UNIPOTENT CHARACTER SHEAVES AND STRATA OF A REDUCTIVE GROUP

G. LUSZTIG

ABSTRACT. Let H be a connected reductive group over an algebraically closed field. We define a surjective map from the set CS(H) of unipotent character sheaves on H (up to isomorphism) to the set of strata of H. To do this we use the generalized Springer correspondence. We also give a new parametrization of CS(H) in terms of data coming from bad characteristic.

INTRODUCTION

0.1. Let H be a reductive connected group over \mathbf{C} . Let $Pr = \{2, 3, 5, ...\}$ be the set of prime numbers; let $\overline{Pr} = Pr \cup \{0\}$. For $r \in Pr$ let \mathbf{k}_r be an algebraic closure of a finite field with r elements and let H_r be a reductive connected group over \mathbf{k}_r of the same type as H and with the same Weyl group W (with set of simple reflections $\{s_i; i \in I\}$). We set $\mathbf{k}_0 = \mathbf{C}, H_0 = H$. Let $K_r = \mathbf{C}$ (if r = 0) and $K_r = \bar{\mathbf{Q}}_l$ where $l \in Pr - \{r\}$ (if $r \in Pr$). For $r \in \overline{Pr}$ let $CS(H_r)$ be the (finite) set of isomorphism classes of unipotent character sheaves on H_r . These are certain simple perverse K_r -sheaves on H_r , see [L85]. It is known that $CS(H_r)$ is independent of r in a canonical way. Let $Str(H_r)$ be the (finite) set of strata of H_r , see [L15]; these are certain subsets of H_r (unions of conjugacy classes of fixed dimension) which form a partition of H_r . (These subsets are locally closed in H_r , see [C20].)

In this paper we shall define for any $r \in \overline{Pr}$ a surjective map

(a)
$$\tau: CS(H_r) \to Str(H_r).$$

In the remainder of this paper (except in 1.1 and 3.3) we shall assume that either H is quasi-simple, that is, H modulo its centre is simple, or that H is a torus. (The general case can be reduced in an obvious way to this case.)

Our definition of the map (a) is based on the generalized Springer correspondence of [L84], especially in bad characteristic.

In 1.11 we use the map (a) to give a new parametrization of $CS(H_r)$ which differs from the known classification [L86] in terms of two-sided cells in the Weyl group. This involves associating to each stratum a very small collection of finite groups which come from unipotent classes in bad characteristic. (It would be interesting to give a definition of these finite groups and of the resulting parametrization which is purely in characteristic 0.)

This can be also viewed as a parametrization of

Received by the editors January 26, 2023, and, in revised form, July 27, 2023, August 13, 2023, and September 5, 2023.

²⁰²⁰ Mathematics Subject Classification. Primary 20G99.

The author was supported by NSF grant DMS-2153741.

(b) $Un(H_r(F_q))$, the set of unipotent representations of the group $H_r(F_q)$ of F_q -rational points of a split form of H_r over a finite subfield F_q of \mathbf{k}_r (with $r \in Pr$ and q a power of r).

Indeed, it is known that

(c) $CS(H_r), Un(H_r(F_q))$ are in a natural 1-1 correspondence.

We will show elsewhere that similar results hold when H is replaced by a connected component of a disconnected reductive group with identity component H.

A number of results of this paper rely on the wonderful paper [S85] of Nicolas Spaltenstein and also on [LS85].

0.2. Notation. Assume that G is a connected reductive group over an algebraically closed field. We denote by Z_G the centre of G and by Z_G^0 its identity component. Let G_{ad} be the adjoint group of G.

For $g \in G$ we denote by $Z_G(g)$ the centralizer of g in G and by $Z_G^0(g)$ its identity component.

If G' is a subgroup of G, we denote by $N_G(G')$ the normalizer of G' in G.

If \mathcal{W} is a Weyl group we denote by $Irr(\mathcal{W})$ the set of isomorphism classes of irreducible representations of \mathcal{W} over \mathbf{Q} .

1. Definition of the map τ

1.1. For $r \in \overline{Pr}$ let $CS^{\emptyset}(H_r)$ be the subset of $CS(H_r)$ consisting of unipotent cuspidal character sheaves.

Let $A \in CS^{\emptyset}(H_r)$. The support of A is the closure in H_r of a single orbit of $Z^0_{H_r} \times H_r$ acting on H_r by $(z,g) : g_1 \mapsto zgg_1g^{-1}$; this orbit is denoted by σ_A . Let $\delta(A)$ be the dimension of the variety of Borel subgroups of H_r that contain a fixed element $h \in \sigma_A$ (this is independent of the choice of h). We have

$$CS^{\emptyset}(H_r) = \sqcup_{d \in \mathbf{N}} CS^{\emptyset}_d(H_r)$$

where $CS_d^{\emptyset}(H_r) = \{A \in CS^{\emptyset}(H_r); \delta(A) = d\}.$

Lemma 1.2. For any $d \in \mathbf{N}$ the function $r \mapsto \sharp(CS_d^{\emptyset}(H_r))$ from \overline{Pr} to \mathbf{N} is constant; its value is denoted by $N_d(H) \in \mathbf{N}$.

This can be deduced from the results in [L86]. (When H_{ad} is of type E_8 or F_4 , the results in *loc. cit.* are proved only under the assumption that r is not a bad prime for H. But the same proof works without this assumption, by making use of [S85, p. 336, 337].)

1.3. For $r \in \overline{Pr}$ and $J \subset I$ we fix a Levi subgroup $L_{J,r}$ of a parabolic subgroup of H_r of type J. (For example, $L_{I,r} = H_r$ and $L_{\emptyset,r}$ is a maximal torus.) We say that J is cuspidal if for some (or equivalently any) $r \in \overline{Pr}$ we have $CS^{\emptyset}(L_{J,r}) \neq \emptyset$. In this case $L_{J,r}$ is quasi-simple or a torus and J is uniquely determined by the type of $(L_{J,r})_{ad}$. (This follows from the classification of cuspidal character sheaves.) Let W_J be the Weyl group of $L_{J,r}$, viewed as a parabolic subgroup of W.

