
λ∈Q+

Tκ
λ,0,F ⊗F V

κ∗

λ∗,F,
1

κ+ h∨ +
1

κ∗ + h∨ = 0(3.6)
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as a module over Wκ
F
(g)⊗F V

κ∗

F
(g). Then it follows from (3.4) and (3.6) that

DW
Ad(G),F ⊗F Ln(ǧ) �

⊕
λ∈Q+

Tκ
λ,0,F ⊗F V

κ∗

λ∗,F ⊗C Ln(ǧ)

�
⊕
λ∈Q+

μ̌∈Q̌+

Vκ∗

λ∗,F ⊗F T
κ

λ,μ̌,F ⊗F Cμ̌,F.(3.7)

Now, introduce the following vertex algebra over A

A[g, κ∗, n]A :=
(
DW

Ad(G),A ⊗C Ln(ǧ)
)
∩ Com

(
C0,F,D

W
Ad(G),F ⊗C Ln(ǧ)

)
.

We show that it is a desired deformable family of vertex algebras. SinceDW
Ad(G),A⊗C

Ln(ǧ) is A-free by Theorem 2.3 and A is a P.I.D., the A-submodule A[g, κ∗, n]A is
A-free by [HS, Theorem 5.1]. Consider the natural map

A[g, κ∗, n]A ⊗A Cκ → (DW
Ad(G),A ⊗C Ln(ǧ))⊗A Cκ, (κ ∈ C\Q).

It is immediate from the definition of A[g, κ∗, n]A that the map is injective. The
right-hand side is DW

Ad(G),κ ⊗C Ln(ǧ) by Theorem 2.3 and thus admits a V κ∗
(g)⊗

Wκ(g)-action: one comes from the V κ∗

A
(gR)-action and the other from (3.2) (for

C as explained) by using the V κ
A
(gL)-action. Therefore, by construction, V κ∗

(g)⊗
Wκ(g) acts on A[g, κ∗, n].

Since (3.7) also holds for irrational levels as mentioned already, we obtain

A[g, κ∗, n]A ⊗A Cκ ↪→
⊕
λ∈Q+

Vκ∗

λ∗ ⊗C Tκ

λ,0.(3.8)

Since A[g, κ∗, n]A is A-free, the character remains the same under specialization,
which agrees with the character of the RHS. Therefore, (3.8) is an isomorphism.
Finally, since DW

κ,Ad(G) is simple [A1, Section 6], the decomposition (3.7) implies

that A[g, κ∗, n] is also simple for κ∗ ∈ C\Q by [CGN, Proposition 5.4]. Finally, it
follows from (3.5) and (3.6) that the levels κ∗ and κ satisfy the relation 1

κ∗+h∨ +
1

κ+h∨ = r∨n. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.3

Suppose that g is of type ADE and consider the case n = 1 in Theorem 1.1. Let
us calculate the character of A[g, κ, 1] for (h, L0) with L(z) =

∑
m∈Z

Lmz−m−2 the
standard Virasoro field. By [AF, Eq. (5.7)], we have

ch[Tκ∗

λ∗,0] =
q

(λ∗+2ρ,λ)

2(κ∗+h∨)
+(ρ,ρ)

(q; q)rankg∞

∑
w∈W

ε(w)q−(w(λ∗+ρ),ρ),

where W is the Weyl group and (a1, · · · , am; q)∞ =
∏

1≤i≤m,p≥0(1− aiq
m). Also

ch[Vκ
λ] =

1

D

∑
λ∈Q+

q
(λ+2ρ,λ)

2(κ+h∨) ch[Lλ], D = (q; q)rankg∞
∏

α∈Δ+

(eαq, e−αq; q)∞.
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Then

ch[A[g, κ, 1]] =
∑

λ∈Q+

ch[Vκ
λ]ch[T

κ∗

λ∗,0]

=
1

D

∑
λ∈Q+

q
(λ+2ρ,λ)

2(κ+h∨) ch[Lλ]
q

(λ∗+2ρ,λ∗)

2(κ∗+h∨)
+(ρ,ρ)

(q; q)rankg∞

∑
w∈W

ε(w)q−(w(λ∗+ρ),ρ)

=
1

D

1

(q; q)rankg∞

∑
λ∈Q+

q
(λ,λ)

2 ch[Lλ]
∑
w∈W

ε(w)q(λ+ρ−w(λ+ρ),ρ)

=
1

D

1

(q; q)rankg∞

∑
λ∈Q

q
(λ,λ)

2 eλ = ch[V κ−1(g)] ch[L1(g)]

(4.1)

by [KW, Theorem 4.1]. From the last equality, we find that ch[A[g, κ, 1]F] agrees
with the character of V κ−1

F
(g) ⊗C L1(g) for (h, L0) with the diagonal h-action.

