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UNIPOTENT CHARACTER SHEAVES AND STRATA OF A

REDUCTIVE GROUP

G. LUSZTIG

Abstract. Let H be a connected reductive group over an algebraically closed
field. We define a surjective map from the set CS(H) of unipotent character
sheaves on H (up to isomorphism) to the set of strata of H. To do this we use

the generalized Springer correspondence. We also give a new parametrization
of CS(H) in terms of data coming from bad characteristic.

Introduction

0.1. Let H be a reductive connected group over C. Let Pr = {2, 3, 5, . . . } be the
set of prime numbers; let Pr = Pr∪ {0}. For r ∈ Pr let kr be an algebraic closure
of a finite field with r elements and let Hr be a reductive connected group over kr of
the same type as H and with the same Weyl group W (with set of simple reflections
{si; i ∈ I}). We set k0 = C, H0 = H. Let Kr = C (if r = 0) and Kr = Q̄l where
l ∈ Pr− {r} (if r ∈ Pr). For r ∈ Pr let CS(Hr) be the (finite) set of isomorphism
classes of unipotent character sheaves on Hr. These are certain simple perverse
Kr-sheaves on Hr, see [L85]. It is known that CS(Hr) is independent of r in a
canonical way. Let Str(Hr) be the (finite) set of strata of Hr, see [L15]; these are
certain subsets of Hr (unions of conjugacy classes of fixed dimension) which form
a partition of Hr. (These subsets are locally closed in Hr, see [C20].)

In this paper we shall define for any r ∈ Pr a surjective map

(a) τ : CS(Hr) → Str(Hr).

In the remainder of this paper (except in 1.1 and 3.3) we shall assume that either
H is quasi-simple, that is, H modulo its centre is simple, or that H is a torus. (The
general case can be reduced in an obvious way to this case.)

Our definition of the map (a) is based on the generalized Springer correspondence
of [L84], especially in bad characteristic.

In 1.11 we use the map (a) to give a new parametrization of CS(Hr) which differs
from the known classification [L86] in terms of two-sided cells in the Weyl group.
This involves associating to each stratum a very small collection of finite groups
which come from unipotent classes in bad characteristic. (It would be interesting
to give a definition of these finite groups and of the resulting parametrization which
is purely in characteristic 0.)

This can be also viewed as a parametrization of
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(b) Un(Hr(Fq)), the set of unipotent representations of the group Hr(Fq) of
Fq-rational points of a split form of Hr over a finite subfield Fq of kr (with r ∈ Pr
and q a power of r).

Indeed, it is known that

(c) CS(Hr), Un(Hr(Fq)) are in a natural 1− 1 correspondence.

We will show elsewhere that similar results hold when H is replaced by a con-
nected component of a disconnected reductive group with identity component H.

A number of results of this paper rely on the wonderful paper [S85] of Nicolas
Spaltenstein and also on [LS85].

0.2. Notation. Assume thatG is a connected reductive group over an algebraically
closed field. We denote by ZG the centre of G and by Z0

G its identity component.
Let Gad be the adjoint group of G.

For g ∈ G we denote by ZG(g) the centralizer of g in G and by Z0
G(g) its identity

component.
If G′ is a subgroup of G, we denote by NG(G

′) the normalizer of G′ in G.
If W is a Weyl group we denote by Irr(W) the set of isomorphism classes of

irreducible representations of W over Q.

1. Definition of the map τ

1.1. For r ∈ Pr let CS∅(Hr) be the subset of CS(Hr) consisting of unipotent
cuspidal character sheaves.

Let A ∈ CS∅(Hr). The support of A is the closure in Hr of a single orbit of
Z0
Hr

×Hr acting on Hr by (z, g) : g1 �→ zgg1g
−1; this orbit is denoted by σA. Let

δ(A) be the dimension of the variety of Borel subgroups of Hr that contain a fixed
element h ∈ σA (this is independent of the choice of h). We have

CS∅(Hr) = �d∈NCS∅
d(Hr)

where CS∅
d(Hr) = {A ∈ CS∅(Hr); δ(A) = d}.

Lemma 1.2. For any d ∈ N the function r �→ �(CS∅
d(Hr)) from Pr to N is

constant; its value is denoted by Nd(H) ∈ N.

This can be deduced from the results in [L86]. (When Had is of type E8 or F4,
the results in loc. cit. are proved only under the assumption that r is not a bad
prime for H. But the same proof works without this assumption, by making use of
[S85, p. 336, 337].)

1.3. For r ∈ Pr and J ⊂ I we fix a Levi subgroup LJ,r of a parabolic subgroup of
Hr of type J . (For example, LI,r = Hr and L∅,r is a maximal torus.) We say that

J is cuspidal if for some (or equivalently any) r ∈ Pr we have CS∅(LJ,r) �= ∅. In
this case LJ,r is quasi-simple or a torus and J is uniquely determined by the type
of (LJ,r)ad. (This follows from the classification of cuspidal character sheaves.) Let
WJ be the Weyl group of LJ,r, viewed as a parabolic subgroup of W .

