UNIPOTENT CHARACTER SHEAVES AND STRATA OF A REDUCTIVE GROUP

G. LUSZTIG

Abstract

Let H be a connected reductive group over an algebraically closed field. We define a surjective map from the set $C S(H)$ of unipotent character sheaves on H (up to isomorphism) to the set of strata of H. To do this we use the generalized Springer correspondence. We also give a new parametrization of $C S(H)$ in terms of data coming from bad characteristic.

Introduction

0.1. Let H be a reductive connected group over C. Let $\operatorname{Pr}=\{2,3,5, \ldots\}$ be the set of prime numbers; let $\overline{\operatorname{Pr}}=\operatorname{Pr} \cup\{0\}$. For $r \in \operatorname{Pr}$ let \mathbf{k}_{r} be an algebraic closure of a finite field with r elements and let H_{r} be a reductive connected group over \mathbf{k}_{r} of the same type as H and with the same Weyl group W (with set of simple reflections $\left\{s_{i} ; i \in I\right\}$). We set $\mathbf{k}_{0}=\mathbf{C}, H_{0}=H$. Let $K_{r}=\mathbf{C}($ if $r=0)$ and $K_{r}=\overline{\mathbf{Q}}_{l}$ where $l \in \operatorname{Pr}-\{r\}$ (if $r \in \operatorname{Pr}$). For $r \in \overline{\operatorname{Pr}}$ let $C S\left(H_{r}\right)$ be the (finite) set of isomorphism classes of unipotent character sheaves on H_{r}. These are certain simple perverse K_{r}-sheaves on H_{r}, see L85]. It is known that $\operatorname{CS}\left(H_{r}\right)$ is independent of r in a canonical way. Let $\operatorname{Str}\left(H_{r}\right)$ be the (finite) set of strata of H_{r}, see L15]; these are certain subsets of H_{r} (unions of conjugacy classes of fixed dimension) which form a partition of H_{r}. (These subsets are locally closed in H_{r}, see [C20].)

In this paper we shall define for any $r \in \overline{\operatorname{Pr}}$ a surjective map
(a)

$$
\tau: C S\left(H_{r}\right) \rightarrow \operatorname{Str}\left(H_{r}\right) .
$$

In the remainder of this paper (except in 1.1 and 3.3) we shall assume that either H is quasi-simple, that is, H modulo its centre is simple, or that H is a torus. (The general case can be reduced in an obvious way to this case.)

Our definition of the map (a) is based on the generalized Springer correspondence of L84], especially in bad characteristic.

In 1.11 we use the map (a) to give a new parametrization of $C S\left(H_{r}\right)$ which differs from the known classification [L86] in terms of two-sided cells in the Weyl group. This involves associating to each stratum a very small collection of finite groups which come from unipotent classes in bad characteristic. (It would be interesting to give a definition of these finite groups and of the resulting parametrization which is purely in characteristic 0 .)

This can be also viewed as a parametrization of

Received by the editors January 26, 2023, and, in revised form, July 27, 2023, August 13, 2023, and September 5, 2023.

2020 Mathematics Subject Classification. Primary 20G99.
The author was supported by NSF grant DMS-2153741.
(b) $\operatorname{Un}\left(H_{r}\left(F_{q}\right)\right)$, the set of unipotent representations of the group $H_{r}\left(F_{q}\right)$ of F_{q}-rational points of a split form of H_{r} over a finite subfield F_{q} of \mathbf{k}_{r} (with $r \in \operatorname{Pr}$ and q a power of r).

Indeed, it is known that
(c) $C S\left(H_{r}\right), U n\left(H_{r}\left(F_{q}\right)\right)$ are in a natural 1-1 correspondence.

We will show elsewhere that similar results hold when H is replaced by a connected component of a disconnected reductive group with identity component H.

A number of results of this paper rely on the wonderful paper 585 of Nicolas Spaltenstein and also on LS85.
0.2. Notation. Assume that G is a connected reductive group over an algebraically closed field. We denote by Z_{G} the centre of G and by Z_{G}^{0} its identity component. Let $G_{a d}$ be the adjoint group of G.

For $g \in G$ we denote by $Z_{G}(g)$ the centralizer of g in G and by $Z_{G}^{0}(g)$ its identity component.

If G^{\prime} is a subgroup of G, we denote by $N_{G}\left(G^{\prime}\right)$ the normalizer of G^{\prime} in G.
If \mathcal{W} is a Weyl group we denote by $\operatorname{Irr}(\mathcal{W})$ the set of isomorphism classes of irreducible representations of \mathcal{W} over \mathbf{Q}.

1. Definition of the map τ

1.1. For $r \in \overline{\operatorname{Pr}}$ let $C S^{\emptyset}\left(H_{r}\right)$ be the subset of $C S\left(H_{r}\right)$ consisting of unipotent cuspidal character sheaves.

Let $A \in C S^{\emptyset}\left(H_{r}\right)$. The support of A is the closure in H_{r} of a single orbit of $Z_{H_{r}}^{0} \times H_{r}$ acting on H_{r} by $(z, g): g_{1} \mapsto z g g_{1} g^{-1}$; this orbit is denoted by σ_{A}. Let $\delta(A)$ be the dimension of the variety of Borel subgroups of H_{r} that contain a fixed element $h \in \sigma_{A}$ (this is independent of the choice of h). We have

$$
C S^{\emptyset}\left(H_{r}\right)=\sqcup_{d \in \mathbf{N}} C S_{d}^{\emptyset}\left(H_{r}\right)
$$

where $C S_{d}^{\emptyset}\left(H_{r}\right)=\left\{A \in C S^{\emptyset}\left(H_{r}\right) ; \delta(A)=d\right\}$.
Lemma 1.2. For any $d \in \mathbf{N}$ the function $r \mapsto \sharp\left(C S_{d}^{\emptyset}\left(H_{r}\right)\right)$ from $\overline{\operatorname{Pr}}$ to \mathbf{N} is constant; its value is denoted by $N_{d}(H) \in \mathbf{N}$.

This can be deduced from the results in L86. (When $H_{a d}$ is of type E_{8} or F_{4}, the results in loc. cit. are proved only under the assumption that r is not a bad prime for H. But the same proof works without this assumption, by making use of [S85, p. 336, 337].)
1.3. For $r \in \overline{P r}$ and $J \subset I$ we fix a Levi subgroup $L_{J, r}$ of a parabolic subgroup of H_{r} of type J. (For example, $L_{I, r}=H_{r}$ and $L_{\emptyset, r}$ is a maximal torus.) We say that J is cuspidal if for some (or equivalently any) $r \in \overline{\operatorname{Pr}}$ we have $C S^{\emptyset}\left(L_{J, r}\right) \neq \emptyset$. In this case $L_{J, r}$ is quasi-simple or a torus and J is uniquely determined by the type of $\left(L_{J, r}\right)_{a d}$. (This follows from the classification of cuspidal character sheaves.) Let W_{J} be the Weyl group of $L_{J, r}$, viewed as a parabolic subgroup of W.

Let us now fix a cuspidal J and $A^{\prime} \in C S^{\emptyset}\left(L_{J, r}\right)$. The induced object $\operatorname{ind}\left(A^{\prime}\right)$ is a well defined semisimple perverse sheaf on H_{r} (see [L85, §4]); it is in fact a direct sum of character sheaves on H_{r}. By arguments in [L84, §3, §4], End (ind $\left.\left(A^{\prime}\right)\right)$ has a canonical decomposition as a direct sum of lines $\oplus_{w} \mathcal{L}_{w}$ with w running through $N_{H_{r}}\left(L_{J, r}\right) / L_{J, r}=N_{W}\left(W_{J}\right) / W_{J}$ such that $\mathcal{L}_{w} \mathcal{L}_{w^{\prime}}=\mathcal{L}_{w w^{\prime}}$ for any w, w^{\prime} in $N_{W}\left(W_{J}\right) / W_{J}$. One can verify that there is a unique $A \in C S\left(H_{r}\right)$ such that A is
a summand with multiplicity one of $\operatorname{ind}\left(A^{\prime}\right)$ and the value of the a-function of W on the two-sided cell of W attached to A is equal to the value of the a-function of W_{J} on the two-sided cell of W_{J} attached to A^{\prime}. Now the summand A of $\operatorname{ind}\left(A^{\prime}\right)$ is stable under each \mathcal{L}_{w} and we can choose uniquely a nonzero vector $t_{w} \in \mathcal{L}_{w}$ which acts on A as identity. We have $t_{w} t_{w^{\prime}}=t_{w w^{\prime}}$ for any w, w^{\prime} in $N_{W}\left(W_{J}\right) / W_{J}$. We see that $\operatorname{End}\left(\operatorname{ind}\left(A^{\prime}\right)\right)$ is canonically the group algebra of $N_{W}\left(W_{J}\right) / W_{J}$ (which is known to be a Weyl group). For any $E^{\prime} \in \operatorname{Irr}\left(N_{W}\left(W_{J}\right) / W_{J}\right)$ let $A^{\prime}\left[E^{\prime}\right]$ be the perverse sheaf $\operatorname{Hom}_{N_{W}\left(W_{J}\right) / W_{J}}\left(E^{\prime}, \operatorname{ind}\left(A^{\prime}\right)\right)$ on H_{r}. This is an object of $C S\left(H_{r}\right)$.
1.4. Let $C S^{\prime}\left(H_{r}\right)$ be the set of triples $\left(J, E^{\prime}, A^{\prime}\right)$ where J is a cuspidal subset of I, $E^{\prime} \in \operatorname{Irr}\left(N_{W}\left(W_{J}\right) / W_{J}\right)$ and $A^{\prime} \in C S^{\emptyset}\left(L_{J, r}\right)$. We have a bijection
(a)

