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FINITE CENTRAL EXTENSIONS OF TYPE I

ALEXANDRU CHIRVASITU

Abstract. Let G be a Lie group with solvable connected component and
finitely-generated component group and α ∈ H2(G, S1) a cohomology class.

We prove that if (G, α) is of type I then the same holds for the finite central
extensions of G. In particular, finite central extensions of type-I connected
solvable Lie groups are again of type I. This is in contrast to the general case,
whereby the type-I property does not survive under finite central extensions.

We also show that ad-algebraic hulls of connected solvable Lie groups op-
erate on these even when the latter are not simply connected, and give a
group-theoretic characterization of the intersection of all Euclidean subgroups
of a connected, simply-connected solvable group G containing a given central
subgroup of G.
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Introduction

The proximal motivator for the present paper is the observation, evidenced by
[4, Example 20], that finite central extensions of type-I groups need not, in general,
be type-I. By way of unwinding this remark, recall [7, §IV.1] that an extension of
a group G by another, F, is an exact sequence

(0-1) {1} → F → E → G → {1}
(not infrequently, authors refer to this as an extension of F by G instead: [27, §11.1],
[28, §9.1], etc.; here, we observe the stated convention). The extension is central if
F ≤ E is a central subgroup, and finite if F is finite.
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As for the other ingredient, a locally compact (Hausdorff, second-countable)
group G is of type I if, for every irreducible unitary representation

ρ : G → U(H) (= unitary group of the Hilbert space H)

the image ρ(C∗(G)) of the full C∗-algebra of G contains the compact operators on
H.

This is one of many characterizations, and by no means the most edifying or
inspiring: see e.g. [15, Theorem 7.6] for a convenient listing and the surrounding
text for pointers to the vast literature. Equivalent conditions require

• that various naturally-defined Borel structures on the unitary dual Ĝ (iso-
morphism classes of irreducible unitary G-representations) be countably
separated or, alternatively, standard ([25, Theorem 6.8.7] is also illumi-
nating here);

• or that the Fell topology [15, §7.2] on Ĝ satisfy the T0 separation axiom;
• or that an irreducible unitary representation be uniquely determined by
its corresponding primitive ideal in the full group C∗-algebra C∗(G) [15,
discussion following Corollary 7.2];

and so on. The concept formalizes the intuition of having a reasonable moduli space

of irreducible representations; the pleasant character of Ĝ for type-I groups allows

for a theory of integration over Ĝ, and hence to well-behaved decompositions of
arbitrary unitary representations as direct integrals of irreducible ones ([15, §7.4],
[14, §18.8], etc.).

Broad classes of groups are known to be of type I; a sample: connected Lie if
either semisimple or nilpotent, connected real algebraic, discrete virtually abelian
(i.e. having an abelian subgroup of finite index) [15, Theorem 7.8], linear algebraic
groups over characteristic-0 local fields [4, Theorem 2].

That as mild and reasonable an operation as a central extension could break
the type-I property might be somewhat surprising. It seemed natural, in light of
this, to identify some sufficient properties on the type-I group G (being centrally
extended) that will prevent this from happening.

For one thing, [4, Example 20] is discrete: it is, in fact, a finite central extension
of an infinitely-generated discrete abelian group. At the opposite extreme from this,
one might hope for positive results in working with connected Lie groups instead.
With this motivation, Theorem 3.1 (somewhat attenuated here for brevity) reads

Theorem. If a Lie group G with solvable connected component G0 and finitely-
generated connected group G/G0 is of type-I, so are its finite central extensions.

Connected solvable Lie groups are well understood from the perspective of char-
acterizing those of type I: [1] and [26, Chapter IV] for instance achieve this com-
pletely in the simply-connected case and [2] provides much illuminating discussion
and adjacent/partial results. The qualification of simple connectedness matters
however: sources tend to discuss mostly simply-connected groups, whereas

• E being a covering space of G, finite central extensions (0-1) are only truly
interesting for non-simply-connected groups;

• and it is perfectly possible for a non-simply-connected solvable Lie group
to be of type I without its universal cover being so [13].

With this in mind, it seems pertinent to revisit some of the techniques employed
in the cited work and assess how crucial simple connectedness is. The background
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is reviewed more fully in §4.1, but the crux of the matter appears to be that one
needs the algebraic hull Ad(G)alg ≤ GL(g) to operate as an automorphism group
of G.

Here, g is the Lie algebra of G, Ad is the adjoint representation of G on that Lie
algebra, and the algebraic hull is the smallest algebraic [9, §II.1, Définition 1] Lie
group containing the image of that representation.

The algebraic hull is certainly (by definition) an automorphism group of the Lie
algebra g, and that action lifts over to one on G itself when the latter is simply
connected. In Theorem 4.3 we argue that in fact simple connectedness (for solvable
G) is not, in fact, necessary:

Theorem. The algebraic hull Ad(G)alg of a connected, simply-connected solvable
Lie group fixes the center Z(G) pointwise.

In particular, the action of Ad(G)alg on G descends to one on any Lie group
covered by G.

This does dot appear to be immediate, and requires an analysis of how central
subgroups are positioned inside a connected, simply-connected solvable Lie group
G (in the spirit of [8], say). Specifically, it becomes important to understand the
families of Euclidean subgroups of G containing a given central subgroup. As an
offshoot of that line of reasoning, we introduce a kind of “saturation” procedure for
central subgroups and prove in Proposition 4.10 that it coincides with what might
be termed the Euclidean hull of a central subgroup (a bit of a misnomer: that hull
is not itself Euclidean, in general!):

Proposition. For a central subgroup A ≤ G of a connected, simply-connected
solvable Lie group the following subgroups of G coincide:

(a) the Lie purification of A in the center Z(G), i.e. the smallest Lie subgroup
A ≤ Z(G), containing A, and such that Z(G)/A is torsion-free;

(b) the intersection of all Euclidean subgroups of G containing A;
(c) the intersection of all conjugates of any one minimal-dimensional Euclidean

subgroup of G containing A.

Section 5 contains some odds and ends on the theme of type-I pathology (e.g. a
natural example of a type-I semidirect product of a non-type-I group by a compact
group, all Lie and connected: see Proposition 5.5and Example 5.6).

1. Preliminaries

Throughout, Ĝ denotes the spectrum (or unitary dual) of a locally compact group
G (as in [14, §18.3.2], say), i.e. the set of isomorphism classes of irreducible unitary
representations. We will often have to speak of type-I regularly embedded normal
subgroups N � G in the sense of [21, §3.8]:

• the Borel structure on the quotient N̂/G is countably separated;

• or G-ergodic measures on N̂ are supported on orbits;
• or any number of other equivalent formulations [16, Theorem 1], all equiv-
alent in the cases of interest.