Let us now fix a cuspidal J and A′ ∈ CS∅(LJ,r). The induced object ind(A′) is
a well defined semisimple perverse sheaf on Hr (see [L85, §4]); it is in fact a direct
sum of character sheaves on Hr. By arguments in [L84, §3, §4], End(ind(A′))
has a canonical decomposition as a direct sum of lines ⊕wLw with w running
through NHr

(LJ,r)/LJ,r = NW (WJ)/WJ such that LwLw′ = Lww′ for any w,w′ in
NW (WJ)/WJ . One can verify that there is a unique A ∈ CS(Hr) such that A is



1128 G. LUSZTIG

a summand with multiplicity one of ind(A′) and the value of the a-function of W
on the two-sided cell of W attached to A is equal to the value of the a-function of
WJ on the two-sided cell of WJ attached to A′. Now the summand A of ind(A′)
is stable under each Lw and we can choose uniquely a nonzero vector tw ∈ Lw

which acts on A as identity. We have twtw′ = tww′ for any w,w′ in NW (WJ)/WJ .
We see that End(ind(A′)) is canonically the group algebra of NW (WJ)/WJ (which
is known to be a Weyl group). For any E′ ∈ Irr(NW (WJ )/WJ) let A′[E′] be the
perverse sheaf HomNW (WJ )/WJ

(E′, ind(A′)) on Hr. This is an object of CS(Hr).

1.4. Let CS′(Hr) be the set of triples (J,E′, A′) where J is a cuspidal subset of I,
E′ ∈ Irr(NW (WJ)/WJ ) and A′ ∈ CS∅(LJ,r). We have a bijection

(a) CS′(Hr)
∼−→ CS(Hr)

given by (J,E′, A′) �→ A′[E′].

1.5. Let r ∈ Pr. Let U(Hr) be the set of unipotent classes in Hr; for γ ∈ U(Hr)
the Springer correspondence (defined for any r in [L84]) associates to γ and the
constant local system Kr on γ an element er(γ) ∈ Irr(W ). Thus we have a well
defined (injective) map er : U(Hr) → Irr(W ), whose image is denoted by Irrr(W ).

Let CS∅(Hr)
un be the set of all A ∈ CS∅(Hr) such that σA = Z0

Hr
γA where

γA ∈ U(Hr). Let

CS′(Hr)
un = {(J,E′, A′) ∈ CS′(Hr);A

′ ∈ CS∅(LJ,r)
un}.

We define a map

(a) ẽr : CS′(Hr)
un → Irrr(W )

as follows. Let (J,E′, A′) ∈ CS′(Hr)
un. Then the unipotent class γA′ of LJ,r

is defined; the restriction of A′ to γA′ is (up to a shift) a cuspidal local system.
Now the generalized Springer correspondence [L84] associates to this cuspidal local
system and to E′ a unipotent class γ of Hr and an irreducible local system on it.
By definition, we have ẽr(J,E

′, A′) = er(γ).

1.6. Let

Irr∗(W ) = ∪r∈Pr Irrr(W ) = ∪r∈Pr Irrr(W ).

Let r ∈ Pr. In [L15] a bijection

(a) Str(Hr) → Irr∗(W )

is defined. Using this and 1.4(a), we see that defining τ in 0.1(a) is the same as
defining a map

τ r : CS′(Hr) → Irr∗(W ).

Lemma 1.7. Let d ∈ N be such that Nd(H) > 0 (see 1.2). Let X = {r ∈
Pr;CS∅

d(Hr) ⊂ CS∅(Hr)
un}. Then one of the following holds.

(i) X consists of a single element r0.
(ii) X = Pr and d ≥ 1. (In this case Had is of type E8, F4 or G2, d is 16, 4, 1

respectively and Nd(H) = 1.)
(iii) X = Pr and d = 0. (In this case H is a torus.)
(iv) X = ∅. (In this case d = 0 and Had is of type E8, F4 or G2.)

This follows from 3.2.
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1.8. Let r ∈ Pr. We will now define the map τ r : CS′(Hr) → Irr∗(W ). In the case
where I = ∅, this map is the bijection between two sets with one element. Assume
now that I �= ∅. Let (J,E′, A′) ∈ CS′(Hr). We want to define τr(J,E

′, A′).
Let X be as in Lemma 1.7 for LJ,r instead of Hr and for d ∈ N defined by

A′ ∈ CS∅
d(LJ,r).

Assume first that J �= I, J �= ∅. Then X is not as in 1.7(ii),(iii),(iv), hence it is as
in 1.7(i). Let r0 ∈ Pr be such that X = {r0}. We set τ r(J,E

′, A′) = ẽr0(J,E
′, A′).

Next we assume that J = I and X is as in 1.7(i). Let r0 ∈ Pr be such that
X = {r0}. We set τr(J,E

′, A′) = ẽr0(J,E
′, A′).

Next we assume that J = I and d,X are as in 1.7(ii). We have E′ = 1. We
set τ r(I, 1, A

′) = ẽr′(I, 1, A
′) where r′ ∈ Pr (this is independent of r′ by results in

[S85]).
If J = I then d cannot be as in 1.7(iii) since this would imply I = ∅, contrary to

our assumption.
Assume now that J = I and X is as in 1.7(iv). We have E′ = 1. We set

τr(I, 1, A
′) = unit representation.