$$
C S^{\prime}\left(H_{r}\right) \xrightarrow{\sim} C S\left(H_{r}\right)
$$

given by $\left(J, E^{\prime}, A^{\prime}\right) \mapsto A^{\prime}\left[E^{\prime}\right]$.
1.5. Let $r \in \overline{\operatorname{Pr}}$. Let $\mathcal{U}\left(H_{r}\right)$ be the set of unipotent classes in H_{r}; for $\gamma \in \mathcal{U}\left(H_{r}\right)$ the Springer correspondence (defined for any r in [L84) associates to γ and the constant local system K_{r} on γ an element $e_{r}(\gamma) \in \operatorname{Irr}(W)$. Thus we have a well defined (injective) map $e_{r}: \mathcal{U}\left(H_{r}\right) \rightarrow \operatorname{Irr}(W)$, whose image is denoted by $\operatorname{Irr}_{r}(W)$.

Let $C S^{\emptyset}\left(H_{r}\right)^{u n}$ be the set of all $A \in C S^{\emptyset}\left(H_{r}\right)$ such that $\sigma_{A}=Z_{H_{r}}^{0} \gamma_{A}$ where $\gamma_{A} \in \mathcal{U}\left(H_{r}\right)$. Let

$$
C S^{\prime}\left(H_{r}\right)^{u n}=\left\{\left(J, E^{\prime}, A^{\prime}\right) \in C S^{\prime}\left(H_{r}\right) ; A^{\prime} \in C S^{\emptyset}\left(L_{J, r}\right)^{u n}\right\} .
$$

We define a map
(a)

$$
\tilde{e}_{r}: C S^{\prime}\left(H_{r}\right)^{u n} \rightarrow \operatorname{Irr}_{r}(W)
$$

as follows. Let $\left(J, E^{\prime}, A^{\prime}\right) \in C S^{\prime}\left(H_{r}\right)^{u n}$. Then the unipotent class $\gamma_{A^{\prime}}$ of $L_{J, r}$ is defined; the restriction of A^{\prime} to $\gamma_{A^{\prime}}$ is (up to a shift) a cuspidal local system. Now the generalized Springer correspondence [L84 associates to this cuspidal local system and to E^{\prime} a unipotent class γ of H_{r} and an irreducible local system on it. By definition, we have $\tilde{e}_{r}\left(J, E^{\prime}, A^{\prime}\right)=e_{r}(\gamma)$.
1.6. Let

$$
\operatorname{Irr}_{*}(W)=\cup_{r \in P r} \operatorname{Irr}_{r}(W)=\cup_{r \in \overline{P r}} \operatorname{Irr}_{r}(W)
$$

Let $r \in \overline{\operatorname{Pr}}$. In L15 a bijection
(a)

$$
\operatorname{Str}\left(H_{r}\right) \rightarrow \operatorname{Irr}_{*}(W)
$$

is defined. Using this and 1.4(a), we see that defining τ in 0.1 (a) is the same as defining a map

$$
\underline{\tau}_{r}: C S^{\prime}\left(H_{r}\right) \rightarrow \operatorname{Irr}_{*}(W)
$$

Lemma 1.7. Let $d \in \mathbf{N}$ be such that $N_{d}(H)>0$ (see (1.2). Let $X=\{r \in$ $\left.\operatorname{Pr} ; C S_{d}^{\emptyset}\left(H_{r}\right) \subset C S^{\emptyset}\left(H_{r}\right)^{u n}\right\}$. Then one of the following holds.
(i) X consists of a single element r_{0}.
(ii) $X=\operatorname{Pr}$ and $d \geq 1$. (In this case $H_{a d}$ is of type E_{8}, F_{4} or G_{2}, d is $16,4,1$ respectively and $N_{d}(H)=1$.)
(iii) $X=\operatorname{Pr}$ and $d=0$. (In this case H is a torus.)
(iv) $X=\emptyset$. (In this case $d=0$ and $H_{a d}$ is of type E_{8}, F_{4} or G_{2}.)

This follows from 3.2.
1.8. Let $r \in \overline{\operatorname{Pr}}$. We will now define the map $\underline{\tau}_{r}: C S^{\prime}\left(H_{r}\right) \rightarrow \operatorname{Irr}_{*}(W)$. In the case where $I=\emptyset$, this map is the bijection between two sets with one element. Assume now that $I \neq \emptyset$. Let $\left(J, E^{\prime}, A^{\prime}\right) \in C S^{\prime}\left(H_{r}\right)$. We want to define $\underline{\tau}_{r}\left(J, E^{\prime}, A^{\prime}\right)$.

Let X be as in Lemma 1.7 for $L_{J, r}$ instead of H_{r} and for $d \in \mathbf{N}$ defined by $A^{\prime} \in C S_{d}^{\emptyset}\left(L_{J, r}\right)$.

Assume first that $J \neq I, J \neq \emptyset$. Then X is not as in 1.7(ii),(iii),(iv), hence it is as in $1.7(\mathrm{i})$. Let $r_{0} \in \operatorname{Pr}$ be such that $X=\left\{r_{0}\right\}$. We set $\underline{\tau}_{r}\left(J, E^{\prime}, A^{\prime}\right)=\tilde{e}_{r_{0}}\left(J, E^{\prime}, A^{\prime}\right)$.

Next we assume that $J=I$ and X is as in 1.7(i). Let $r_{0} \in \operatorname{Pr}$ be such that $X=\left\{r_{0}\right\}$. We set $\underline{\tau}_{r}\left(J, E^{\prime}, A^{\prime}\right)=\tilde{e}_{r_{0}}\left(J, E^{\prime}, A^{\prime}\right)$.

Next we assume that $J=I$ and d, X are as in 1.7(ii). We have $E^{\prime}=1$. We set $\underline{\tau}_{r}\left(I, 1, A^{\prime}\right)=\tilde{e}_{r^{\prime}}\left(I, 1, A^{\prime}\right)$ where $r^{\prime} \in \overline{\operatorname{Pr}}$ (this is independent of r^{\prime} by results in [S85].

If $J=I$ then d cannot be as in 1.7(iii) since this would imply $I=\emptyset$, contrary to our assumption.

Assume now that $J=I$ and X is as in 1.7(iv). We have $E^{\prime}=1$. We set $\underline{\tau}_{r}\left(I, 1, A^{\prime}\right)=$ unit representation.