Alternative terminology: G (or G/N) acts smoothly on N̂.
For a connected Lie group G write

• G0 for its connected component (i.e. the connected component containing
the identity);
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• G̃ for its universal cover;
• and N(G) for its nilradical : the largest connected, normal, nilpotent sub-
group [6, §III.9.7, Proposition 23].

We gather a number of well-known observations about the center of a Lie group,
which it will be convenient to bear in mind.

Remark 1.1. Let G be a connected Lie group throughout.

(a) In general, its center Z(G) is a sum

Z(G) ∼= Rd ⊕ Te ⊕ D

where Te denotes the e-dimensional torus and D is finitely-generated dis-
crete abelian (and hence in turn, of the form F ⊕ Zf for finite F). This
follows from [11, Corollary 4.2.6].

(b) When G is moreover simply-connected the torus portion is absent: Z(G)0 ∼=
Rd. This is because normal, connected (hence also closed by [10, discussion
preceding §XIII of Chapter IV]) Lie subgroups N � G of simply-connected
Lie groups are again simply-connected.

(c) That last remark follows for instance from the long exact homotopy se-
quence

(1-1) · · · → π2(G/N) → π1(N) → π1(G) → · · ·

attached to the inclusion N ≤ G [29, §17.3] and the fact that π2 vanishes for
connected Lie groups (e.g. because π1 vanishes for their based-loop spaces
[22, Theorem 21.7 and Remark 2 following it]).

(d) Still assuming G simply-connected, the connected component Z(G)0 is pre-
cisely the intersection Z(G) ∩ N(G) with the nilradical. One inclusion is
obvious, while the connectedness of Z(G) ∩ N(G) follows from a familiar
argument (e.g. as in the proofs of [6, §III.9.5, Propositions 15 and 16]):

Any group Γ of automorphisms of N := N(G) operates on the Lie algebra
n := Lie(N). Since the exponential map

(1-2) exp : n → N

is an analytic isomorphism [6, §III.9.5, Proposition 13], a non-trivial ele-
ment is fixed by Γ if and only if the unique one-parameter subgroup of
N containing it is. In conclusion, the fixed-point set of Γ in N is a con-
nected closed subgroup of the latter. Applying this to the group of inner
automorphisms induced by G, we obtain

Z(G)0 = Z(G) ∩ N.

All in all, for a connected, simply-connected Lie group we have a decom-
position

(1-3) Z(G) = Z(G)0 ⊕ Dnil′ , Z(G)0 = Z(G) ∩N(G) ∼= Rd, Dnil′ discrete.

While the connected component of the center Z(G) is of course canonical,
the complementary summand Dnil′ is not, in general: one can always deform
generators thereof by adding elements of Z(G)0.

(e) If G is simply-connected and solvable the discrete piece Dnil′ in (1-3) is free
abelian (i.e. torsion-free) [8, Theorem 1].
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Because at this point it seems pertinent as a follow-up remark, note that the
“unique one-parameter group” mentioned in Remark 1.1 ((d)) can be made sense
of somewhat more broadly.

Lemma 1.2. Let G be a connected, simply-connected solvable Lie group and N :=
N(G) its nilradical.

An element of N lies on a unique one-parameter subgroup of G.

Proof. The isomorphism (1-2) ensures that it lies on a unique such subgroup of N,
but the claim is that no one-parameter group of G not contained in N can intersect
the latter non-trivially.

A different way of saying this is that one-parameter subgroups of G/N cannot be
circles. Indeed: the quotient of a connected, simply-connected group by a connected
closed subgroup is again (connected and) simply-connected (e.g. by (1-1)), so this
holds for G/N.

Being connected, simply-connected and solvable, the Lie group G/N is [8, Theo-
rem 1] homeomorphic to some Euclidean space, so that its unique maximal subgroup
must be trivial (by [23, §4.13, first stated Theorem], for instance). In particular, it
contains no circles. �

Solvability cannot be dropped in Lemma 1.2:

Example 1.3. Consider a connected, simply-connected, semisimple Lie group K

(e.g. a special unitary group SU(n)) acting on a real vector space Rd so that some
circle S1 ≤ K fixes a vector v ∈ Rd.

In the simply-connected group G := Rd�K the one-parameter groups generated
by v ∈ Lie(Rd) ∼= Rd and by v+w for a generator w of the Lie algebra of the circle
in question both contain v ∈ Rd ≤ N(G).

On the other hand, even when G is (as in the statement) solvable, Lemma 1.2
does not apply to elements outside the nilradical: see Remark 4.5.

2. Discrete/abelian groups

Since we are concerned with the survival of the type-I property under finite
central extensions, it will be convenient to have some shorthand language for the
notions involved.

Definition 2.1. Let G be a locally compact, second countable group.

• If G is type-I is fc-robust (for ‘finite central’) or just robust if all of its
finite central extensions are of type I. We might also say that the group is
(fc-)robustly type-I.

• The same terms apply to pairs (G, α) of a group G and a cohomology class
α ([2, Chapter I, discussion preceding Proposition 5.2]): the question is
whether, given an element α of the cohomology group H2(G, S1) [24, Part
I, Chapter I], the middle term in the central extension

{1} → S1 → • → G → {1}
attached to α ([24, Part I, Introduction]) is type-I. We abbreviate this to
saying that the pair (G, α) is of type I.

The pair (G, α) is fc-robustly (or just plain robustly) type-I if for every
finite central extension E → G, regarding α as an element of H2(E, S1)
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through the restriction map

H2(G, S1) → H2(E, S1),

the pair (E, α) is of type I.

Proposition 2.2. Let

(2-1) {1} → F → E → A → {1}
be a finite central extension of discrete groups. If A is finitely-generated and of type
I then so is E.

Proof. Since A is assumed type-I it has a finite-index abelian subgroup by Thoma’s
theorem (see e.g. [30, Satz 6], [31, Theorem 1] or [3, Theorem E]). Passing to a
cofinite subgroup does not affect the type-I property, so we may as well assume
that A is abelian to begin with.

We now have a central extension of an abelian group, whence the commutator
map

E2 � (x, y) 	−→ [x, y] := xyx−1y−1 ∈ F

descends to a (skew-symmetric) bilinear map ω : A2 → F.
The map

ω(a,−) : A → F

annihilates a cofinite subgroup kerω(a) of A, and the (finite!) intersection

A0 :=
⋂

generators a

kerω(a) ≤ A

will then be a finite-index subgroup of A in the kernel of ω, in the sense that

ω(A0,−) ≡ 0 ≡ ω(−,A0).

It follows that the central extension (2-1) can be rearranged as

{1} → F× A0 → E → A/A0 → {1},
which is of course virtually abelian. �
Remark 2.3. [4, Example 20] shows that the finite generation assumption in
Proposition 2.2 cannot, in general, be dropped: the central extension discussed
there is of the form

{1} → Z/p → E → V × V → {1}
for a prime p, where V is a direct sum of countably infinitely many copies of Z/p.
It is obtained by summing infinitely many copies of the order-p3 Heisenberg group
and identifying the centers to a single copy of Z/p.