Finally, assume that J = ∅. Then A′ is the constant sheaf Kr. For any r′ ∈ Pr
we set ẽr′(∅, E′,Kr) = E′

r′ . If E
′
r′ is independent of r

′, then τr(∅, E′,Kr) is defined
to be this constant value of E′

r′ . If E′
r′ is not independent of r′, then there is a

unique r0 ∈ Pr such that E′
r′ is constant for r

′ ∈ Pr− {r0}. (This is an issue only
in exceptional types where it can be checked from the tables in [S85].) We then
set τ r(∅, E′,Kr) = E′

r0 . This completes the definition of τ r hence also that of τ in
0.1(a).

1.9. Let r ∈ Pr. If Had is of classical type or of type E6, E7 or F4, then for any
E′ ∈ Irr(W ), E′

r′ is constant for r
′ ∈ Pr − {2}. It follows that

τr(∅, E′,Kr) = E′
2.

Hence if E′ ∈ Irr2(W ), then τr(∅, E′,Kr) = E′. If Had is of type G2, then for any
E′ ∈ Irr(W ), E′

r′ is constant for r
′ ∈ Pr − {3}. It follows that

τr(∅, E′,Kr) = E′
3.

Hence if E′ ∈ Irr3(W ), then τr(∅, E′,Kr) = E′. We see that if Had is not of type
E8, then τr(∅, E′,Kr) = E′ for E′ ∈ Irr∗(W ). The same holds if Had is of type E8

(we use the tables in [S85]).
Note that Irr∗(W ) can be viewed as a subset of CS′(Hr) by E′ �→ (∅, E′,Kr).

The results above show that τr can be viewed as a retraction of CS′(Hr) onto its
subset Irr∗(W ). In particular, τ r is surjective.

1.10. Let E ∈ Irr∗(W ). Let Pr(E) = {r′ ∈ Pr;E ∈ Irrr′(W )}. For r′ ∈ Pr(E) we
denote by γE the unique element of UHr′ such that er′(γE) = E (see 1.5). We set
Ar′,E = Z(Hr′ )ad

(u)/Z0
(Hr′)ad

(u) where u is in the image of γE underHr′ → (Hr′)ad;

this finite group is well defined up to isomorphism. If Pr(E) = Pr we define

Pr
′
(E) = {r′ ∈ Pr;Ar′,E

∼= A0,E}; this is a subset of Pr with finite complement.
We define a finite collection c(E) of finite groups as follows.

If Pr(E) = Pr = Pr
′
(E), then c(E) consists of A0,E .

If Pr(E) = Pr �= Pr
′
(E), then c(E) consists of {Ar′,E ; r

′ ∈ Pr − Pr
′
(E)}; one

can verify that for r′ �= r′′ in Pr− Pr
′
(E), we have Ar′,E �∼= Ar′′,E .
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If Pr(E) �= Pr, then Pr(E) consists of a single element r′0 ∈ Pr (we have
necessarily r′0 �= 0); then c(E) consists of Ar′0,E

.
If H is a torus, then c(E) consists of {1}. If Had is of type A,B,C or D, then

c(E) consists of a single group and this is a product of cyclic groups of order 2. If
Had is of exceptional type then c(E) consists of one of the following groups:

(a) 1, C2, C2 × C2, S3, Δ8, S3 × C2, S5

or one of the pair of groups:

(b) (C2, C3), (C4, C3), (C2 × C2, C2 × C3)

or the triple of groups:

(c) (C4, C3, C5).

(See the tables in §2.) Here Cm denotes a cyclic group of oder m, Sm denotes the
symmetric group in m letters, Δ8 denotes a dihedral group of order 8.

We now define a finite set c(E)∗ as follows. If c(E) consists of a single group

Γ then c(E)∗ = Γ̂. (For a finite group Γ we denote by Γ̂ the set of isomorphism
classes of irreducible representations of Γ over Kr.)

If c(E) consists of two groups Γ,Γ′ (see (b)), then Γ′′ = A0,E is well defined and
is a quotient of both Γ,Γ′. (We have Γ′′ = 1, 1, S2 respectively in the three cases

in (b).) Hence we can regard Γ̂′′ as a subset of Γ̂ and also as a subset of Γ̂′. We

define c(E)∗ = (Γ̂− Γ̂′′) � (Γ̂′ − Γ̂′′) � Γ̂′′.

If c(E) consists of three groups (see (c)) we define c(E)∗ = �m∈[1,6]Ĉ!
m where

Ĉ!
m consists of the faithful irreducible representations of Cm. (This case occurs only

when Had is of type E8 and when E = 1. The fact that Ĉ!
6 enters in the definition

should be connected to the fact that 6 appears as a coefficient of the highest root
of H.)

The following theorem can be deduced from the definitions using the results in
§2.

Theorem 1.11. Let r ∈ Pr. There exists a bijection

CS(Hr)
∼−→ �E∈Irr∗(W )c(E)∗

which makes the following diagram commutative:

CS(Hr) �E∈Irr∗(W )c(E)∗

Str(Hr) Irr∗(W )

∼

τ

∼

(The left vertical map is as in 0.1(a); the right vertical map is the obvious one; the
lower horizontal map is as in 1.6(a).)

