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RESTRICTION OF IRREDUCIBLE UNITARY

REPRESENTATIONS OF Spin(N, 1) TO PARABOLIC SUBGROUPS

GANG LIU, YOSHIKI OSHIMA, AND JUN YU

Abstract. In this paper, we obtain explicit branching laws for all irreducible
unitary representations of G = Spin(N, 1) when restricted to a parabolic sub-
group P . The restriction turns out to be a finite direct sum of irreducible
unitary representations of P . We also verify Duflo’s conjecture for the branch-
ing laws of discrete series representations of G with respect to P . That is to
show: in the framework of the orbit method, the branching law of a discrete
series representation is determined by some geometric behavior of the moment
map for the corresponding coadjoint orbit.

1. Introduction

The branching law problem concerning the decomposition of the restriction of
irreducible unitary representations to a closed Lie subgroup is an important problem
in the representation theory of real Lie groups. In a series of seminal papers [30],
[31], [32] Kobayashi initiated the study of discrete decomposability and admissibility
for representations when restricted to non-compact subgroups. LetG be a Lie group
and let H be a closed Lie subgroup. For an irreducible unitary representation π of
G, the restriction of π to H, denoted by π|H , is said to be discretely decomposable
if it is a direct sum of irreducible unitary representations of H. If moreover, all
irreducible unitary representations of H have only finite multiplicities in π, then
π|H is said to be admissible. Kobayashi established criteria for the admissibility
for a large class of irreducible unitary representations with respect to reductive
subgroups. Based on his work, branching laws for admissible restriction have been
studied in many papers including [13], [20], [30], [31], [32], [33], [45], [46], [52]. In
this paper we study the case where G = Spin(N, 1) (for N > 2) and H is a minimal
parabolic subgroup of G, which we denote by P . In the first half of the paper we
obtain explicit branching laws for all irreducible unitary representations of G. The
formulas are given in §3.4 and §3.5. We find that the restriction is always a finite
direct sum of irreducible unitary representations of P .

The orbit method of Kirillov ([26], [27]) and Kostant ([2], [37]) relates the branch-
ing problem to the geometry of coadjoint orbits. In the second half of the paper,
we study moment maps of coadjoint orbits which are related to branching laws
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via the orbit method. Let π be an irreducible unitary representation of G asso-
ciated to a G-coadjoint orbit O in g∗. It is well known that equipped with the
Kirillov-Kostant-Souriau symplectic form, O becomes a G-Hamiltonian space and
hence an H-Hamiltonian space. The corresponding moment map is the natural
projection q : O → h∗. The orbit method predicts that the branching law of π|H
is given in terms of the geometry of the moment map q (see [27]). In fact, when
G and H are nilpotent groups, Corwin-Greenleaf [10] proved that the multiplic-
ity of an H-representation associated with an H-coadjoint orbit O′ equals almost
everywhere the cardinality of q−1(O′)/H. Concerning more general Lie groups, re-
cently Duflo formulated a precise conjecture which describes a connection between
the branching law of the restriction to a closed subgroup of discrete series on the
representation theory side and the moment map from strongly regular coadjoint or-
bits on the geometry side. The conjecture is inspired by Heckman’s thesis [22] and
the “quantization commuting with reduction” program [21]. Note that the orbit
correspondence for discrete series of real almost algebraic groups was established
previously by Duflo in [12].

Conjecture 1.1. Let π be a discrete series of a real almost algebraic group G,
which is attached to a coadjoint orbit Oπ (in the sense of Duflo [12]). Let H be a
closed almost algebraic subgroup, and let q : Oπ → h∗ be the moment map from Oπ.
Then,

(i) π|H is H-admissible (in the sense of Kobayashi) if and only if the moment
map q : Oπ → h∗ is weakly proper.

(ii) If π|H is H-admissible, then each irreducible H-representation σ which ap-
pears in π|H is attached to a strongly regular H-coadjoint orbit O′

σ (in the
sense of Duflo [12]) contained in q(Oπ).

(iii) If π|H is H-admissible, then the multiplicity of each such σ can be expressed
geometrically in terms of the reduced space q−1(O′

σ)/H.

Let us give some explanations for Conjecture 1.1. The notion of “almost algebraic
group” is defined in [12]. Recall that an element f ∈ g∗ is called strongly regular
if f is regular (i.e., the coadjoint orbit containing f is of maximal dimension)
and its “reductive factor” s(f) := {X ∈ g(f) : ad(X) is semisimple} is of maximal
dimension among reductive factors of all regular elements in g∗ (f is regular implies
that g(f) is commutative). Here, g(f) is the Lie algebra of the stabilizer of f in G.
Let Υsr denote the set of strongly regular elements in h∗. A coadjoint orbit O is
called strongly regular if there exists an element f ∈ O (then every element in O)
which is strongly regular. “Weakly proper” in (i) means that the preimage (for q)
of each compact subset which is contained in q(Oπ) ∩Υsr is compact in Oπ. Note
that it is known that the classic properness condition is not sufficient to characterize
the H-admissibility when H is not reductive (see [39], [40]). If G is compact, then
Duflo’s conjecture is a special case of the Spinc version of quantization commutes
with reduction principle (see [47]).

In this paper, based on our explicit branching laws and an explicit description
of the moment map, we verify Conjecture 1.1 for the restriction to a minimal
parabolic subgroup of all discrete series representations of Spin(N, 1). In our setting
the restriction is admissible for any irreducible unitary representation π while the
moment map q : O → p∗ is weakly proper for any O.

For the proof of our branching laws, a key idea is to construct L2-models of
certain irreducible unitary representations by taking the classical Fourier transform
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of the non-compact picture (N -picture) of principal series representations of G.
Classical Fourier transform was also used in other works studying branching laws,
e.g., [48], [49]. The idea of using classical Fourier transform to construct L2-models
of unitary representations appeared in the papers [14], [35], [23], [43], [44]. In order
to obtain branching laws for all irreducible unitary representations of G, we employ
du Cloux’s results [11] on moderate growth smooth Fréchet representations of semi-
algebraic groups and Zuckerman translation principle ([56], [28]). Write C(G) for
the category of moderate growth smooth Fréchet representations E of G such that
the K-finite part EK (where K = Spin(N) is a maximal compact subgroup of G) is
a Harish-Chandra module. Write C(P ) (resp. C(M ′)) for the category of moderate
growth smooth Fréchet representations of P (resp. M ′), where M ′ = StabMA(ξ)
with 0 �= ξ a particular element of n∗. With du Cloux’s results, we define a functor
Ψ: C(P ) → C(M ′). The functor Ψ obeys certain properties (cf. §3.1). With the
Fourier transform method, we are able to identify Ψ(πsm|P ) for the smooth part
πsm of all principal series and discrete series with infinitesimal character ρ. Using
Zuckerman translation principle ([56], [28]), we extend it to calculate Ψ(E|P ) for
any E ∈ C(G). When π is an irreducible unitary representation of G, we read off
the decomposition of π|P from Ψ(πsm|P ).

On the geometry side, let Of = G/G(f) be a regular elliptic coadjoint G-orbit.
By parametrizing the double coset space P\G/G(f) we find explicit representatives
of P -orbits in Of . By calculating the Pfaffian and the characteristic polynomial
of the related skew-symmetric matrix, we are able to identify the P -class of the
moment map image of each representative. With this, we calculate the image and
show geometric properties of the moment map.

One might compare our branching laws with Kirillov’s conjecture which says that
the restriction to a mirabolic subgroup of any irreducible unitary representation of
GLn(k) (for k an archimedean or non-archimedean local field) is irreducible. Kir-
illov’s conjecture was proved by Bernstein [4] for p-adic groups. It awaited nearly
ten years for a breakthrough by Sahi [49] who proved it for tempered representa-
tions of GLn(k) for k an archimedean local field. It was finally proved by Baruch [3]
over archimedean local fields in general through a qualitative approach by studying
invariant distributions. The restriction to a mirabolic subgroup of general irre-
ducible unitary representations of GLn(R) or GLn(C) is determined in [49], [50],
[51] and [1]. In the literature, there is another related work by Rossi-Vergne [48]
concerning the restriction to a minimal parabolic subgroup of holomorphic (or anti-
holomorphic) discrete series of a Hermitian simple Lie group. For G = SU(2, 1), the
restriction of discrete series to a minimal parabolic subgroup was studied in [38].
As for the restriction of irreducible unitary representations of Spin(N, 1) (N ≥ 2)
to a minimal parabolic subgroup, we note that the branching law is known in the
literature only when N = 2 or 3 by Martin [42], and when N = 4 by Fabec [15]. On
the geometry side, we describe explicitly the moment map image for any coadjoint
orbit of G = Spin(N, 1). For the mirabolic subgroup of GLn(R) (or GLn(C)), a
similar calculation was done in [41]. Kobayashi [33] studied branching laws for a
symmetric pair of holomorphic type and holomorphic discrete series and Kobayashi-
Nasrin [34] studied the moment map image of corresponding coadjoint orbits in this
setting.

The paper is organized as follows. In §2 we introduce notation used throughout
the paper, and we give a classification of irreducible unitary representations of
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P . In §3 we obtain branching laws of irreducible unitary representations of G
when restricted to P . Section 4 is devoted to the description of the moment map
q : O → p∗. In §5 we verify Conjecture 1.1 in our setting. In Appendix A, we show
that π|MN is determined by the K types of π for any unitary representation π of
G. In Appendix B, we explain that branching laws shown in this paper are related
to a case of Bessel model of the local Gan-Gross-Prasad conjecture ([16], [17]).

2. Preliminaries

2.1. Notation and conventions.

Indefinite orthogonal and spin groups of real rank one. Fix a positive integer m ≥ 2.
(Excluding m = 1 makes the group M below connected and makes the parametriza-
tion of irreducible representations uniform. The case m = 1 was treated in [42].)
Let Im+1,1 be the (m+ 2)× (m+ 2)-matrix given as

Im+1,1 =

(
Im+1

−1

)
.

Put

G2 = O(m+ 1, 1) = {X ∈ Mm+2(R) : XIm+1,1X
t = Im+1,1},

G3 = SO(m+ 1, 1) = {X ∈ O(m+ 1, 1) : detX = 1},
G1 = SOe(m+ 1, 1),

G = Spin(m+ 1, 1),

where SOe(m+1, 1) is the identity component of O(m+1, 1) (and of SO(m+1, 1)),
and Spin(m+1, 1) is a non-trivial 2-fold covering of SOe(m+1, 1). The Lie algebras
of G,G1, G2, G3 are all equal to

g = so(m+ 1, 1) = {X ∈ gl(m+ 2,R) : XIm+1,1 + Im+1,1X
t = 0}.

Our results will be stated and proved for G. For concrete matrix calculation we
will also work with groups G1 and G2. The group G3 and its representations are
used only in Appendix B.

Cartan decomposition. Write

K = Spin(m+ 1),

K1 = {diag(Y, 1) : Y ∈ SO(m+ 1)},
K2 = {diag(Y, t) : Y ∈ O(m+ 1), t ∈ {±1}},
K3 = {diag(Y, t) : Y ∈ O(m+ 1), t = detY }.

Then, K,K1,K2,K3 are maximal compact subgroups of G,G1, G2, G3 respectively.
Their Lie algebras are equal to

k = {diag(Y, 0) : Y ∈ so(m+ 1)}.
Write

s =
{(0(m+1)×(m+1) αt

α 0

)
: α ∈ M1×(m+1)(R)

}
.

Then, g = k⊕ s, which is a Cartan decomposition for g. The corresponding Cartan
involution θ of G1 (or G2, G3) is given by θ = Ad(Im+1,1).
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Restricted roots and Iwasawa decomposition. Put

H0 =

⎛⎝0m×m 0m×1 0m×1

01×m 0 1
01×m 1 0

⎞⎠ and a = R ·H0,

which is a maximal abelian subspace in s. Define λ0 ∈ a∗ by λ0(H0) = 1. Then,
the restricted root system Δ(g, a) consists of two roots {±λ0}. Let λ0 be a positive
restricted root. Then the associated positive nilpotent part is

n =

{⎛⎝0m×m −αt αt

α 0 0
α 0 0

⎞⎠ : α ∈ M1×m(R)

}
.

Let ρ′ be half the sum of positive roots in Δ(n, a). Then

ρ′ =
m

2
λ0 and ρ′(H0) =

m

2
.

One has the Iwasawa decomposition g = k⊕ a⊕ n.

Standard parabolic and opposite parabolic subalgebras. Let

m = Zk(a) = {diag(Y, 02×2) : Y ∈ so(m,R)}.
Write p = m + a + n, which is a parabolic subalgebra of g. We have the opposite
nilradical

n̄ =

{⎛⎝0m×m αt αt

−α 0 0
α 0 0

⎞⎠ : α ∈ M1×m(R)

}
and the opposite parabolic subalgebra p̄ = m+ a+ n̄.

Subgroups. Let A (or A1, A2, A3), N (or N1, N2, N3), N̄ (or N̄1, N̄2, N̄3) be con-
nected analytic subgroups of G (or G1, G2, G3) with Lie algebras a, n, n̄ respectively.
In particular,

A1 =

{⎛⎝Im
r s
s r

⎞⎠ : r, s ∈ R, r2 − s2 = 1, r > 0

}
.

By the two-fold covering G � G1 and the inclusions G1 ⊂ G2 and G1 ⊂ G3 we
identify A, A2, A3 with A1, identify N , N2, N3 with N1, and identify N̄ , N̄2, N̄3

with N̄1.
Put

M = ZK(a), M1 = ZK1
(a), M2 = ZK2

(a), M3 = ZK3
(a).

Set

P = MAN, P1 = M1AN, P2 = M2AN, P3 = M3AN

and

P̄ = MAN̄, P̄1 = M1AN̄, P̄2 = M2AN̄, P̄3 = M3AN̄.

Then, the Lie algebras of M (or M1, M2, M3), P (or P1, P2, P3), P̄ (or P̄1, P̄2, P̄3)
are equal to m, p, p̄ respectively. Note that

M = Spin(m), M1 = SO(m), M2 = O(m)×Δ2(O(1))

and M3 = SO(m)×Δ2(O(1)), where Δ2(O(1)) = {diag(t, t) : t = ±1} ⊂ O(2).
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Nilpotent elements. For a row vector α ∈ Rm write

Xα =

⎛⎝0m×m −αt αt

α 0 0
α 0 0

⎞⎠ , X̄α =

⎛⎝0m×m αt αt

−α 0 0
α 0 0

⎞⎠ .

The following Lie brackets will be used later

[Xα, X̄β] = diag(2(αtβ − βtα), 02×2) + 2αβtH0,(2.1)

[diag(Y, 02×2), Xα] = XαY t ,

[diag(Y, 02×2), X̄β] = X̄βY t ,

[H0, Xα] = Xα,

[H0, X̄β] = −X̄β,

where α, β ∈ Rm and Y ∈ so(m,R).
Let nα = exp(Xα) and n̄α = exp(X̄α). Then nα = I + Xα + 1

2X
2
α and n̄α =

I + X̄α + 1
2X̄

2
α, more concretely,

nα =

⎛⎝Im −αt αt

α 1− 1
2 |α|2

1
2 |α|2

α − 1
2 |α|2 1 + 1

2 |α|2

⎞⎠
and

n̄α =

⎛⎝Im αt αt

−α 1− 1
2 |α|2 − 1

2 |α|2
α 1

2 |α|2 1 + 1
2 |α|2

⎞⎠ .

Via the maps α 	→ Xα and α 	→ nα, one identifies n and N with the Euclidean
space Rm. We have θ(nα) = n̄−α.

Invariant bilinear form. For X,Y ∈ g, define

(2.2) (X,Y ) =
1

2
tr(XY ).