More generally, some such pathological extension

{1} → F → E → A → {1}
exists whenever there is a skew-symmetric bilinear map ω : A2 → F whose kernel

{a ∈ A | ω(a,−) ≡ 0 ≡ ω(−, a)}
has infinite index in A.

We revisit Proposition 2.2, this time assuming abelianness but dropping discrete-
ness. We also twist by a cocycle, as in Definition 2.1.

Theorem 2.4. Let A be a locally compact, abelian, compactly generated group and
α ∈ H2(A, S1). The pair (A, α) is robustly type-I in the sense of Definition 2.1.
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We fix a finite central extension Proposition 2.2 throughout, and begin with
some simplifying assumptions.

Lemma 2.5. Let E be a locally compact group fitting into a finite central extension
(2-1) with A abelian and compactly generated.

Modulo replacing E with a finite-index subgroup, we can assume it splits as

(2-2) E ∼= Rd × Ze ×KE

with compact abelian KE for a finite extension

(2-3) {1} → F → KE → K → {1}.

Proof. The standard structure result on compactly-generated locally compact
abelian groups (e.g. [4, Theorem 4.2.2]) says that we have a decomposition

A ∼= Rd × Ze ×K

for compact abelian K. This will be the K in the statement, perhaps after passing
to a cofinite subgroup. We effect the splitting (2-2) gradually.

(1) Splitting off the Euclidean factor. Note first that finite central exten-
sions

{1} → F → • → Rd → {1}
of Euclidean groups always split: this is because, Rd being connected,
the commutator induced bilinear form Rd × Rd → F (as in the proof of
Proposition 2.2) is trivial. It follows then that • is abelian, whence the
applicability of the usual structure theorems for locally compact abelian
groups [11, Theorem 4.2.2]. It already follows from this that E fits into an
extension

{1} → Rd × F → E → Ze ×K → {1},
so the quotient E → Rd splits and we have a semidirect-product decompo-
sition

E ∼= E′ �Rd

for

(2-4) {1} → F → E′ → Ze ×K → {1}.
Because Rd

• operates trivially on F;
• and on Ze ×K;
• and is connected,

it must operate trivially period. In short: E ∼= E′ × Rd.
(2) Splitting off a free abelian factor. Next, note that |F|Ze is contained

in the kernel of the commutator bilinear form

(Ze ×K)2 → F

induced by (2-4). Upon shrinking E′ (and E) to a cofinite subgroup we can
assume Ze itself is in that kernel. The subgroup

{1} → F → • → Ze → {1}
of E′ is then abelian finitely generated, and hence the extension in question
splits: • ∼= F× Ze. In any case, the surjection E′ → Ze also splits, so that
E′ ∼= KE � Ze with (2-3). Moreover, Ze-action on KE is compatible with
that extension: it centralizes F and also centralizes the quotient K.
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But then |F|Ze acts trivially on KE, hence the decomposition (2-2) after,
perhaps, shrinking to an even smaller (but still cofinite) subgroup.

(3) KE can be assumed abelian. So far we only have a finite central exten-
sion (2-3) with compact abelian K. As usual, that extension gives rise to a
bilinear form

(2-5) K2 → F

or equivalently, to a morphism

K → Hom(K,F).

Since the codomain is discrete and the domain compact, that morphism is
trivial on a cofinite subgroup K′ ≤ K. But then, restricting the commutator
bilinear form (2-5) vanishes when restricted to K′ × K′, so the cofinite
subgroup

{1} → F → • → K′ → {1}
of KE is abelian.

This finishes the proof. �
A general piece of notation, before moving on to the proof of Theorem 2.4: for

a cohomology class α ∈ H2(G,A) we write Gα for the middle term of the resulting
extension

(2-6) {1} → A → Gα → G → {1}.

Proof of Theorem 2.4. Lemma 2.5 allows us to assume that we have a decompo-
sition (2-2) for a compact abelian group KE fitting into the extension (2-3), so
that

A ∼= Rd × Ze ×K.

We are assuming that the central extension

{1} → S1 → Aα → A → {1}
attached to α ∈ H2(A, S1) is of type I, and seek to prove the same of Eα in

{1} → S1 → Eα → E → {1}.
In both Aα and Eα we can isolate the lattice Ee as a quotient, as in

{1} → N → Aα → Ze → {1}
{1} → NE → Eα → Ze → {1}

for central extensions

{1} → S1 → N → Rd ×K → {1}
{1} → S1 → NE → Rd ×KE → {1}.

Next, observe that N and NE are of type I regardless of any other considerations:
they both contain

• connected nilpotent (hence type-I [12, Théorème 3]) normal subgroups N

and NE;
• with compact quotients K and KE respectively, hence the conclusion by
[17, Corollary 4.5] (for instance).
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Because Aα and Eα contain the type-I normal subgroups N and NE respectively
with abelian discrete quotients Ze, [2, Chapter II, Corollary to Theorem 9 and
Chapter I, Proposition 10.4] imply that in both cases being type-I amounts to the
following two conditions.

• N or NE are regularly embedded in Aα and Eα respectively;
• and (leaving the entirely analogous statement for NE to the reader) for

every x ∈ N̂, if
Aα,x ≤ Aα, Ze

x ≤ Ze

denote the isotropy groups of x and

αx ∈ H2(Aα,x/N, S
1) ∼= H2(Ze

x, S
1)

is the Mackey obstruction class attached to x [2, Chapter I, Proposition
10.3], the pair (Ze

x, αx) is of type I.

I now claim that the spectrum N̂E decomposes (non-canonically) as a disjoint
union

(2-7) N̂E
∼=

∐
̂F

N̂

of copies of the spectrum of N so as to preserve all of the relevant structure: the
Ze-action as well as the resulting Mackey obstructions. Clearly, given the preceding
discussion, such a decomposition would entail the conclusion. It thus remains to
explain how (2-7) comes about; the rest of the proof is devoted to precisely this
task.

As a first step, we do have a decomposition

N̂E =
∐
χ∈̂F

N̂Eχ,

with N̂E,χ denoting those irreducible NE-representations wherein F acts via the

character χ (it must act by scalars, being central). For each χ ∈ F̂ choose (non-

canonically) an extension χ ∈ K̂E, as the surjection

K̂E � F̂

of discrete abelian groups makes possible. Regard χ as a character on all of NE by
composing with the surjection NE → KE.

Finally, tensoring with the 1-dimensional representation χ−1 now induces the
desired identification

N̂E,χ
∼= N̂.

The equivariance of this identification under the Ze-action follows from the fact
that we are twisting with characters χ : NE → S1 trivial on the central circle, and
the fact that the Mackey obstructions are preserved follows by direct examination
of the construction (e.g. in [2, Chapter I, proof of Proposition 10.3]). �

3. Solvable Lie groups

The main result is

Theorem 3.1. Let G be a Lie group with

• solvable connected component G0;
• and finitely-generated component group G/G0
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and α ∈ H2(G, S1) a cohomology class. If (G, α) is type-I then it is robustly so.