Finally, assume that $J=\emptyset$. Then A^{\prime} is the constant sheaf K_{r}. For any $r^{\prime} \in \operatorname{Pr}$ we set $\tilde{e}_{r^{\prime}}\left(\emptyset, E^{\prime}, K_{r}\right)=E_{r^{\prime}}^{\prime}$. If $E_{r^{\prime}}^{\prime}$ is independent of r^{\prime}, then $\underline{\tau}_{r}\left(\emptyset, E^{\prime}, K_{r}\right)$ is defined to be this constant value of $E_{r^{\prime}}^{\prime}$. If $E_{r^{\prime}}^{\prime}$ is not independent of r^{\prime}, then there is a unique $r_{0} \in \operatorname{Pr}$ such that $E_{r^{\prime}}^{\prime}$ is constant for $r^{\prime} \in \operatorname{Pr}-\left\{r_{0}\right\}$. (This is an issue only in exceptional types where it can be checked from the tables in [S85].) We then set $\underline{\tau}_{r}\left(\emptyset, E^{\prime}, K_{r}\right)=E_{r_{0}}^{\prime}$. This completes the definition of $\underline{\tau}_{r}$ hence also that of τ in 0.1 (a).
1.9. Let $r \in \overline{\operatorname{Pr}}$. If $H_{a d}$ is of classical type or of type E_{6}, E_{7} or F_{4}, then for any $E^{\prime} \in \operatorname{Irr}(W), E_{r^{\prime}}^{\prime}$ is constant for $r^{\prime} \in \operatorname{Pr}-\{2\}$. It follows that

$$
\underline{\tau}_{r}\left(\emptyset, E^{\prime}, K_{r}\right)=E_{2}^{\prime} .
$$

Hence if $E^{\prime} \in \operatorname{Irr}_{2}(W)$, then $\underline{\tau}_{r}\left(\emptyset, E^{\prime}, K_{r}\right)=E^{\prime}$. If $H_{a d}$ is of type G_{2}, then for any $E^{\prime} \in \operatorname{Irr}(W), E_{r^{\prime}}^{\prime}$ is constant for $r^{\prime} \in \operatorname{Pr}-\{3\}$. It follows that

$$
\underline{\tau}_{r}\left(\emptyset, E^{\prime}, K_{r}\right)=E_{3}^{\prime} .
$$

Hence if $E^{\prime} \in \operatorname{Irr}_{3}(W)$, then $\underline{\tau}_{r}\left(\emptyset, E^{\prime}, K_{r}\right)=E^{\prime}$. We see that if $H_{a d}$ is not of type E_{8}, then $\underline{\tau}_{r}\left(\emptyset, E^{\prime}, K_{r}\right)=E^{\prime}$ for $E^{\prime} \in \operatorname{Irr}_{*}(W)$. The same holds if $H_{a d}$ is of type E_{8} (we use the tables in [S85]).

Note that $\operatorname{Irr}_{*}(W)$ can be viewed as a subset of $C S^{\prime}\left(H_{r}\right)$ by $E^{\prime} \mapsto\left(\emptyset, E^{\prime}, K_{r}\right)$. The results above show that $\underline{\tau}_{r}$ can be viewed as a retraction of $C S^{\prime}\left(H_{r}\right)$ onto its subset $\operatorname{Irr}_{*}(W)$. In particular, $\underline{\tau}_{r}$ is surjective.
1.10. Let $E \in \operatorname{Irr}_{*}(W)$. Let $\overline{\operatorname{Pr}}(E)=\left\{r^{\prime} \in \overline{\operatorname{Pr}} ; E \in \operatorname{Irr}_{r^{\prime}}(W)\right\}$. For $r^{\prime} \in \overline{\operatorname{Pr}}(E)$ we denote by γ_{E} the unique element of $\mathcal{U}_{H_{r^{\prime}}}$, such that $e_{r^{\prime}}\left(\gamma_{E}\right)=E$ (see 1.5). We set $\mathcal{A}_{r^{\prime}, E}=Z_{\left(H_{r^{\prime}}\right)_{a d}}(u) / Z_{\left(H_{r^{\prime}}\right)_{a d}}^{0}(u)$ where u is in the image of γ_{E} under $H_{r^{\prime}} \rightarrow\left(H_{r^{\prime}}\right)_{a d}$; this finite group is well defined up to isomorphism. If $\overline{\operatorname{Pr}}(E)=\overline{\operatorname{Pr}}$ we define $\overline{\operatorname{Pr}}^{\prime}(E)=\left\{r^{\prime} \in \overline{\operatorname{Pr}} ; \mathcal{A}_{r^{\prime}, E} \cong \mathcal{A}_{0, E}\right\}$; this is a subset of $\overline{\operatorname{Pr}}$ with finite complement.

We define a finite collection $c(E)$ of finite groups as follows.
If $\overline{\operatorname{Pr}}(E)=\overline{\operatorname{Pr}}=\overline{\operatorname{Pr}}^{\prime}(E)$, then $c(E)$ consists of $\mathcal{A}_{0, E}$.
If $\overline{\operatorname{Pr}}(E)=\overline{\operatorname{Pr}} \neq \overline{\operatorname{Pr}}^{\prime}(E)$, then $c(E)$ consists of $\left\{\mathcal{A}_{r^{\prime}, E} ; r^{\prime} \in \overline{\operatorname{Pr}}-\overline{\operatorname{Pr}}^{\prime}(E)\right\}$; one can verify that for $r^{\prime} \neq r^{\prime \prime}$ in $\overline{\operatorname{Pr}}-\overline{\operatorname{Pr}}^{\prime}(E)$, we have $\mathcal{A}_{r^{\prime}, E} \neq \mathcal{A}_{r^{\prime \prime}, E}$.

If $\overline{\operatorname{Pr}}(E) \neq \overline{\operatorname{Pr}}$, then $\overline{\operatorname{Pr}}(E)$ consists of a single element $r_{0}^{\prime} \in \overline{\operatorname{Pr}}$ (we have necessarily $r_{0}^{\prime} \neq 0$); then $c(E)$ consists of $\mathcal{A}_{r_{0}^{\prime}, E}$.

If H is a torus, then $c(E)$ consists of $\{1\}$. If $H_{a d}$ is of type A, B, C or D, then $c(E)$ consists of a single group and this is a product of cyclic groups of order 2. If $H_{a d}$ is of exceptional type then $c(E)$ consists of one of the following groups:

(a)

$$
1, \mathcal{C}_{2}, \mathcal{C}_{2} \times \mathcal{C}_{2}, S_{3}, \Delta_{8}, S_{3} \times \mathcal{C}_{2}, S_{5}
$$

or one of the pair of groups:

$$
\begin{equation*}
\left(\mathcal{C}_{2}, \mathcal{C}_{3}\right),\left(\mathcal{C}_{4}, \mathcal{C}_{3}\right),\left(\mathcal{C}_{2} \times \mathcal{C}_{2}, \mathcal{C}_{2} \times \mathcal{C}_{3}\right) \tag{b}
\end{equation*}
$$

or the triple of groups:
(c)

$$
\left(\mathcal{C}_{4}, \mathcal{C}_{3}, \mathcal{C}_{5}\right)
$$

(See the tables in \$2) Here \mathcal{C}_{m} denotes a cyclic group of oder m, S_{m} denotes the symmetric group in m letters, Δ_{8} denotes a dihedral group of order 8 .

We now define a finite set $c(E)^{*}$ as follows. If $c(E)$ consists of a single group Γ then $c(E)^{*}=\hat{\Gamma}$. (For a finite group Γ we denote by $\hat{\Gamma}$ the set of isomorphism classes of irreducible representations of Γ over K_{r}.)

If $c(E)$ consists of two groups Γ, Γ^{\prime} (see (b)), then $\Gamma^{\prime \prime}=\mathcal{A}_{0, E}$ is well defined and is a quotient of both Γ, Γ^{\prime}. (We have $\Gamma^{\prime \prime}=1,1, S_{2}$ respectively in the three cases in (b).) Hence we can regard $\hat{\Gamma}^{\prime \prime}$ as a subset of $\hat{\Gamma}$ and also as a subset of $\hat{\Gamma}^{\prime}$. We define $c(E)^{*}=\left(\hat{\Gamma}-\hat{\Gamma}^{\prime \prime}\right) \sqcup\left(\hat{\Gamma}^{\prime}-\hat{\Gamma}^{\prime \prime}\right) \sqcup \hat{\Gamma}^{\prime \prime}$.

If $c(E)$ consists of three groups (see (c)) we define $c(E)^{*}=\sqcup_{m \in[1,6]} \hat{\mathcal{C}}_{m}^{!}$where $\hat{\mathcal{C}}_{m}^{!}$consists of the faithful irreducible representations of \mathcal{C}_{m}. (This case occurs only when $H_{a d}$ is of type E_{8} and when $E=1$. The fact that $\hat{\mathcal{C}}_{6}^{!}$enters in the definition should be connected to the fact that 6 appears as a coefficient of the highest root of H.)

The following theorem can be deduced from the definitions using the results in \$2
Theorem 1.11. Let $r \in \overline{\operatorname{Pr}}$. There exists a bijection

$$
C S\left(H_{r}\right) \xrightarrow{\sim} \sqcup_{E \in \operatorname{Irr} *(W)} c(E)^{*}
$$

which makes the following diagram commutative:

(The left vertical map is as in 0.1(a); the right vertical map is the obvious one; the lower horizontal map is as in 1.6(a).)