Then (·, ·) is a non-degenerate symmetric bilinear form on g, which is invariant
under the adjoint action of G, G1, G2 and G3. Define ι : g → g∗ by

(2.3) ι(X)(Y ) = (X,Y ) (∀Y ∈ g).

Then, ι is an isomorphism of G- (or G1-, G2-, G3-) modules.

Roots and weights. Let n′ := �m+1
2 �. For �a = (a1, . . . , an′) ∈ Rn′

, let

t�a :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 a1
−a1 0

. . .

0 an′

−an′ 0
0(m+2−2n′)×(m+2−2n′)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.(2.4)

Then
t = {t�a : a1, . . . , an′ ∈ R}

is a maximal abelian subalgebra of k = LieK. Write T for the corresponding
maximal torus in K. Define ε′i ∈ t∗

C
by

ε′i : t�a 	→ iai.
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The root system Δ(kC, tC) is given by

{±ε′i ± ε′j ,±ε′k : 1 ≤ i < j ≤ n′, 1 ≤ k ≤ n′} if m is even and

{±ε′i ± ε′j : 1 ≤ i < j ≤ n′} if m is odd.

We denote the weight c1ε
′
1 + · · ·+ cn′ε′n′ ∈ t∗

C
by (c1, . . . , cn′). Similar notation will

be used for elements in (t∩m)∗
C
and (t∩m′)∗

C
, where m′ denotes the Lie algebra of

the group M ′ defined in (2.6).

Remark 2.1. The bilinear form (2.2) on t is given as (t�a, t�b) = −�a · �bt. Hence
by using the isomorphism ι : gC → g∗

C
defined as (2.3), we have for example ε′1 =

i · ι(t(−1,0,...,0))|t.

Define Ts := (T ∩ M) × A. Then T ∩M is a maximal torus of M and Ts is a
Cartan subgroup of G. Let n := �m+2

2 �. Note that m = 2n − 2 and n = n′ + 1 if
m is even; m = 2n− 1 and n = n′ if m is odd. Define εi ∈ (ts)

∗
C
by

εi = ε′i on t ∩m, εi = 0 on a for 1 ≤ i < n,

εn = 0 on t ∩m, εn = λ0 on a.

The root system Δ = Δ(gC, (ts)C) is given by

{±εi ± εj : 1 ≤ i < j ≤ n} if m is even and

{±εi ± εj ,±εk : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n} if m is odd,

where

{±εi ± εj ,±εk : 1 ≤ i < j ≤ n− 1, 1 ≤ k ≤ n− 1}

are roots of MA. Choose a positive system

Δ+ = {εi ± εj : 1 ≤ i < j ≤ n} if m is even and

Δ+ = {εi ± εj , εk : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n} if m is odd.

Then the corresponding simple roots are {ε1− ε2, . . . , εn−1− εn, εn−1+ εn} for even
m and {ε1 − ε2, . . . , εn−1 − εn, εn} for odd m. A weight of Ts is of the form

γ = c1ε1 + · · ·+ cnεn,

which we denote by (c1, . . . , cn). Put

μ = (c1, . . . , cn−1) = c1ε1 + · · ·+ cn−1εn−1,

which vanishes on a and may be regarded as a weight of t ∩m; put

ν = cnεn,

which vanishes on t ∩m and may be regarded as a weight of a. Then γ = (μ, ν) =
μ+ ν.

The vector ρ := 1
2

∑
α∈Δ+ α is given as(

n− 1

2
, . . . ,

3

2
,
1

2

)
for m odd; (n− 1, . . . , 1, 0) for m even.
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Principal series representations of G. For a finite-dimensional irreducible complex
linear representation (σ, Vσ) of M and a character eν of A, form the smoothly
induced representation

I(σ, ν) = IndGMAN̄ (σ ⊗ eν−ρ′ ⊗ 1N̄ )

which consists of smooth functions h : G → Vσ with

h(gman̄) = σ(m)−1e(−ν+ρ′) log ah(g)

for any (g,m, a, n̄) ∈ G × M × A × N̄ . The action of G on I(σ, ν) is given by
(g · h)(x) = h(g−1x) for h ∈ I(σ, ν) and g, x ∈ G. This is called a principal series
representation.

If μ is the highest weight of σ, then for simplicity we denote I(σ, ν) also by
I(μ, ν).

Principal series representations of G1 and G2 are similarly defined.

Irreducible finite-dimensional representations. Write Fλ (resp. VK,λ, VM,μ, VM ′,μ)
for an irreducible finite-dimensional representation of G (resp. K, M , M ′) with
highest weight λ (resp. λ, μ, μ).

2.2. Irreducible unitary representations of P . We define unitarily induced
representations of P . Through the map

Y 	→
(
Y

I2

)
,

one identifies M1 with SO(m). With this identification, the adjoint action of M1A
on n is given by

Ad(Y, a)Xα = eλ0(log a)XαY t (∀α ∈ Rm, ∀Y ∈ SO(m), ∀a ∈ A).

Moreover, under the identification n∗ ∼= Rm (via ξ(Xα) = ξαt), the coadjoint action
of M1A on n∗ is given by

(2.5) Ad∗(Y, a)ξ = e−λ0(log a)ξY t (∀ξ ∈ Rm, ∀Y ∈ SO(m), ∀a ∈ A).

The coadjoint action of MA is the composition of this action with the covering map
MA → M1A.

Let

ξ0 = (0, . . . , 0, 1) ∈ n
∗ and M ′

1 = StabM1A ξ0.

Then,

M ′
1 =

{(Y
I3

)
: Y ∈ SO(m− 1)

}
.

For a (not necessarily irreducible) unitary representation (τ, Vτ ) of M
′
1, let

IP1,τ = IndM1AN
M ′

1�N (τ ⊗ eiξ0)

be a unitarily induced representation. It consists of functions h : M1AN → Vτ with

h(pm′n) = (τ ⊗ eiξ0)(m′, n)−1h(p)

for all (p,m′, n) ∈ P1 ×M ′
1 ×N and 〈h, h〉 < ∞, where

〈h1, h2〉 :=
∫
M1A/M ′

1

〈h1(ma), h2(ma)〉τ dlma
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for h1, h2 ∈ IndM1AN
M ′

1�N (τ ⊗ eiξ0). Here dlma is a left M1A invariant measure on

(M1A)/M ′
1, and 〈·, ·〉τ denotes an M ′

1-invariant inner product on Vτ . The action of
P1 on IP1,τ is given by (p · h)(x) = h(p−1x) for h ∈ IP1,τ and p, x ∈ P1.

Similarly, put

(2.6) M ′ = StabMA ξ0, M ′
2 = StabM2A2

ξ0, M ′
3 = StabM3A3

ξ0,

and define a unitarily induced representation IP,τ (or IP2,τ , IP3,τ ) from a unitary
representation τ of M ′ (or M ′

2, M
′
3). One has

M ′ ∼= Spin(m− 1), M ′
2
∼= O(m− 1)×O(1), M ′

3
∼= SO(m− 1)×O(1).

The classification of irreducible unitary representations of P could be obtained
by using Mackey’s little group method.

Proposition 2.2 ([55]). Any infinite-dimensional irreducible unitary representa-
tion of P is isomorphic to IP,τ for a unique (up to isomorphism) irreducible finite-
dimensional unitary representation τ of M ′.

Proof. Let π be an irreducible unitary representation of P . If π|N is trivial, then π
factors through P → MA and is finite-dimensional. Assume that π|N is non-trivial,
then the support of the spectrum of π|N is not equal to {0}. As the spectrum of
π|N is an MA-stable subset of n∗ and MA acts transitively on n∗ − {0}, ξ0 is
in the support. By Mackey’s little group method, one shows that π ∼= IP,τ for
a unique finite-dimensional irreducible unitary representation τ of M ′ up to an
isomorphism. �

3. Restriction to P of irreducible representations of G

In this section we obtain branching laws of all irreducible unitary representations
of G when restricted to P . Although our purpose is studying the decomposition
of the restriction of irreducible unitary representations, we find that we have to
turn into the category of smooth representations because we would like to use
Zuckerman’s translation principle. Let us briefly explain our strategy. Based on du
Cloux’s work, we define and study in §3.1 the functor Ψ from the category of smooth
representations of P and that of smooth representations of M ′. Lemma 3.6 relates
the functor Ψ with the branching laws. In Propositions 3.7 and 3.27, we calculate
Ψ(π|P ) for π (not necessarily unitary) principal series representations and for π
discrete series representations with infinitesimal character ρ, respectively. This will
be done using concrete computations of the Fourier transform for the non-compact
picture of principal series representations. Since the functor Ψ behaves well under
Zuckerman’s translation principle (Lemmas 3.3 and 3.4), combining the knowledge
of the Grothendieck group of the admissible representations of G which we recall in
§3.3, we are able to determine Ψ(π|P ) for all irreducible admissible representations
of G. The branching laws we want are then obtained in §3.4 and §3.5.

3.1. Moderate growth smooth representations of G (or P ). Let CK(G) de-
note the category of Harish-Chandra modules, i.e., finitely generated admissible
(g,K)-modules. For a G-representation π, let πK be the space of K-finite vec-
tors in π. Let C(G) denote the category of moderate growth, smooth Fréchet
G-representations π such that πK ∈ CK(G). The morphisms in C(G) are defined to
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be continuous intertwiners with images that are direct summands in the category
of Fréchet spaces. The Casselman-Wallach theorem asserts that the functor

C(G) → CK(G), π 	→ πK

gives an equivalence of abelian categories ([6], [54]). For an object V ∈ CK(G),
write V sm ∈ C(G) for a Casselman-Wallach globalization of V . Then (V sm)K ∼= V .

In [11], du Cloux studied the category of moderate growth, smooth Fréchet rep-
resentations of a real semialgebraic group. We recall some results of [11] in our
setting. Let C(P ) (resp. C(M ′)) denote the category of moderate growth, smooth
Fréchet representations of P (resp. M ′). The morphisms are continuous intertwin-
ers.

Let S (n) (resp. S (n∗)) be the Schwartz space on n (resp. n∗) with the algebra
structure by the convolution product (resp. by the usual pointwise multiplication)

of functions. The inverse Fourier transform gives an algebra isomorphism S (n)
∼−→

S (n∗). Let S (n∗ − {0}) be the Schwartz space on n∗ − {0}. In other words, it
consists of f |n∗−{0} with f ∈ S (n∗) such that f and its all (higher) derivatives
vanish at 0(∈ n∗).

A representation E ∈ C(P ) can be viewed as a moderate growth, smooth Fréchet
representation of N by restriction. Then via exponential map n ∼= N , the Fréchet
space E becomes an S (n)-module and then an S (n∗ − {0})-module by S (n∗ −
{0}) ⊂ S (n∗) ∼= S (n).

We shall define a functor

Ψ: C(P ) → C(M ′)

as follows. This functor is given as E → E(x0) in [11, Theórème 2.5.8]. Recall that
ξ0 ∈ n∗ − {0} is defined in §2.1 and the stabilizer of ξ0 for the coadjoint action of
P on n∗ is StabP (ξ0) = M ′N . Define the following algebra by adding the constant
function 1, which becomes the unit of the algebra:

S̃ (n∗ − {0}) = C1⊕ S (n∗ − {0}).
Define an ideal mξ0 by

mξ0 = {f ∈ S̃ (n∗ − {0}) : f(ξ0) = 0}.
For E ∈ C(P ), [11, Lemme 2.5.7] shows that the subspace mξ0 · E is closed and
stable by the action of M ′N . Hence the quotient E/(mξ0 · E) is a Fréchet space

with a natural M ′N -action on it. The action of S̃ (n∗−{0}) on E/(mξ0 ·E) factors

through the evaluation map S̃ (n∗−{0}) � f 	→ f(ξ0). Hence N acts on E/(mξ0 ·E)
by eiξ0 . When we view E/(mξ0 · E) as a representation of M ′ we write

Ψ(E) := E/(mξ0 · E).

By [11, Theórème 2.5.8], Ψ(E) ∈ C(M ′) and then Ψ defines a functor C(P ) →
C(M ′).

Let F be a finite-dimensional representation of P such that the N -action is
trivial. Then it is easy to see that there is a natural isomorphism

(3.1) Ψ(E)⊗ (F |M ′) ∼= Ψ(E ⊗ F ).

Next, we define the induction from M ′-representations to P -representations. Let
(τ, Vτ ) ∈ C(M ′). Then τ ⊗ eiξ0 is a smooth Fréchet representation of M ′N . One

defines in a natural way the smoothly induced representation C∞ IndPM ′N (τ⊗eiξ0).
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Let S (P, Vτ ) be the space of Schwartz functions on P taking values in Vτ . For
f ∈ S (P, Vτ ), define f̄ ∈ C∞(P, Vτ ) by

f̄(g) =

∫
M ′N

(τ ⊗ eiξ0)(mn)f(gmn) dm dn.

Then one has f̄ ∈ C∞ IndPM ′N (Vτ ). Let

S IndPM ′N (τ ⊗ eiξ0) = {f̄ : f ∈ S (P, Vτ )}.

Then S IndPM ′N (τ ⊗ eiξ0) is a dense subspace of C∞ IndPM ′N (τ ⊗ eiξ0) and

S IndPM ′N (τ ⊗ eiξ0) ∈ C(P ).
Let

OM (P, τ ⊗ eiξ0) = {f ∈ C∞(P, Vτ ) : h · f ∈ S (P, Vτ ) (∀h ∈ S (P ))}.
Let

OM IndPM ′N (τ ⊗ eiξ0)

consist of functions f ∈ OM (P, τ ⊗ eiξ0) such that

f(gmn) = (τ ⊗ eiξ0)(mn)−1f(g) (∀(g,mn) ∈ P ×M ′N).

This is not a Fréchet space, but P naturally acts on it. Then

S IndPM ′N (τ ⊗ eiξ0) ⊂ OM IndPM ′N (τ ⊗ eiξ0) ⊂ C∞ IndPM ′N (τ ⊗ eiξ0).

Since P/(M ′N) ∼= n∗ − {0}, these three spaces become S (n∗ − {0})-modules by
multiplication.

Since N is nilpotent and M ′ is compact, the group M ′N is unimodular and the
restriction to M ′N of the modulus character of P is also trivial. Let E ∈ C(P ).
The natural map E → Ψ(E) is M ′-intertwining and corresponds to a P -intertwiner

u : E → C∞ IndPM ′N (Ψ(E)⊗ eiξ0)

by the Frobenius reciprocity. The following is a part of [11, Théorème 2.5.8] applied
to the group P .

Fact 3.1. Let E ∈ C(P ) and let u : E → C∞ IndPM ′N (Ψ(E) ⊗ eiξ0) be as above.
Then

S IndPM ′N (Ψ(E)⊗ eiξ0) ⊂ Im(u) ⊂ OM IndPM ′N (Ψ(E)⊗ eiξ0), and

Ker(u) = {v ∈ E : S (n∗ − {0}) · v = 0}.

We need several lemmas below.

Lemma 3.2. Let E ∈ C(P ) and W ∈ C(M ′). Let

ϕ : E ↪→ C∞ IndPM ′N (W ⊗ eiξ0)

be an injective P -intertwining map that is also a homomorphism of S (n∗ − {0})-
modules. Then the kernel of the map ϕ̄ : E → W given by ϕ̄(v) = (ϕ(v))(e) equals
mξ0 · E.