Let us now fix a cuspidal J and $A' \in CS^{\emptyset}(L_{J,r})$. The induced object $\operatorname{ind}(A')$ is a well defined semisimple perverse sheaf on H_r (see [L85, §4]); it is in fact a direct sum of character sheaves on H_r . By arguments in [L84, §3, §4], End($\operatorname{ind}(A')$) has a canonical decomposition as a direct sum of lines $\bigoplus_w \mathcal{L}_w$ with w running through $N_{H_r}(L_{J,r})/L_{J,r} = N_W(W_J)/W_J$ such that $\mathcal{L}_w\mathcal{L}_{w'} = \mathcal{L}_{ww'}$ for any w, w' in $N_W(W_J)/W_J$. One can verify that there is a unique $A \in CS(H_r)$ such that A is a summand with multiplicity one of $\operatorname{ind}(A')$ and the value of the *a*-function of Won the two-sided cell of W attached to A is equal to the value of the *a*-function of W_J on the two-sided cell of W_J attached to A'. Now the summand A of $\operatorname{ind}(A')$ is stable under each \mathcal{L}_w and we can choose uniquely a nonzero vector $t_w \in \mathcal{L}_w$ which acts on A as identity. We have $t_w t_{w'} = t_{ww'}$ for any w, w' in $N_W(W_J)/W_J$. We see that $\operatorname{End}(\operatorname{ind}(A'))$ is canonically the group algebra of $N_W(W_J)/W_J$ (which is known to be a Weyl group). For any $E' \in \operatorname{Irr}(N_W(W_J)/W_J)$ let A'[E'] be the perverse sheaf $\operatorname{Hom}_{N_W(W_J)/W_J}(E', \operatorname{ind}(A'))$ on H_r . This is an object of $CS(H_r)$.

1.4. Let $CS'(H_r)$ be the set of triples (J, E', A') where J is a cuspidal subset of I, $E' \in \operatorname{Irr}(N_W(W_J)/W_J)$ and $A' \in CS^{\emptyset}(L_{J,r})$. We have a bijection

(a)
$$CS'(H_r) \xrightarrow{\sim} CS(H_r)$$

given by $(J, E', A') \mapsto A'[E']$.

1.5. Let $r \in \overline{Pr}$. Let $\mathcal{U}(H_r)$ be the set of unipotent classes in H_r ; for $\gamma \in \mathcal{U}(H_r)$ the Springer correspondence (defined for any r in [L84]) associates to γ and the constant local system K_r on γ an element $e_r(\gamma) \in \operatorname{Irr}(W)$. Thus we have a well defined (injective) map $e_r : \mathcal{U}(H_r) \to \operatorname{Irr}(W)$, whose image is denoted by $\operatorname{Irr}_r(W)$.

Let $CS^{\emptyset}(H_r)^{un}$ be the set of all $A \in CS^{\emptyset}(H_r)$ such that $\sigma_A = Z^0_{H_r} \gamma_A$ where $\gamma_A \in \mathcal{U}(H_r)$. Let

$$CS'(H_r)^{un} = \{ (J, E', A') \in CS'(H_r); A' \in CS^{\emptyset}(L_{J,r})^{un} \}.$$

We define a map

(a)
$$\tilde{e}_r : CS'(H_r)^{un} \to \operatorname{Irr}_r(W)$$

as follows. Let $(J, E', A') \in CS'(H_r)^{un}$. Then the unipotent class $\gamma_{A'}$ of $L_{J,r}$ is defined; the restriction of A' to $\gamma_{A'}$ is (up to a shift) a cuspidal local system. Now the generalized Springer correspondence [L84] associates to this cuspidal local system and to E' a unipotent class γ of H_r and an irreducible local system on it. By definition, we have $\tilde{e}_r(J, E', A') = e_r(\gamma)$.

$$\operatorname{Irr}_{*}(W) = \bigcup_{r \in Pr} \operatorname{Irr}_{r}(W) = \bigcup_{r \in \overline{Pr}} \operatorname{Irr}_{r}(W).$$

Let $r \in \overline{Pr}$. In [L15] a bijection

(a)
$$Str(H_r) \to Irr_*(W)$$

is defined. Using this and 1.4(a), we see that defining τ in 0.1(a) is the same as defining a map

$$\underline{\tau}_r : CS'(H_r) \to \operatorname{Irr}_*(W).$$

Lemma 1.7. Let $d \in \mathbf{N}$ be such that $N_d(H) > 0$ (see 1.2). Let $X = \{r \in Pr; CS_d^{\emptyset}(H_r) \subset CS^{\emptyset}(H_r)^{un}\}$. Then one of the following holds.

(i) X consists of a single element r_0 .

(ii) X = Pr and $d \ge 1$. (In this case H_{ad} is of type E_8, F_4 or G_2, d is 16, 4, 1 respectively and $N_d(H) = 1$.)

- (iii) X = Pr and d = 0. (In this case H is a torus.)
- (iv) $X = \emptyset$. (In this case d = 0 and H_{ad} is of type E_8 , F_4 or G_2 .)

This follows from 3.2.

1.8. Let $r \in \overline{Pr}$. We will now define the map $\underline{\tau}_r : CS'(H_r) \to \operatorname{Irr}_*(W)$. In the case where $I = \emptyset$, this map is the bijection between two sets with one element. Assume now that $I \neq \emptyset$. Let $(J, E', A') \in CS'(H_r)$. We want to define $\underline{\tau}_r(J, E', A')$.

Let X be as in Lemma 1.7 for $L_{J,r}$ instead of H_r and for $d \in \mathbf{N}$ defined by $A' \in CS_d^{\emptyset}(L_{J,r})$.

Assume first that $J \neq I$, $J \neq \emptyset$. Then X is not as in 1.7(ii),(iii),(iv), hence it is as in 1.7(i). Let $r_0 \in Pr$ be such that $X = \{r_0\}$. We set $\underline{\tau}_r(J, E', A') = \tilde{e}_{r_0}(J, E', A')$. Next we assume that J = I and X is as in 1.7(i). Let $r_0 \in Pr$ be such that $X = \{r_0\}$. We set $\underline{\tau}_r(J, E', A') = \tilde{e}_{r_0}(J, E', A')$.

Next we assume that J = I and d, X are as in 1.7(ii). We have E' = 1. We set $\underline{\tau}_r(I, 1, A') = \tilde{e}_{r'}(I, 1, A')$ where $r' \in \overline{Pr}$ (this is independent of r' by results in [S85]).

If J = I then d cannot be as in 1.7(iii) since this would imply $I = \emptyset$, contrary to our assumption.