2. Examples

2.1. Assume that $H_{a d}$ is of type $A_{n-1}, n \geq 2$. We have

$$
C S^{\prime}\left(H_{r}\right)=\left\{\left(\emptyset, E^{\prime}, K_{r}\right) ; E^{\prime} \in \operatorname{Irr}(W)\right\}, \quad \operatorname{Irr}_{*}(W)=\operatorname{Irr}(W)
$$

In this case $\underline{\tau}_{r}$ is the bijection $\left(\emptyset, E^{\prime}, K_{r}\right) \mapsto E^{\prime}$.
2.2. Assume that $H_{a d}$ is of type $D_{n}, n \geq 4$ or $B_{n}, n \geq 3$, or $C_{n}, n \geq 2$. If $H_{a d}$ is of type D_{n}, let $C S^{\prime \prime}(H)$ be the set of pairs $\left(J, E^{\prime}\right)$ where J is either \emptyset (so that $\left.N_{W}\left(W_{J}\right) / W_{J}=W\right)$ or J is such that W_{J} is of type $D_{4 k^{2}}$ for some $k \geq 1$ with $4 k^{2} \leq n$ (so that $N_{W}\left(W_{J}\right) / W_{J}$ is a Weyl group of type $B_{n-4 k^{2}}$) and $E^{\prime} \in$ $\operatorname{Irr}\left(N_{W}\left(W_{J}\right) / W_{J}\right)$. (We use the convention that a Weyl group of type B_{0} is $\{1\}$.)

If $H_{a d}$ is of type B_{n} or C_{n}, let $C S^{\prime \prime}(H)$ be the set of pairs $\left(J, E^{\prime}\right)$ where J is either \emptyset (so that $N_{W}\left(W_{J}\right) / W_{J}=W$) or J is such that W_{J} is of type $B_{k(k+1)}$ for some $k \geq 1$ with $k(k+1) \leq n$ (so that $N_{W}\left(W_{J}\right) / W_{J}$ is a Weyl group of type $\left.B_{n-k(k+1)}\right)$ and $E^{\prime} \in \operatorname{Irr}\left(N_{W}\left(W_{J}\right) / W_{J}\right)$.

In any case we have a bijection $C S^{\prime}\left(H_{r}\right) \xrightarrow{\sim} C S^{\prime \prime}(H)$ given by $\left(J, E^{\prime}, A^{\prime}\right) \mapsto$ $\left(J, E^{\prime}\right)$. Moreover we have $\operatorname{Irr}_{*}(W)=\operatorname{Irr}_{2}(W)$. Hence the map $\underline{\tau}_{r}$ can be viewed as a map
(a)

$$
C S^{\prime \prime}(H) \rightarrow \operatorname{Irr}_{2}(W)
$$

Now $C S^{\prime \prime}(H)$ can also be viewed as the set of pairs consisting of a cuspidal J and a cuspidal local system on a unipotent class in $L_{J, 2}$. The generalized Springer correspondence [84] attaches to such a pair a unipotent class in H_{2} and an irreducible local system on it.

By forgetting this last local system and by identifying $\mathcal{U}\left(H_{2}\right)$ with $\operatorname{Irr}_{2}(W)$ via e_{2} (see 1.5), we obtain a map $C S^{\prime \prime}\left(H_{r}\right) \rightarrow \operatorname{Irr}_{2}(W)$ which, on the one hand, is explicitly computed in LS85 in terms of certain types of symbols and, on the other hand, it coincides with the map (a).
2.3. In 2.4] 2.8 we describe the map $\underline{\tau}_{r}$ in terms of tables in the case where $H_{a d}$ is of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}. The tables are computed using results in S85 with one indeterminacy in type E_{8} being removed by [H22].

In each case the table consists of a sequence of rows. There is one row for each $E \in \operatorname{Irr}_{*}(W)$; it is written as ()$^{\prime} \ldots \ldots . .()^{\prime \prime}$ where ()$^{\prime}$ represents the fibre of $\underline{\tau}_{r}$ over E and ()$^{\prime \prime}$ is a sequence of finite groups of which the boxed ones describe $c(E)$.

The elements of ()$^{\prime}$ are written as symbols $\left(J, E^{\prime}, d\right)_{\sharp=n}$. Such a symbol stands for the n triples ($J, E^{\prime}, A^{\prime}$) in $C S^{\prime}\left(H_{r}\right)$ with J, E^{\prime} fixed and A^{\prime} running through the set $C S_{d}^{\emptyset}\left(L_{J, r}\right)$ (assumed to have $n \geq 1$ elements). When $n=1$ we omit the subscript $\sharp=n$. We specify J by indicating the type of W_{J}. (For example, in the table for E_{8} in 2.8, the row of 8_{1} contains an item $\left(E_{6}, \epsilon_{c}, 0\right)_{\sharp}$ which stands for two objects; in the triple $\left(E_{6}, \epsilon_{c}, 0\right), E_{6}$ represents a subset of type E_{6} of the simple reflections, ϵ_{c} is a certain representation of a Weyl group of type G_{2} and 0 represents the dimension of a certain variety.) When $J=\emptyset$ we must have $d=0, n=1$ and we write E^{\prime} instead of $\left(J, E^{\prime}, d\right)$. Note that the first entry in ()$^{\prime}$ is E itself.

The groups in ($)^{\prime \prime}$ are as follows. If $\overline{\operatorname{Pr}}(E)=\overline{\operatorname{Pr}}=\overline{\operatorname{Pr}}^{\prime}(E)$ then ($)^{\prime \prime}$ consists of the single group in $c(E)$ put inside a box.

If $\overline{\operatorname{Pr}}(E)=\overline{\operatorname{Pr}} \neq \overline{\operatorname{Pr}}^{\prime}(E)$ then ()$^{\prime \prime}$ is $\Gamma, \Gamma^{\prime},\left(\Gamma^{\prime \prime}\right)$ where $\Gamma=\mathcal{A}_{2, E}, \Gamma^{\prime}=\mathcal{A}_{3, E}, \Gamma^{\prime \prime}=$ $\mathcal{A}_{0, E}$; the boxed entries Γ or $\Gamma^{\prime \prime}$ or both represent the set $c(E)$; an exception is when $E=1$ in type E_{8} : in this case ($)^{\prime \prime}$ is $\Gamma, \Gamma^{\prime}, \Gamma^{\prime \prime},(1)$ where $\Gamma=\mathcal{A}_{2, E}=\mathcal{C}_{4}, \Gamma^{\prime}=$ $\mathcal{A}_{3, E}=\mathcal{C}_{3}, \Gamma^{\prime \prime}=\mathcal{A}_{5, E}=\mathcal{C}_{5}, \mathcal{A}_{0, E}=1$ and $c(E)$ consists of $\Gamma, \Gamma^{\prime}, \Gamma^{\prime \prime}$ (all boxed).

If $\overline{\operatorname{Pr}}(E) \neq \overline{\operatorname{Pr}}$ then $\overline{\operatorname{Pr}}-\overline{\operatorname{Pr}}(E)=\left\{r_{0}^{\prime}\right\}$ where $r_{0}^{\prime} \in\{2,3\}$. If $r_{0}^{\prime}=2$ then ()$^{\prime \prime}$ is $\Gamma,-,(-)$ where $\Gamma=\mathcal{A}_{2, E}$ and $c(E)$ consists of Γ (it is boxed); if $r_{0}^{\prime}=3$ then ()$^{\prime \prime}$ is $-, \Gamma^{\prime},(-)$ where $\Gamma^{\prime}=\mathcal{A}_{3, E}$ and $c(E)$ consists of Γ^{\prime} (it is boxed).

If $H_{a d}$ is of type G_{2}, we have $J=\emptyset$ or $W_{J}=W$ with $N_{W}\left(W_{J}\right) / W_{J}=\{1\}$.

If $H_{a d}$ is of type F_{4}, we have $J=\emptyset$ or W_{J} of type B_{2} with $N_{W}\left(W_{J}\right) / W_{J}$ of type B_{2} or $W_{J}=W$ with $N_{W}\left(W_{J}\right) / W_{J}=\{1\}$.

If $H_{a d}$ is of type E_{6}, we have $J=\emptyset$ or W_{J} of type D_{4} with $N_{W}\left(W_{J}\right) / W_{J}$ of type A_{2} or $W_{J}=W$ with $N_{W}\left(W_{J}\right) / W_{J}=\{1\}$.