Proof. Take any f ∈ mξ0 and v ∈ E. Since φ is an S (n∗ − {0})-homomorphism,
we have φ(fv) = fφ(v) and φ̄(fv) = f(ξ0)φ̄(v). Hence, Ker(ϕ̄) ⊃ mξ0 ·E. Then, ϕ̄
descends to ϕ̄ : Ψ(E) → W . The map ϕ factors as

E
u−→ C∞ IndPM ′N (Ψ(E)⊗ eiξ0) → C∞ IndPM ′N (W ⊗ eiξ0).
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By Fact 3.1, Im(u) ⊃ S IndPM ′N (Ψ(E)⊗ eiξ0) and then

S IndPM ′N (Ψ(E)⊗ eiξ0) → C∞ IndPM ′N (W ⊗ eiξ0)

is injective. Therefore, ϕ̄ : Ψ(E) → W is also injective. �

Lemma 3.3. Let 0 → E1 → E2 → E3 → 0 be a sequence in C(P ) which is exact
as vector spaces. Then the induced sequence 0 → Ψ(E1) → Ψ(E2) → Ψ(E3) → 0
in C(M ′) is also exact as vector spaces.

Proof. It is easy to see that Ψ(E1) → Ψ(E2) → Ψ(E3) → 0 is exact.
Assuming E1 ↪→ E2 is an injective homomorphism in C(P ), we will show that

Ψ(E1) → Ψ(E2) is injective. By Fact 3.1, we have

ui : Ei → OM IndPM ′N (Ψ(Ei)⊗ eiξ0),

Ker(ui) = {v ∈ Ei : S (n∗ − {0}) · v = 0},
S IndPM ′N (Ψ(Ei)⊗ eiξ0) ⊂ Im(ui) (i = 1, 2).

By this description of Ker(ui), we have Ker(u1) = E1 ∩ Ker(u2) and hence the
natural map Im(u1) → Im(u2) is injective. By composing

S IndPM ′N (Ψ(E1)⊗ eiξ0) ⊂ Im(u1) ↪→ Im(u2) ⊂ OM IndPM ′N (Ψ(E2)⊗ eiξ0),

we obtain an injective map

S IndPM ′N (Ψ(E1)⊗ eiξ0) ↪→ OM IndPM ′N (Ψ(E2)⊗ eiξ0).

This is induced from the map Ψ(E1) → Ψ(E2), which must be also injective. �

For E ∈ C(P ), Ψ(E) is the maximal Hausdorff quotient of E on which n acts by
iξ0 in the following sense. Let F be the linear span of the set

{X · v − iξ0(X)v | v ∈ E, X ∈ n}

and let F cl be the closure of F in E. Then F cl is closed by the M ′N -action and

(3.2) Ψ(E) ∼= E/F cl.

Take any f ∈ mξ0 and v ∈ E and consider the inverse Fourier transform F(f) of f .
Calculate the vector fv by the definition of S (n)-action on E, i.e. the integration of
F(f)(n)nv over n ∈ N . Since the projection p : E → E/F cl respects the N -action
and N acts by eiξ0 on E/F cl, we have

p(fv) =

∫
N

F(f)(n)ei(ξ0,n)p(v)dn = f(ξ0)p(v) = 0.

Then, the map E → E/F cl factors through Ψ(E) → E/F cl. On the other hand,
since n acts on E/(mξ0 · E) by iξ0, we get a map E/F cl → Ψ(E), which is the
inverse of the above map. Thus (3.2) follows.

For V ∈ C(G), write V |P ∈ C(P ) for the representation obtained by restriction
of the action of G to P .

Lemma 3.4. Let V ∈ C(G) and let F be a finite-dimensional representation of P .
Then there exists an isomorphism of M ′-representations:

Ψ(V |P )⊗ (F |M ′) ∼= Ψ((V ⊗ F )|P ).
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Proof. There exists a filtration 0=F0⊂F1 ⊂ · · ·⊂Fk =F of P -subrepresentations
such that N acts trivially on Fi/Fi−1. Then by (3.1) and Lemma 3.3 we get an
exact sequence

0 → Ψ(V |P )⊗ Fi/Fi−1 → Ψ(V |P ⊗ Fi) → Ψ(V |P ⊗ Fi)

of M ′-representations. By Remark 3.5 or Remark 3.11, these M ′-representations
are finite-dimensional and hence the sequence splits. We have

Ψ(V |P )⊗ (Fi|M ′) ∼= Ψ(V |P ⊗ Fi)

inductively and we obtain the conclusion of the lemma. �

Remark 3.5. For V ∈ C(G), the dimension of Ψ(V |P ) is finite and Ψ(V |P ) ∼=
H0(n, V ⊗ e−iξ0), namely, the subspace F defined above (3.2) is closed. This is
proved in [7, §8]. The exactness of Ψ for representations of G is also proved there.
Vectors in the dual space of Ψ(V |P ) are no other than Whittaker vectors.

We will apply Lemmas 3.2–3.4 to study the restriction of unitary representa-
tions. Let V be a non-trivial irreducible unitarizable (g,K)-module. Write V̄
for its Hilbert space completion and V sm for the Casselman-Wallach globaliza-
tion. By Proposition 2.2, an irreducible unitary representation of P is either finite-
dimensional or equal to IP,τ for an irreducible representation τ of M ′. In the former
case, it factors through P/N(∼= MA). Hence these are parametrized by irreducible
unitary representations σ ⊗ eν of MA. Then by general theory, the restriction of
V̄ to P decomposes into irreducibles as

V̄ |P ∼=
∫ ⊕

(σ ⊗ eν)m(σ,ν)dμ⊕
⊕
τ

(IP,τ )
m(τ).

Here, the first term on the right hand side is a direct integral of irreducible unitary
representations and the second term is a Hilbert space direct sum. We will show
that actually the first term on the right hand side does not appear and the second

term is a finite sum. Since any vector v ∈
∫ ⊕

(σ ⊗ eν)m(σ,ν)dμ is N -invariant,

V � v′ 	→ (v′, v) ∈ C

defines an n-invariant vector of the algebraic dual space V ∗. Since it is known

that H0(n, V ∗) is finite-dimensional [8, Corollary 2.4],
∫ ⊕

(σ ⊗ eν)m(σ,ν)dμ is also
finite-dimensional and in particular it only has a discrete spectrum. Suppose that
σ ⊗ ν appears in V̄ |P as a direct summand. Then by the Frobenius reciprocity, we
obtain an intertwining map

V ↪→ IndGP (σ ⊗ eν ⊗ 1N )
(∼= IndGP̄ (σ ⊗ e−ν ⊗ 1N̄ ) = I(σ,−ν + ρ′)

)
.

Since ν ∈ ia∗, V is isomorphic to the unique irreducible subrepresentation of
I(σ,−ν+ ρ′). By considering leading exponent of matrix coefficients of V , [9, The-
orem 9.1.4] (which in turn is implied by a theorem of Howe-Moore in [25]) implies

that ν = 0 and V is trivial, which is not the case. Hence,
∫ ⊕

(σ ⊗ eν)m(σ,ν)dμ = 0.

Let τ̄ :=
∑⊕

τ τm(τ) be the Hilbert direct sum. Let IndPM ′N (τ̄ ⊗ eiξ0) be the
unitarily (L2-)induced representation. Then

V̄ |P ∼=
⊕
τ

(IP,τ )
m(τ) ∼= IndPM ′N (τ̄ ⊗ eiξ0).
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Let τ̄∞ be the set of smooth vectors in τ̄ as a representation of M ′. Then by the
Sobolev embedding theorem (on P/M ′N ∼= Rm −{0}), the smooth vectors in V̄ lie

in C∞ IndPM ′N (τ̄∞ ⊗ eiξ0). Hence we obtain an injective P -intertwining map

V sm ↪→ C∞ IndPM ′N (τ̄∞ ⊗ eiξ0).

Now we apply Lemma 3.2 and use the denseness of V sm in V̄ , we conclude that

Ψ(V sm|P ) ∼= τ̄∞.

By Remark 3.5 or Remark 3.11, Ψ(V sm|P ) is always finite-dimensional. Therefore,
τ̄∞ = τ̄ . We thus obtain the following.

Lemma 3.6. Suppose that V is a non-trivial irreducible unitarizable (g,K)-module.
Then

V̄ |P ∼= IndPM ′N (Ψ(V sm|P )⊗ eiξ0).

3.2. Restrictions of principal series representations. We defined the functor
Ψ: C(P ) → C(M ′) in the previous subsection. In this subsection we calculate
Ψ(π|P ) for a (not necessarily unitary) principal series representation π.

Proposition 3.7. Let I(σ, ν) = IndGP̄ (Vσ ⊗ eν−ρ′ ⊗ 1N̄ ) be a principal series rep-
resentation. Then

Ψ(I(σ, ν)|P ) ∼= Vσ|M ′ .

Remark 3.8. Proposition 3.7 is proved in [7, Lemma 8.5] by using the Bruhat
filtration. However, we include another proof below based on Fourier transform.
This argument is of independent interest, especially it will be used for some concrete
Fourier computation for discrete series in §3.6.

The main idea in our proof is to consider the restriction of the functions f ∈
I(σ, ν) to N and take inverse Fourier transform.

For f ∈ I(σ, ν), let fN = f |N . We have the map

I(σ, ν) → C∞(N, Vσ), f 	→ fN .

The action of P = MAN on I(σ, ν) is compatible with the following P -action on
C∞(N, Vσ): for F ∈ C∞(N, Vσ) and n ∈ N ,

(n′ · F )(n) = F (n′−1n) (n′ ∈ N);

(a · F )(n) = e(ν−ρ′) log aF (a−1na) (a ∈ A);

(m0 · F )(n) = σ(m0)F (m−1
0 nm0) (m0 ∈ M).

Next, define the inverse Fourier transform of fN ∈ C∞(N, Vσ). If fN is L1, then
its inverse Fourier transform is defined as a function on n∗ as

(3.3) f̂N (ξ) = F(fN )(ξ) = (2π)−
m
2

∫
Rm

ei(ξ,x)f(nx) dx.

In general, for f ∈ I(σ, ν), the function fN on N ∼= Rm is of at most polynomial
growth at infinity. Hence fN is a tempered distribution. The map (3.3) extends for

tempered distributions and we obtain f̂N (ξ) as distributions on n∗. The action of
G on the Fourier transformed picture is defined as

g(f̂N ) = (̂gf)N



RESTRICTION OF REPRESENTATIONS OF Spin(N, 1) TO PARABOLICS 901

for f ∈ I(σ, ν) and g ∈ G. Then the P -action is given as follows: for f ∈ I(σ, ν)
and ξ ∈ n∗,

(nx · f̂N )(ξ) = ei(ξ,x)f̂N (ξ) (x ∈ Rm);

(a · f̂N )(ξ) = e(ν+ρ′) log af̂N (Ad∗(a−1)ξ) (a ∈ A);

(m0 · f̂N )(ξ) = σ(m0)f̂N (Ad∗(m−1
0 )ξ) (m0 ∈ M).

To study the behavior of f̂N , we need some preparation. For a row vector
0 �= x ∈ Rm, write

(3.4) rx = Im − 2

|x|2x
tx ∈ O(m),

which is a reflection. The action of rx on Rm is given by

rx(y) = y − 2yxt

|x|2 x (∀y ∈ Rm).

Let rx also denote the element

diag(rx, I2) ∈ G2 = O(m+ 1, 1).

For x ∈ Rm, write

sx =

⎛⎜⎝Im − 2xtx
1+|x|2 − 2xt

1+|x|2 0
2x

1+|x|2
1−|x|2
1+|x|2 0

0 0 1

⎞⎟⎠ ∈ O(m+ 1, 1).(3.5)

By a direct calculation, one shows the following opposite Iwasawa decomposition
for elements in N :

(3.6) nx = sx exp(− log(1 + |x|2)H0)n̄ x
1+|x|2

.

By the Bruhat decomposition,

G2 = NM2AN̄ � sM2AN̄.

If we write

(3.7) s = diag(Im,−1, 1) ∈ O(m+ 1, 1),

snx ∈ NM2AN̄ for any 0 �= x ∈ Rm. By direct calculation one shows the following
decomposition. For 0 �= x ∈ Rm, we have

(3.8) snx = n x
|x|2

rxe
−(2 log |x|)H0 n̄ x

|x|2
,

where rx is as in (3.4).

Lemma 3.9. Let f ∈ I(σ, ν). Then the restriction of f̂N to n∗ − {0} is a C∞-
function.

Proof. We first prove a similar claim for the group G2 = O(m + 1, 1). Let I(σ, ν)
be a principal series representation of G2 for an irreducible representation σ of M2

and take f ∈ I(σ, ν). To prove that f̂N |n∗−{0} is a smooth function, we need to see
the behavior of f(nx) as x → ∞. This is equivalent to the behavior of f(snx) near
x = 0, where s = diag(Im,−1, 1). Put F (x) := f(snx) for x ∈ Rn. By (3.8),

F (x) = f
(
n x

|x|2
rxe

−(2 log |x|)H0 n̄ x
|x|2

)
= |x|2(ν−ρ′)(H0)σ(rx)f

(
n x

|x|2

)
.
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Since F is smooth, |f(nx)| is bounded by C|x|2(−ν+ρ′)(H0) as x → ∞ for some
constant C > 0.

The G-action on I(σ, ν) differentiates to the g-action. Take Xy ∈ n for y ∈ Rm

and consider the function Xy · f ∈ I(σ, ν). We have

(Xy · f)(snx) =
d

dt

∣∣∣
t=0

f(n−1
ty snx).

By (3.8) again,

n−1
ty snx = n−ty+ x

|x|2
rxe

−(2 log |x|)H0 n̄ x
|x|2

.

Putting z := −ty + x
|x|2 , we have

n−ty+ x
|x|2

rxe
−(2 log |x|)H0 n̄ x

|x|2

= sn z
|z|2

rze
−(2 log |z|)H0 n̄ z

|z|2
rxe

−(2 log |x|)H0 n̄ x
|x|2

∈ sn z
|z|2

rzrxe
−(2 log |z|+2 log |x|)H0N̄ .

Hence

(Xy · f)(snx) =
d

dt

∣∣∣
t=0

|z|2(ν−ρ′)(H0)|x|2(ν−ρ′)(H0)σ(rzrx)F
( z

|z|2
)
.

Note that rz = r−t|x|2y+x. We calculate

d

dt

∣∣∣
t=0

|z|2(ν−ρ′)(H0)|x|2(ν−ρ′)(H0) = −2(ν − ρ′)(H0)(y, x),

d

dt

∣∣∣
t=0

rzrx = 2(ytx− xty),

d

dt

∣∣∣
t=0

F
( z

|z|2
)
=
(
2(x, y)x− y|x|2

)
(∇yF )(x).

Combining above equations, we see that if F (x) vanishes at x = 0 of order k, then
(Xy · f)(snx) vanishes at x = 0 of order k + 1. Hence (Xy · f)(nx) is bounded

by C|x|2(−ν+ρ′)(H0)−1 for some C. By repeating this, (X l
y · f)(nx) is bounded by

C|x|2(−ν+ρ′)(H0)−l for l > 0. Then for any k > 0, if l is sufficiently large, then
P (x)(X l

y · f)(nx) is in L1 for any polynomial P (x) of degree k. Therefore, its
inverse Fourier transform is continuous. By

F(xjh) = −i∂ξjF(h), F(∂xj
h) = −iξjF(h),(3.9)

we have

F(P (x)(X l
y · f)(nx)) = P (−i∂ξ)(−iξ, y)l · f̂N (ξ).

Hence f̂N (ξ) is Ck in (ξ, y) �= 0. Since k and y are arbitrary, we proved that f̂N is
C∞ on n∗ − {0}.