2. Examples

2.1. Assume that Had is of type An−1, n ≥ 2. We have

CS′(Hr) = {(∅, E′,Kr);E
′ ∈ Irr(W )}, Irr∗(W ) = Irr(W ).

In this case τ r is the bijection (∅, E′,Kr) �→ E′.
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2.2. Assume that Had is of type Dn, n ≥ 4 or Bn, n ≥ 3, or Cn, n ≥ 2. If
Had is of type Dn, let CS′′(H) be the set of pairs (J,E′) where J is either ∅ (so
that NW (WJ)/WJ = W ) or J is such that WJ is of type D4k2 for some k ≥ 1
with 4k2 ≤ n (so that NW (WJ)/WJ is a Weyl group of type Bn−4k2) and E′ ∈
Irr(NW (WJ)/WJ). (We use the convention that a Weyl group of type B0 is {1}.)

If Had is of type Bn or Cn, let CS′′(H) be the set of pairs (J,E′) where J is
either ∅ (so that NW (WJ)/WJ = W ) or J is such that WJ is of type Bk(k+1) for
some k ≥ 1 with k(k + 1) ≤ n (so that NW (WJ)/WJ is a Weyl group of type
Bn−k(k+1)) and E′ ∈ Irr(NW (WJ)/WJ).

In any case we have a bijection CS′(Hr)
∼−→ CS′′(H) given by (J,E′, A′) �→

(J,E′). Moreover we have Irr∗(W ) = Irr2(W ). Hence the map τ r can be viewed as
a map

(a) CS′′(H) → Irr2(W ).

Now CS′′(H) can also be viewed as the set of pairs consisting of a cuspidal J and a
cuspidal local system on a unipotent class in LJ,2. The generalized Springer corre-
spondence [L84] attaches to such a pair a unipotent class in H2 and an irreducible
local system on it.

By forgetting this last local system and by identifying U(H2) with Irr2(W ) via
e2 (see 1.5), we obtain a map CS′′(Hr) → Irr2(W ) which, on the one hand, is
explicitly computed in [LS85] in terms of certain types of symbols and, on the
other hand, it coincides with the map (a).

2.3. In 2.4-2.8 we describe the map τ r in terms of tables in the case where Had is
of type G2, F4, E6, E7 or E8. The tables are computed using results in [S85] with
one indeterminacy in type E8 being removed by [H22].

In each case the table consists of a sequence of rows. There is one row for each
E ∈ Irr∗(W ); it is written as ()′.......()′′ where ()′ represents the fibre of τ r over E
and ()′′ is a sequence of finite groups of which the boxed ones describe c(E).

The elements of ()′ are written as symbols (J,E′, d)�=n. Such a symbol stands
for the n triples (J,E′, A′) in CS′(Hr) with J,E′ fixed and A′ running through

the set CS∅
d(LJ,r) (assumed to have n ≥ 1 elements). When n = 1 we omit the

subscript � = n. We specify J by indicating the type of WJ . (For example, in
the table for E8 in 2.8, the row of 81 contains an item (E6, εc, 0)� which stands for
two objects; in the triple (E6, εc, 0), E6 represents a subset of type E6 of the simple
reflections, εc is a certain representation of a Weyl group of type G2 and 0 represents
the dimension of a certain variety.) When J = ∅ we must have d = 0, n = 1 and we
write E′ instead of (J,E′, d). Note that the first entry in ()′ is E itself.

The groups in ()′′ are as follows. If Pr(E) = Pr = Pr
′
(E) then ()′′ consists of

the single group in c(E) put inside a box.

If Pr(E) = Pr �= Pr
′
(E) then ()′′ is Γ,Γ′, (Γ′′) where Γ = A2,E ,Γ

′ = A3,E ,Γ
′′ =

A0,E ; the boxed entries Γ or Γ′′ or both represent the set c(E); an exception is
when E = 1 in type E8: in this case ()′′ is Γ,Γ′,Γ′′, (1) where Γ = A2,E = C4,Γ′ =
A3,E = C3,Γ′′ = A5,E = C5,A0,E = 1 and c(E) consists of Γ,Γ′,Γ′′ (all boxed).

If Pr(E) �= Pr then Pr − Pr(E) = {r′0} where r′0 ∈ {2, 3}. If r′0 = 2 then ()′′ is
Γ,−, (−) where Γ = A2,E and c(E) consists of Γ (it is boxed); if r′0 = 3 then ()′′ is
−,Γ′, (−) where Γ′ = A3,E and c(E) consists of Γ′ (it is boxed).

If Had is of type G2, we have J = ∅ or WJ = W with NW (WJ)/WJ = {1}.
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If Had is of type F4, we have J = ∅ or WJ of type B2 with NW (WJ)/WJ of type
B2 or WJ = W with NW (WJ)/WJ = {1}.

If Had is of type E6, we have J = ∅ or WJ of type D4 with NW (WJ)/WJ of type
A2 or WJ = W with NW (WJ)/WJ = {1}.