The crushing majority of the requisite hard work is contained in [26]; we will
recall just enough of that background to (one hopes) make sense of the proof.

Let H be a connected, simply-connected solvable Lie group (so denoted in or-
der to distinguish it from the generic, possibly non-simply-connected G, and its

more laboriously-named universal cover G̃). [26, Chapter IV] describes a bijection
between the space of primitive ideals of the full C∗-algebra C∗(H) and a space of
what [26, §4.9] refers to as generalized orbits. These are certain torus bundles over
subsets of the dual

h∗ := Hom(h,R), h := the Lie algebra Lie(H).

A very brief overview follows, which serves the dual purpose of fixing some notation.
The reader is encouraged to also consult [26, §4.2] for a very illuminating summary.

• Let f ∈ h∗ be a linear functional defined on the Lie algebra h := Lie(H)
and Hf its isotropy group with respect to the coadjoint action: the dual of
the adjoint action of H on h by conjugation.

• The commutator subgroup H′ = [H,H] is closed, nilpotent, connected and
simply-connected (as follows, say, from [8, §II, ending remark]) with Lie
algebra h′ = [h, h].

• The restriction of f to the Lie algebra

hf := Lie(Hf ) = Lie(Hf,0)

of the identity component Hf,0 ≤ Hf vanishes on the derived subalgebra
h′f (by invariance under the coadjoint action), so is a Lie algebra morphism
hf → R. Because Hf,0 is connected and simply-connected, f integrates to
a unique Lie group morphism (i.e. character)

χf : Hf,0 → S1

by [6, §III.6.1, Theorem 1].
• It is observed in [26, §4.2, III] that the intersection H′ ∩ Gf is connected
and hence coincides with H′ ∩Hf,0. It follows, then, that for x, y ∈ Hf the
commutator

[x, y] := xyx−1y−1 belongs to Hf,0.

• Coadjoint-invariance then also ensures that

(3-1) Hf ×Hf � (x, y)
ωf	−−−−−→ χf ([x, y]) ∈ S1

is a skew-symmetric bilinear form (the right-hand side makes sense by the
previous point).

• One can then define Hf as the kernel of that form:

(3-2) Hf := kerω := {x ∈ Hf | ω(x,−) ≡ 1 ≡ ω(−, x)}.

• The character χf : Hf,0 → S1 always extends to Hf , and the set of exten-
sions is a torsor (i.e. free transitive space) over the torus

(3-3) Tf := ̂Hf/Hf,0

(torus because, as explained in [26, §4.2, III] again, the larger groupHf/Hf,0

is finitely-generated free abelian).
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Now, the coadjoint action of H on h∗ might not be smooth (i.e. [16, Theorem
1]: the quotient space might not be T0, or some coadjoint orbits might fail to
be locally closed). [26, §4.8] nevertheless introduces a smooth relation ‘∼’ on h∗,
coarsening that induced by the coadjoint action (i.e. so that ∼-classes are unions
of coadjoint H-orbits), and minimal with this property. Its classes are referred to
there as regularized or R-orbits ; each is a union of coadjoint orbits, all dense in it.

Fix an R-orbit O ⊂ h∗. It can be shown that the set

L(O) := {(f, χ) | f ∈ O, χ : Hf → S1 restricting to χf on Hf,0}

is a fibration over O, with fiber (3-3) (in particular, the dimension of that torus
depends only on O, not on f ∈ O). H has a natural action on L(O), the closures of
its orbits are classes of an equivalence relation, and it is these closures that [26, §4.9]
refers to as generalized orbits.

The gist of [26, Chapter IV] is then to describe a bijection

(3-4) (generalized orbits) ←→ (primitive ideals of C∗(H)).

We are here interested in possibly non-simply-connected groups, which would
be of the form H/D for discrete central D ≤ H. The central group D is of course
contained in Hf and in fact Hf for any f ∈ h∗ whatsoever, so it makes sense to

restrict characters of Hf/Hf,0 to the image of D therein. Running through the brief
description of (3-4) given in [26, §4.9], it is not difficult to check the following slight
amplification thereof (needed below):

Fact 3.2. Let H be a connected, simply-connected solvable group and D ≤ H a
discrete central subgroup.

The bijection (3-4) restricts to an identification between the primitive-ideal space
of C∗(H/D) and those generalized orbits consisting of elements (f, χ) ∈ L(O) for

χ : Hf → S1, χ|D ≡ 1.

In particular, the R-orbitsO featuring in this bijection are precisely those containing
f for which χf annihilates D ∩Hf,0.

Proof. Most of this was sketched in the discussion preceding the statement. The
only point perhaps worth elaborating is the last claim. Specifically, it should be
clear upon perusal of the cited material of [26, Chapter IV] why only the R-orbits
O in the statement correspond to primitive ideals of C∗(H/D); the claim, however,
is that all such R-orbits appear.

Formally, the claim is that if f ∈ h∗ is such that χf annihilates D ∩ Hf,0, then

it can be extended to a character χ : Hf → S1 annihilating all of D. To verify this,
consider the extensions

(3-5) {1}

Hf,0

S1

Hf

•

A {1}χf

where

A := Hf/Hf,0 is finitely-generated free abelian.
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The definition of Hf as the kernel of the bilinear form (3-1) implies that the group
• is in fact abelian, and hence the bottom extension splits (non-canonically) as

• ∼= S1 ⊕ A.

Now simply extend the identity character on S1 to a character of all of • by sup-
plementing it with a character of A annihilating the image of

D ≤ Hf → Hf/Hf,0 = A.

The resulting character on • will then pull back along the longer vertical map in
(3-5) to one on Hf that

• coincides with the original χf on Hf,0;
• and annihilates all of D.

This was precisely the claim to be proven, so we are done. �
The following piece of terminology will make it slightly less awkward to speak

about the coadjoint orbits or R-orbits attached to a possibly non-simply-connected
H/D.

Definition 3.3. Let H be a connected, simply-connected, solvable Lie group with
Lie algebra h := Lie(H) and D ⊂ H a discrete central subgroup.

• An element f ∈ h∗ is relevant or pertinent to H/D if it belongs to an R-
orbit featuring in the primitive-ideal-generalized orbit bijection of Fact 3.2
for C∗(H/D).

• The same terms apply to coadjoint or R-orbits themselves: they are relevant
or pertinent to H/D if they contain elements with this property.

• For (H/D)-pertinent/relevant (R- or coadjoint) orbits we might also simply
say that these are orbits of H/D.

Proof of Theorem 3.1. We make a number of gradual simplifications.

(1) Disposing of cohomology. The cohomology class α of the statement
gives a central extension

{1} → S1 → • → G → {1},
and we have to argue that if it is of type I then any finite extension thereof
is as well. But note that the middle term • itself satisfies the hypothesis
(has solvable identity component, etc.), so we can just work with it directly
(in place of G).