Assume now that J = I and X is as in 1.7(iv). We have E' = 1. We set $\underline{\tau}_r(I, 1, A') = \text{unit representation}$.

Finally, assume that $J = \emptyset$. Then A' is the constant sheaf K_r . For any $r' \in Pr$ we set $\tilde{e}_{r'}(\emptyset, E', K_r) = E'_{r'}$. If $E'_{r'}$ is independent of r', then $\underline{\tau}_r(\emptyset, E', K_r)$ is defined to be this constant value of $E'_{r'}$. If $E'_{r'}$ is not independent of r', then there is a unique $r_0 \in Pr$ such that $E'_{r'}$ is constant for $r' \in Pr - \{r_0\}$. (This is an issue only in exceptional types where it can be checked from the tables in [S85].) We then set $\underline{\tau}_r(\emptyset, E', K_r) = E'_{r_0}$. This completes the definition of $\underline{\tau}_r$ hence also that of τ in 0.1(a).

1.9. Let $r \in \overline{Pr}$. If H_{ad} is of classical type or of type E_6, E_7 or F_4 , then for any $E' \in \operatorname{Irr}(W), E'_{r'}$ is constant for $r' \in Pr - \{2\}$. It follows that

$$\underline{\tau}_r(\emptyset, E', K_r) = E'_2$$

Hence if $E' \in \operatorname{Irr}_2(W)$, then $\underline{\tau}_r(\emptyset, E', K_r) = E'$. If H_{ad} is of type G_2 , then for any $E' \in \operatorname{Irr}(W)$, $E'_{r'}$ is constant for $r' \in Pr - \{3\}$. It follows that

$$\underline{\tau}_r(\emptyset, E', K_r) = E'_3.$$

Hence if $E' \in \operatorname{Irr}_3(W)$, then $\underline{\tau}_r(\emptyset, E', K_r) = E'$. We see that if H_{ad} is not of type E_8 , then $\underline{\tau}_r(\emptyset, E', K_r) = E'$ for $E' \in \operatorname{Irr}_*(W)$. The same holds if H_{ad} is of type E_8 (we use the tables in [S85]).

Note that $\operatorname{Irr}_*(W)$ can be viewed as a subset of $CS'(H_r)$ by $E' \mapsto (\emptyset, E', K_r)$. The results above show that $\underline{\tau}_r$ can be viewed as a retraction of $CS'(H_r)$ onto its subset $\operatorname{Irr}_*(W)$. In particular, $\underline{\tau}_r$ is surjective.

1.10. Let $E \in \operatorname{Irr}_{*}(W)$. Let $\overline{Pr}(E) = \{r' \in \overline{Pr}; E \in \operatorname{Irr}_{r'}(W)\}$. For $r' \in \overline{Pr}(E)$ we denote by γ_{E} the unique element of $\mathcal{U}_{H_{r'}}$ such that $e_{r'}(\gamma_{E}) = E$ (see 1.5). We set $\mathcal{A}_{r',E} = Z_{(H_{r'})_{ad}}(u)/Z_{(H_{r'})_{ad}}^{0}(u)$ where u is in the image of γ_{E} under $H_{r'} \to (H_{r'})_{ad}$; this finite group is well defined up to isomorphism. If $\overline{Pr}(E) = \overline{\Pr}$ we define $\overline{Pr}'(E) = \{r' \in \overline{Pr}; \mathcal{A}_{r',E} \cong \mathcal{A}_{0,E}\}$; this is a subset of \overline{Pr} with finite complement. We define a finite collection c(E) of finite groups as follows.

If
$$\overline{Pr}(E) = \overline{\Pr} = \overline{Pr}'(E)$$
, then $c(E)$ consists of $\mathcal{A}_{0,E}$.

If $\overline{Pr}(E) = \overline{\Pr} \neq \overline{Pr}'(E)$, then c(E) consists of $\{\mathcal{A}_{r',E}; r' \in \overline{\Pr} - \overline{Pr}'(E)\}$; one can verify that for $r' \neq r''$ in $\overline{\Pr} - \overline{Pr}'(E)$, we have $\mathcal{A}_{r',E} \not\cong \mathcal{A}_{r'',E}$.

If $\overline{Pr}(E) \neq \overline{Pr}$, then $\overline{Pr}(E)$ consists of a single element $r'_0 \in \overline{Pr}$ (we have necessarily $r'_0 \neq 0$); then c(E) consists of $\mathcal{A}_{r'_0,E}$.

If H is a torus, then c(E) consists of $\{1\}$. If H_{ad} is of type A, B, C or D, then c(E) consists of a single group and this is a product of cyclic groups of order 2. If H_{ad} is of exceptional type then c(E) consists of one of the following groups:

(a) 1,
$$C_2$$
, $C_2 \times C_2$, S_3 , Δ_8 , $S_3 \times C_2$, S_5

or one of the pair of groups:

(b)
$$(\mathcal{C}_2, \mathcal{C}_3), \ (\mathcal{C}_4, \mathcal{C}_3), \ (\mathcal{C}_2 \times \mathcal{C}_2, \mathcal{C}_2 \times \mathcal{C}_3)$$

or the triple of groups:

(c)
$$(\mathcal{C}_4, \mathcal{C}_3, \mathcal{C}_5).$$

(See the tables in §2.) Here C_m denotes a cyclic group of oder m, S_m denotes the symmetric group in m letters, Δ_8 denotes a dihedral group of order 8.

We now define a finite set $c(E)^*$ as follows. If c(E) consists of a single group Γ then $c(E)^* = \hat{\Gamma}$. (For a finite group Γ we denote by $\hat{\Gamma}$ the set of isomorphism classes of irreducible representations of Γ over K_r .)

If c(E) consists of two groups Γ, Γ' (see (b)), then $\Gamma'' = \mathcal{A}_{0,E}$ is well defined and is a quotient of both Γ, Γ' . (We have $\Gamma'' = 1, 1, S_2$ respectively in the three cases in (b).) Hence we can regard $\hat{\Gamma}''$ as a subset of $\hat{\Gamma}$ and also as a subset of $\hat{\Gamma}'$. We define $c(E)^* = (\hat{\Gamma} - \hat{\Gamma}'') \sqcup (\hat{\Gamma}' - \hat{\Gamma}'') \sqcup \hat{\Gamma}''$.