If $H_{a d}$ is of type E_{7}, we have $J=\emptyset$ or W_{J} of type D_{4} with $N_{W}\left(W_{J}\right) / W_{J}$ of type B_{3} or W_{J} of type E_{6} with $N_{W}\left(W_{J}\right) / W_{J}$ of type A_{1} or $W_{J}=W$ with $N_{W}\left(W_{J}\right) / W_{J}=\{1\}$.

If $H_{a d}$ is of type E_{8}, we have $J=\emptyset$ or W_{J} of type D_{4} with $N_{W}\left(W_{J}\right) / W_{J}$ of type F_{4} or W_{J} of type E_{6} with $N_{W}\left(W_{J}\right) / W_{J}$ of type G_{2} or W_{J} of type E_{7} with $N_{W}\left(W_{J}\right) / W_{J}$ of type A_{1} or $W_{J}=W$ with $N_{W}\left(W_{J}\right) / W_{J}=\{1\}$.

The notation for the elements of $\operatorname{Irr}(W)$ or $\operatorname{Irr}\left(N_{W}\left(W_{J}\right) / W_{J}\right)$ is taken from S85] with one note of caution. In the case where $H_{a d}$ is of type E_{8} and W_{J} is of type E_{6}, the two 2-dimensional irreducible representations $\theta^{\prime}, \theta^{\prime \prime}$ of $N_{W}\left(W_{J}\right) / W_{J}$ which appear in the generalized Springer correspondence with $r=3$ are identified in [85] only up to order. This indeterminacy is removed in H22 which shows that θ^{\prime} is the reflection representation.

Table 2.4. Table for G_{2}

ϵ	$\ldots \ldots$.	$\boxed{1}$
ϵ_{l}	$\ldots \ldots$.	$-, \boxed{1},(-)$
ϵ_{c}	$\ldots \ldots$	1
$\theta^{\prime \prime}$	$\ldots \ldots$	$\boxed{1}$
$\theta^{\prime},\left(G_{2}, 1,1\right)$	$\ldots \ldots$	S_{3}, \mathcal{C}_{2}
$1,\left(G_{2}, 1,0\right)_{\sharp=3}$	$\ldots \ldots$.	$\boxed{\mathcal{C}_{2}, \mathcal{C}_{3}},(1)$

TABLE 2.5. Table for F_{4}

$\chi_{1,}$	1
$\chi_{2,}$	1
$\chi_{2,2}$	\ldots	1,,$-(-)$
$\chi_{4,}$	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$\chi_{9,}$	1
$\chi_{8,4}, \chi_{1,2}$	\mathcal{C}_{2}
$\chi_{8,2}, \chi_{1,}$	$\mathcal{C}_{2}, 1,(1)$
$\chi_{4},\left(B_{2}, \epsilon, 0\right.$	\ldots	$\mathcal{C}_{2},-,(-)$
$\chi_{4,}$	1,,$-(-)$
$\chi_{4,}$	1
$\chi_{9,}$	1, -, (-)

Table 2.5. (Continued from previous page)

$\chi_{9,2}$		1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$\chi_{6,1}$...	1
χ_{16}	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$\chi_{12}, \chi_{6,2},\left(F_{4}, 1,4\right)$	$S_{3}, S_{4},\left(S_{4}\right)$
$\chi_{8,3},\left(B_{2}, \epsilon_{l}, 0\right)$	$\mathcal{C}_{2}, 1,(1)$
$\chi_{8,1},\left(B_{2}, \epsilon_{c}, 0\right)$	$\mathcal{C}_{2}, 1,(1)$
$\chi_{9,1}, \chi_{2,1}, \chi_{2,3},\left(B_{2}, \theta, 0\right),\left(F_{4}, 1,2\right)$	$\Delta_{8}, \mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$\chi_{4,1},\left(F_{4}, 1,1\right)$	\mathcal{C}_{2}
$\chi_{1,1},\left(B_{2}, 1,0\right),\left(F_{4}, 1,0\right)_{\sharp=4}$	$\mathcal{C}_{4}, \mathcal{C}_{3}$, (1)

Table 2.6. Table for E_{6}

1_{36}	$\ldots \ldots$	$\boxed{1}$
6_{25}	$\ldots \ldots$.	$\boxed{1}$
20_{20}	$\ldots \ldots$.	$\boxed{1}$
15_{16}	$\ldots \ldots$.	$\boxed{1}$
$30_{15}, 15_{17}$	$\ldots \ldots$	$\boxed{\mathcal{C}_{2}}$
64_{13}	$\ldots \ldots$	$\boxed{1}$
24_{12}	$\ldots \ldots$.	$\boxed{1}$
60_{11}	$\ldots \ldots$.	$\boxed{1}$
81_{10}	$\ldots \ldots$.	$\boxed{1}$
10_{9}	$\ldots \ldots$.	$\boxed{1}$
60_{8}	$\ldots \ldots$.	$\boxed{1}$
$80_{7}, 90_{8}, 20_{10}$	$\ldots \ldots$.	$\boxed{S_{3}}$
81_{6}	$\ldots \ldots .$.	$\boxed{1}$
$24_{6},\left(D_{4}, \epsilon, 0\right)$	$\ldots \ldots$.	$\boxed{S_{2}}$
60_{5}	$\ldots \ldots$.	$\boxed{1}$
64_{4}	$\ldots \ldots$.	$\boxed{1}$
15_{4}	$\ldots \ldots$.	$\boxed{1}$
$30_{3}, 15_{5}$	$\ldots \ldots \ldots$	$\boxed{\mathcal{C}_{2}}$

Table [2.6] (Continued from previous page)

$20_{2},\left(D_{4}, \phi, 0\right)$	$\ldots \ldots$	$\boxed{\mathcal{C}_{2}}, 1,(1)$
6_{1}	$\ldots \ldots$	$\boxed{1}$
$1_{0},\left(D_{4}, 1,0\right),\left(E_{6}, 1,0\right)_{\sharp=2}$	$\ldots \ldots$.	$\mathcal{C}_{2}, \mathcal{C}_{3},(1)$

Table 2.7. Table for E_{7}

163	1
746	1
27_{37}	1
21_{36}	1
3531	1
$56_{30}, 21_{33}$	\mathcal{C}_{2}
15_{28}	1
$120_{25}, 105_{28}$	\mathcal{C}_{2}
1892	1
105_{21}	1
16821	1
210_{21}	1
18920	1
70_{18}	1
28017	1
$315_{16}, 280_{18}, 35_{22}$	S_{3}
216_{16}	1
$405_{15}, 189_{17}$	\mathcal{C}_{2}
$105_{15},\left(D_{4},\left(0,1^{3}\right), 0\right)$	\mathcal{C}_{2}, 1, (1)
84_{15}	1,,$-(-)$
$378{ }_{14}$	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
210_{13}	1
$420_{13}, 336_{14}$	\mathcal{C}_{2}
$84_{12},\left(D_{4},\left(1^{3}, 0\right), 0\right)$	\mathcal{C}_{2}

Table 2.7. (Continued from previous page)

105_{12}	1
$512_{11}, 512_{12}$	\mathcal{C}_{2}
210_{10}		1
$420_{10}, 336_{11}$	\mathcal{C}_{2}
3789		1
2169	1
709		1
2808	1
$4058,189_{10}$	\mathcal{C}_{2}
$189_{7},\left(D_{4},\left(1,1^{2}\right), 0\right)$	\ldots	$\mathcal{C}_{2}, 1,(1)$
$315_{7}, 280_{9}, 35_{13}$	S_{3}
$168_{6},\left(D_{4},\left(1^{2}, 1\right), 0\right)$	$\mathcal{C}_{2}, 1,(1)$
$210_{6},\left(D_{4},(0,21), 0\right)$	$\mathcal{C}_{2}, 1,(1)$
1056,157	$\mathcal{C}_{2}, 1,(1)$
1895	$1, \mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$35_{4},\left(D_{4},(21,0), 0\right)$	$\mathcal{C}_{2}, 1,(1)$
1204,1055	\mathcal{C}_{2}
$21_{3},\left(D_{4},(1,2), 0\right),\left(E_{6}, 1,0\right)_{\sharp=2}$	$\mathcal{C}_{2}, \mathcal{C}_{3}$, (1)
$56_{3}, 21_{6}$	\mathcal{C}_{2}
$27_{2},\left(D_{4},(2,1), 0\right)$	$\mathcal{C}_{2}, 1,(1)$
$7_{1},\left(D_{4},(0,3), 0\right)$	$\mathcal{C}_{2}, 1,(1)$
$1_{0},\left(D_{4},(3,0), 0\right),\left(E_{6}, 1,0\right)_{\sharp=2},\left(E_{7}, 1,0\right)_{\sharp=2}$	$\mathcal{C}_{4}, \mathcal{C}_{3},(1)$