If Had is of type E7, we have J = ∅ or WJ of type D4 with NW (WJ)/WJ

of type B3 or WJ of type E6 with NW (WJ)/WJ of type A1 or WJ = W with
NW (WJ)/WJ = {1}.

If Had is of type E8, we have J = ∅ or WJ of type D4 with NW (WJ)/WJ of
type F4 or WJ of type E6 with NW (WJ)/WJ of type G2 or WJ of type E7 with
NW (WJ)/WJ of type A1 or WJ = W with NW (WJ)/WJ = {1}.

The notation for the elements of Irr(W ) or Irr(NW (WJ)/WJ) is taken from [S85]
with one note of caution. In the case where Had is of type E8 and WJ is of type
E6, the two 2-dimensional irreducible representations θ′, θ′′ of NW (WJ )/WJ which
appear in the generalized Springer correspondence with r = 3 are identified in [S85]
only up to order. This indeterminacy is removed in [H22] which shows that θ′ is
the reflection representation.

Table 2.4. Table for G2

ε ....... 1

εl ....... −, 1 , (−)

εc ....... 1

θ′′ ....... 1

θ′, (G2, 1, 1) ....... S3, C2 , (S3)

1, (G2, 1, 0)�=3 ....... C2, C3 , (1)

Table 2.5. Table for F4

χ1,4 ....... 1

χ2,4 ....... 1

χ2,2 ....... 1 , −, (−)

χ4,4 ....... 1 , C2, (C2)

χ9,4 ....... 1

χ8,4, χ1,2 ....... C2
χ8,2, χ1,3 ....... C2 , 1, (1)

χ4, (B2, ε, 0) ....... C2 , −, (−)

χ4,3 ....... 1 , −, (−)

χ4,2 ....... 1

χ9,3 ....... 1 , −, (−)
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Table 2.5. (Continued from previous page)

χ9,2 ....... 1 , C2, (C2)

χ6,1 ....... 1

χ16 ....... 1 , C2, (C2)

χ12, χ6,2, (F4, 1, 4) ....... S3 , S4, (S4)

χ8,3, (B2, εl, 0) ....... C2 , 1, (1)

χ8,1, (B2, εc, 0) ....... C2 , 1, (1)

χ9,1, χ2,1, χ2,3, (B2, θ, 0), (F4, 1, 2) ....... Δ8 , C2, (C2)

χ4,1, (F4, 1, 1) ....... C2
χ1,1, (B2, 1, 0), (F4, 1, 0)�=4 ....... C4, C3 , (1)

Table 2.6. Table for E6

136 ....... 1

625 ....... 1

2020 ....... 1

1516 ....... 1

3015, 1517 ....... C2
6413 ....... 1

2412 ....... 1

6011 ....... 1

8110 ....... 1

109 ....... 1

608 ....... 1

807, 908, 2010 ....... S3

816 ....... 1

246, (D4, ε, 0) ....... S2 , 1, (1)

605 ....... 1

644 ....... 1

154 ....... 1

303, 155 ....... C2



1134 G. LUSZTIG

Table 2.6. (Continued from previous page)

202, (D4, φ, 0) ....... C2 , 1, (1)

61 ....... 1

10, (D4, 1, 0), (E6, 1, 0)�=2 ....... C2, C3 , (1)

Table 2.7. Table for E7

163 ....... 1

746 ....... 1

2737 ....... 1

2136 ....... 1

3531 ....... 1

5630, 2133 ....... C2
1528 ....... 1

12025, 10528 ....... C2
18922 ....... 1

10521 ....... 1

16821 ....... 1

21021 ....... 1

18920 ....... 1

7018 ....... 1

28017 ....... 1

31516, 28018, 3522 ....... S3

21616 ....... 1

40515, 18917 ....... C2
10515, (D4, (0, 1

3), 0) ....... C2 , 1, (1)

8415 ....... 1 , −, (−)

37814 ....... 1 , C2, (C2)

21013 ....... 1

42013, 33614 ....... C2
8412, (D4, (1

3, 0), 0) ....... C2
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Table 2.7. (Continued from previous page)

10512 ....... 1

51211, 51212 ....... C2
21010 ....... 1

42010, 33611 ....... C2
3789 ....... 1

2169 ....... 1

709 ....... 1

2808 ....... 1

4058, 18910 ....... C2
1897, (D4, (1, 1

2), 0) ....... C2 , 1, (1)

3157, 2809, 3513 ....... S3

1686, (D4, (1
2, 1), 0) ....... C2 , 1, (1)

2106, (D4, (0, 21), 0) ....... C2 , 1, (1)

1056, 157 ....... C2 , 1, (1)

1895 ....... 1 , C2, (C2)

354, (D4, (21, 0), 0) ....... C2 , 1, (1)

1204, 1055 ....... C2
213, (D4, (1, 2), 0), (E6, 1, 0)�=2 ....... C2, C3 , (1)

563, 216 ....... C2
272, (D4, (2, 1), 0) ....... C2 , 1, (1)

71, (D4, (0, 3), 0) ....... C2 , 1, (1)

10, (D4, (3, 0), 0), (E6, 1, 0)�=2, (E7, 1, 0)�=2 ....... C4, C3 , (1)