If c(E) consists of three groups (see (c)) we define $c(E)^* = \bigsqcup_{m \in [1,6]} \hat{C}_m^!$ where $\hat{C}_m^!$ consists of the faithful irreducible representations of \mathcal{C}_m . (This case occurs only when H_{ad} is of type E_8 and when E = 1. The fact that $\hat{C}_6^!$ enters in the definition should be connected to the fact that 6 appears as a coefficient of the highest root of H.)

The following theorem can be deduced from the definitions using the results in §2.

Theorem 1.11. Let $r \in \overline{Pr}$. There exists a bijection

$$CS(H_r) \xrightarrow{\sim} \sqcup_{E \in \operatorname{Irr}_*(W)} c(E)^*$$

which makes the following diagram commutative:

$$CS(H_r) \xrightarrow{\sim} \sqcup_{E \in \operatorname{Irr}_*(W)} c(E)^*$$

$$\tau \downarrow \qquad \qquad \downarrow$$

$$Str(H_r) \xrightarrow{\sim} \operatorname{Irr}_*(W)$$

(The left vertical map is as in 0.1(a); the right vertical map is the obvious one; the lower horizontal map is as in 1.6(a).)

2. Examples

2.1. Assume that H_{ad} is of type A_{n-1} , $n \geq 2$. We have

$$CS'(H_r) = \{(\emptyset, E', K_r); E' \in \operatorname{Irr}(W)\}, \quad \operatorname{Irr}_*(W) = \operatorname{Irr}(W).$$

In this case $\underline{\tau}_r$ is the bijection $(\emptyset, E', K_r) \mapsto E'$.

1130

2.2. Assume that H_{ad} is of type D_n , $n \ge 4$ or B_n , $n \ge 3$, or C_n , $n \ge 2$. If H_{ad} is of type D_n , let CS''(H) be the set of pairs (J, E') where J is either \emptyset (so that $N_W(W_J)/W_J = W$) or J is such that W_J is of type D_{4k^2} for some $k \ge 1$ with $4k^2 \le n$ (so that $N_W(W_J)/W_J$ is a Weyl group of type B_{n-4k^2}) and $E' \in \operatorname{Irr}(N_W(W_J)/W_J)$. (We use the convention that a Weyl group of type B_0 is $\{1\}$.)

If H_{ad} is of type B_n or C_n , let CS''(H) be the set of pairs (J, E') where J is either \emptyset (so that $N_W(W_J)/W_J = W$) or J is such that W_J is of type $B_{k(k+1)}$ for some $k \ge 1$ with $k(k+1) \le n$ (so that $N_W(W_J)/W_J$ is a Weyl group of type $B_{n-k(k+1)}$) and $E' \in \operatorname{Irr}(N_W(W_J)/W_J)$.

In any case we have a bijection $CS'(H_r) \xrightarrow{\sim} CS''(H)$ given by $(J, E', A') \mapsto (J, E')$. Moreover we have $\operatorname{Irr}_*(W) = \operatorname{Irr}_2(W)$. Hence the map $\underline{\tau}_r$ can be viewed as a map

(a)
$$CS''(H) \to Irr_2(W).$$

Now CS''(H) can also be viewed as the set of pairs consisting of a cuspidal J and a cuspidal local system on a unipotent class in $L_{J,2}$. The generalized Springer correspondence [L84] attaches to such a pair a unipotent class in H_2 and an irreducible local system on it.

By forgetting this last local system and by identifying $\mathcal{U}(H_2)$ with $\operatorname{Irr}_2(W)$ via e_2 (see 1.5), we obtain a map $CS''(H_r) \to \operatorname{Irr}_2(W)$ which, on the one hand, is explicitly computed in [LS85] in terms of certain types of symbols and, on the other hand, it coincides with the map (a).

2.3. In 2.4-2.8 we describe the map $\underline{\tau}_r$ in terms of tables in the case where H_{ad} is of type G_2, F_4, E_6, E_7 or E_8 . The tables are computed using results in [S85] with one indeterminacy in type E_8 being removed by [H22].

In each case the table consists of a sequence of rows. There is one row for each $E \in \operatorname{Irr}_*(W)$; it is written as ()'.....()'' where ()' represents the fibre of $\underline{\tau}_r$ over E and ()'' is a sequence of finite groups of which the boxed ones describe c(E).

The elements of ()' are written as symbols $(J, E', d)_{\sharp=n}$. Such a symbol stands for the *n* triples (J, E', A') in $CS'(H_r)$ with J, E' fixed and A' running through the set $CS_d^{\emptyset}(L_{J,r})$ (assumed to have $n \geq 1$ elements). When n = 1 we omit the subscript $\sharp = n$. We specify J by indicating the type of W_J . (For example, in the table for E_8 in 2.8, the row of 8_1 contains an item $(E_6, \epsilon_c, 0)_{\sharp}$ which stands for two objects; in the triple $(E_6, \epsilon_c, 0), E_6$ represents a subset of type E_6 of the simple reflections, ϵ_c is a certain representation of a Weyl group of type G_2 and 0 represents the dimension of a certain variety.) When $J = \emptyset$ we must have d = 0, n = 1 and we write E' instead of (J, E', d). Note that the first entry in ()' is E itself.

The groups in ()" are as follows. If $\overline{Pr}(E) = \overline{Pr} = \overline{Pr}'(E)$ then ()" consists of the single group in c(E) put inside a box.

If $\overline{Pr}(E) = \overline{Pr} \neq \overline{Pr}'(E)$ then ()" is $\Gamma, \Gamma', (\Gamma'')$ where $\Gamma = \mathcal{A}_{2,E}, \Gamma' = \mathcal{A}_{3,E}, \Gamma'' = \mathcal{A}_{0,E}$; the boxed entries Γ or Γ'' or both represent the set c(E); an exception is when E = 1 in type E_8 : in this case ()" is $\Gamma, \Gamma', \Gamma'', (1)$ where $\Gamma = \mathcal{A}_{2,E} = \mathcal{C}_4, \Gamma' = \mathcal{A}_{3,E} = \mathcal{C}_3, \Gamma'' = \mathcal{A}_{5,E} = \mathcal{C}_5, \mathcal{A}_{0,E} = 1$ and c(E) consists of $\Gamma, \Gamma', \Gamma''$ (all boxed).