For the duration of the proof, then, we can safely ignore α.
(2) Connected G. That is, we do not have to worry, here, about the discrete

portion G/G0.
The preceding remedial discussion (including Fact 3.2) applies to the

universal cover H := G̃ and a discrete central D ≤ H with G ∼= H/D. It
applies equally to a smaller, cofinite

DE ≤ D, F := D/DE finite

giving a quotient E := H/DE fitting into a finite central extension

{1} → F → E → G → {1}.
[26, §4.13, Proposition] precisely describes when the generalized orbits dis-
cussed in Fact 3.2 are (i.e. correspond to primitive ideals) of type I:
(2a) the relevant plain coadjoint orbits O ⊂ h∗ need to be locally closed;



1114 ALEXANDRU CHIRVASITU

(2b) and the quotients Hf/Hf , f ∈ O have to be finite.
Equivalently (and more conveniently for the present discussion), the bilinear
form (3-1) must have finite image. We are assuming this is the case for G,
and want to deduce the same of E.

An R-orbit relevant to E consists of f whose χf annihilates DE ∩ Hf .
Because the quotient

F := D/DE

is finite of order, say, n := |F|, the rescaled nf annihilates

D ∩Hf = D ∩Hnf (noting that Hf = Hnf ).

It thus follows that nf features in the primitive-ideal classification for G ∼=
H/D, assumed type-I, so that conditions ((2a)) and ((2b)) above apply to
it. The former, in particular, implies that the coadjoint orbit of nf is locally
closed, hence so is that of f = 1

n (nf); this disposes of the orbit-regularity
half of the story.

As for the finiteness of Hf/Hf , observe first that condition ((2b)) above
applied to nf means that

Hf/Hnf = Hnf/Hnf

is finite. But this amounts to the nth power

ωn
f = ωnf : Hf ×Hf → S1

of (3-1) having finite image, whence the finite-image constraint on ωf itself.
(3) General case. Suppose G as in the statement is of type I, and

{1} → F → E → G → {1}
is a finite central extension thereof.

The quotient G/G0 is type-I (being a quotient of a type-I group), so
modulo harmless substitution of a cofinite subgroup of G for the latter we
can assume, via Thoma’s theorem, that G/G0 is in fact abelian. Addition-
ally, the identity component G0 is also of type I, being open in a type-I
group [19, Proposition 2.4]. The preceding discussion (on the connected
case) thus applies to it.

The problem naturally splits into two special instances: lifting the type-I
property along the quotient by F/F ∩ E0 first, and then lifting again along
the (quotient by) remainder F ∩ E0. To keep the notational overload at a
minimum, we consider the two cases separately:
(a) The central finite group F intersects the identity component

E0 trivially. Or: the covering E → G restricts to an isomorphism

E0
∼= G0.

We apply the Mackey machine (summarized, for instance, in [2, Chap-
ter I, Proposition 10.4]) twice, to the normal subgroups

G0 � E or G.

The orbits of the induced actions of

A := G/G0 or AE := E/G0

on the spectrum Ĝ0 are the same. Because G is of type I and A is
discrete abelian, [2, §II.8, Corollary to Theorem 9] implies that those
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orbits are locally closed. For each x ∈ Ĝ0 denoting by ‘x’ subscripts
the respective isotropy groups, we have a finite central extension

{1} → F → AE,x → Ax → {1}.
Furthermore, the Mackey obstruction class in H2(AE,x, S

1) is pulled
back from the analogous class αx ∈ H2(Ax, S

1), and Theorem 2.4 ap-
plies to give

(Ax, αx) type-I ⇒ (AE,x, αx) type-I.

The already-mentioned [2, Chapter I, Proposition 10.4] then finishes
the proof that E is of type I.

(b) F is contained in the identity component E0. This time the
covering E → G identifies the quotients

(3-6) A := E/E0
∼= G/G0

and restricts to the identity component to give a finite central extension

{1} → F → E0 → G0 → {1}.
The discussion in part (2) of the present proof (pertaining to connected
solvable groups) applies to this latter extension to ensure that E0, at
least, is of type I.
Furthermore, recall the device used in that earlier argument to move

between Ĝ0 and Ê0: identifying generalized orbits with elements of the
spectrum as in Fact 3.2, if (f, χ) corresponds to an element (i.e. sits
on a generalized orbit)

x ∈ Ê0

then we can associate to it the generalized orbit

Ĝ0 � ϕ(x) generated by (nf, χn), n := |F|.
That ϕ is equivariant for the conjugation actions of (3-6) is immediate,
so that

(3-7) Ax ≤ Aϕ(x).

Furthermore, the Mackey obstruction αx ∈ H2(Ax, S
1) relates to its

analogue as follows:

αn
x = restriction of αϕ(x) along (3-7).

We are assuming G (hence G0) is of type I, hence so is the middle term
in the central extension

{1} → S1 → • → Aϕ(x) → {1}
attached to αϕ(x). But then by [19, Proposition 2.4] so is its open
subgroup � in the top extension

{1} S1
�

•

Ax

Aϕ(x)

{1}

induced by restriction along (3-7).
This means that
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• (Ax, α
n
x) is of type I;

• so that αn
x is of finite order by [2, Chapter V, Lemma 6.1], be-

cause Ax is finitely-generated abelian;
• meaning that αx is also of finite order;
• and hence that (Ax, αx) is of type I, by another application of
[2, Chapter V, Lemma 6.1].

This concludes the proof of Theorem 3.1. �

4. Complements on algebraic hulls and central subgroups

4.1. Splitting non-simply-connected groups. The discussion above, on finite
central extensions, is of course only interesting when the groups we are extending
are not simply-connected. Simple connectedness plays a key role in both [2, §III.1]
and [1, §IV.4], in the following context.

Construction 4.1. Let G be a connected, simply-connected solvable Lie group
with Lie algebra g := Lie(G).

• Denote by Ad : G → GL(g) the adjoint representation.
• Let

Ad(G)alg ⊂ GL(g)

be the algebraic hull of Ad(G): the smallest real algebraic group (i.e. de-
finable by polynomial equations) containing Ad(G).

• General algebraic-group theory (e.g. [5, Chapter I, §4.4, Theorem]) we have
a semidirect product decomposition

(4-1) Ad(G)alg = Ad(G)u � T

where Ad(G)u consists of unipotent (i.e. eigenvalue-1) matrices on g while
T consists of semisimple operators thereon.

While Ad(G)u is uniquely determined as precisely the set of unipotent
elements, T is unique only up to conjugation; it is abelian, and in fact a
maximal torus [5, §8.5] in the broader sense familiar from algebraic geom-
etry (i.e. not necessarily a product of circles; we use the phrase algebraic
torus for clarity). We refer the reader to [5, Theorem 10.6] for details.