Table 2.8. Table for E8

1120 ....... 1

891 ....... 1

3574 ....... 1

8464 ....... 1

11263, 2868 ....... C2
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Table 2.8. (Continued from previous page)

5056 ....... 1

21052, 16055 ....... C2
56047 ....... 1

56746 ....... 1

40043 ....... 1

70042, 30044 ....... C2
44839 ....... 1

134438 ....... 1

140037, 100839, 5649 ....... S3

17536 ....... 1

52536, (D4, χ1,4, 0) ....... C2 , 1, (1)

105034 ....... 1

140032, 157534, 35038 ....... S3

97232 ....... 1 , −, (−)

324031 ....... 1 , C2, (C2)

226830, 129633 ....... C2
140029 ....... 1

224028, 84031 ....... C2
70028, (D4, χ2,2, 0) ....... C2 , 1, (1)

84026 ....... 1

409626, 409627 ....... C2
280025, 210028 ....... C2
420024, 336025 ....... C2

16824, (D4, χ1,3, 0) ....... C2 , −, (−)

453623 ....... 1

283522 ....... 1

607522 ....... 1

320032 ....... 1

420021 ....... 1 , C2, (C2)

560021, 240023 ....... C2
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Table 2.8. (Continued from previous page)

42020 ....... 1

210020, (D4, χ4,4, 0) ....... C2 , 1, (1)

134419 ....... 1

201619 ....... 1

315018, 113420 ....... C2
420018, 268820 ....... C2

716817, 560019, 44825 ....... S3

320016, (D4, χ8,2, 0) ....... C2 , 1, (1)

448016, 567018, 453618, 140020,
....... S5

168022, 7032, (E8, 1, 16)

560015, 240017, (D4, χ9,4, 0), (D4, χ2,4, 0) ....... C2 × C2 , C2, (C2)

420015, 70016 ....... C2 , 1, (1)

283514 ....... 1

607514 ....... 1 , C2, (C2)

84014, (D4, χ4,3, 0) ....... C2 , −, (−)

453613 ....... 1 , C2, (C2)

280013, 210016 ....... C2
97212, (D4, χ9,3, 0) ....... C2 , 1, (1)

420012, 336013 ....... C2
52512, (D4, χ8,4, 0), (E6, ε, 0)�=2 ....... C2, C3 , (1)

17512 ....... −, 1 , (−)

140011 ....... 1

409611, 409612 ....... C2
226810, 129613 ....... C2
224010, 84013 ....... S3, C2 , (S3)

105010, (D4, χ4, 0) ....... C2 , −, (−)

32409 ....... 1 , C2, (C2)

4489, (D4, χ6,1, 0), (E6, εl, 0)�=2 ....... C2, C3 , (1)

13448, (D4, χ16, 0) ....... C2 , 1, (1)

14008, 157510, 35014 ....... S3



1138 G. LUSZTIG

Table 2.8. (Continued from previous page)

14007, 10089, 5619, (D4, χ12, 0),
....... S3 × C2 , S3, (S3)

(D4, χ6,2, 0), (E8, 1, 7)

4007, (D4, χ2,3, 0) ....... C2 , 1, (1)

7006, 3008, 509, (D4, χ8,3, 0), (E8, 1, 6) ....... Δ8 , C2, (C2)

5676, (D4, χ9,2, 0) ....... C2 , 1, (1)

5605, (D4, χ4,2, 0) ....... C2
2104, 1607 ....... C2

844, (D4, χ9,1, 0), (E6, θ
′′, 0)�=2, (E7, 1, 0)�=2 ....... C4, C3 , (1)

1123, 288, (D4, χ8,1, 0), (D4, χ1,2, 0),
....... C2 × C2, C2 × C3 , (C2)

(E6, θ
′, 0)�=2, (E8, 1, 3)�=2

352, (D4, χ4,1, 0) ....... C2 , 1, (1)

81, (D4, χ2,1, 0), (E6, εc, 0)�=2, (E8, 1, 1)�=2 ....... C4, C3 , (1)

10, (D4, χ1,1, 0), (E6, 1, 0)�=2,
....... C4, C3, C5 , (1)

(E7, 1, 0)�=2, (E8, 1, 0)�=6

3. Complements

3.1. The restriction of the map τ in 0.1(a) to CS∅(Hr) has an alternative definition.
Namely, for A ∈ CS∅(Hr), there is a unique stratum X ∈ Str(Hr) such that
σA ⊂ X (notation of 1.1); we have τ (A) = X.

3.2. The results in this subsection can be used to verify 1.7. In the examples below
we assume that H is semisimple, H �= {1}, and for A ∈ CS∅(Hr) we denote by s
the semisimple part of an element of σA. We describe the structure of Z0

Hr
(s) in

various cases. We also specify the value of X in 1.7.
If H is of type Cn with n = k(k + 1), k ≥ 1 then:
if r �= 2 then Z0

Hr
(s) is of type Cn/2 ×Cn/2; if r = 2 then Z0

Hr
(s) = Hr. Thus X

is as in 1.7(i).
If H is of type Bn with n = k(k + 1), k ≥ 1 then:
if r �= 2 then Z0

Hr
(s) is of type Ba ×Db where (2a+1, 2b) = ((k+1)2, k2) if k is

even and (2a+ 1, 2b) = (k2, (k + 1)2) if k is odd; if r = 2 then Z0
Hr

(s) = Hr. Thus
X is as in 1.7(i).