If $\overline{Pr}(E) \neq \overline{Pr}$ then $\overline{Pr} - \overline{Pr}(E) = \{r'_0\}$ where $r'_0 \in \{2,3\}$. If $r'_0 = 2$ then ()" is $\Gamma, -, (-)$ where $\Gamma = \mathcal{A}_{2,E}$ and c(E) consists of Γ (it is boxed); if $r'_0 = 3$ then ()" is $-, \Gamma', (-)$ where $\Gamma' = \mathcal{A}_{3,E}$ and c(E) consists of Γ' (it is boxed).

If H_{ad} is of type G_2 , we have $J = \emptyset$ or $W_J = W$ with $N_W(W_J)/W_J = \{1\}$.

If H_{ad} is of type F_4 , we have $J = \emptyset$ or W_J of type B_2 with $N_W(W_J)/W_J$ of type B_2 or $W_J = W$ with $N_W(W_J)/W_J = \{1\}$.

If H_{ad} is of type E_6 , we have $J = \emptyset$ or W_J of type D_4 with $N_W(W_J)/W_J$ of type A_2 or $W_J = W$ with $N_W(W_J)/W_J = \{1\}$.

If H_{ad} is of type E_7 , we have $J = \emptyset$ or W_J of type D_4 with $N_W(W_J)/W_J$ of type B_3 or W_J of type E_6 with $N_W(W_J)/W_J$ of type A_1 or $W_J = W$ with $N_W(W_J)/W_J = \{1\}.$

If H_{ad} is of type E_8 , we have $J = \emptyset$ or W_J of type D_4 with $N_W(W_J)/W_J$ of type F_4 or W_J of type E_6 with $N_W(W_J)/W_J$ of type G_2 or W_J of type E_7 with $N_W(W_J)/W_J$ of type A_1 or $W_J = W$ with $N_W(W_J)/W_J = \{1\}$.

The notation for the elements of Irr(W) or $Irr(N_W(W_J)/W_J)$ is taken from [S85] with one note of caution. In the case where H_{ad} is of type E_8 and W_J is of type E_6 , the two 2-dimensional irreducible representations θ', θ'' of $N_W(W_J)/W_J$ which appear in the generalized Springer correspondence with r = 3 are identified in [S85] only up to order. This indeterminacy is removed in [H22] which shows that θ' is the reflection representation.

TABLE 2.4. Table for G_2

TABLE 2.5. Table for F_4

χ1,4	 1
χ2,4	 1
$\chi_{2,2}$	 1, -, (-)
$\chi_{4,4}$	 $1, \mathcal{C}_2, (\mathcal{C}_2)$
$\chi_{9,4}$	 1
$\chi_{8,4}, \chi_{1,2}$	 \mathcal{C}_2
$\chi_{8,2},\chi_{1,3}$	 C_2 , 1, (1)
$\chi_4,(B_2,\epsilon,0)$	 C_2 , -, (-)
$\chi_{4,3}$	 1, -, (-)
$\chi_{4,2}$	 1
χ9,3	 1, -, (-)

1132

$\chi_{9,2}$	 $1, C_2, (C_2)$
$\chi_{6,1}$	 1
χ_{16}	 $1, \mathcal{C}_2, (\mathcal{C}_2)$
$\chi_{12}, \chi_{6,2}, (F_4, 1, 4)$	 $S_3, S_4, (S_4)$
$\chi_{8,3},(B_2,\epsilon_l,0)$	 C_2 , 1, (1)
$\chi_{8,1},(B_2,\epsilon_c,0)$	 C_2 , 1, (1)
$\chi_{9,1}, \chi_{2,1}, \chi_{2,3}, (B_2, \theta, 0), (F_4, 1, 2)$	 Δ_8 , C_2 , (C_2)
$\chi_{4,1},(F_4,1,1)$	 \mathcal{C}_2
$\chi_{1,1}, (B_2, 1, 0), (F_4, 1, 0)_{\sharp=4}$	 $\mathcal{C}_4, \mathcal{C}_3$, (1)

TABLE 2.5. (Continued from previous page)

TABLE 2.6. Table for E_6

136	 1
625	 1
2020	 1
1516	 1
$30_{15}, 15_{17}$	 \mathcal{C}_2
6413	 1
2412	 1
6011	 1
8110	 1
109	 1
608	 1
$80_7, 90_8, 20_{10}$	 S_3
816	 1
$24_6, (D_4, \epsilon, 0)$	 S_2 , 1, (1)
605	 1
644	 1
154	 1
$30_3, 15_5$	 \mathcal{C}_2

$20_2, (D_4, \phi, 0)$	 $C_2, 1, (1)$
61	 1
$1_0, (D_4, 1, 0), (E_6, 1, 0)_{\sharp=2}$	 $\mathcal{C}_2, \mathcal{C}_3$, (1)

TABLE 2.6. (Continued from previous page)

TABLE 2.7. Table for E_7

1 ₆₃	 1
7_{46}	 1
27 ₃₇	 1
21 ₃₆	 1
3531	 1
$56_{30}, 21_{33}$	 \mathcal{C}_2
15 ₂₈	 1
$120_{25}, 105_{28}$	 \mathcal{C}_2
189 ₂₂	 1
10521	 1
16821	 1
210 ₂₁	 1
189 ₂₀	 1
70 ₁₈	 1
28017	 1
$315_{16}, 280_{18}, 35_{22}$	 S_3
216_{16}	 1
$405_{15}, 189_{17}$	 \mathcal{C}_2
$105_{15}, (D_4, (0, 1^3), 0)$	 C_2 , 1, (1)
84 ₁₅	 1, -, (-)
378_{14}	 $1, \mathcal{C}_2, (\mathcal{C}_2)$
210 ₁₃	 1
$420_{13}, 336_{14}$	 \mathcal{C}_2
	 \mathcal{C}_2