To prove the claim for G = Spin(m + 1, 1), fix m0 ∈ M2 such that m0s ∈
M1 = SO(m) and use a lift of m0s in M = Spin(m) instead of s in the above
argument. �

Recall ξ0 = (0, . . . , 0, 1) ∈ n∗. For h ∈ C∞(n∗ − {0}, Vσ), define a function hat,ν

on P by

hat,ν(p) = (p−1 · h)(ξ0) (p ∈ P ).
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More concretely,

hat,ν(p)

= e−i(ξ0,x)e(−ν−ρ′) log aσ(m0)
−1h(Ad∗(m0a)ξ0)

= e−i(ξ0,x)|Ad∗(m0a)(ξ0)|
2ν(H0)+m

2 σ(m0)
−1h(Ad∗(m0a)ξ0)

for p = m0anx ∈ P . We call hat,ν the anti-trivialization of h. The term ‘anti-
trivialization’ comes from: h is a function on n∗ − {0}, i.e., a section of the trivial
bundle on P/M ′N ∼= n∗ − {0}, and hat,ν is a section of the vector bundle P ×M ′N

(σ|M ′ ⊗ eiξ0) on P/M ′N .

Lemma 3.10. The image of the map C∞(n∗ − {0}, Vσ) � h 	→ hat,ν is equal to

the representation space of the smoothly induced representation C∞ IndPM ′N (σ|M ′ ⊗
eiξ0). The map h 	→ hat,ν respects the actions of P and S (n∗ − {0}).

Proof. For any m′ ∈ M ′, nx ∈ N and p ∈ P , we have

hat,ν(pm
′nx)

= (n−1
x (m′)−1p−1 · h)(ξ0)

= e−i(ξ0,x)σ(m′)−1(p−1 · h)(Ad∗(m′)ξ0)

= (σ ⊗ eiξ0)(m′, nx)
−1hat,ν(p),

where we used Ad∗(m′)ξ0 = ξ0. This shows that hat,ν is a section of the vector
bundle P ×M ′N (σ|M ′ ⊗ eiξ0).

It directly follows from the definition of hat,ν that the map h 	→ hat,ν respects

the P -actions. The actions of S (n∗−{0}) on C∞ IndPM ′N (σ|M ′⊗eiξ0) and C∞(n∗−
{0}, Vσ) are given by multiplications. Hence the map h 	→ hat,ν is a S (n∗ − {0})-
homomorphism.

The inverse map

C∞ IndPM ′N (σ|M ′ ⊗ eiξ0) → C∞(n∗ − {0}, Vσ), h′ 	→ h′
t,ν

is given as follows: for any ξ ∈ n∗ − {0}, choose m0a ∈ MA such that ξ =
Ad∗(m0a)ξ0 and define

h′
t,ν(ξ) = |ξ|−

m+2ν(H0)
2 σ(m0)h

′(m0a).

It is easy to see that the maps h 	→ hat,ν and h′ 	→ h′
t,ν are inverse to each other. �

Proof of Proposition 3.7. By Lemmas 3.9 and 3.10, we obtain a map

ϕ : I(σ, ν) → C∞ IndPM ′N (σ|M ′ ⊗ eiξ0), f 	→ (f̂N )at,ν

which respects the actions of P and S (n∗ − {0}). If f ∈ Kerϕ, then the support

of f̂N is contained in {0}, or equivalently, fN is a polynomial. Hence S (n∗ −{0}) ·
(Kerϕ) = 0 and Ψ(I(σ, ν)|P ) ∼= Ψ(I(σ, ν)|P/Kerϕ). Then by Lemma 3.2, there
exists an injective map Ψ(I(σ, ν)|P ) → σ|M ′ . To show the surjectivity, take any

vector v ∈ σ|M ′ and take a function h ∈ S IndPM ′N (σ|M ′ ⊗ eiξ0) (or a function

h ∈ C∞ IndPM ′N (σ|M ′ ⊗ eiξ0) which is compactly supported modulo M ′N) such

that h(e) = v. Then there exists f ∈ I(σ, ν) such that (f̂N )at,ν = h, which implies
that the map Ψ(I(σ, ν)|P ) → σ|M ′ is surjective. �



904 GANG LIU, YOSHIKI OSHIMA, AND JUN YU

Remark 3.11. By Casselman’s subrepresentation theorem, any moderate growth,
irreducible admissible smooth Fréchet representation π of G is a subrepresentation
of a principal series representation I(σ, ν). Then by Lemma 3.3 and Proposition 3.7,
Ψ(π|P ) ⊂ Ψ(I(σ, ν)|P ) ∼= σ|M ′ . In particular, Ψ(π|P ) is finite-dimensional.

Let K(G) (resp. K(M ′)) be the Grothendieck group of the category of Harish-
Chandra modules (resp. the category of finite-dimensional representations of M ′).
By Lemma 3.3, C(G) � π 	→ Ψ(π|P ) induces a homomorphism Ψ: K(G) → K(M ′).

3.3. Classification of irreducible representations of G. In this subsection we
recall the classification of irreducible admissible representations π ∈ C(G).

Suppose first G = Spin(2n, 1). The infinitesimal character γ of π is conjugate to

(μ+ ρM , ν) =
(
a1 + n− 3

2
, · · · , an−1 +

1

2
, a
)
,

where μ = (a1, . . . , an−1) and ν = aλ0. We have a1 ≥ · · · ≥ an−1 ≥ 0; and
a1, . . . , an−1 are all integers or all half-integers. The weight γ is integral if and only
if a− (aj +

1
2 ) ∈ Z. The singularity of integral γ has several possibilities:

(1) If a �= aj + n− j − 1
2 for 1 ≤ j ≤ n− 1 and a �= 0, then γ is regular. Write

Λ0 for the set of integral regular dominant weights.
(2) If a = aj + n− j − 1

2 for some 1 ≤ j ≤ n− 1, then up to conjugation

γ =
(
a1 + n− 3

2
, . . . , aj + n− j − 1

2
, aj + n− j − 1

2
, . . . , an−1 +

1

2

)
,

and αj = εj − εj+1 is the only simple root orthogonal to γ. Write Λj for
the set of such integral dominant weights.

(3) If a = 0, then

γ =
(
a1 + n− 3

2
, . . . , an−1 +

1

2
, 0
)
.

aj (1 ≤ j ≤ n − 1) are half-integers, and αn = εn is the only simple root
orthogonal to γ. Write Λn for the set of such integral dominant weights.

To describe irreducible representations with the infinitesimal character γ, we
introduce several notation for every type of γ.

For a weight

γ =
(
a1 + n− 1

2
, · · · , an−1 +

3

2
, an +

1

2

)
∈ Λ0

with a1 ≥ · · · ≥ an−1 ≥ an ≥ 0, let

μj = (a1 + 1, · · · , aj + 1, aj+2, · · · , an) and νj =
(
aj+1 + n− 1

2
− j
)
λ0

for 0 ≤ j ≤ n− 1. Put

I±j (γ) = I(μj ,±νj) = IndGMAN̄ (VM,μj
⊗ e±νj−ρ′ ⊗ 1N̄ ).

For each j, there are non-zero intertwining operators

J+
j (γ) : I+j (γ) → I−j (γ) and J−

j (γ) : I−j (γ) → I+j (γ).

Write πj(γ) (resp. π
′
j(γ)) for the image of J−

j (γ) (resp. J+
j (γ)). Put

λ+ = (a1 + 1, . . . , an−1 + 1, an + 1) and λ− = (a1 + 1, . . . , an−1 + 1,−(an + 1)).

Write π+(γ) for the discrete series with the lowest K-type VK,λ+ , and write π−(γ)
for the discrete series with the lowest K-type VK,λ− .
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Let 1 ≤ j ≤ n− 1. For a weight

γ =
(
a1 + n− 3

2
, . . . , aj + n− j − 1

2
, aj + n− j − 1

2
, . . . , an−1 +

1

2

)
∈ Λj ,

write

μ = (a1, . . . , an−1) and ν =
(
aj + n− j − 1

2

)
λ0.

Put

π(γ) = I(μ, ν).

For a weight

γ =
(
a1 + n− 3

2
, a2 + n− 5

2
, . . . , an−1 +

1

2
, 0
)
∈ Λn,

write

μ = (a1, . . . , an−1) and I(γ) = I(μ, 0).

By Schmid’s identity [28, Theorem 12.34] I(γ) is the direct sum of two limits of
discrete series [28, Theorem 12.26]. Write π+(γ) (resp. π−(γ)) for a limit of discrete
series with the lowest K-type VK,λ+ (resp. VK,λ−), where

λ+ =
(
a1, a2, . . . , an−1,

1

2

)
and λ− =

(
a1, a2, . . . , an−1,−

1

2

)
.

For a non-integral weight

γ =
(
a1 + n− 3

2
, · · · , an−1 +

1

2
, a
)
,

write

μ = (a1, . . . , an−1) and ν = aλ0.

Put

π(γ) = I(μ, ν).

Note that I(μ, ν) ∼= I(μ,−ν).
Using the above notation, the Langlands classification of irreducible represen-

tations of G is given as follows. In Fact 3.12, an irreducible representation of G
means an irreducible, moderate growth, smooth Fréchet representation.

Fact 3.12.

(1) For γ ∈ Λ0, any irreducible representation of G with infinitesimal character
γ is equivalent to one of

{π0(γ), . . . , πn−1(γ), π
+(γ), π−(γ)}.

When 0 ≤ j ≤ n−2, πj+1(γ) ∼= π′
j(γ); π0(γ) is a finite-dimensional module;

and π′
n−1(γ)

∼= π+(γ)⊕ π−(γ).
(2) For γ ∈ Λj (1 ≤ j ≤ n − 1), any irreducible representation of G with

infinitesimal character γ is equivalent to π(γ).
(3) For γ ∈ Λn, any irreducible representation of G with infinitesimal character

γ is equivalent to π+(γ) or π−(γ).
(4) For a non-integral weight γ, any irreducible representation of G with infin-

itesimal character γ is equivalent to π(γ).

Among these representations, unitarizable ones are given as follows [24].
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Fact 3.13.

(1) For γ ∈ Λ0, π
+(γ) and π−(γ) are unitarizable (discrete series). πj(γ) is

unitarizable if and only if ai = 0 for any j < i ≤ n.
(2) For γ ∈ Λj (1 ≤ j ≤ n − 1), π(γ) is unitarizable if and only if ai = 0 for

any j ≤ i ≤ n− 1.
(3) For γ ∈ Λn, π

+(γ) and π−(γ) are unitarizable (limit of discrete series).

Fact 3.14. For a non-integral weight γ, π(γ) is unitarizable if and only if at least
one of the following two conditions holds.

(1) a ∈ iR (unitary principal series).
(2) a ∈ R, |a| < n − 1

2 , ai ∈ Z for 1 ≤ i ≤ n − 1 and aj = 0 for any

n− |a| − 1
2 < j ≤ n− 1 (complementary series).

Remark 3.15. The unitarizable representations π(γ) for γ ∈ Λj in Fact 3.13(2) can
be regarded as a complementary series and also as Aq(λ) as we see below.

The unitarizable (g,K)-modules with integral infinitesimal character are isomor-
phic to Vogan-Zuckerman’s derived functor module Aq(λ). General references for
Aq(λ) are e.g. [29], [53]. For 0 ≤ j ≤ n − 1 let qj be a θ-stable parabolic subal-
gebra of gC such that the real form of the Levi component of qj is isomorphic to
u(1)j + so(2(n− j), 1). For the normalization of parameters, we follow the book of
Knapp-Vogan [29]. In particular, Aq(λ) has infinitesimal character λ+ ρ.

Remark 3.16. The parameter λ = (a1, . . . , aj , 0, . . . , 0) for qj is in the good range
if and only if a1 ≥ a2 ≥ · · · ≥ aj ≥ 0. It is in the weakly fair range if and only if
ai + 1 ≥ ai+1 for 1 ≤ i ≤ j − 1 and aj ≥ −n + j. When λ is in the weakly fair
range, Aq(λ) is non-zero if and only if a1 ≥ · · · ≥ aj and aj−1 ≥ −1.

Let γ ∈ Λ0 and 0 ≤ j ≤ n− 1 such that πj(γ) is unitarizable. Then

πj(γ)K ∼= Aqj
(λ),

where λ = (a1, . . . , aj , 0, . . . , 0).
Let γ ∈ Λj (1 ≤ j ≤ n−1) and 1 ≤ i ≤ j. Assume that ai = · · · = an = 0. Then

π(γ)K ∼= Aqi
(λ),

where λ = (a1 − 1, . . . , ai−1 − 1, i− j − 1, 0, . . . , 0).
Suppose next that m is even and then m = 2n−2 and G = Spin(2n−1, 1). This

case is similar to and simpler than the previous case. The infinitesimal character γ
of π ∈ C(G) is conjugate to

(μ+ ρM , ν) = (a1 + n− 2, a2 + n− 3, · · · , an−1, a),

where μ = (a1, . . . , an−1) and ν = aλ0. We have a1 ≥ · · · ≥ an−1 ≥ 0; and
a1, . . . , an−1 are all integers or all half-integers. The weight γ is integral if and only
if a− aj ∈ Z. The singularity of integral γ has the following possibilities:

(1) If a �= aj + n− j − 1 for 1 ≤ j ≤ n− 1, then γ is regular. Write Λ0 for the
set of integral regular dominant weights.

(2) If a = aj + n− j − 1 for some 1 ≤ j ≤ n− 1, then up to conjugation

γ = (a1 + n− 2, . . . , aj + n− j − 1, aj + n− j − 1, . . . , an−1).

Write Λj for the set of such integral dominant weights.
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We introduce several notation for every type of γ.
For a weight

γ = (a1 + n− 1, a2 + n− 2, · · · , an−1 + 1, an) ∈ Λ0

with a1 ≥ · · · ≥ an−1 ≥ an ≥ 0, let

μj = (a1 + 1, · · · , aj + 1, aj+2, · · · , an) and νj = (aj+1 + n− j − 1)λ0

for 0 ≤ j ≤ n− 1. Put
I±j (γ) = I(μj ,±νj).

For each j, there are non-zero intertwining operators

J+
j (γ) : I+j (γ) → I−j (γ) and J−

j (γ) : I−j (γ) → I+j (γ).

Write πj(γ) (resp. π
′
j(γ)) for the image of J−

j (γ) (resp. J+
j (γ)).

Let 1 ≤ j ≤ n− 1. For a weight

γ = (a1 + n− 2, . . . , aj + n− j − 1, aj + n− j − 1, . . . , an−1) ∈ Λj ,

write
μ = (a1, . . . , an−1) and ν = (aj + n− j − 1)λ0.

Put
π(γ) = I(μ, ν).

For a non-integral weight

γ = (a1 + n− 2, a2 + n− 3, · · · , an−1, a),

write
μ = (a1, . . . , an−1) and ν = aλ0.

Put
π(γ) = I(μ, ν).

Note that I(μ, ν) ∼= I(μ,−ν).
Using these notation, the Langlands classification is given as follows.

Fact 3.17.

(1) For γ ∈ Λ0, any irreducible representation of G with infinitesimal character
γ is equivalent to one of

{π0(γ), . . . , πn−1(γ)}.
When 0 ≤ j ≤ n− 2, πj+1(γ) ∼= π′

j(γ); πn−1(γ) ∼= π′
n−1(γ); and π0(γ) is a

finite-dimensional module. If an = 0, then πn−1(γ) is tempered.
(2) For γ ∈ Λj (1 ≤ j ≤ n − 1), any irreducible representation of G with

infinitesimal character γ is equivalent to π(γ).
(3) For a non-integral weight γ, any irreducible representation of G with infin-

itesimal character γ is equivalent to π(γ).

Among these representations, unitarizable ones are given as follows [24].

Fact 3.18.

(1) For γ ∈ Λ0, πj(γ) is unitarizable if and only if ai = 0 for any j < i ≤ n.
(2) For γ ∈ Λj (1 ≤ j ≤ n − 1), π(γ) is unitarizable if and only if ai = 0 for

any j ≤ i ≤ n− 1.