• Composing the adjoint representation of G with the surjection

Ad(G)alg = Ad(G)u � T → T

gives a morphism G → T; denote its image by S.
• Because the connected automorphism group of the Lie algebra g is algebraic
in the sense above (e.g. [10, Chapter IV, §XV]), Ad(G)alg acts as a group
of automorphisms of g.

• The automorphisms S of the Lie algebra g are also automorphisms of the
corresponding simply-connected Lie group G [6, §III.6.1, Theorem 1], so we
can form the semidirect product

(4-2) Gs := G� S.

This is the semisimple splitting of G of [2, §III.1]

Remark 4.2. There is a claim in [2, §III.1] that Ad(G)alg is connected; that source
does not clarify whether what is meant is the Zariski or the standard (Lie-group)
topology, but in the latter case connectedness does not hold in this generality:
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the adjoint representation of the “ax + b” (solvable, simply-connected) Lie group
consisting of the transformations

R � x
ψa,b	−−−−→ ax+ b ∈ R, a ∈ R>0, b ∈ R

is, upon choosing the basis judiciously,

(4-3) ψa,b 	→
(
a b
0 1

)
.

The algebraic closure of this group of matrices is easy to determine: it consists of
those (4-3) with arbitrary a ∈ R× := R\{0}, positive or negative. The issue is that
positivity is not expressible algebraically, via polynomial vanishing.

The algebraic hull Ad(G)alg will, however, always have finitely many (possibly
more than one) connected components in its standard topology [5, §24.6, (c) (i)].

Simple connectedness features in that last step of Construction 4.1, where au-
tomorphisms of the Lie algebra are lifted over to automorphisms of G. In general,
the question is whether the algebraic hull Ad(G)alg (or perhaps smaller subgroups
of interest, e.g. its identity component) fix the discrete central subgroup D ≤ G

we are quotienting by, thus acting on the quotients G/D. The aim is to prove that
this is the case:

Theorem 4.3. Let G be a connected, simply-connected solvable Lie group. The
algebraic hull Ad(G)alg fixes the center Z(G) pointwise.

The first remark is that the connected component of the center, at least, poses
no issues (so that D ∩ Z(G)0 is always pointwise invariant).

Lemma 4.4. For any connected, simply-connected Lie group G the algebraic hull
Ad(G)alg fixes the intersection

Z(G)0 = Z(G) ∩N(G)

of the center and the nil-radical pointwise.

Proof. We saw in Remark 1.1 ((d)) that Z(G)∩N(G) coincides with the connected
component Z(G)0. An automorphism α of g := Lie(G) also operates on n :=
Lie(N(G)) and N := N(G) and the exponential isomorphism (1-2) is α-equivariant.
It follows that α fixes a non-trivial element x ∈ N if and only if it fixes the unique
one-parameter subgroup of N containing x.

What all of this says is that the condition that α ∈ Aut(g) leave x ∈ N invariant
is expressible algebraically, as the condition of operating trivially on a line in g

pointwise. When x ∈ Z(G)0 the elements of Ad(G) all satisfy this condition, hence
so do those of its algebraic hull. �

Remark 4.5. Although in general, for a simply-connected solvable Lie group G, the
exponential map need not be either injective or surjective [18, Chapter II, Exercise
B.4], central subgroups of G are better behaved: by [8, Theorem 1] every discrete
central subgroup is contained in the image of an abelian Lie subalgebra of Lie(G)
through the exponential map.

That abelian Lie subalgebra will not, in general, be unique: an extended Mautner
group M as defined in [2, §III.2] is a semidirect product Rb �Ra with the Rb factor
as the nilradical. It can be shown that the center is discrete and contained in the Ra

factor (and in fact isomorphic to Za−1: Lemma 5.3). One can easily obtain, now,
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multiple copies of Ra−1 containing that center as a lattice: start with a subgroup
Ra−1 ⊂ Ra, and conjugate by elements in Rb.

Proposition 4.6. Let G be a connected, simply-connected solvable Lie group. The
semisimple elements in Ad(G)alg fix the center Z(G) pointwise.

Proof. We already know from Lemma 4.4 that Ad(G)alg fixes the connected com-
ponent Z(G)0 pointwise. On the other hand,

• because G is solvable, its center is of the form

Z(G)0 ⊕ Zd

by [8, Theorem 1];
• and every semisimple element in Ad(G)alg is conjugate to an element of any
one maximal algebraic torus torus T that provides a decomposition (4-1)
[5, Theorem 10.6 (6)].

Since Ad(G)alg operates on the center Z(G) (the latter being a characteristic sub-
group of G), it is enough to argue that some maximal algebraic torus T fixes some
discrete complement

Zd ≤ Z(G) of Z(G)0

pointwise.
Consider such a central complement Zd to the connected center. By [8, Theorem

1] again, it is the image under the exponential map

exp : (g := Lie(G)) → G

of a lattice in some abelian Lie subalgebra h ∼= Rd ≤ g. Now, exp(h) is a (plain,
compact) torus in Ad(G), so can be extended to a maximal algebraic torus T by
[5, Theorem 10.6 (5)]. But T, being abelian, acts trivially on its own Lie algebra
and hence also on h. This in turn implies that it fixes

Zd ⊂ exp(h)

pointwise, as desired. �
Finally:

Proof of Theorem 4.3. Certainly G itself does, and the subset

Ad(G)alg,s ⊆ Ad(G)alg

consisting of semisimple elements (not a subgroup, in general!) does too, by
Proposition 4.6. To conclude, we will argue that Ad(G)alg is generated algebraically
by Ad(G) and Ad(G)alg,s.

The multiplicative Jordan decomposition [5, Theorem I.4.4]

(4-4) x = us, u unipotent , s semisimple , us = su

for x ∈ Ad(G)alg gives the decomposition

Ad(G)alg = Ad(G)alg,u · T
noted in [2, §III.1], where T ≤ Ad(G)alg,s is some algebraic torus in the sense of
[5, §III.8.5] and Ad(G)alg,u is the nilradical of Ad(G)alg. It will thus be enough to
argue that the nilradical Ad(G)u ≤ Ad(G) is already all of Ad(G)alg,u. This, in
turn, will follow if we show that Ad(G)u · T is already algebraic.

To see this, note first that its Lie algebra l certainly is (algebraic, in the sense of
[9, §II.14, Définition 1]):
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• The nilpotent elements of Lie(Ad(G)u) span 1-dimensional algebraic Lie
algebras [9, §II.13, Proposition 1];

• hence those lines generate an algebraic [9, §II.14, Théorème 14] Lie algebra
Lie(Ad(G)u);

• so that l as a whole is algebraic, again by [9, §II.14, Théorème 14], being
generated by the algebraic Lie algebras Lie(Ad(G)u) and Lie(T).