105_{12}	 1
$512_{11}, 512_{12}$	 \mathcal{C}_2
210 ₁₀	 1
$420_{10}, \ 336_{11}$	 \mathcal{C}_2
378_9	 1
216_{9}	 1
70_{9}	 1
280 ₈	 1
$405_8, 189_{10}$	 \mathcal{C}_2
$189_7, (D_4, (1, 1^2), 0)$	 C_2 , 1, (1)
$315_7, 280_9, 35_{13}$	 S_3
$168_6, (D_4, (1^2, 1), 0)$	 C_2 , 1, (1)
$210_6, (D_4, (0, 21), 0)$	 C_2 , 1, (1)
$105_6, 15_7$	 C_2 , 1, (1)
189_{5}	 $1, \mathcal{C}_2, (\mathcal{C}_2)$
$35_4, (D_4, (21, 0), 0)$	 C_2 , 1, (1)
$120_4, 105_5$	 \mathcal{C}_2
$21_3, (D_4, (1,2), 0), (E_6, 1, 0)_{\sharp=2}$	 $\mathcal{C}_2, \mathcal{C}_3, (1)$
$56_3, 21_6$	 \mathcal{C}_2
$27_2, (D_4, (2, 1), 0)$	 C_2 , 1, (1)
$7_1, (D_4, (0,3), 0)$	 C_2 , 1, (1)
$1_0, (D_4, (3,0), 0), (E_6, 1, 0)_{\sharp=2}, (E_7, 1, 0)_{\sharp=2}$	 $\overline{\mathcal{C}_4,\mathcal{C}_3}$, (1)

TABLE 2.7. (Continued from previous page)

TABLE 2.8. Table for E_8

1120	 1
891	 1
3574	 1
8464	 1
$112_{63}, 28_{68}$	 \mathcal{C}_2

50	1
5056	
$210_{52}, 160_{55}$	 \mathcal{C}_2
560 ₄₇	 1
56746	 1
400_{43}	 1
$700_{42}, 300_{44}$	 \mathcal{C}_2
44839	 1
1344 ₃₈	 1
$1400_{37}, 1008_{39}, 56_{49}$	 S_3
175 ₃₆	 1
$525_{36}, (D_4, \chi_{1,4}, 0)$	 C_2 , 1, (1)
1050 ₃₄	 1
$1400_{32}, 1575_{34}, 350_{38}$	 S_3
972 ₃₂	 1, -, (-)
3240 ₃₁	 $1, \mathcal{C}_2, (\mathcal{C}_2)$
$2268_{30}, 1296_{33}$	 \mathcal{C}_2
1400 ₂₉	 1
$2240_{28}, 840_{31}$	 \mathcal{C}_2
$700_{28}, (D_4, \chi_{2,2}, 0)$	 $C_2, 1, (1)$
84026	 1
$4096_{26}, 4096_{27}$	 \mathcal{C}_2
$2800_{25}, 2100_{28}$	 \mathcal{C}_2
$4200_{24}, 3360_{25}$	 \mathcal{C}_2
$168_{24}, (D_4, \chi_{1,3}, 0)$	 C_2 , -, (-)
4536 ₂₃	 1
2835 ₂₂	 1
6075 ₂₂	 1
320032	 1
420021	 $1, \mathcal{C}_2, (\mathcal{C}_2)$
$5600_{21}, 2400_{23}$	 \mathcal{C}_2

TABLE 2.8. (Continued from previous page)

420 ₂₀	 1
$2100_{20}, (D_4, \chi_{4,4}, 0)$	 $C_2, 1, (1)$
134419	 1
2016 ₁₉	 1
$3150_{18}, 1134_{20}$	 \mathcal{C}_2
$4200_{18}, 2688_{20}$	 \mathcal{C}_2
$7168_{17}, 5600_{19}, 448_{25}$	 S_3
$3200_{16}, (D_4, \chi_{8,2}, 0)$	 C_2 , 1, (1)
$4480_{16}, 5670_{18}, 4536_{18}, 1400_{20},$	Q
$1680_{22}, 70_{32}, (E_8, 1, 16)$	 \mathcal{D}_5
$5600_{15}, 2400_{17}, (D_4, \chi_{9,4}, 0), (D_4, \chi_{2,4}, 0)$	 $\mathcal{C}_2 \times \mathcal{C}_2, \mathcal{C}_2, (\mathcal{C}_2)$
$4200_{15},700_{16}$	 C_2 , 1, (1)
2835_{14}	 1
6075 ₁₄	 $\boxed{1}, \mathcal{C}_2, (\mathcal{C}_2)$
$840_{14}, (D_4, \chi_{4,3}, 0)$	 C_2 , -, (-)
4536 ₁₃	 $\boxed{1}, \mathcal{C}_2, (\mathcal{C}_2)$
$2800_{13}, 2100_{16}$	 \mathcal{C}_2
972 ₁₂ , $(D_4, \chi_{9,3}, 0)$	 $C_2, 1, (1)$
$4200_{12}, 3360_{13}$	 \mathcal{C}_2
$525_{12}, (D_4, \chi_{8,4}, 0), (E_6, \epsilon, 0)_{\sharp=2}$	 $\mathcal{C}_2, \mathcal{C}_3, (1)$
175 ₁₂	 -, 1, (-)
140011	 1
$4096_{11}, 4096_{12}$	 \mathcal{C}_2
$2268_{10}, 1296_{13}$	 \mathcal{C}_2
$2240_{10}, 840_{13}$	 $S_3, \mathbb{C}_2, (S_3)$
$1050_{10}, (D_4, \chi_4, 0)$	 C_2 , -, (-)
32409	 $\boxed{1}, \mathcal{C}_2, (\mathcal{C}_2)$
$448_9, (D_4, \chi_{6,1}, 0), (E_6, \epsilon_l, 0)_{\sharp=2}$	 $\mathcal{C}_2, \mathcal{C}_3, (1)$
$\frac{1344_8, (D_4, \chi_{16}, 0)}{1344_8, (D_4, \chi_{16}, 0)}$	 C_2 , 1, (1)
$1400_8, 1575_{10}, 350_{14}$	 S_3

TABLE 2.8. (Continued from previous page)