Fact 3.19. For a non-integral weight γ, π(γ) is unitarizable if and only if at least
one of the following two conditions holds.
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(1) a ∈ iR (unitary principal series).
(2) a ∈ R, |a| < n − 1, ai ∈ Z for 1 ≤ i ≤ n − 1 and aj = 0 for any

n− |a| − 1 < j ≤ n− 1 (complementary series).

For 0 ≤ j ≤ n− 1, let qj be a θ-stable parabolic subalgebra of gC such that the
real form of the Levi component of qj is isomorphic to u(1)j + so(2(n− j)− 1, 1).

Remarks 3.15 and 3.16 are valid without change of words.
Let γ ∈ Λ0 and 0 ≤ j ≤ n− 1 such that πj(γ) is unitarizable. Then

πj(γ)K ∼= Aqj
(λ),

where λ = (a1, . . . , aj , 0, . . . , 0).
Let γ ∈ Λj (1 ≤ j ≤ n−1) and 1 ≤ i ≤ j. Assume that ai = · · · = an = 0. Then

π(γ)K ∼= Aqi
(λ),

where λ = (a1 − 1, . . . , ai−1 − 1, i− j − 1, 0, . . . , 0).

3.4. Branching laws for G = Spin(2n, 1). Let G = Spin(2n, 1). In this subsec-
tion, we deduce the branching law of π|P for all irreducible unitary representations
π of G. A similar result for the group G = Spin(2n− 1, 1) will be given in the next
subsection.

By Fact 3.13, many of irreducible unitary representations of G are the completion
of principal series representations. This is the case if the infinitesimal character γ
lies in Λj (1 ≤ j ≤ n− 1) or γ is not integral.

Theorem 3.20. Suppose that an irreducible unitary representation π of Spin(2n, 1)
is isomorphic to the completion of a principal series representation I(μ, ν), where
μ = (a1, . . . , an−1) and a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 0. Then

π|P ∼=
⊕
τ

IndPM ′N (VM ′,τ ⊗ eiξ0),

where τ = (b1, . . . , bn−1) runs over tuples such that

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ an−1 ≥ |bn−1|
and bi − a1 ∈ Z.

Proof. By Lemma 3.6 and Proposition 3.7, the theorem follows from the well-known
branching law from M = Spin(2n− 1) to M ′ = Spin(2n− 2) (see e.g. [19, Theorem
8.1.3]). �

Next, let γ ∈ Λ0, namely, γ is a regular integral weight. Recall that in §3.3 we
defined πj(γ) to be the image of the intertwining operator J−

j (γ) : I−j (γ) → I+j (γ).

We give branching laws for πj(γ) for 1 ≤ j ≤ n− 1 when it is unitarizable.

Theorem 3.21. Let 1 ≤ j ≤ n− 1 and let

γ =
(
a1 + n− 1

2
, . . . , aj + n− j +

1

2
, n− j − 1

2
, . . . ,

1

2

)
,

where a1 ≥ · · · ≥ aj ≥ 0 are integers. Then

π̄j(γ)|P ∼=
⊕
τ

IndPM ′N (VM ′,τ ⊗ eiξ0),

where τ = (b1, . . . , bj−1, 0, . . . , 0) runs over tuples of integers such that

a1 + 1 ≥ b1 ≥ a2 + 1 ≥ b2 ≥ · · · ≥ aj−1 + 1 ≥ bj−1 ≥ aj + 1.
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Proof. Let 0 ≤ i < j. It is known that [πi(γ)] + [πi+1(γ)] = [I+i (γ)] in the
Grothendieck group K(G). Hence by Proposition 3.7

Ψ([πi(γ)]) + Ψ([πi+1(γ)]) = [VM,μi
|M ′ ],

where μi = (a1+1, . . . , ai+1, ai+2, . . . , aj , 0, . . . , 0). Since π0(γ) is finite-dimensional,
Ψ([π0(γ)]) = 0. Then by induction on i, we have

Ψ([πi(γ)]) =
⊕
τ

[VM ′,τ ],

where τ = (b1, . . . , bj−1, 0, . . . , 0) runs over tuples of integers such that

a1 + 1 ≥ b1 ≥ a2 + 1 ≥ · · · ≥ bi−1 ≥ ai + 1, and

ai+1 ≥ bi ≥ ai+2 ≥ bi+1 ≥ · · · ≥ aj ≥ |bj−1|.
Hence the theorem follows from Lemma 3.6. �

We have the following formula for Aq(λ) by Theorems 3.20 and 3.21. For 0 ≤
j ≤ n− 1 let qj be a θ-stable parabolic subalgebra of gC such that the real form of
the Levi component of qj is isomorphic to u(1)j + so(2(n− j), 1). For a weakly fair
parameter λ = (a1, . . . , aj , 0, . . . , 0), we have

Aqj
(λ)|P ∼=

⊕
τ

IndPM ′N (VM ′,τ ⊗ eiξ0),

where τ = (b1, . . . , bj−1, 0, . . . , 0) runs over tuples of integers such that

a1 + 1 ≥ b1 ≥ a2 + 1 ≥ b2 ≥ · · · ≥ aj−1 + 1 ≥ bj−1 ≥ max{aj + 1, 0}.
The remaining representations are (limit of) discrete series representations. The

proof of Theorem 3.22 is based on the translation principle and the branching law
of two special discrete series π+(ρ) and π+(ρ). The branching laws of π±(ρ)|P are
Proposition 3.27, which will be proved at the end of this section.

Theorem 3.22. Let

γ =
(
a1 + n− 1

2
, a2 + n− 3

2
, . . . , an +

1

2

)
,

where a1 ≥ · · · ≥ an ≥ − 1
2 are all integers or all half-integers. Then

π̄±(γ)|P ∼=
⊕
τ

IndPM ′N (VM ′,τ ⊗ eiξ0),

where τ = (b1, . . . , bn−1) runs over tuples such that

a1 + 1 ≥ b1 ≥ a2 + 1 ≥ · · · ≥ bn−2 ≥ an−1 + 1 ≥ ∓bn−1 ≥ an + 1

and bi − a1 ∈ Z.

Proof. By Lemma 3.6, it suffices to calculate Ψ([π±(γ)]) for γ ∈ Λ0 � Λn.
The same argument as in the proof of Theorem 3.21 yields

Ψ([π+(γ)]) + Ψ([π−(γ)]) = Ψ([π′
n−1(γ)]) =

⊕
τ

[VM ′,τ ],(3.10)

where τ = (b1, . . . , bn−1) runs over tuples of integers such that

a1 + 1 ≥ b1 ≥ a2 + 1 ≥ · · · ≥ bn−2 ≥ an−2 + 1 ≥ |bn−1| ≥ an−1 + 1.

Therefore, it suffices to show that the two modules Ψ([π+(γ)]) and Ψ([π−(γ)]) are
separated by the sign of bn−1.
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First, prove the statement for γ ∈ Λ0 by induction on |γ|. When γ = ρ, the
conclusion follows from Proposition 3.27. Let γ �∈ Λ0 − {ρ} and assume that the
conclusion holds for weights in Λ0 having norm strictly smaller than |γ|. Write ωk

for the k-th fundamental weight, namely,

ωk = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) for 1 ≤ k ≤ n− 1 and ωn =
(1
2
, . . . ,

1

2︸ ︷︷ ︸
n

)
.

Then, one finds γ′ ∈ Λ0 and a fundamental weight ωk such that γ = γ′+ωk. By the
Zuckerman translation principle ([53], [56]), π±(γ) occurs as a composition factor
of π±(γ′) ⊗ Fωk

. Hence by Lemma 3.4, if an irreducible M ′-representation VM ′,μ

with μ = (b1, . . . , bn−1) occurs in Ψ([π+(γ)]), then it also occurs in Ψ([π+(γ′)]) ⊗
[Fωk

|M ′ ]. For any irreducible VM ′,μ′ in Ψ([π+(γ′)]) with μ′ = (b′1, . . . , b
′
n−1), one has

b′n−1 ≤ −1 by induction hypothesis and for any weight μ′′ appearing in Fωk
|M ′ with

μ′′ = (b′′1 , . . . , b
′′
n−1), we have b′′n−1 ∈ {1,−1, 1

2 ,−
1
2}. Hence bn−1 ≤ 0. Therefore,

we get bn−1 ≤ −1 from (3.10). The statement for π−(γ) is similarly proved.
Next, suppose that γ ∈ Λn. Let γ

′ = γ+ωn ∈ Λ0. Then again by the translation
principle, π±(γ) occurs as a composition factor of π±(γ′) ⊗ Fωn

. Then by using
the result for Ψ([π±(γ′)]) proved above, the statement for Ψ([π±(γ)]) is similarly
obtained. �

3.5. Branching laws for G = Spin(2n−1, 1). Let G = Spin(2n−1, 1). Branching
laws for the restriction to P are similar to the previous case where G = Spin(2n, 1).

Theorem 3.23. Suppose that an irreducible unitary representation π of Spin(2n−
1, 1) is isomorphic to the completion of a principal series representation I(μ, ν),
where μ = (a1, . . . , an−1) and a1 ≥ · · · ≥ an−2 ≥ |an−1|. Then

π|P ∼=
⊕
τ

IndPM ′N (VM ′,τ ⊗ eiξ0),

where τ = (b1, . . . , bn−2) runs over tuples such that

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ an−1 ≥ bn−2 ≥ |an−1|
and bi − a1 ∈ Z.

Theorem 3.24. Let

γ = (a1 + n− 1, . . . , aj + n− j, n− j − 1, . . . , 0),

where a1 ≥ · · · ≥ aj ≥ 0 are integers and let 1 ≤ j ≤ n− 1. Then

π̄j(γ)|P ∼=
⊕
τ

IndPM ′N (VM ′,τ ⊗ eiξ0),

where τ = (b1, . . . , bj−1, 0, . . . , 0) runs over tuples of integers such that

a1 + 1 ≥ b1 ≥ a2 + 1 ≥ b2 ≥ · · · ≥ aj−1 + 1 ≥ bj−1 ≥ aj + 1.

For 0 ≤ j ≤ n − 1 let qj be a θ-stable parabolic subalgebra of gC such that the
real form of the Levi component of qj is isomorphic to u(1)j + so(2(n− j)− 1, 1).
For a weakly fair parameter λ = (a1, . . . , aj , 0, . . . , 0), we have

Aqj
(λ)|P ∼=

⊕
τ

IndPM ′N (VM ′,τ ⊗ eiξ0),
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where τ = (b1, . . . , bj−1, 0, . . . , 0) runs over tuples of integers such that

a1 + 1 ≥ b1 ≥ a2 + 1 ≥ b2 ≥ · · · ≥ aj−1 + 1 ≥ bj−1 ≥ max{aj + 1, 0}.

3.6. Fourier transform for discrete series representations. Let G =
Spin(2n, 1). Write π+(ρ) for the discrete series with lowest K-type VK,(1,...,1︸︷︷︸

n

);

and write π−(ρ) for the discrete series with lowest K-type VK,(1,...,1︸︷︷︸
n−1

,−1). Then

π′
n−1(ρ)

∼= π+(ρ)⊕π−(ρ). Write π̄+(ρ), π̄−(ρ) for the Hilbert completion of π+(ρ),
π−(ρ), respectively. By Theorem 3.21, we have

(3.11) π̄+(ρ)|P ⊕ π̄−(ρ)|P ∼= IndMAN
M ′N (

n−1∧
C2n−2 ⊗ eiξ0).

The restriction
∧n−1

C2n−2|M ′ is the direct sum of two finite-dimensional irre-
ducible representations of M ′ = Spin(2n− 2) with highest weights

μ+ = (1, . . . , 1︸ ︷︷ ︸
n−1

) and μ− = (1, . . . , 1︸ ︷︷ ︸
n−2

,−1),

respectively. After (3.11), we need to determine whether π̄−(ρ)|P is isomorphic to

IndMAN
M ′N (VM ′,μ+ ⊗eiξ0) or IndMAN

M ′N (VM ′,μ− ⊗eiξ0). In order to do this, we calculate
the Fourier transform of a specific K-type function in π−(ρ). For f in a small
K-type, the explicit form of f |N was given in Kobayashi-Speh [36, §8.2]. We follow
their description and then we calculate its Fourier transform.

One has
n∧
C2n ∼= VK,λ+ ⊕ VK,λ− , where λ+ = (1, . . . , 1︸ ︷︷ ︸

n

) and λ− = (1, . . . , 1︸ ︷︷ ︸
n−1

,−1).

Note that VK,λ+ is the lowest K-type of π+(ρ), and VK,λ− is the lowest K-type of
π−(ρ). Via this isomorphism the group O(2n) naturally acts on VK,λ+ ⊕ VK,λ− .

Put V = C2n and V ′ = C2n−1. Let {ej : 1 ≤ j ≤ 2n} be the standard
orthonormal basis of V . Then, V = V ′ ⊕ Ce2n and this decomposition induces

n∧
V =

n∧
V ′ ⊕

(n−1∧
V ′ ∧ Ce2n

)
.

Let p : V → V ′ be the projection along Ce2n. Then it induces the projection∧n
V →

∧n
V ′ along

∧n−1
V ′ ∧ Ce2n, still denoted by p. Note that p is M -

equivariant. For each u ∈
∧n V , define

fu(kan̄) = e(ρ
′+νn−1) log ap(k−1u), kan̄ ∈ KAN̄,

which belongs to IndGMAN̄ (
∧n

C2n−1 ⊗ e−νn−1−ρ′ ⊗ 1N̄ ) ∼= In−1(−νn−1). This iso-

morphism is induced by
∧n V ′|M ′ ∼=

∧n−1 V ′|M ′ . By (3.6), we have

fu(nx) = (1 + |x|2)−np(s−1
x u),

where sx is as in (3.5).
Write vj = e2j−1 + ie2j for each 1 ≤ j ≤ n. Put

u+ = v1 ∧ · · · ∧ vn and u− = v1 ∧ · · · ∧ vn−1 ∧ (e2n−1 − ie2n).

Then u+ (resp. u−) is a non-zero vector in
∧n

C2n with highest weight λ+ (resp.

λ−). Then fu− gives a function in π−(ρ) ⊂ IndGMAN̄ (
∧n

C2n−1 ⊗ e−νn−1−ρ′ ⊗ 1N̄ ),
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corresponding to a highest weight vector of the lowest K-type of π−(ρ). Below we
calculate the inverse Fourier transform of fu− .

Put y = (x, 1) ∈ R2n. Let r′x denote both

I2n − 2yty

|y|2 ∈ O(2n) and diag
(
I2n − 2yty

|y|2 , 1
)
∈ O(2n, 1).

Note that sx = sr′x (see (3.5) and (3.7)). Then

p(s−1
x u−) = p(r′xsu

−) = p(r′xu
+).

Set x2n = 1 for notational convenience, but we keep |x|2 = x2
1 + · · ·+ x2

2n−1.

Lemma 3.25. One has

r′xu
+(3.12)

= u+ +
∑

1≤k≤n

(−1)k
2(x2k−1 + ix2k)

1 + |x|2 (x2k−1e2k−1 + x2ke2k)

∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ vn

+
∑

1≤k<j≤n

(−1)j−k 2i(x2k−1 + ix2k)(x2j−1 + ix2j)

1 + |x|2 e2j−1 ∧ e2j

∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ v̂j ∧ · · · ∧ vn

+
∑

1≤j<k≤n

(−1)j−k−1 2i(x2k−1 + ix2k)(x2j−1 + ix2j)

1 + |x|2 e2j−1 ∧ e2j

∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̂k ∧ · · · ∧ vn.