But then the algebraic hull of Ad(G)u · T contains the latter with finite index
[9, §II.8, Corollaire to Théorème 5], and it is enough to observe that a unipotent
group connected in the usual topology, such as Ad(G)u, is already algebraic (for
instance because the exponential map, which in this case is polynomial, implements
a variety isomorphism between said unipotent group and its Lie algebra [18, Chapter
VI, Theorem 4.2]). �

4.2. Central subgroups and their saturations. In reference to Remark 4.5,
it is perhaps worth noting that for a central subgroup A of a connected, simply-
connected solvable Lie group conjugation is essentially the only way to switch be-
tween Euclidean groups containing A:

Proposition 4.7. Let G be a connected, simply-connected solvable Lie group and
A ≤ G a central subgroup.

All closed, connected, abelian subgroups of G of minimal dimension and contain-
ing A are mutually conjugate.

Proof. Denote by N := N(G) the nilradical of G. Each element of A∩N is contained
in a unique one-parameter subgroup of N (because the latter’s exponential is a
diffeomorphism [6, §III.9.5, Proposition 13]), and those one-parameter subgroups
are then G-central and hence generate a connected G-central subgroup

E ≤ N ≤ G.

Since the ambient group is solvable and simply-connected, the closed, connected,
abelian subgroups are precisely the Euclidean ones (i.e. copies of Rd) [8, Theorem
1]. Such a group contains A ∩ N if and only if it contains E, so nothing is lost by
simply quotienting by that group throughout: make the substitutions

G 	→ G/E, N 	→ N/E, A 	→ A/A ∩ E, etc.

The last group in particular is central and discrete (Lemma 4.8), so we may as well
simplify matters and assume from the start that A ∼= Zd is discrete and intersects
N trivially.

Consider, now, the connected Lie group G/A. For a Euclidean group

Rd ∼= H ≤ G

containing A as a lattice the corresponding quotient H/A is a torus Td, and must
be maximal compact in G/A: the latter has the same homotopy type as any of
its maximal compact subgroups K (e.g. by [23, §4.13, first Theorem]), so K would
have to have the same fundamental group

π1(G/A) ∼= A ∼= Zd.

But on the other hand K is connected, compact and solvable, hence also abelian
and a torus. All of this means it must be d-dimensional, so cannot contain H/A
properly.
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Now, all maximal compact subgroups of a locally compact connected group are
mutually conjugate ([23, §4.13, first Theorem] again), so we are done. �
Lemma 4.8. Let G be a connected Lie group and D ≤ G a central subgroup. The
image of D in the quotient G/N(G) is discrete.

Proof. If not, the closure of that image would be a closed Lie subgroup H of G with
non-trivial connected component H0. The preimage H ≤ G of H ≤ G is generated
topologically by the nilpotent group N := N(G) and the central group D, and is
thus nilpotent. But then the preimage of H0 is normal, nilpotent and connected,
contradicting the maximality of N. �

As a consequence of Proposition 4.7, one can answer the natural question of
whether the central subgroup A therein can be recovered from the Euclidean groups
which contain it. This is not quite possible, but one instead recovers a “saturation”
thereof. To make sense of this, recall some language (e.g. [20, §7, Definition and
subsequent remarks]):

Definition 4.9. A subgroup A ≤ B of an abelian group is pure if, for every a ∈ A,
whenever the equation

a = nb, b ∈ B

has a solution, it also has one in A.
The condition that B/A be torsion-free implies purity. This is easily seen to be

equivalent to purity when B is of the form Rd ×Ze, so: for a subgroup A ≤ B of an
abelian Lie group, the Lie purification of A ≤ B will be the smallest intermediate
closed subgroup

A ≤ AB,p ≤ B, B/AB,p torsion-free.

Such an intermediate subgroup always exists: certainly, A′ := B itself is closed,
intermediate between A and B, and such that B/A′ = {1} is torsion-free, and the
intersection of all such A′ (intermediate between A and B, closed, and with torsion-
free B/A′) is again closed and satisfies the torsion-freeness property because B/

⋂
A′

embeds into the torsion-free group
∏

A′ B/A′. One can thus take AB,p :=
⋂
A′.

Proposition 4.10. Let G be a connected, simply-connected solvable Lie group and
A ≤ G a central subgroup. The following subgroups of G all coincide:

(a) the Lie purification of A in the center Z(G);
(b) the intersection of all Euclidean subgroups of G containing A;
(c) the intersection of all conjugates of any one minimal-dimensional Euclidean

subgroup of G containing A.

Proof. The statement is clearly unaffected by passing to the closure of A, so we
assume it closed throughout. A number of observations follow.

(I) ((b)) and ((c)) coincide. Their very definition makes it plain that ((c))
can only be larger (since ((b)) is the intersection of more groups). On the
other hand, in ((b)) we can of course restrict attention to only the minimal-
dimensional Euclidean groups, and those all comprise a single conjugacy
class by Proposition 4.7; this proves the opposite inclusion ((b)) ⊇ ((c)).

(II) ((c)) ⊇ ((a)). The Lie purification AB,p of A in the center is the closure
of the set of elements having finite order modulo A; what is being claimed
here is that any minimal-dimensional Euclidean group that contains A in
fact contains AB,p.
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Because the abelian Lie group AB,p/A has dense torsion, it is compact
and hence [11, Corollary 4.2.6] a torus times a finite abelian group. In
particular, A and AB,p have the same Lie rank (as we will call it) d+ e:

(4-5) A ∼= Rd × Ze, AB,p
∼= Rd′ × Ze′ , d′ + e′ = d+ e,

for non-negative integers d, d′ and e, e′. Some minimal-dimensional Rd+e

will contain AB,p. It is also minimal-dimensional among the Euclidean
groups containing just A, but all of these are mutually conjugate by
Proposition 4.7. Since AB,p is central conjugations leave it fixed, so we
are done.

(III) ((a)) ⊇ ((c)). Or equivalently: if A is pure then it coincides with the
intersection H of ((c)).

As discussed, we have a decomposition (4-5) and minimal Euclidean
groups containing A are isomorphic to Rd+e. H is a closed subgroup of
such a group, of equal Lie rank d + e; it also carries an adjoint action by
G, which is trivial on the G-central cocompact subgroup A ≤ H. But this
implies that H itself is central: the mod-A-torsion subgroup

Htors,A := {h ∈ H | nh ∈ A for some n ∈ Z>0} ≤ H

is dense in H, and for h ∈ Htors,A we have

A � nh is G-fixed for some n ∈ Z>0
H is torsion-free
==========⇒ h is G-fixed.

Now,
• the assumed purity of A ≤ Z(G);
• together with the cocompactness of A ≤ H

imply that in fact A = H.

This concludes the proof of the result in its entirety. �

5. Modes of failure

Consider a connected, simply-connected solvable Lie groupH. We recalled above,
in the course of the proof of Theorem 3.1, the two-fold criterion given in [26, §4.13,
Proposition] for a primitive ideal of C∗(G) to be of type I: there is

• a topological condition, requiring that the ideal be attached to a locally-
closed coadjoint orbit;

• and a local condition, requiring that the quotient Hf/Hf be finite for each
f on that coadjoint orbit (notation as in (3-2)).