$1400_7, 1008_9, 56_{19}, (D_4, \chi_{12}, 0), (D_4, \chi_{6,2}, 0), (E_8, 1, 7)$	 $S_3 \times \mathcal{C}_2$, S_3 , (S_3)
400 ₇ , $(D_4, \chi_{2,3}, 0)$	 C_2 , 1, (1)
$700_6, 300_8, 50_9, (D_4, \chi_{8,3}, 0), (E_8, 1, 6)$	 Δ_8 , C_2 , (C_2)
$567_6, (D_4, \chi_{9,2}, 0)$	 C_2 , 1, (1)
$560_5, (D_4, \chi_{4,2}, 0)$	 \mathcal{C}_2
$210_4, 160_7$	 \mathcal{C}_2
$84_4, (D_4, \chi_{9,1}, 0), (E_6, \theta'', 0)_{\sharp=2}, (E_7, 1, 0)_{\sharp=2}$	 $\mathcal{C}_4, \mathcal{C}_3$, (1)
$112_3, 28_8, (D_4, \chi_{8,1}, 0), (D_4, \chi_{1,2}, 0), (E_6, \theta', 0)_{\sharp=2}, (E_8, 1, 3)_{\sharp=2}$	 $\boxed{\mathcal{C}_2 \times \mathcal{C}_2, \mathcal{C}_2 \times \mathcal{C}_3}, (\mathcal{C}_2)$
$35_2, (D_4, \chi_{4,1}, 0)$	 C_2 , 1, (1)
$8_1, (D_4, \chi_{2,1}, 0), (E_6, \epsilon_c, 0)_{\sharp=2}, (E_8, 1, 1)_{\sharp=2}$	 $\mathcal{C}_4, \mathcal{C}_3$, (1)
$1_0, (D_4, \chi_{1,1}, 0), (E_6, 1, 0)_{\sharp=2}, (E_7, 1, 0)_{\sharp=2}, (E_8, 1, 0)_{\sharp=6}$	 $\mathcal{C}_4, \mathcal{C}_3, \mathcal{C}_5$, (1)

TABLE 2.8. (Continued from previous page)

3. Complements

3.1. The restriction of the map τ in 0.1(a) to $CS^{\emptyset}(H_r)$ has an alternative definition. Namely, for $A \in CS^{\emptyset}(H_r)$, there is a unique stratum $X \in Str(H_r)$ such that $\sigma_A \subset X$ (notation of 1.1); we have $\tau(A) = X$.

3.2. The results in this subsection can be used to verify 1.7. In the examples below we assume that H is semisimple, $H \neq \{1\}$, and for $A \in CS^{\emptyset}(H_r)$ we denote by s the semisimple part of an element of σ_A . We describe the structure of $Z^0_{H_r}(s)$ in various cases. We also specify the value of X in 1.7.

If H is of type C_n with $n = k(k+1), k \ge 1$ then:

if $r \neq 2$ then $Z_{H_r}^0(s)$ is of type $C_{n/2} \times C_{n/2}$; if r = 2 then $Z_{H_r}^0(s) = H_r$. Thus X is as in 1.7(i).

If H is of type B_n with $n = k(k+1), k \ge 1$ then:

if $r \neq 2$ then $Z_{H_r}^0(s)$ is of type $B_a \times D_b$ where $(2a+1,2b) = ((k+1)^2, k^2)$ if k is even and $(2a+1,2b) = (k^2, (k+1)^2)$ if k is odd; if r = 2 then $Z_{H_r}^0(s) = H_r$. Thus X is as in 1.7(i).

If H is of type D_n with $n = 4k^2, k \ge 1$ then:

if $r \neq 2$ then $Z_{H_r}^0(s)$ is of type $D_{2k^2} \times D_{2k^2}$; if r = 2 then $Z_{H_r}^0(s) = H_r$. Thus X is as in 1.7(i).

If H is of type G_2 and $A \in CS_d^{\emptyset}(H_r)$ then:

if d = 1 then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(ii)); if d = 0 and $r \notin \{2,3\}$ then $Z_{H_r}^0(s)$ is of type A_2 for two values of A and of type $A_1 \times A_1$ for the third value of A; if d = 0 and r = 2 then $Z_{H_r}^0(s)$ is of type A_2 for two values of A and is H_r for

the third value of A; if d = 0 and r = 3 then $Z_{H_r}^0(s)$ is H_r for two values of A and is of type $A_1 \times A_1$ for the third value of A. Thus X is as in 1.7(iv).

If H is of type F_4 and $A \in CS_d^{\emptyset}(H_r)$ then:

if d = 4 then $Z^0_{H_r}(s) = H_r$ (thus X is as in 1.7(ii));

if $d = 2, r \neq 2$, then $Z_{H_r}^0(s)$ is of type B_4 ; if d = 2, r = 2, then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(i));

if $d = 1, r \neq 2$, then $Z_{H_r}^0(s)$ is of type $C_3 \times A_1$; if d = 1, r = 2, then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(i));

if $d = 0, r \notin \{2,3\}$, then $Z_{H_r}^0(s)$ is of type $A_2 \times A_2$ for two values of A and of type $A_3 \times A_1$ for the other two values of A; if d = 0, r = 2, then $Z_{H_r}^0(s)$ is of type $A_2 \times A_2$ for two values of A and is H_r for the other two values of A; if d = 0, r = 3, then $Z_{H_r}^0(s)$ is of type $A_3 \times A_1$ for two values of A and is H_r for the other two values of A. Thus X is as in 1.7(iv).

If H is of type E_6 then:

if $r \neq 3$, then $Z_{H_r}^{0}(s)$ is of type $A_2 \times A_2 \times A_2$; if r = 3, then $Z_{H_r}^{0}(s) = H_r$. Thus X is as in 1.7(i).

If H is of type E_7 then d = 0 and:

if $r \neq 2$, then $Z_{H_r}^0(s)$ is of type $A_3 \times A_3 \times A_1$; if r = 2, then $Z_{H_r}^0(s) = H_r$. Thus X is as in 1.7(i).

If H is of type E_8 and $A \in CS_d^{\emptyset}(H_r)$ then:

if d = 16 then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(ii)).

if d = 7 and $r \neq 2$ then $Z_{H_r}^0(s)$ is of type $E_7 \times A_1$; if d = 7 and r = 2 then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(i));

if d = 6 and $r \neq 2$ then $Z_{H_r}^0(s)$ is of type D_8 ; if d = 6 and r = 2 then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(i));

if d = 3 and $r \neq 3$ then $Z_{H_r}^0(s)$ is of type $E_6 \times A_2$; if d = 3 and r = 3 then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(i));

if d = 1 and $r \neq 2$ then $Z_{H_r}^0(s)$ is of type $D_5 \times A_3$; if d = 1 and r = 2 then $Z_{H_r}^0(s) = H_r$ (thus X is as in 1.7(i));

if d = 0 and $r \notin \{2, 3, 5\}$ then $Z_{H_r}^0(s)$ is of type $A_4 \times A_4$ for four values of A and of type $A_5 \times A_2 \times A_1$ for two values of A; if d = 0 and r = 5 then $Z_{H_r}^0(s)$ is H_r for four values of A and of type $A_5 \times A_2 \times A_1$ for two values of A; if d = 0 and r = 3then $Z_{H_r}^0(s)$ is of type $A_4 \times A_4$ for four values of A and of type $E_7 \times A_1$ for two values of A; if d = 0 and r = 2 then $Z_{H_r}^0(s)$ is of type $A_4 \times A_4$ for four values of Aand of type $E_6 \times A_2$ for two values of A. Thus X is as in 1.7(iv).