Proof. We have

r′xu
+ = r′xv1 ∧ · · · ∧ r′xvn.

Since r′xvk − vk is proportional to y,

r′xu
+ = u+ +

n∑
k=1

(−1)k−1(r′xvk − vk) ∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ vn.

Then we calculate

r′xvk − vk = −2(vk, y)

|y|2 y

= −
n∑

i=1

2(x2k−1 + ix2k)

1 + |x|2 (x2i−1e2i−1 + x2ie2i).

The term for i = k corresponds to the second term of the right hand side of (3.12).
Then the lemma follows from

(x2j−1e2j−1 + x2je2j) ∧ vj = i(x2j−1 + ix2j)e2j−1 ∧ e2j . �

To calculate the inverse Fourier transform F((fu−)N ) we need some formulas.

F(1 + |x|2)−n =
2

1
2−nπ

1
2

(n− 1)!
e−|ξ|,(3.13)

F(1 + |x|2)−(n+1) =
2−

1
2−nπ

1
2

n!
(1 + |ξ|)e−|ξ|.(3.14)
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First, the Fourier transform of the function of one variable
√

π
2 e

−|ξ| is equal to

(1+x2)−1. By the Fourier inversion formula, we get F(1+x2)−1 =
√

π
2 e

−|ξ|. Using

(1+x2)−2 = (1+ x
2

d
dx )(1+x2)−1, we see that F(1+x2)−2 =

√
π

2
√
2
(1+ |ξ|)e−|ξ|. For

m ≥ 2, write Ωm for the volume of the (m−1)-dimensional sphere. It is well known

that Ωm = 2π
m
2 /Γ(m2 ). Letting x = (x1,

√
1 + x2

1z) with z ∈ R2n−2, we calculate

∫
R2n−1

(1 + |x|2)−nei(ξ,x) dx

=

∫
R2n−1

(1 + |x|2)−neix1|ξ| dx

=

∫
R2n−2

∫
R

(1 + x2
1)

−1eix1ξ(1 + |z|2)−n dx1 dz

=
√
2πF(1 + x2

1)
−1 × Ω2n−2

∫ ∞

0

(1 + r2)−nr2n−3 dr

= πe−|ξ| × 2πn−1

Γ(n− 1)
× 1

2

∫ ∞

0

(1 + s)−nsn−2 ds =
πne−|ξ|

(n− 1)!
.

For the first equation, we used a rotation on coordinates to assume ξ = (|ξ|, 0, . . . , 0).
Therefore, we obtain (3.13). Equation (3.14) is similarly proved using F(1+x2)−2 =√

π

2
√
2
(1 + |ξ|)e−|ξ|.

Then by (3.9), we obtain the following.

F(xj(1 + |x|2)−(n+1)) = i
2−

1
2−nπ

1
2

n!
ξje

−|ξ|,(3.15)

F(x2
j (1 + |x|2)−(n+1)) =

2−
1
2−nπ

1
2

n!

(
1−

ξ2j
|ξ|
)
e−|ξ|,(3.16)

F(xjxk(1 + |x|2)−(n+1)) = −2−
1
2−nπ

1
2

n!

ξjξk
|ξ| e−|ξ| (j �= k).(3.17)

Lemma 3.26. We have

F(fu−)N =
2−

1
2−nπ

1
2

n!
e−|ξ|(|ξ|(1− rξ)u+ 2u′ ∧ ξ)

at 0 �= ξ ∈ R2n−1, where

u = v1 ∧ · · · ∧ vn−1 ∧ e2n−1 ∈
n∧
V ′ and

u′ = v1 ∧ · · · ∧ vn−1 ∈
n−1∧

V ′.
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Proof. By Lemma 3.25, we have

fu−(nx) = (1 + |x|)−nv1 ∧ · · · ∧ vn−1 ∧ e2n−1

+
∑

1≤k≤n−1

(−1)k2(1 + |x|)−n−1(x2k−1 + ix2k)(x2k−1e2k−1 + x2ke2k)

∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ vn−1 ∧ e2n−1

+ (−1)n2(1 + |x|)−n−1(x2n−1 + i)x2n−1e2n−1 ∧ v1 ∧ · · · ∧ vn−1

+
∑

1≤k<j≤n−1

(−1)j−k2(1 + |x|)−n−1i(x2k−1 + ix2k)(x2j−1 + ix2j)

e2j−1 ∧ e2j ∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ v̂j ∧ · · · ∧ vn−1 ∧ e2n−1

+
∑

1≤j<k≤n−1

(−1)j−k−12(1 + |x|)−n−1i(x2k−1 + ix2k)(x2j−1 + ix2j)

e2j−1 ∧ e2j ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̂k ∧ · · · ∧ vn−1 ∧ e2n−1

+
∑

1≤j≤n−1

(−1)j−n−12(1 + |x|)−n−1i(x2n−1 + i)(x2j−1 + ix2j)

e2j−1 ∧ e2j ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vn−1.

Then by (3.13) – (3.17),

(2 1
2−nπ

1
2

n!
e−|ξ|

)−1

F((fu−)N ) = nv1 ∧ · · · ∧ vn−1 ∧ e2n−1 +
∑

1≤k≤n−1

(−1)k

((
1−

ξ22k−1

|ξ| − i
ξ2k−1ξ2k

|ξ|
)
e2k−1 +

(
i− i

ξ22k
|ξ| − ξ2k−1ξ2k

|ξ|
)
e2k

)
∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ vn−1 ∧ e2n−1

+ (−1)n
(
1− ξ22n−1

|ξ| − ξ2n−1

)
e2n−1 ∧ v1 ∧ · · · ∧ vn−1

+
∑

1≤k<j≤n−1

(−1)j−k−1i|ξ|−1(ξ2k−1 + iξ2k)(ξ2j−1 + iξ2j)

e2j−1 ∧ e2j ∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ v̂j ∧ · · · ∧ vn−1 ∧ e2n−1

+
∑

1≤j<k≤n−1

(−1)j−ki|ξ|−1(ξ2k−1 + iξ2k)(ξ2j−1 + iξ2j)

e2j−1 ∧ e2j ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̂k ∧ · · · ∧ vn−1 ∧ e2n−1

+
∑

1≤j≤n−1

(−1)j−ni(1 + |ξ|−1ξ2n−1)(ξ2j−1 + iξ2j)

e2j−1 ∧ e2j ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vn−1.
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Similarly to Lemma 3.25, we have

rξ(u) = u+
∑

1≤k≤n−1

(−1)k
2(ξ2k−1 + iξ2k)

|ξ|2 (ξ2k−1e2k−1 + ξ2ke2k)

∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ vn−1 ∧ e2n−1

+ (−1)n
2ξ2n−1

|ξ|2 ξ2n−1e2n−1 ∧ v1 ∧ · · · ∧ vn−1

+
∑

1≤k<j≤n−1

(−1)j−k 2i(ξ2k−1 + iξ2k)(ξ2j−1 + iξ2j)

|ξ|2 e2j−1 ∧ e2j

∧ v1 ∧ · · · ∧ v̂k ∧ · · · ∧ v̂j ∧ · · · ∧ vn−1 ∧ e2n−1

+
∑

1≤j<k≤n−1

(−1)j−k−1 2i(ξ2k−1 + iξ2k)(ξ2j−1 + iξ2j)

|ξ|2 e2j−1 ∧ e2j

∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v̂k ∧ · · · ∧ vn−1 ∧ e2n−1

+
∑

1≤j≤n−1

(−1)j−n−1 2iξ2n−1(ξ2j−1 + iξ2j)

|ξ|2 e2j−1 ∧ e2j

∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vn−1.

The lemma follows from these equations. �

Proposition 3.27. Let π̄±(ρ) be discrete series representation of infinitesimal
character ρ defined in §3.3. Then

π̄+(ρ)|P ∼= IndMAN
M ′N (VM ′,μ− ⊗ eiξ0)

and

π̄−(ρ)|P ∼= IndMAN
M ′N (VM ′,μ+ ⊗ eiξ0).

Proof. Let h := F((fu−)N ). By Lemma 3.26,

h(ξ) =
2−

1
2−nπ

1
2

n!
e−|ξ|(|ξ|(1− rξ)u+ 2u′ ∧ ξ)

for ξ �= 0. Evaluating at ξ = ξ0 = e2n−1, we have

h(e2n−1) =
2−

1
2−nπ

1
2

n!e
· (4u).

Hence

hat,ν(e) = h(ξ0) = cu

for a constant c �= 0. This is a highest weight vector for M ′ with weight μ+ in

the representation
∧n

V ′|M ′ ∼=
∧n−1

V ′|M ′ . Hence the inverse Fourier transform

of fu− must lie in IndMAN
M ′N (VM ′,μ+ ⊗ eiξ0). Therefore,

π̄−(ρ)|P ∼= IndMAN
M ′N (VM ′,μ+ ⊗ eiξ0)

and then

π̄+(ρ)|P ∼= IndMAN
M ′N (VM ′,μ− ⊗ eiξ0). �
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4. Moment map for regular elliptic coadjoint orbits

In this section we calculate the projection of G-regular elliptic coadjoint orbits
with respect to the natural map g∗ → p∗. Before we start the calculation, we
emphasize that the method used below actually allows us to describe explicitly
the projection of all G-orbits (no matter whether elliptic or not, regular or not).
However, since original Duflo’s conjecture concerns discrete series representations
which are associated to regular elliptic orbits, we only treat these orbits in the
paper.

In this section we suppose G = Spin(2n, 1).

4.1. Classification of coadjoint orbits in p∗. In this subsection we describe all
coadjoint P -orbits in p∗. Write L = MA and l = m ⊕ a. Then, P = L � N is a
Levi decomposition of P . Similarly, write L1 = M1A ⊂ P1 and then P1 = L1 �N .
There are exact sequences of P -modules

0 → n → p → l → 0 and 0 → l∗ → p∗ → n∗ → 0.

We regard l∗ as a subspace of p∗.
Inspired by Bernstein-Zelevinsky depth for representations of general linear group

over a p-adic field ([5], [49]), we define a notion of “depth” for coadjoint P -orbits
in p∗.

Definition 4.1. We say a coadjoint P -orbit O in p∗ has depth zero if it is contained
in l∗, otherwise we say O has depth one.

Note that the action of P on p (or p∗) factors through P1. We have

L1 = M1A ∼= SO(2n− 1)× R>0, n
∗ ∼= R2n−1,

and L1 acts on n∗ as in (2.5). Thus, there are only two L-orbits {0} and n∗ − {0}
in n∗. Then if a coadjoint P -orbit O has depth zero (resp. depth one), O maps to
{0} (resp. n∗ − {0}) by the projection p∗ → n∗.

Fix a vector ξ( �= 0) ∈ n∗. Write P (ξ) = StabP (ξ) and L(ξ) = StabL(ξ). Then
P (ξ) = L(ξ) � N and l(ξ) ∼= so(2n − 2). Since the bilinear form (2.2) is non-
degenerate on l(ξ), we have a decomposition l = l(ξ) ⊕ l(ξ)⊥, where l(ξ)⊥ is the
orthogonal complement of l(ξ) in l. We note that l(ξ) ⊂ m and l(ξ)⊥ ⊃ a. Then we
have decompositions

p = l(ξ)⊕ l(ξ)⊥ ⊕ n and p∗ = l(ξ)∗ ⊕ (l(ξ)⊥)∗ ⊕ n∗.

Proposition 4.2. We define a map l(ξ)∗ → p∗ − l∗ by η 	→ (η, 0, ξ) ∈ l(ξ)∗ ⊕
(l(ξ)⊥)∗ ⊕ n∗. Then it descends to a bijection

l(ξ)∗/Ad∗(L(ξ))
∼−→ (p∗ − l

∗)/Ad∗(P ),

namely, the coadjoint L(ξ)-orbits correspond bijectively to the coadjoint P -orbits
which have depth one.

Proof. As n is abelian, it acts trivially on n∗. Thus, ad∗(n)(p∗) ⊂ l∗. Let ξ̃ =

(0, 0, ξ) ∈ l(ξ)∗ ⊕ (l(ξ)⊥)∗ ⊕ n∗ = p∗. We first claim that (l(ξ)⊥)∗ = ad∗(n)ξ̃. For
X ∈ l and Y ∈ n,

(ad∗(X)ξ)(Y ) = (ad∗(X)ξ̃)(Y ) = −ξ̃([X,Y ]) = −(ad∗(Y )ξ̃)(X).

Consequently, X ∈ l(ξ) if and only if (ad∗(n)(ξ̃))(X) = 0. Thus, the null space of

l(ξ) in l∗ is ad∗(n)ξ̃ and the claim is proved.
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It is easy to see that the map

l(ξ)∗/Ad∗(L(ξ)) → (p∗ − l∗)/Ad∗(P )

in the proposition is well-defined. To show that it is injective, take two ele-
ments η, η′ ∈ (l(ξ))∗ such that Ad∗(p)(η, 0, ξ) = (η′, 0, ξ) for some p ∈ P . Write
p = ln ∈ LN and n = exp(X). Then Ad∗(n)(η, 0, ξ) = (η, ad∗(X)ξ, ξ). Hence
Ad∗(l)(η, ad∗(X)ξ, ξ) = (η′, 0, ξ), which implies l ∈ L(ξ) and η = η′.

To show the surjectivity, take a coadjoint P -orbit O in p∗− l∗. Since L acts tran-
sitively on n∗−{0}, we can find an element of the form (η, ζ, ξ) in O. By (l(ξ)⊥)∗ =

ad∗(n)ξ̃, there exists X ∈ n such that ad∗(X)ξ̃ = −ζ. Then Ad∗(exp(X))(η, ζ, ξ) =
(η, 0, ξ). This proves the surjectivity. �

In what follows, we carry out an explicit matrix calculation for the correspon-
dence in Proposition 4.2. Define pr: g → p∗ by

(4.1) pr(X)(Y ) = (X,Y ) (∀Y ∈ p).

Then, the kernel of pr is n, and pr gives a P -module isomorphism g/n ∼= p∗. Since

p̄ is a complement of n in g, we have an isomorphism pr : p̄
∼−→ p∗.

For Y ∈ so(2n− 1), β ∈ R2n−1 and a ∈ R, put

XY,β,a =

⎛⎝ Y βt βt

−β 0 a
β a 0

⎞⎠ ∈ p.

Then, for any X =

⎛⎝ Y βt
1 βt

2

−β1 0 a
β2 a 0

⎞⎠ ∈ g, one has pr(X) = pr(X
Y,

β1+β2
2 ,a

); for any

f ∈ p∗, there exists a unique triple

(Y, β, a) ∈ so(2n− 1)× R2n−1 × R

such that f = pr(XY,β,a).
Write ψn : p

∗ → n∗ for the natural projection.

Lemma 4.3. For 0 �= β ∈ R2n−1, put ξ = ψn(pr(X0,β,0)) ∈ n∗. In order that
pr(XY,0,a) ∈ l∗(ξ) it is necessary and sufficient that a = 0 and Y βt = 0.

Proof. We have

pr(XY,0,a) ∈ l∗(ξ) ⇔ (pr(XY,0,a), ad
∗(n)(ξ̃)) = 0 ⇔ ([XY,0,a, X0,β,0], n) = 0.

Since [XY,0,a, X0,β,0] = X0,βY t−aβ,0 ∈ n̄ by (2.1), pr(XY,0,a) ∈ l∗(ξ) is equivalent to
βY t− aβ = 0. If βY t− aβ = 0, then (βY t− aβ)βt = −aββt = 0. Hence a = 0 and
βY t = 0. The lemma follows. �

Lemma 4.4. For a general triple (Y, β, a) ∈ so(2n − 1) × R2n−1 × R with β �= 0,
put ξ = ψn(pr(XY,β,a)) ∈ n∗. Then, there exists a unique γ ∈ R2n−1 such that

Ad∗(nγ)(pr(XY,β,a)) ∈ l∗(ξ) + ξ̃. Moreover,

Ad∗(nγ)(pr(XY,β,a)) = pr(XY− 1
|β|2 (Y βtβ−βtβY t),β,0).