Table 2.8. Table for E_{8}

1_{120}	$\ldots \ldots$.	1
8_{91}	$\ldots \ldots$.	1
35_{74}	$\ldots \ldots$	1
84_{64}	$\ldots \ldots .$.	1
$112_{63}, 28_{68}$	$\ldots \ldots$.	$\boxed{\mathcal{C}_{2}}$

Table 2.8, (Continued from previous page)

505		1
$210_{52}, 160_{5}$	\mathcal{C}_{2}
5604	1
5674	1
4004	1
$700_{42}, 300_{4}$	\mathcal{C}_{2}
448	1
13443	1
$1400_{37}, 1008_{39}, 56_{4}$	S_{3}
175	1
$525_{36},\left(D_{4}, \chi_{1,4}, 0\right)$	$\mathcal{C}_{2}, 1,(1)$
1050	1
$1400{ }_{32}, 15755_{34}, 350_{3}$	S_{3}
972	1, -, (-)
32403	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$2268{ }_{30}, 12963$	\mathcal{C}_{2}
14002	1
$2240_{28}, 840_{3}$	\mathcal{C}_{2}
$700_{28},\left(D_{4}, \chi_{2,2}, 0\right)$	$\mathcal{C}_{2}, 1,(1)$
840_{2}	1
$4096_{26}, 4096_{2}$	\mathcal{C}_{2}
$2800_{25}, 2100_{2}$	\mathcal{C}_{2}
$42000_{24}, 3360_{2}$	\mathcal{C}_{2}
$168{ }_{24},\left(D_{4}, \chi_{1,3}, 0\right)$	($\mathcal{C}_{2},-,(-)$
45362	1
2835	1
6075	1
32003	1
42002	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$5600_{21}, 2400_{2}$	\mathcal{C}_{2}

Table 2.8. (Continued from previous page)

420		1
$2100{ }_{20},\left(D_{4}, \chi_{4,4}, 0\right)$	\mathcal{C}_{2}, 1, (1)
1344	1
2016	1
$3150_{18}, 1134$	\mathcal{C}_{2}
$4200_{18}, 2688$	\mathcal{C}_{2}
$7168_{17}, 5600_{19}, 448$	S_{3}
$3200_{16},\left(D_{4}, \chi_{8,2}, 0\right)$	\mathcal{C}_{2}, 1, (1)
$\begin{array}{r} 4480_{16}, 5670_{18}, 4536_{18}, 1400_{2} \\ 1680_{22}, 70_{32},\left(E_{8}, 1,16\right. \end{array}$	S_{5}
$5600_{15}, 2400_{17},\left(D_{4}, \chi_{9,4}, 0\right),\left(D_{4}, \chi_{2,4}, 0\right)$	$\overline{\mathcal{C}_{2} \times \mathcal{C}_{2}}, \mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$4200{ }_{15}, 700_{1}$	\mathcal{C}_{2}, 1, (1)
2835	1
6075	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$840_{14},\left(D_{4}, \chi_{4,3}, 0\right)$	$\mathcal{C}_{2},-,(-)$
4536	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$2800_{13}, 2100$	\mathcal{C}_{2}
$972_{12},\left(D_{4}, \chi_{9,3}, 0\right)$	\mathcal{C}_{2}, 1, (1)
$4200_{12}, 3360$	\mathcal{C}_{2}
$525_{12},\left(D_{4}, \chi_{8,4}, 0\right),\left(E_{6}, \epsilon, 0\right)_{\sharp=}$	$\mathcal{C}_{2}, \mathcal{C}_{3},(1)$
175	-, 11, (-)
1400	1
$4096{ }_{11}, 4096_{12}$	\mathcal{C}_{2}
$2268_{10}, 1296_{1}$	\mathcal{C}_{2}
$2240{ }_{10}, 840_{1}$	$S_{3}, \mathcal{C}_{2},\left(S_{3}\right)$
$1050{ }_{10},\left(D_{4}, \chi_{4}, 0\right)$	$\mathcal{C}_{2},-,(-)$
3240	1, $\mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$448_{9},\left(D_{4}, \chi_{6,1}, 0\right),\left(E_{6}, \epsilon_{l}, 0\right)_{\sharp=}$	$\mathcal{C}_{2}, \mathcal{C}_{3},(1)$
$1344_{8},\left(D_{4}, \chi_{16}, 0\right)$	\mathcal{C}_{2}, 1, (1)
$1400{ }_{8}, 1575_{10}, 350_{1}$	S_{3}

TAble 2.8 (Continued from previous page)

$\begin{array}{r} 1400_{7}, 1008_{9}, 56_{19},\left(D_{4}, \chi_{12}, 0\right), \\ \left(D_{4}, \chi_{6,2}, 0\right),\left(E_{8}, 1,7\right) \end{array}$	\ldots	$S_{3} \times \mathcal{C}_{2}, S_{3},\left(S_{3}\right)$
$400_{7},\left(D_{4}, \chi_{2,3}, 0\right)$	$\mathcal{C}_{2}, 1,(1)$
$700_{6}, 300_{8}, 50_{9},\left(D_{4}, \chi_{8,3}, 0\right),\left(E_{8}, 1,6\right)$	$\Delta_{8}, \mathcal{C}_{2},\left(\mathcal{C}_{2}\right)$
$5676,\left(D_{4}, \chi_{9,2}, 0\right)$...	$\mathcal{C}_{2}, 1,(1)$
$560_{5},\left(D_{4}, \chi_{4,2}, 0\right)$	\mathcal{C}_{2}
$210_{4}, 160_{7}$..	\mathcal{C}_{2}
$84_{4},\left(D_{4}, \chi_{9,1}, 0\right),\left(E_{6}, \theta^{\prime \prime}, 0\right)_{\sharp=2},\left(E_{7}, 1,0\right)_{\sharp=2}$	\ldots	$\mathcal{C}_{4}, \mathcal{C}_{3}$, (1)
$\begin{array}{r} 112_{3}, 28_{8},\left(D_{4}, \chi_{8,1}, 0\right),\left(D_{4}, \chi_{1,2}, 0\right), \\ \left(E_{6}, \theta^{\prime}, 0\right)_{\sharp=2},\left(E_{8}, 1,3\right)_{\sharp=2} \end{array}$	$\mathcal{C}_{2} \times \mathcal{C}_{2}, \mathcal{C}_{2} \times \mathcal{C}_{3},\left(\mathcal{C}_{2}\right)$
$35_{2},\left(D_{4}, \chi_{4,1}, 0\right)$	$\mathcal{C}_{2}, 1,(1)$
$8_{1},\left(D_{4}, \chi_{2,1}, 0\right),\left(E_{6}, \epsilon_{c}, 0\right)_{\sharp=2},\left(E_{8}, 1,1\right)_{\sharp=2}$	$\mathcal{C}_{4}, \mathcal{C}_{3},(1)$
$\begin{array}{r} 1_{0},\left(D_{4}, \chi_{1,1}, 0\right),\left(E_{6}, 1,0\right)_{\sharp=2}, \\ \left(E_{7}, 1,0\right)_{\sharp=2},\left(E_{8}, 1,0\right)_{\sharp=6} \end{array}$	$\mathcal{C}_{4}, \mathcal{C}_{3}, \mathcal{C}_{5},(1)$

3. Complements

3.1. The restriction of the map τ in $0.1(\mathrm{a})$ to $C S^{\emptyset}\left(H_{r}\right)$ has an alternative definition. Namely, for $A \in C S^{\emptyset}\left(H_{r}\right)$, there is a unique stratum $X \in \operatorname{Str}\left(H_{r}\right)$ such that $\sigma_{A} \subset X$ (notation of 1.1); we have $\tau(A)=X$.
3.2. The results in this subsection can be used to verify 1.7 In the examples below we assume that H is semisimple, $H \neq\{1\}$, and for $A \in C S^{\emptyset}\left(H_{r}\right)$ we denote by s the semisimple part of an element of σ_{A}. We describe the structure of $Z_{H_{r}}^{0}(s)$ in various cases. We also specify the value of X in 1.7 .