Let A[g, κ, 1]F = ⊕Δ≥0A[g, κ, 1]F,Δ denote the decomposition by the L0-action.
Then (4.1) implies that the subspaces of conformal weight one and zero admits the
integral form. The Lie algebra gA(:= A⊗C g) corresponding to V κ

A
(g) ⊂ A[g, κ, 1]A

is a subalgebra of A[g, κ, 1]A,1.

Corollary 4.1. There is an isomorphism

A[g, κ, 1]A,1 � ad(g)A ⊕ ad(g)A, A[g, κ, 1]A,0 � A(4.2)

as modules over gA. Here ad(g) is the adjoint representation of g.

Proof. The statement that A[g, κ, 1]A,1 � ad(g)A ⊕ ad(g)A holds on the level of
h-graded characters by (4.1), i.e. it holds on the level of weight spaces. Since
gA is a Lie subalgebra of A[g, κ, 1]A,1 is a gA-module, but integrable modules of a
simple Lie algebra are uniquely characterized by their h-graded characters. Similaly,
A[g, κ, 1]A,0 � A holds as A-modules and thus as gA-modules. �

Set T (g) = g[t]/(t2) the Takiff algebra of g.

Lemma 4.2. Let g be a simple Lie algebra, then HomgR
(∧2ad(g)R, ad(g)R) � R

for any C-algebra R.

Proof. It suffices to show Homg(∧2ad(g), ad(g)) � C. Let V be the vertex super-
algebra of free fermions in the adjoint representation, so that V1 � ∧2ad(g) as
g-modules for the conformal weight one subspace V1. By [F, Chapter 3.7], there is
a conformal embedding of Lh∨(g) ↪→ V and thus V1 � ad(g)⊕M for an integrable
g-module M . Then M must be the top subspace of an Lh∨(g)-module of conformal
weight CM/(4h∨) = 1, with CM the Casimir eigenvalue of M , i.e. CM = 4h∨.
Since Cad(g) = 2h∨, ad(g) does not appear in M as a direct summand. �

Lemma 4.3. Given an integral domain R, let gR ⊂ a be Lie algebras over R such
that g is as above and a � gR ⊕ ad(g)R as gR-modules. Then, aS is isomorphic to
gS ⊕ gS or T (g)S as Lie algebras (over S) for some finitely generated R-algebra S.

Proof. Fix a decomposition a = g1,R ⊕ g2,R where gi,R is a copy of gR so that
[x1, y1] = [x, y]1, [x1, y2] = [x, y]2, (x, y ∈ gR). Then by Lemma 4.2, there exist
α, β ∈ R such that [x2, y2] = α[x, y]1 + β[x, y]2. (i) 4α+ β2 = 0: one can show that
the map

ϕ : gR → a, x �→ −β/2x1 + x2



COSETS FROM EQUIVARIANT W-ALGEBRAS 775

is an embedding of g1,R-modules such that [ϕ(x), ϕ(y)] = 0. Therefore, a � T (g)R
as Lie algebras in this case. (ii) 4α + β2 �= 0: set S := R(

√
4α+ β2). One can

show that the maps

ϕ± : gS → aS , x �→ (p±x1 + x2)/(2p± + β), p± = (−β ±
√
4α+ β2)/2,

are Lie algebra homomorphisms over S and satisfy

[x1, ϕ±(y)] = ϕ±([x, y]), [x2, ϕ±(y)] = (p± + β)ϕ±([x, y]),

i.e. Imϕ± are ideals. Thus (ϕ+, ϕ−) : gS ⊕ gS � aS as Lie algebras over S. �

Let us consider the space of symmetric invariant bilinear forms on T (g), i.e.
B(T (g)) = HomT (g)(Sym