Proof. For γ ∈ R2n−1, we calculate by using (2.1)

pr(Ad(nγ)(XY,β,a)) = pr(XY+2γtβ−2βtγ, β, a+2γβt).
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By Lemma 4.3, in order that Ad∗(nγ)(pr(XY,β,a)) ∈ l(ξ)∗ + ξ̃, it is necessary and
sufficient that a+2γβt = 0 and β(Y +2γtβ−2βtγ)t = 0. From these two equations,
one solves that

γ = − 1

2|β|2 (βY
t + aβ).

Then we have

Ad∗(nγ)(XY,β,a) = XY− 1
|β|2 (Y βtβ−βtβY t), β, 0. �

Lemma 4.5. Assume that β �= 0 and Y βt = 0. Then, the orbit Ad∗(P ) pr(XY,β,0)
is determined by the class of ZY,β with respect to the conjugation action of SO(2n),
where

ZY,β =

(
Y βt

|β|
− β

|β| 0

)
.

Proof. Put

H ′ =

(
0 1
−1 0

)
.

Then, there exists (W,a) ∈ SO(2n− 1)× R>0 such that

WYW−1 = diag(x1H
′, . . . , xn−1H

′, 0)

and aβW t = (0, . . . , 0︸ ︷︷ ︸
2n−2

, 1), where x1 ≥ x2 ≥ · · · ≥ xn−2 ≥ |xn−1|. By Propo-

sition 4.2, the orbit Ad∗(P ) pr(XY,β,0) is determined by the tuple (x1, . . . , xn−1).
Since ZY,β is conjugate to

diag(x1H
′, . . . , xn−1H

′, H ′),

the class of ZY,β with respect to the conjugation action of SO(2n) is also determined
by the tuple (x1, . . . , xn−1). Hence, the conclusion of the lemma follows. �

Remark 4.6. It is known that the SO(2n)-conjugacy class of ZY,β is determined by
its singular values and the sign of its Pfaffian (which can be 1, −1 or 0). Here, the
singular values of ZY,β mean the square roots of eigenvalues of (ZY,β)

tZY,β . From
the proof of Lemma 4.5, we see that singular values of ZY,β are

{x1, x1, x2, x2, . . . , xn−1, xn−1, 1, 1}

and the singular values of Y are

{x1, x1, x2, x2, . . . , xn−1, xn−1, 0}.

Therefore, the class of ZY,β is also determined by the singular values of Y and the
Pfaffian of ZY,β . The sign of the Pfaffian of ZY,β is equal to the sign of xn−1.

Remark 4.7. It is easy to see that if a coadjoint orbit in p∗ is strongly regular (see
§1), then it has depth one. In the above notation the orbit Ad∗(P ) pr(XY,β,0) is
strongly regular if and only if x1 > · · · > xn−2 > |xn−1| > 0.
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4.2. P -orbits in Of . For a1≥a2≥· · ·≥an−1≥|an|≥0, write �a=(a1, a2, . . . , an).
As in (2.4), put

t�a =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 a1
−a1 0

. . .

0 an
−an 0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Under the isomorphism ι : g
∼−→ g∗ in (2.3), we set

f = f�a = ι(t�a),

which is an elliptic element in g∗. Moreover, each elliptic coadjoint orbit in g∗

contains f�a for a unique vector �a.
In this case, it is not hard to see that f is regular if and only if

a1 > a2 > · · · > an−1 > |an| > 0.

Let G(f) be the stabilizer of f in G. Then, G(f) = T , where T is the preimage
in G of the maximal torus

T1 =

{
⎛⎜⎜⎜⎜⎜⎜⎜⎝

y1 z1
−z1 y1

. . .

yn zn
−zn yn

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
: y21 + z21 = · · · = y2n + z2n = 1

}

of G1. Let Of = G · f . Under the isomorphism Of
∼= G/G(f), parametrization

of P -orbits in Of is equivalent to parametrization of double cosets in P\G/G(f).
Since the map

P\G/G(f) � PgG(f) 	→ G(f)g−1P ∈ G(f)\G/P

is an isomorphism, it is also equivalent to parametrizing G(f)-orbits in G/P . Write

Xn = {�x = (x1, . . . , x2n, x0) : x
2
0 =

2n∑
i=1

x2
i and x0 > 0}/ ∼ .

Here, for two vectors �x and �x′, we define

�x ∼ �x′ ⇔ ∃s > 0 such that �x′ = s�x.

As a manifold, Xn
∼= S2n−1. The group G acts on Xn transitively as

g · [�x] = [�xgt1], G � g 	→ g1 ∈ G1.

Let

v0 = [(0, . . . , 0, 1, 1)].

As StabG(v0) = P , Xn
∼= G/P. Therefore, parametrization of G(f)-orbits in G/P

is equivalent to parametrization of T -orbits in Xn.
Let

B =
{
�b = (b1, . . . , bn) : b1, . . . , bn ≥ 0,

n−1∑
i=1

b2i = 1− 2bn

}
.
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Then, 0 ≤ bn ≤ 1
2 for any �b ∈ B. Write

α = α�b = (0, b1, 0, b2, . . . , 0, bn−1, 0) and X̄�b =

⎛⎝02n−1 αt αt

−α 0 0
α 0 0

⎞⎠ .

Put

n̄�b = exp(X̄�b) =

⎛⎝I2n−1 αt αt

−α 1− 1
2 |α|2 − 1

2 |α|2
α 1

2 |α|2 1 + 1
2 |α|2

⎞⎠ ∈ N̄ .

Then,

n̄−1
�b

· v0 = [(0,−b1, 0,−b2, . . . , 0,−bn−1, 0, bn, 1− bn)].

Lemma 4.8. The map B → T\Xn defined by

�b 	→ (n̄�b)
−1 · v0

is a bijection.

Proof. Identify the image of T in G1 with U(1)n. Then, T acts on Xn by

(y1 + z1i, . . . , yn + zni) · [(x1, . . . , x2n, x0)]

= [(y1x1 + z1x2,−z1x1 + y1x2, . . . , ynx2n−1 + znx2n,−znx2n−1 + ynx2n, x0)].

Then each T -orbit in Xn has a unique representative of the form

[(0,−b1, . . . , 0,−bn−1, 0, bn, 1− bn)],

where bi ≥ 0 (1 ≤ i ≤ n). Moreover, the equation

2n∑
i=1

x2
i = x2

0

leads to the equation
n−1∑
i=1

b2i = 1− 2bn.

By this, the map �b 	→ (n̄�b)
−1 · v0 is a bijection. �

One direct consequence of Lemma 4.8 is the following

Lemma 4.9. Each P -orbit in Of = G · f contains some n̄�b · f for a unique tuple
�b ∈ B.

4.3. The moment map Of → p∗. Recall that in §4.1, we obtained an explicit
parametrization of P -coadjoint orbits in p∗.

In this subsection, we use the results in §4.1 to calculate the image of the moment
map q : Of → p∗. Here, the moment map q is defined by the composition of the
inclusion Of ↪→ g∗ and the natural projection g∗ → p∗.

Recall that the map pr was defined in (4.1). Let

H ′ =

(
0 1
−1 0

)
.
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Lemma 4.10. We have q(n̄�b · f) = pr(XY,β,0), where

β = (−a1b1, 0, . . . ,−an−1bn−1, 0, anbn) �= 0,

Y = diag(a1H
′, . . . , an−1H

′, 0) + (β′)tα− αtβ′, and β′ = (0, . . . , 0︸ ︷︷ ︸
2n−2

, an).

Proof. Write Y ′ = diag(a1H
′, . . . , an−1H

′, 0). Then following notation in §2.1 we
have t�a = diag(Y ′, 02×2)−X β′

2

+ X̄ β′
2

. Using (2.1) we calculate

Ad(n̄�b)(t�a) = t�a + [X̄α, t�a] +
1

2
[[X̄α, [X̄α, t�a]]

=
(
diag(Y ′, 02×2)−X β′

2

+ X̄ β′
2

)
−
(
X̄α(Y ′)t − diag((β′)tα− αtβ′, 02×2)

)
− 1

2
X̄ααtβ′−α(β′)tα.

Hence the lemma follows from

Y ′ + (β′)tα− αtβ′ = Y and
β′

2
− α(Y ′)t − 1

2
(ααtβ′ − α(β′)tα) = β. �

Put

Y�b = Y − 1

|β|2 (Y βtβ − (Y βtβ)t), Z�b =

(
Y�b

βt

|β|
− β

|β| 0

)
.

By Lemmas 4.3, 4.4 and 4.5 and Remark 4.6, the P -conjugacy class of q(n̄�b · f) is
determined by the sign of the Pfaffian of Z�b and singular values of Y�b. Put

γ1 = (a1b1, . . . , an−1bn−1,−anbn),

γ2 = ((a21 − a2nbn)b1, . . . , (a
2
n−1 − a2nbn)bn−1, 0).

For a permutation σ on {1, 2, . . . , 2n}, let Qσ = (xij)1≤i,j≤2n be the permutation
matrix corresponding to σ, that is, xi,j = 1 if j = σ(i); and xi,j = 0 if j �= σ(i).

Lemma 4.11. Let σ be the permutation

σ(i) =

{
2i− 1 (1 ≤ i ≤ n)

2(i− n) (n+ 1 ≤ i ≤ 2n)
.

Then

QσZ�bQ
−1
σ =

(
0n Z
−Zt 0n

)
,

where

(4.2) Z =

⎛⎜⎜⎜⎜⎝
a1 . . . 0 −a1b1

|β|
...

. . .
...

...

0 . . . an−1
−an−1bn−1

|β|
anb1 . . . anbn−1

anbn
|β|

⎞⎟⎟⎟⎟⎠− γt
1γ2
|β|2 .

Proof. By calculation

Y βt = (0, (a21 − a2nbn)b1, . . . , 0, (a
2
n−1 − a2nbn)bn−1, 0)

t.

By inputting the forms of Y , β, Y βt in

Z�b =

(
Y − 1

|β|2 (Y βt)β + 1
|β|2 β

t(Y βt)t βt

|β|
− β

|β| 0

)
,
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we get the form of Z�b. It is easy to see that QσZ�bQ
−1
σ is of the block diagonal form

as in the lemma. �

Lemma 4.12. The Pfaffian of Z�b is equal to

1− bn
|β|

∏
1≤i≤n

ai.

Proof. By Lemma 4.11, the Pfaffian of Z�b is equal to detZ. Since γt
1 is proportional

to the right most column of the first matrix in the right hand side of (4.2) and the
last entry of γ2 is zero, the term

1
|β|2 γ

t
1γ2 makes no contribution to detZ. Therefore,

detZ = det

⎛⎜⎜⎜⎜⎝
a1 . . . 0 −a1b1

|β|
...

. . .
...

...

0 . . . an−1
−an−1bn−1

|β|
anb1 . . . anbn−1

anbn
|β|

⎞⎟⎟⎟⎟⎠
=

1− bn
|β|

∏
1≤i≤n

ai. �

Write Z ′ for the n×(n−1) matrix obtained from Z by removing the last column.
Put

h�b(x) = det(xIn−1 − (Z ′)tZ ′).

Then we claim that the singular values of Y�b are square roots of zeros of h�b(x).
Indeed, let W ∈ SO(n) be a matrix such that the right most column of WZ is
(0, 0, . . . , 0, 1)t. Then WZ = diag(Z ′

0, 1) for some (n − 1) × (n − 1) matrix Z ′
0.

Hence the eigenvalues of ZtZ are the eigenvalues of (Z ′)tZ ′ = (Z ′
0)

tZ ′
0 plus 1.

Since the eigenvalues of ZtZ are the same as those of (Z�b)
tZ�b and they are the

singular values of Y�b plus 1 (see Remark 4.6), the claim follows.

Proposition 4.13. We have

(4.3) h�b(x) =
∑

1≤i≤n

a2i b
2
i

|β|2
∏

1≤j≤n, j �=i

(x− a2j).

For any 1 ≤ i ≤ n, a2i is a root of h�b(x) if and only if bi = 0.

Proof. Put

γ3 = (anb1, . . . , anbn−1),

γ4 =
1

|β|
(
(a21 − a2nbn)b1, . . . , (a

2
n−1 − a2nbn)bn−1

)
.

By a direct calculation we see that

(Z ′)tZ ′ = diag(a21, . . . , a
2
n−1) + γt

3γ3 − γt
4γ4.

From this we calculate that

h�b(a
2
i ) =

a2i b
2
i

|β|2
∏

1≤j≤n, j �=i

(a2i − a2j )
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for 1 ≤ i ≤ n− 1. Since h�b(x) is a monic polynomial of degree n− 1, we get

h�b(x) =
∑

1≤i≤n

a2i b
2
i

|β|2
∏

1≤j≤n, j �=i

(x− a2j). �

Corollary 4.14. The polynomial h�b(x) has n − 1 positive roots, which lie in the
intervals

[a2n, a
2
n−1], . . . , [a

2
2, a

2
1],

respectively.

Proof. First assume that none of bi is zero. Then by Proposition 4.13, h�b(a
2
i )

and h�b(a
2
i+1) have different signs. Thus, h�b(x) has a zero in (a2i+1, a

2
i ) for each

1 ≤ i ≤ n− 1. Hence, the n− 1 zeros of h�b(x) lie in the intervals

(a2n, a
2
n−1), . . . , (a

2
2, a

2
1),

respectively. Therefore, h�b(x) has no double zeros.
In general, among {b1, . . . , bn} let bi1 , . . . , bil with 1 ≤ i1 < · · · < il ≤ n be all

non-zero members. Write I = {i1, . . . , il} and J = {1, . . . , n} − {i1, . . . , il}. By
Proposition 4.13,

h�b(x) =
( ∑
1≤j≤l

a2ijb
2
ij

|β|2
∏

1≤k≤l, k �=j

(x− a2ik)
)∏

i∈J

(x− a2i ).

Thus, a2i (i ∈ J) are zeros of h�b(x). By a similar argument as above, one shows
that other l − 1 zeros of h�b(x) lie in the intervals

(a2il , a
2
il−1

), . . . , (a2i2 , a
2
i1),

respectively. This shows that: h�b(x) has n − 1 positive roots, which lie in the
intervals

[a2n, a
2
n−1], . . . , [a

2
2, a

2
1],

respectively. �

By Corollary 4.14, h�b(x) has at most double zero, and the only possible double

zeros are a22, . . . , a
2
n−1; for each 2 ≤ i ≤ n− 2, a2i and a2i+1 cannot be both double

zeros. By (4.3), in order that a2i for 2 ≤ i ≤ n − 1 is a double zero of h�b(x) it is
necessary and sufficient that bi = 0 and∑

1≤k≤n, k �=i

a2kb
2
k

|β|2
∏

1≤j≤n, j �=i,k

(a2i − a2j) = 0.

Let x1 ≥ · · · ≥ xn−1 ≥ 0 be square roots of zeros of h�b(x). By Corollary 4.14,
ai+1 ≤ xi ≤ ai for each 1 ≤ i ≤ n− 2, and |an| ≤ xn−1 ≤ an−1. Write

�x = (x1, . . . , xn−1).

Corollary 4.15. The map �b 	→ �x give a bijection from B to

[a2, a1]× · · · × [an−1, an−2]× [|an|, an−1].