If H is of type C_{n} with $n=k(k+1), k \geq 1$ then:
if $r \neq 2$ then $Z_{H_{r}}^{0}(s)$ is of type $C_{n / 2} \times C_{n / 2}$; if $r=2$ then $Z_{H_{r}}^{0}(s)=H_{r}$. Thus X is as in 1.7(i).

If H is of type B_{n} with $n=k(k+1), k \geq 1$ then:
if $r \neq 2$ then $Z_{H_{r}}^{0}(s)$ is of type $B_{a} \times D_{b}$ where $(2 a+1,2 b)=\left((k+1)^{2}, k^{2}\right)$ if k is even and $(2 a+1,2 b)=\left(k^{2},(k+1)^{2}\right)$ if k is odd; if $r=2$ then $Z_{H_{r}}^{0}(s)=H_{r}$. Thus X is as in 1.7(i).

If H is of type D_{n} with $n=4 k^{2}, k \geq 1$ then:
if $r \neq 2$ then $Z_{H_{r}}^{0}(s)$ is of type $D_{2 k^{2}} \times D_{2 k^{2}}$; if $r=2$ then $Z_{H_{r}}^{0}(s)=H_{r}$. Thus X is as in 1.7(i).

If H is of type G_{2} and $A \in C S_{d}^{\emptyset}\left(H_{r}\right)$ then:
if $d=1$ then $Z_{H_{r}}^{0}(s)=H_{r}$ (thus X is as in 1.7(ii)); if $d=0$ and $r \notin\{2,3\}$ then $Z_{H_{r}}^{0}(s)$ is of type A_{2} for two values of A and of type $A_{1} \times A_{1}$ for the third value of A; if $d=0$ and $r=2$ then $Z_{H_{r}}^{0}(s)$ is of type A_{2} for two values of A and is H_{r} for
the third value of A; if $d=0$ and $r=3$ then $Z_{H_{r}}^{0}(s)$ is H_{r} for two values of A and is of type $A_{1} \times A_{1}$ for the third value of A. Thus X is as in 1.7(iv).

If H is of type F_{4} and $A \in C S_{d}^{\emptyset}\left(H_{r}\right)$ then:
if $d=4$ then $Z_{H_{r}}^{0}(s)=H_{r}$ (thus X is as in 1.7(ii));
if $d=2, r \neq 2$, then $Z_{H_{r}}^{0}(s)$ is of type B_{4}; if $d=2, r=2$, then $Z_{H_{r}}^{0}(s)=H_{r}$ (thus X is as in $1.7(\mathrm{i})$);
if $d=1, r \neq 2$, then $Z_{H_{r}}^{0}(s)$ is of type $C_{3} \times A_{1}$; if $d=1, r=2$, then $Z_{H_{r}}^{0}(s)=H_{r}$ (thus X is as in 1.7(i));
if $d=0, r \notin\{2,3\}$, then $Z_{H_{r}}^{0}(s)$ is of type $A_{2} \times A_{2}$ for two values of A and of type $A_{3} \times A_{1}$ for the other two values of A; if $d=0, r=2$, then $Z_{H_{r}}^{0}(s)$ is of type $A_{2} \times A_{2}$ for two values of A and is H_{r} for the other two values of A; if $d=0, r=3$, then $Z_{H_{r}}^{0}(s)$ is of type $A_{3} \times A_{1}$ for two values of A and is H_{r} for the other two values of A. Thus X is as in 1.7(iv).

If H is of type E_{6} then:
if $r \neq 3$, then $Z_{H_{r}}^{0}(s)$ is of type $A_{2} \times A_{2} \times A_{2}$; if $r=3$, then $Z_{H_{r}}^{0}(s)=H_{r}$. Thus X is as in 1.7(i).

If H is of type E_{7} then $d=0$ and:
if $r \neq 2$, then $Z_{H_{r}}^{0}(s)$ is of type $A_{3} \times A_{3} \times A_{1}$; if $r=2$, then $Z_{H_{r}}^{0}(s)=H_{r}$. Thus X is as in 1.7(i).

If H is of type E_{8} and $A \in C S_{d}^{\emptyset}\left(H_{r}\right)$ then:
if $d=16$ then $Z_{H_{r}}^{0}(s)=H_{r}$ (thus X is as in 1.7(ii)).
if $d=7$ and $r \neq 2$ then $Z_{H_{r}}^{0}(s)$ is of type $E_{7} \times A_{1}$; if $d=7$ and $r=2$ then $Z_{H_{r}}^{0}(s)=H_{r}($ thus X is as in 1.7(i));
if $d=6$ and $r \neq 2$ then $Z_{H_{r}}^{0}(s)$ is of type D_{8}; if $d=6$ and $r=2$ then $Z_{H_{r}}^{0}(s)=H_{r}$ (thus X is as in 1.7(i));
if $d=3$ and $r \neq 3$ then $Z_{H_{r}}^{0}(s)$ is of type $E_{6} \times A_{2}$; if $d=3$ and $r=3$ then $Z_{H_{r}}^{0}(s)=H_{r}($ thus X is as in $1.7(\mathrm{i}))$;
if $d=1$ and $r \neq 2$ then $Z_{H_{r}}^{0}(s)$ is of type $D_{5} \times A_{3}$; if $d=1$ and $r=2$ then $Z_{H_{r}}^{0}(s)=H_{r}$ (thus X is as in 1.7(i));
if $d=0$ and $r \notin\{2,3,5\}$ then $Z_{H_{r}}^{0}(s)$ is of type $A_{4} \times A_{4}$ for four values of A and of type $A_{5} \times A_{2} \times A_{1}$ for two values of A; if $d=0$ and $r=5$ then $Z_{H_{r}}^{0}(s)$ is H_{r} for four values of A and of type $A_{5} \times A_{2} \times A_{1}$ for two values of A; if $d=0$ and $r=3$ then $Z_{H_{r}}^{0}(s)$ is of type $A_{4} \times A_{4}$ for four values of A and of type $E_{7} \times A_{1}$ for two values of A; if $d=0$ and $r=2$ then $Z_{H_{r}}^{0}(s)$ is of type $A_{4} \times A_{4}$ for four values of A and of type $E_{6} \times A_{2}$ for two values of A. Thus X is as in 1.7(iv).

The results in this section (for H of type E_{8} and $d=0$) contradict the statement (f) on p. 351 in Sh95]. (Indeed, if $r=2$ there is no semisimple $s \in H_{2}$ with $Z_{H_{2}}(s)$ of type $A_{5} \times A_{2} \times A_{1}$.)
3.3. Let H^{*} be a connected reductive group over \mathbf{C} of type dual to that of H. Let $\mathbf{C S}(H)$ be the set of isomorphism classes of (not necessarily unipotent) character sheaves on H. We now assume that $Z_{H}=Z_{H}^{0}$. It is known that we can identify $\mathbf{C S}(H)$ with $\sqcup_{s} C S\left(Z_{H^{*}}(s)^{*}\right)$ where s runs over the semisimple elements of finite order of H^{*} up to conjugacy. Using 0.1(a), we obtain a surjective map $\mathbf{C S}(H) \rightarrow$ $\sqcup_{s} \operatorname{Str}\left(Z_{H^{*}}(s)^{*}\right)$. From L15] we can identify $\operatorname{Str}\left(Z_{H^{*}}(s)^{*}\right)=\operatorname{Str}\left(Z_{H^{*}}(s)\right)$. Hence we obtain a surjective map

$$
\mathbf{C S}(H) \rightarrow \sqcup_{s} \operatorname{Str}\left(Z_{H^{*}}(s)\right)
$$

3.4. Let \mathcal{X}_{H}^{\prime} be the set of numbers which appear as coefficients of the highest root of H; let $\mathcal{X}_{H}=\mathcal{X}_{H}^{\prime} \cup\{1\}$. Note that \mathcal{X}_{H} consists of the numbers $1,2, \ldots, z_{H}$ where $z_{H}=1$ for H of type $A, z_{H}=2$ for H of type $B, C, D, z_{H}=3$ for H of type G_{2} or $E_{6}, z_{H}=4$ for H of type F_{4} or $E_{7}, z_{H}=6$ for H of type E_{8}.