2(T (g)),C). Since B(g) = Cκ0 with κ0 the standard form

on g, Homg(Sym
2(T (g)),C) is spanned by κa, κb, κc, which are κ0 on the direct

summands g1 ⊗ g1, g1 ⊗ g2, g2 ⊗ g2, respectively, where T (g) = g ⊕ gt = g1 ⊕ g2.
By the T (g)-invariance, we find B(T (g)) = Cκa ⊕ Cκb. Note that kaκa + kbκb is
non-degenerate if and only if kb �= 0 and that we have an isomorphism of affine
vertex algebras V kaκa+kbκb(T (g)) � V ka(κa+κb)(T (g)) for kakb �= 0 induced by the
automorpisms C∗ of T (g) via the scalings on gt. Note that this argument also folds
over field extending C, in particular F.

Corollary 4.4. There is an isomorphism A[g, κ, 1]S,1 � gS ⊕ gS of Lie algebras
where S is taken as in Lemma 4.3.

Proof. By Lemma 4.3, A[g, κ, 1]S,1 is isomorphic to gS ⊕ gS or T (g)S. Suppose
A[g, κ, 1]S,1 � T (g)S, in which case A[g, κ, 1]A,1 � T (g)A holds by the proof of

Lemma 4.3. Then we have a non-zero homomorphism V κκa+kbκb

A
(T (g))→A[g, κ, 1]A

for some kb ∈ A. Since A[g, κ, 1]F is simple, by (4.2), A[g, κ, 1]F is conic and
thus it admits a non-degenerate pairing [Li] that descends to a non-degenerate
symmetric invariant bilinear form on A[g, κ, 1]A,1 � T (g)A, i.e. kb �= 0. It follows

that V κκa+kbκb

A◦ (T (g)) � V
κ(κa+κb)
A◦ (T (g)) with A◦ = A[ 1

kb
], whose specialization at

generic κ is simple by [CL2, Theorem 3.6 (1) with f = 0]. Hence V κ(κa+κb)(T (g))
is a subalgebra of A[g, κ, 1] for such κ, a contradiction since ch[V κ(κa+κb)(T (g))] =
ch[V κ(g)]2 �≤ ch[V κ−1(g)⊗ L1(g)] = ch[A[g, κ, 1]]. �

Proof of Theorem 1.3. By Corollary 4.4, we have a homomorphism

V κ1

S (g)⊗S V κ2

S (g) → A[g, κ, 1]S, κ1 + κ2 = k,(4.3)

of vertex algebras over S for some κi ∈ S. Here S is a finitely generated integral
domain over A. We claim that either κ1 = 1 or κ2 = 1. Since L1(g) has a non-zero
singular vector of conformal weight two and of weight 2θ where θ is the highest
root of g. It follows from (4.1) that the same is true for A[g, κ, 1]S and thus for
V κ1

S (g) ⊗S V κ2

S (g) by (4.3). Let ea(z), eb(z) (resp. fa(z), f b(z)) denote the fields
corresponding to the highest (resp. lowest) root vector for the first and second
factor. Then the singular vector inside V κ1

S (g)⊗S V κ2

S (g) must be of the form

x = αea−1e
a
−1|0〉+ βea−1e

b
−1|0〉+ γeb−1e

b
−1|0〉

for some α, β, γ ∈ S. Since x satisfies fc
1f

d
1 x = 0 for c, d ∈ {a, b}, we have

• fa
1 f

a
1 x = 0 implies either α = 0 or κ1 ∈ {0, 1}.

• f b
1f

b
1x = 0 implies either γ = 0 or κ2 ∈ {0, 1}.

• fa
1 f

b
1x = 0 implies either β = 0 or κ1κ2 = 0.
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Since V 0
S (g) has a singular vector at conformal weight one, but not at weight two,

we have κ1, κ2 �= 0, which implies either κ1 = 1 or κ2 = 1 holds. Therefore, (4.3)
factors through

gS : V
κ−1
S (g)⊗C L1(g) → A[g, κ, 1]S.

By specializing at generic κ ∈ C\Q, we obtain an isomorphism

V κ−1(g)⊗C L1(g)
	−→ A[g, κ, 1]

by the simplicity of V κ−1(g)⊗C L1(g) and the coincidence of the characters (4.1).
This completes the proof. �
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