Proof. For �b = (b1, . . . , bn) ∈ B and �b′ = (b′1, . . . , b
′
n) ∈ B, suppose h�b(x) and h�b′(x)

have the same zeros. Then, h�b = h�b′ . Thus, h�b(a
2
i ) = h�b′(a

2
i ) for each 1 ≤ i ≤ n.

By Proposition 4.13, this implies that bi = b′i for each i. Thus, �b = �b′. This shows
the injectivity.
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The singular values x1, . . . , xn−1 give a polynomial

p(x) =
∏

1≤i≤n−1

(x− x2
i ).

Since (−1)i−1f(a2i ) ≥ 0, we can write

p(x) =
∑

1≤i≤n

ci
∏

1≤j≤n, j �=i

(x− a2j ),

for some ci ≥ 0 with
∑n

i=1 ci = 1. Hence there exists a unique tuple �b ∈ B such
that h�b(x) = p(x). This shows the surjectivity. �

Proposition 4.16. The image of the moment map q(Of ) consists of all depth one
coadjoint orbits of P with the sign of the Pfaffian equal to the sign of an, and with
singular values (x1, . . . , xn−1) such that

a1 ≥ x1 ≥ a2 ≥ x2 ≥ · · · ≥ an−1 ≥ xn−1 ≥ |an|.
Moreover, q maps different P -orbits in Of to different P -orbits in p∗.

Proof. By the form of q(n̄�b · f) in Lemma 4.10, we have β �= 0. Thus, the P -orbit
containing q(n̄�b ·f) has depth one. By Lemma 4.12, the Pfaffian of Z�b has the same
sign as the sign of an. The other statements follow from Corollary 4.15. �

Lemma 4.17. For any compact set Ω ⊂ p∗ − l∗, q−1(Ω) is compact.

Proof. Write a general element in q−1(Ω) as

f ′ = an′mn̄�b · f,

where a ∈ A, n′ ∈ N , m ∈ M , and �b ∈ B. Recall that f ∈ g∗ is the elliptic element
which was fixed at the beginning of §4.2. Then

q(f ′) = an′m · q(n̄�b · f) ∈ Ω.

Note that M and B are compact. Hence, m and �b are bounded. Write

m · q(n̄�b · f) = η1 + φn(ξ1),

where m−1 ·ξ1 is given by the vector β as in Lemma 4.10 and φn : n
∗ → p∗ is defined

by the extension by zero on l. Then

1

2
|an| ≤ |an||�b| ≤ |ξ1| = |β| ≤ |a1||�b| ≤ |a1|,

where we used 1
2 ≤ |�b| = 1 − bn ≤ 1. Write an′m · q(n̄�b · f) = η + φn(ξ), where

η ∈ l∗ and ξ ∈ n∗. By the compactness of Ω ⊂ p∗ − l∗, |η| is bounded from above,
and |ξ| is bounded from both above and below. We have

an′ · (η1 + φn(ξ1)) = η + φn(ξ).

Write n′ = exp(X) and ξ1 = pr(Y ), where X ∈ n and Y ∈ n̄. Then,

an′ · (η1 + φn(ξ1)) = η1 + pr([X,Y ]) + e−λ0 log aφn(ξ1).

Thus, η = η1 + pr([X,Y ]) and ξ = e−λ0 log aξ1. Now, |ξ1|, |Y |, |ξ| are bounded
both from above and below, and |η|, |η1| are bounded from above. Thus, log a is
bounded both from above and below, and |X| is bounded from above. This shows
the compactness of q−1(Ω). �
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Proposition 4.18. The moment map q : Of = G · f → p∗ has image in the set of
depth one elements. For any g ∈ G, the reduced space q−1(q(g · f))/ StabP (q(g · f))
is a singleton. The moment map q is weakly proper, but not proper.

Proof. The first and the second statements follow from Proposition 4.16. By Lemma
4.17, we see that q is weakly proper. Since the closure of every depth one orbit
contains a depth zero orbit, q(Of ) is not closed in p∗. Hence q : Of → p∗ is not
proper. �

5. Verification of Duflo’s conjecture for G = Spin(N, 1)

The orbit method is based on the concept that unitary representations of Lie
groups could be attached to coadjoint orbit, and that algebraic properties of rep-
resentations could be reflected by geometric properties of coadjoint orbits. Duflo’s
conjecture (Conjecture 1.1) gives a connection between branching laws of unitary
representations and geometry of moment map of coadjoint orbits. In this section
we verify Conjecture 1.1 in our setting.

5.1. Discrete series representations. We recall how to associate coadjoint or-
bits to discrete series representations.

Suppose that G = Spin(2n, 1). Put

H ′ =

(
0 1
−1 0

)
.

Let

γ =
(
a1 + n− 1

2
, a2 + n− 3

2
, . . . , an +

1

2

)
∈ Λ0

be a regular integral weight so that a1, . . . , an are all integers or all half-integers and
a1 ≥ · · · ≥ an ≥ 0. Let π+(γ) (resp. π−(γ)) be a discrete series representation of G
with infinitesimal character γ and the lowest K-type VK,λ+ (resp. VK,λ−), where

λ+ = (a1 + 1, · · · , an + 1) and λ− = (a1 + 1, · · · , an−1 + 1,−(an + 1)).

In view of Remark 2.1, the orbit O associated to π+(γ) is G · ι(t−γ), where

t−γ = − diag
((

a1 + n− 1

2

)
H ′,

(
a2 + n− 3

2

)
H ′, . . . ,

(
an +

1

2

)
H ′, 0

)
.

Putting

�a′ = (a′1, . . . , a
′
n) =

(
a1 + n− 1

2
, a2 + n− 3

2
, . . . , (−1)n

(
an +

1

2

))
,

t−γ is G-conjugate to t�a′ . Hence O = G · ι(t�a′). Similarly, the orbit associated to
π−(γ) is the coadjoint G-orbit through

ι
(
diag

((
a1 + n− 1

2

)
H ′,

(
a2 + n− 3

2

)
H ′, . . . , (−1)n−1

(
an +

1

2

)
H ′, 0

))
.

For P -representations, let VM ′,μ be an irreducible representation of M ′ with

highest weight μ = (b1, . . . , bn−1). Let IP,VM′,μ = IndPM ′N (VM ′,μ ⊗ eiξ0) be the

unitarily induced representation of P . Then the corresponding orbit is P ·pr(ZY,β)
in the notation of §4.1 such that the singular values of Y are

(x1, . . . , xn−1) = (b1 + n− 2, b2 + n− 3, . . . , bn−2 + 1, |bn−1|)
and the sign of the Pfaffian of ZY,β equals the sign of (−1)n−1bn−1.
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Theorem 5.1. Let P be a minimal parabolic subgroup P of G = Spin(2n, 1). Let
π be a discrete series representation of G, which is associated to a regular elliptic
coadjoint orbit O ⊂ g∗. Write q : O → p∗ for the moment map.

(1) The restriction of π̄ to P decomposes into a finite direct sum of irreducible
unitarily induced representations of P from M ′N , and this decomposition
is multiplicity-free.

(2) Let τ be an irreducible unitarily induced representation of P which is as-
sociated to a coadjoint orbit O′ ⊂ p∗. Assume that Z(G), the center of G,
acts by the same scalar on π and on τ . Then for τ to appear in π|P it is
necessary and sufficient that O′ ⊂ q(O).

(3) The moment map q : O → p∗ is weakly proper, but not proper.
(4) For every coadjoint P -orbit O′ ⊂ p∗, the reduced space q−1(O′)/P is a

singleton.

Proof. (1) follows from Theorem 3.22 for discrete series. (3) and (4) follow from
Proposition 4.18. It remains to show (2), that is, to compare the restriction of dis-
crete series representations and the image of moment map of corresponding coad-
joint orbits.

For a1 ≥ a2 ≥ · · · ≥ an ≥ − 1
2 ,

γ =
(
a1 + n− 1

2
, a2 + n− 3

2
, . . . , an +

1

2

)
∈ Λ0 ∪ Λn,

the restriction of the (limit of) discrete series π+(γ) is given by Theorem 3.22:

π̄+(γ)|P =
⊕
μ

IP,VM′,μ ,

where μ = (b1, . . . , bn−1) runs over tuples such that

(5.1) a1 + 1 ≥ b1 ≥ a2 ≥ · · · ≥ bn−2 ≥ an−1 + 1 ≥ −bn−1 ≥ an + 1

and bi − a1 ∈ Z. On the other hand, the moment map image of the corresponding
orbit O was studied in §4.3. Let O′ be a coadjoint P -orbit which corresponds to
a unitary representation τ = IP,VM′,μ with μ = (b1, . . . , bn−1). Then the singular

values for the P -orbit O′ are

(x1, . . . , xn−1) = (b1 + n− 1, . . . , bn−2 + 1, |bn−1|)
and the sign of the Pfaffian equals sgn(−1)n−1bn−1. Assume that the center Z(G)
acts on π and τ by the same scalar, which is equivalent to bi − ai ∈ Z. Then by
Proposition 4.16, O′ ⊂ q(O) if and only if

a1 + n− 1

2
≥ x1 ≥ a2 + n− 3

2
≥ x2 ≥ · · · ≥ an−1 +

3

2
≥ xn−1 ≥ an +

1

2

and the sign of Pfaffian equals (−1)n. Under our assumption b1 − ai ∈ Z, this is
equivalent to (5.1). Therefore, Statement (2) for π = π+(γ) is proved. The case of
π = π−(γ) is similar. �

Appendix A. Obtaining π̄|MN from π̄|K
By the Cartan decomposition g = k⊕p and the decomposition g = m⊕a⊕n⊕ n̄,

we have k = m ⊕ {X + θ(X) : X ∈ n}. By this, we can view m + n as the
limit limt→+∞ Ad(exp(tH0))(k). On the group level, we can view MN as the limit
limt→+∞ exp(tH0)K exp(−tH0). From this viewpoint, we may expect that π̄|MN
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is determined by π̄|K for any unitarizable irreducible representation π of G. Here
we observe the relationship between two restrictions. The writing of this section is
motivated by a question of Professor David Vogan.

As in §2, write IP,τ = IndPM ′N (τ ⊗ eiξ0) for a unitarily induced representation
of P where τ is a finite-dimensional unitary representation of M ′. Then, IP,τ is
irreducible when τ is so. For any finite-dimensional unitary representation τ of
M ′ and any 0 �= t ∈ R, write It,τ = IndMN

M ′N (τ ⊗ eitξ0) for a unitarily induced
representation of MN . Then, It,τ is irreducible when τ is so.

Using Mackey’s theory for unitarily induced representations and considering the
action of MN on P/M ′N , Lemma A.1 follows easily.

Lemma A.1. We have

IP,τ |MN
∼=
∫ ⊕

t>0

It,τ dt.

Corollary A.2. Let π be an infinite-dimensional irreducible unitarizable represen-
tation of G = Spin(m+ 1, 1). Then π̄|P and π̄|MN determine each other.

Proof. We have shown that π̄|P is a finite direct sum of IP,τ . Then, the conclusion
follows as the spectra of IP,τ |MN , IP,τ ′ |MN are disjoint whenever τ �∼= τ ′. �

In §3.1, we constructed a homomorphism

Ψ: K(G) → K(M ′).

Write K̂ for the set of isomorphism classes of finite-dimensional irreducible rep-

resentations of K and write Z
̂K for the abelian group of functions K̂ → Z with

addition given by point-wise addition. Taking the multiplicities of irreducible rep-
resentations of K appearing in π|K (π ∈ C(G)), we obtain a homomorphism

m : K(G) → Z
̂K .

Write Z(K) for the quotient group of Z
̂K by the subgroup of functions f : K̂ → Z

such that �{[σ] ∈ K̂ : f([σ]) �= 0} is finite. Let

p : Z
̂K → Z(K)

be the quotient map.
As in §2, put n = �m+2

2 � and n′ = �m+1
2 �. Then,

n =

{
n′ if m is odd;

n′ + 1 if m is even.

The ranks of K = Spin(m+ 1), M = Spin(m), M ′ = Spin(m− 1) are equal to n′,

n − 1, n′ − 1, respectively. For a highest weight �b = (b1, . . . , bn′−1) of M ′, write

VM ′,�b for an irreducible representation of M ′ with highest weight �b. Then, [VM ′,�b]

is a basis of K(M ′). Let

φ : K(M ′) → Z(K)

be defined by

φ([VM ′,�b]) =
∑
k≥0

[VK,(k+b1,b1,...,bn′−2,(−1)mbn′−1)
].

Proposition A.3. We have φ ◦Ψ = p ◦m.
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Proof. When m is even, K(G) is generated by induced representations I(σ, ν)
and finite-dimensional representations. Then, the conclusion follows from Propo-
sition 3.7 and branching laws for the pair M ⊂ K (giving K types of induced
representations).

When m is odd, K(G) is generated by induced representations I(σ, ν), (limits
of) discrete series and finite-dimensional representations. Then, the conclusion
follows from Proposition 3.7, branching laws for the pair M ⊂ K, Theorem 3.22
and Blattner’s formula (giving K types of discrete series and limits of discrete
series). �
Corollary A.4. For any π ∈ C(G), Ψ(π) is determined by πK |K .

Proof. Note that Ψ(π) is a finite direct sum of finite-dimensional irreducible unitary
representations of M ′. Then, the conclusion follows from Proposition A.3 directly.

�
Corollary A.5. Let π be a unitarizable irreducible representation of G. Then
π̄|MN is determined by π̄|K .

Proof. When π is a unitarizable irreducible representation, π̄|K and πK |K deter-
mine each other. By Corollary A.4, Ψ(π) is determined by πK |K . By Lemma 3.6,
π̄|P and Ψ(π) determine each other. By Corollary A.2, π̄|P and π̄|MN determine
each other. Then, the conclusion of the corollary follows. �

Appendix B. A case of Bessel model and relation with the local

GGP conjecture

Results in this paper determine branching laws arising in a special case of
the Bessel model in the local Gan-Gross-Prasad conjecture ([16, Conjecture 17.1],
[17, Conjecture 6.1]). Precisely to say, as in [16, §2], take a vector space V over
R with a non-degenerate symmetric bilinear form of signature (m + 1, 1). Let W
be a codimension 3 non-degenerate subspace of V such that its orthogonal comple-
ment W⊥ contains an isotropic subspace of dimension 1. Then, we can determine
branching laws in the Bessel model of the local GGP conjecture associated to the
pair (V,W ). Note that Bessel models were studied by Gomez-Wallach in more
general setting [18].

Take G3 = SO(m+ 1, 1) and let P3 = M3AN be a standard minimal parabolic
subgroup. Put H3 = M ′

3 � N . Define categories C(G3), C(P3), C(M3) similarly
as that for C(G), C(P ), C(M) in §2. For any π ∈ C(P3), as in §2, define Ψ(π) =
π/mξ0 · π. Then Ψ(π) ∈ C(M ′

3) and Ψ defines a functor C(P3) → C(M ′
3). Then, for

any π ∈ C(G3) we have

Ψ(π) ∼=
⊕
τ∈̂M ′

3

nτ (π)τ,

where nτ (π) = dimHomH3
(π, τ ⊗ eiξ0). By an analogue of Proposition 3.7 for the

pair P3 ⊂ G3 and Casselman’s subrepresentation theorem, it follows that: when
π ∈ C(G3) is irreducible, nτ (π) = 0 or 1 (the multiplicity one theorem) and there are

only finitely many τ ∈ M̂ ′
3 such that nτ (π) = 1. Moreover, Ψ(π) are all calculated

with the Langlands parameter of π by results in this paper. Hence, we know
nτ (π) = 1 for exactly which pairs (π, τ ). We shall remark that local root numbers
are used for predicting branching laws in the local Gan-Gross-Prasad conjecture.
However, we stick to Langlands parameters for the description of branching laws.
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