We note the following property (which can be verified from the results in §2).
(a) The fibre of τ in 0.1(a) at the stratum consisting of regular elements in H_{r} (or equivalently at $E=1 \in \operatorname{Irr}_{*}(W)$) is in bijection with the set
(b)

$$
\sqcup_{m \in \mathbf{N} ; 1 \leq m \leq z_{H}} \rho_{m}
$$

where ρ_{m} is the set of primitive mth roots of 1 in K_{r}.
It is remarkable that the set (b) appears also in a quite different situation. Let $r, q, H_{r}\left(F_{q}\right)$ be as in 0.1(b). We can view $H_{r}\left(F_{q}\right)$ as a fixed point set of a Frobenius $\operatorname{map} F: H_{r} \rightarrow H_{r}$. For any $w \in W$ let X_{w} be the variety attached to H_{r}, F, w in DL76. Now F acts on the cohomology with compact support $H_{c}^{i}\left(X_{w}\right)$ of X_{w} and in particular on $H_{c}^{|w|}\left(X_{w}\right)$. (We denote by $|w|$ the length of w.) Let w be a Coxeter element of minimal length in W. From [76] it is known that the F-action on $H_{c}^{|w|}\left(X_{w}\right)$ is semisimple and that the eigenspaces are irreducible (unipotent) representations of $H_{r}\left(F_{q}\right)$. These unipotent representations are in bijection with the character sheaves in the fibre of τ at $E=1$. (We use the usual bijection $U n\left(H_{r}\left(F_{q}\right)\right) \leftrightarrow C S\left(H_{r}\right)$ composed with the involution of $\operatorname{Un}\left(H_{r}\left(F_{q}\right)\right)$ which interchanges "small" representations with "big" representations.) The eigenvalues of the F-action are listed in [766, p. 146, 147]. It turns out that
(c) these eigenvalues are exactly the roots of 1 in (b) times integral powers of $q^{1 / 2}$.
3.5. Let $c l(W)$ be the set of conjugacy classes in W. In [L15, §4], a surjective map $\Phi: c l(W) \rightarrow \operatorname{Irr}_{*}(W)$ is defined. In [L15, 4.10] a map $\operatorname{Irr}_{*}(W) \rightarrow c l(W), E \rightarrow C_{E}$, is described; it is such that $\Phi\left(C_{E}\right)=E$ for all $E \in \operatorname{Irr}_{*}(W)$, hence its image $c l_{*}(W) \subset c l(W)$ is such that Φ restricts to a bijection $c l_{*}(W) \xrightarrow{\longrightarrow} \operatorname{Irr}_{*}(W)$. This allows us to identify the sets $c l_{*}(W), \operatorname{Irr}_{*}(W)=\operatorname{Str}\left(H_{r}\right)$, so that $\tau: C S\left(H_{r}\right) \rightarrow$ $\operatorname{Str}\left(H_{r}\right)$ becomes a surjective map
(a)

$$
\tau^{\prime}: U n\left(H_{r}\left(F_{q}\right)\right) \rightarrow c l_{*}(W)
$$

(with $r, q, H_{r}\left(F_{q}\right)$ as in 0.1(b), see 0.1(c)). Let $U n^{\emptyset}\left(H_{r}\left(F_{q}\right)\right)$ be the subset of $U n\left(H_{r}\left(F_{q}\right)\right)$ consisting of unipotent cuspidal representations.

One can verify that the restriction of τ^{\prime} to $U n^{\emptyset}\left(H_{r}\left(F_{q}\right)\right)$ coincides with the map $\rho \mapsto C_{\rho}$ in L02, 2.17]. From L02] we see that
(b) for any $\rho \in U n^{\emptyset}\left(H_{r}\left(F_{q}\right)\right), \rho$ appears with multiplicity 1 in $H_{c}^{|w|}\left(X_{w}\right)$ (notation of (3.4) where w is an element of minimal length in $\tau^{\prime}(\rho)$.
3.6. In this subsection we assume that H_{r} is the symplectic group with W of type B_{2}. The simple reflections s_{1}, s_{2} satisfy $s_{1} s_{2} s_{1} s_{2}=s_{2} s_{1} s_{2} s_{1}$. We have $\operatorname{Irr}_{*}(W)=\operatorname{Irr}(W)=\operatorname{Irr}_{2}(W)$; this set consists of $1, \rho, \epsilon_{1}, \epsilon_{2}, \epsilon$ where ρ is the reflection representation, ϵ is the sign representation and $\epsilon_{1}, \epsilon_{2}$ are the one-dimensional representations other than $1, \epsilon$. We have $c l(W)=c l_{*}(W)$. (The numbering of s_{1}, s_{2} and of $\epsilon_{1}, \epsilon_{2}$ is chosen so that (a),(b) below hold.)

The conjugacy classes in W are $(1),\left(s_{1}\right),\left(s_{2}\right),\left(s_{1} s_{2}\right),\left(s_{1} s_{2} s_{1} s_{2}\right)$ where (w) is the conjugacy class of $w \in W$. The bijection $\operatorname{Irr}_{*}(W) \rightarrow c l_{*}(W)$ is given by
(a)

$$
1 \mapsto\left(s_{1} s_{2}\right), \rho \mapsto\left(s_{1} s_{2} s_{1} s_{2}\right), \epsilon_{1} \mapsto\left(s_{1}\right), \epsilon_{2} \mapsto\left(s_{2}\right), \epsilon \mapsto(1) .
$$

There are five strata; they are indexed by the elements of $\operatorname{Irr}_{*}(W)$; we denote them by $\sigma(1), \sigma(\rho), \sigma\left(\epsilon_{1}\right), \sigma\left(\epsilon_{2}\right), \sigma(\epsilon)$. Here
(b) $\sigma(1)$ is the union of all conjugacy classes of dimension $8 ; \sigma(\rho)$ is the union of all conjugacy classes of dimension $6 ; \sigma\left(\epsilon_{1}\right)$ is a conjugacy class of dimension 4 (a semisimple one if $r \neq 2$ and a unipotent one if $r=2 ; \sigma\left(\epsilon_{2}\right)$ is a union of one (if $r=2$) or two (if $r \neq 2$) conjugacy classes of dimension 4; $\sigma(\epsilon)$ is the centre of H_{r}.
$C S\left(H_{r}\right)$ consists of six objects: $\overline{\mathbf{Q}}_{l}[1], \overline{\mathbf{Q}}_{l}[\rho], \overline{\mathbf{Q}}_{l}\left[\epsilon_{1}\right], \overline{\mathbf{Q}}_{l}\left[\epsilon_{2}\right], \overline{\mathbf{Q}}_{l}[\epsilon]$ and A (an object of $\left.C S^{\emptyset}\left(H_{r}\right)\right)$. The map τ is $\overline{\mathbf{Q}}_{l}[1] \mapsto 1, \overline{\mathbf{Q}}_{l}[\rho] \mapsto \rho, \overline{\mathbf{Q}}_{l}\left[\epsilon_{1}\right] \mapsto \epsilon_{1}, \overline{\mathbf{Q}}_{l}\left[\epsilon_{2}\right] \mapsto \epsilon_{2}$, $\overline{\mathbf{Q}}_{l}[\epsilon] \mapsto \epsilon, A \mapsto 1$.

References

[C20] Giovanna Carnovale, Lusztig's strata are locally closed, Arch. Math. (Basel) 115 (2020), no. 1, 23-26, DOI 10.1007/s00013-020-01448-1. MR4105009
[DL76] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103-161, DOI 10.2307/1971021. MR393266
[H22] J. Hetz, On the generalised Springer correspondence for groups of type E8, arXiv:2207.06382
[L76] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101-159, DOI 10.1007/BF01408569. MR453885
[L84] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205-272, DOI 10.1007/BF01388564. MR 732546
[L85] George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193-237, DOI 10.1016/0001-8708(85)90034-9. MR792706
[L86] G. Lusztig, Character sheaves, IV, Adv. Math. 59 (1986), 1-63 MR825086 V, Adv. Math. 61 (1986), 103-155 MR 849848
[L02] G. Lusztig, Rationality properties of unipotent representations, J. Algebra 258 (2002), no. 1, 1-22, DOI 10.1016/S0021-8693(02)00514-8. MR 1958895
[L15] George Lusztig, On conjugacy classes in a reductive group, Representations of reductive groups, Progr. Math., vol. 312, Birkhäuser/Springer, Cham, 2015, pp. 333-363, DOI 10.1007/978-3-319-23443-4_12. MR 3495802
[LS85] G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289-316, DOI 10.2969/aspm/00610289. MR803339
[Sh95] T. Shoji, Character sheaves and almost characters of reductive groups, II, Adv. in Math. 111, 314-354.
[S85] N. Spaltenstein, On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 317-338, DOI 10.2969/aspm/00610317. MR803340