If H is of type Dn with n = 4k2, k ≥ 1 then:
if r �= 2 then Z0

Hr
(s) is of type D2k2 ×D2k2 ; if r = 2 then Z0

Hr
(s) = Hr. Thus

X is as in 1.7(i).

If H is of type G2 and A ∈ CS∅
d(Hr) then:

if d = 1 then Z0
Hr

(s) = Hr (thus X is as in 1.7(ii)); if d = 0 and r /∈ {2, 3} then

Z0
Hr

(s) is of type A2 for two values of A and of type A1 ×A1 for the third value of

A; if d = 0 and r = 2 then Z0
Hr

(s) is of type A2 for two values of A and is Hr for
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the third value of A; if d = 0 and r = 3 then Z0
Hr

(s) is Hr for two values of A and
is of type A1 ×A1 for the third value of A. Thus X is as in 1.7(iv).

If H is of type F4 and A ∈ CS∅
d(Hr) then:

if d = 4 then Z0
Hr

(s) = Hr (thus X is as in 1.7(ii));

if d = 2, r �= 2, then Z0
Hr

(s) is of type B4; if d = 2, r = 2, then Z0
Hr

(s) = Hr

(thus X is as in 1.7(i));
if d = 1, r �= 2, then Z0

Hr
(s) is of type C3×A1; if d = 1, r = 2, then Z0

Hr
(s) = Hr

(thus X is as in 1.7(i));
if d = 0, r /∈ {2, 3}, then Z0

Hr
(s) is of type A2 × A2 for two values of A and of

type A3 ×A1 for the other two values of A; if d = 0, r = 2, then Z0
Hr

(s) is of type
A2×A2 for two values of A and is Hr for the other two values of A; if d = 0, r = 3,
then Z0

Hr
(s) is of type A3 × A1 for two values of A and is Hr for the other two

values of A. Thus X is as in 1.7(iv).
If H is of type E6 then:
if r �= 3, then Z0

Hr
(s) is of type A2 ×A2 ×A2; if r = 3, then Z0

Hr
(s) = Hr. Thus

X is as in 1.7(i).
If H is of type E7 then d = 0 and:
if r �= 2, then Z0

Hr
(s) is of type A3 ×A3 ×A1; if r = 2, then Z0

Hr
(s) = Hr. Thus

X is as in 1.7(i).

If H is of type E8 and A ∈ CS∅
d(Hr) then:

if d = 16 then Z0
Hr

(s) = Hr (thus X is as in 1.7(ii)).

if d = 7 and r �= 2 then Z0
Hr

(s) is of type E7 × A1; if d = 7 and r = 2 then

Z0
Hr

(s) = Hr (thus X is as in 1.7(i));

if d = 6 and r �= 2 then Z0
Hr

(s) is of typeD8; if d = 6 and r = 2 then Z0
Hr

(s) = Hr

(thus X is as in 1.7(i));
if d = 3 and r �= 3 then Z0

Hr
(s) is of type E6 × A2; if d = 3 and r = 3 then

Z0
Hr

(s) = Hr (thus X is as in 1.7(i));

if d = 1 and r �= 2 then Z0
Hr

(s) is of type D5 × A3; if d = 1 and r = 2 then

Z0
Hr

(s) = Hr (thus X is as in 1.7(i));

if d = 0 and r /∈ {2, 3, 5} then Z0
Hr

(s) is of type A4×A4 for four values of A and

of type A5 ×A2 ×A1 for two values of A; if d = 0 and r = 5 then Z0
Hr

(s) is Hr for
four values of A and of type A5 × A2 × A1 for two values of A; if d = 0 and r = 3
then Z0

Hr
(s) is of type A4 × A4 for four values of A and of type E7 × A1 for two

values of A; if d = 0 and r = 2 then Z0
Hr

(s) is of type A4 ×A4 for four values of A
and of type E6 ×A2 for two values of A. Thus X is as in 1.7(iv).

The results in this section (for H of type E8 and d = 0) contradict the statement
(f) on p. 351 in [Sh95]. (Indeed, if r = 2 there is no semisimple s ∈ H2 with ZH2

(s)
of type A5 ×A2 ×A1.)

3.3. Let H∗ be a connected reductive group over C of type dual to that of H. Let
CS(H) be the set of isomorphism classes of (not necessarily unipotent) character
sheaves on H. We now assume that ZH = Z0

H . It is known that we can identify
CS(H) with �sCS(ZH∗(s)∗) where s runs over the semisimple elements of finite
order of H∗ up to conjugacy. Using 0.1(a), we obtain a surjective map CS(H) →
�sStr(ZH∗(s)∗). From [L15] we can identify Str(ZH∗(s)∗) = Str(ZH∗(s)). Hence
we obtain a surjective map

CS(H) → �sStr(ZH∗(s)).