[13] gives an example of a connected, simply-connected, solvable Lie group H,
not of type I, and a central copy

Z ∼= D ⊂ H

of the integers such that H/D is of type I. An examination of how that example
functions will reveal that the quotient has the effect of enlarging the groups Hf so

that the relevant quotients Hf/Hf become finite.
On the other hand, the coadjoint orbits of H as a whole (not just those of H/D

in the sense of Definition 3.3) are easily seen to all be locally closed. In other
words, the example of [13] operates entirely on the local type-I condition, leaving
the topological condition unaffected. A first observation is that this is inevitable
when taking quotients by central copies of the integers :
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Lemma 5.1. Let H be a connected, simply-connected, solvable Lie group and D ⊂ H

a discrete central subgroup isomorphic to Z.
If H has a non-locally-closed coadjoint orbit, then so does H/D.

Proof. Scaling elements of the dual h∗ (of the Lie algebra h := Lie(H)) by non-zero
reals is equivariant for the coadjoint action, preserves isotropy groups, orbits up
to homeomorphism, etc. In particular, it will turn a non-locally-closed orbit into
another such. But in the language of Fact 3.2, an f ∈ h∗ can be scaled by some
c ∈ R× so as to ensure that

χf |D∩Hf,0
≡ 1 :

this is because D ∼= Z, so we only need to annihilate a generator thereof. �

5.1. Correcting for non-smoothness. The following examples feature promi-
nently in [2]. Following [2, §III.2, p.138]:

Definition 5.2. Let

(5-1) ρ : Ra → O(Rb) (orthogonal group)

be a linear representation such that

(a) ρ(Ra) is a (possibly non-closed) Lie subgroup isomorphic to Ta−1 × R;
(b) while for any non-zero Ra-invariant V ≤ Rb the image of Ra in O(Rb/V ) is

compact.

The semidirect product Rb � Ra induced by such an action is the generalized (or
extended) Mautner group M(ρ).

We refer to a representation (5-1) meeting the requirements listed above as a
Mautner representation.

First, for the sake of completeness and because the claim was made in passing
in Remark 4.5:

Lemma 5.3. The center of a generalized Mautner group M(ρ) associated to a
representation (5-1) is

Za−1 ∼= ker(ρ) ⊂ Ra ⊂ M(ρ).

Proof. That ker(ρ) is contained in the center is immediate, as is the fact that it
must be free abelian of rank a − 1 (by condition ((a)) of Definition 5.2). We thus
need the converse.

Setting M := M(ρ), the center Z(M) intersects Rb ≤ M trivially: any non-zero
central element would span a line pointwise-fixed under ρ, contradicting condition
((b)) of Definition 5.2. It thus follows that

Z(M) ⊂ M → Ra

is bijective onto its image. That image must consist of elements annihilated by ρ,
and we are done. �

The importance of the generalized Mautner groups stems from the fact that in a
sense they are emblematic of solvable groups for which the action on the spectrum
of the nilradical fails to be smooth [2, §III.2, Theorem 2]. More specifically, they are
tailor-made to have the “dangling” copy of R in the image Ta−1×R of Definition 5.2
((a)) wrap around a torus densely. The “bad orbits” (as they are referred to in
[2, §III.3], for instance) come about via this wrapping.
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One way to restore the type-I property is to correct for the ill-behaved orbits by
tracing them over with an action by a higher-dimensional torus:

Definition 5.4. Consider a representation (5-1) with its associated extended Maut-
ner group

M(ρ) = Rb �Ra,

as in Definition 5.2. The closure of the image ρ(Ra) is an d-torus for some d ≥ a+1,
which in turn induces an action

(5-2) ρ′ : Rd → O(Rb)

of Rd on the same vector space Rb. Note that the images of ρ and ρ′ commute
pointwise.

The complete Mautner group M := M(ρ) is the semidirect product

M(ρ)�Rd ∼= (Rb �Ra)�Rd,

where Rd acts trivially on the Ra factor and via ρ′ on Rb.

The upshot of the discussion above, on “tracing over” orbits, is that that process
is sufficient to undo the type-I pathology.

Proposition 5.5. Given an action ρ as in Definition 5.2, the complete Mautner
group M(ρ) is of type I.

Proof. This is an immediate application of Mackey theory ([21, Theorem 3.12],
[2, Chapter I, Proposition 10.4], etc.): the mutually-commuting representations

ρ : Ra → O(Rb) and ρ′ : Rd → O(Rb)

of Definition 5.2 and Definition 5.4 aggregate into a single

(5-3) ρ : Ra × Rd → O(Rb),

which then realizes M := M(ρ) as a semidirect product

M ∼= Rb � (Ra × Rd).

We are done, by [21, Theorem 3.12], as soon as we observe that Rb ≤ M is regularly
embedded: by construction, the image of (5-3) coincides with that of only the Rd

factor, which in turn is a torus. This means that the orbits of the action of M on

R̂b are in fact compact, hence the conclusion. �

Proposition 5.5 allows for natural examples of non-type-I (connected, simply-
connected, solvable) Lie groups whose semidirect products with tori are of type
I.

Example 5.6. Consider a representation (5-1), with its resulting extended and
complete Mautner groups

M := M(ρ) and M := M(ρ)

respectively, as in Definitions 5.2 and 5.4.
We know that M itself is not of type I, as explained in [2, §III.2] (via [2, Chapter

II, Corollary to Theorem 9]). On the other hand, M is of type I by Proposition 5.5,
hence so is its quotient by the kernel Zd of (5-2):

M/Zd ∼= M� (Rd/Zd) ∼= M�Td.
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Remark 5.7. The type-I group M�Td is admissible in the sense of [1, Chapter IV,
Appendix]: a semidirect product of a connected, simply-connected solvable group
M by a compact abelian group acting faithfully on M and trivially on M/N(M).

[1, Chapter V, Introduction] mentions in passing that examples of non-type-I
connected, simply-connected, solvable G exist so that an admissible G � K is of
type I; Example 5.6 is precisely that.
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[26] Lajos Pukánszky, Characters of connected Lie groups, Mathematical Surveys and Mono-
graphs, vol. 71, American Mathematical Society, Providence, RI, 1999. With a preface by J.
Dixmier and M. Duflo, DOI 10.1090/surv/071. MR1707323

[27] Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathemat-
ics, vol. 80, Springer-Verlag, New York, 1996, DOI 10.1007/978-1-4419-8594-1. MR1357169

[28] Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer,
New York, 2009, DOI 10.1007/b98977. MR2455920

[29] Norman Steenrod, The topology of fibre bundles, Princeton Landmarks in Mathematics,
Princeton University Press, Princeton, NJ, 1999. Reprint of the 1957 edition; Princeton Pa-
perbacks. MR1688579
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