1140 G. LUSZTIG

3.4. Let X ′
H be the set of numbers which appear as coefficients of the highest root

of H; let XH = X ′
H ∪{1}. Note that XH consists of the numbers 1, 2, . . . , zH where

zH = 1 for H of type A, zH = 2 for H of type B,C,D, zH = 3 for H of type G2 or
E6, zH = 4 for H of type F4 or E7, zH = 6 for H of type E8.

We note the following property (which can be verified from the results in §2).
(a) The fibre of τ in 0.1(a) at the stratum consisting of regular elements in Hr

(or equivalently at E = 1 ∈ Irr∗(W )) is in bijection with the set

(b) �m∈N;1≤m≤zHρm

where ρm is the set of primitive mth roots of 1 in Kr.

It is remarkable that the set (b) appears also in a quite different situation. Let
r, q,Hr(Fq) be as in 0.1(b). We can view Hr(Fq) as a fixed point set of a Frobenius
map F : Hr → Hr. For any w ∈ W let Xw be the variety attached to Hr, F, w
in [DL76]. Now F acts on the cohomology with compact support Hi

c(Xw) of Xw

and in particular on H
|w|
c (Xw). (We denote by |w| the length of w.) Let w be a

Coxeter element of minimal length in W . From [L76] it is known that the F -action

on H
|w|
c (Xw) is semisimple and that the eigenspaces are irreducible (unipotent)

representations of Hr(Fq). These unipotent representations are in bijection with
the character sheaves in the fibre of τ at E = 1. (We use the usual bijection
Un(Hr(Fq)) ↔ CS(Hr) composed with the involution of Un(Hr(Fq)) which inter-
changes “small” representations with “big” representations.) The eigenvalues of
the F -action are listed in [L76, p. 146, 147]. It turns out that

(c) these eigenvalues are exactly the roots of 1 in (b) times integral powers of
q1/2.

3.5. Let cl(W ) be the set of conjugacy classes in W . In [L15, §4], a surjective map
Φ : cl(W ) → Irr∗(W ) is defined. In [L15, 4.10] a map Irr∗(W ) → cl(W ), E → CE ,
is described; it is such that Φ(CE) = E for all E ∈ Irr∗(W ), hence its image

cl∗(W ) ⊂ cl(W ) is such that Φ restricts to a bijection cl∗(W )
∼−→ Irr∗(W ). This

allows us to identify the sets cl∗(W ), Irr∗(W ) = Str(Hr), so that τ : CS(Hr) →
Str(Hr) becomes a surjective map

(a) τ ′ : Un(Hr(Fq)) → cl∗(W )

(with r, q,Hr(Fq) as in 0.1(b), see 0.1(c)). Let Un∅(Hr(Fq)) be the subset of
Un(Hr(Fq)) consisting of unipotent cuspidal representations.

One can verify that the restriction of τ ′ to Un∅(Hr(Fq)) coincides with the map
ρ �→ Cρ in [L02, 2.17]. From [L02] we see that

(b) for any ρ ∈ Un∅(Hr(Fq)), ρ appears with multiplicity 1 in H
|w|
c (Xw) (nota-

tion of 3.4) where w is an element of minimal length in τ ′(ρ).

3.6. In this subsection we assume that Hr is the symplectic group with W of
type B2. The simple reflections s1, s2 satisfy s1s2s1s2 = s2s1s2s1. We have
Irr∗(W ) = Irr(W ) = Irr2(W ); this set consists of 1, ρ, ε1, ε2, ε where ρ is the reflec-
tion representation, ε is the sign representation and ε1, ε2 are the one-dimensional
representations other than 1, ε. We have cl(W ) = cl∗(W ). (The numbering of s1, s2
and of ε1, ε2 is chosen so that (a),(b) below hold.)
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The conjugacy classes in W are (1), (s1), (s2), (s1s2), (s1s2s1s2) where (w) is the
conjugacy class of w ∈ W . The bijection Irr∗(W ) → cl∗(W ) is given by

(a) 1 �→ (s1s2), ρ �→ (s1s2s1s2), ε1 �→ (s1), ε2 �→ (s2), ε �→ (1).

There are five strata; they are indexed by the elements of Irr∗(W ); we denote them
by σ(1), σ(ρ), σ(ε1), σ(ε2), σ(ε). Here

(b) σ(1) is the union of all conjugacy classes of dimension 8; σ(ρ) is the union
of all conjugacy classes of dimension 6; σ(ε1) is a conjugacy class of dimension 4
(a semisimple one if r �= 2 and a unipotent one if r = 2; σ(ε2) is a union of one (if
r = 2) or two (if r �= 2) conjugacy classes of dimension 4; σ(ε) is the centre of Hr.

CS(Hr) consists of six objects: Q̄l[1], Q̄l[ρ], Q̄l[ε1], Q̄l[ε2], Q̄l[ε] and A (an
object of CS∅(Hr)). The map τ is Q̄l[1] �→ 1, Q̄l[ρ] �→ ρ, Q̄l[ε1] �→ ε1, Q̄l[ε2] �→ ε2,
Q̄l[ε] �→ ε, A �→ 1.
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