The results in this section (for H of type E_8 and d = 0) contradict the statement (f) on p. 351 in [Sh95]. (Indeed, if r = 2 there is no semisimple $s \in H_2$ with $Z_{H_2}(s)$ of type $A_5 \times A_2 \times A_1$.)

3.3. Let H^* be a connected reductive group over **C** of type dual to that of H. Let $\mathbf{CS}(H)$ be the set of isomorphism classes of (not necessarily unipotent) character sheaves on H. We now assume that $Z_H = Z_H^0$. It is known that we can identify $\mathbf{CS}(H)$ with $\sqcup_s CS(Z_{H^*}(s)^*)$ where s runs over the semisimple elements of finite order of H^* up to conjugacy. Using 0.1(a), we obtain a surjective map $\mathbf{CS}(H) \rightarrow \sqcup_s Str(Z_{H^*}(s)^*)$. From [L15] we can identify $Str(Z_{H^*}(s)^*) = Str(Z_{H^*}(s))$. Hence we obtain a surjective map

$$\mathbf{CS}(H) \to \sqcup_s Str(Z_{H^*}(s)).$$

3.4. Let \mathcal{X}'_H be the set of numbers which appear as coefficients of the highest root of H; let $\mathcal{X}_H = \mathcal{X}'_H \cup \{1\}$. Note that \mathcal{X}_H consists of the numbers $1, 2, \ldots, z_H$ where $z_H = 1$ for H of type A, $z_H = 2$ for H of type $B, C, D, z_H = 3$ for H of type G_2 or $E_6, z_H = 4$ for H of type F_4 or $E_7, z_H = 6$ for H of type E_8 .

We note the following property (which can be verified from the results in \S 2).

(a) The fibre of τ in 0.1(a) at the stratum consisting of regular elements in H_r (or equivalently at $E = 1 \in \operatorname{Irr}_*(W)$) is in bijection with the set

(b)
$$\sqcup_{m \in \mathbf{N}; 1 \le m \le z_H} \rho_m$$

where ρ_m is the set of primitive mth roots of 1 in K_r .

It is remarkable that the set (b) appears also in a quite different situation. Let $r, q, H_r(F_q)$ be as in 0.1(b). We can view $H_r(F_q)$ as a fixed point set of a Frobenius map $F: H_r \to H_r$. For any $w \in W$ let X_w be the variety attached to H_r, F, w in [DL76]. Now F acts on the cohomology with compact support $H_c^i(X_w)$ of X_w and in particular on $H_c^{|w|}(X_w)$. (We denote by |w| the length of w.) Let w be a Coxeter element of minimal length in W. From [L76] it is known that the F-action on $H_c^{|w|}(X_w)$ is semisimple and that the eigenspaces are irreducible (unipotent) representations of $H_r(F_q)$. These unipotent representations are in bijection with the character sheaves in the fibre of τ at E = 1. (We use the usual bijection $Un(H_r(F_q)) \leftrightarrow CS(H_r)$ composed with the involution of $Un(H_r(F_q))$ which interchanges "small" representations with "big" representations.) The eigenvalues of the F-action are listed in [L76, p. 146, 147]. It turns out that

(c) these eigenvalues are exactly the roots of 1 in (b) times integral powers of $q^{1/2}$.

3.5. Let cl(W) be the set of conjugacy classes in W. In [L15, §4], a surjective map $\Phi : cl(W) \to \operatorname{Irr}_*(W)$ is defined. In [L15, 4.10] a map $\operatorname{Irr}_*(W) \to cl(W), E \to C_E$, is described; it is such that $\Phi(C_E) = E$ for all $E \in \operatorname{Irr}_*(W)$, hence its image $cl_*(W) \subset cl(W)$ is such that Φ restricts to a bijection $cl_*(W) \xrightarrow{\sim} \operatorname{Irr}_*(W)$. This allows us to identify the sets $cl_*(W), \operatorname{Irr}_*(W) = Str(H_r)$, so that $\tau : CS(H_r) \to Str(H_r)$ becomes a surjective map

(a)
$$\tau': Un(H_r(F_q)) \to cl_*(W)$$

(with $r, q, H_r(F_q)$ as in 0.1(b), see 0.1(c)). Let $Un^{\emptyset}(H_r(F_q))$ be the subset of $Un(H_r(F_q))$ consisting of unipotent cuspidal representations.

One can verify that the restriction of τ' to $Un^{\emptyset}(H_r(F_q))$ coincides with the map $\rho \mapsto C_{\rho}$ in [L02, 2.17]. From [L02] we see that

(b) for any $\rho \in Un^{\emptyset}(H_r(F_q))$, ρ appears with multiplicity 1 in $H_c^{|w|}(X_w)$ (notation of 3.4) where w is an element of minimal length in $\tau'(\rho)$.

3.6. In this subsection we assume that H_r is the symplectic group with W of type B_2 . The simple reflections s_1, s_2 satisfy $s_1s_2s_1s_2 = s_2s_1s_2s_1$. We have $\operatorname{Irr}_*(W) = \operatorname{Irr}(W) = \operatorname{Irr}_2(W)$; this set consists of $1, \rho, \epsilon_1, \epsilon_2, \epsilon$ where ρ is the reflection representation, ϵ is the sign representation and ϵ_1, ϵ_2 are the one-dimensional representations other than $1, \epsilon$. We have $cl(W) = cl_*(W)$. (The numbering of s_1, s_2 and of ϵ_1, ϵ_2 is chosen so that (a),(b) below hold.)

The conjugacy classes in W are $(1), (s_1), (s_2), (s_1s_2), (s_1s_2s_1s_2)$ where (w) is the conjugacy class of $w \in W$. The bijection $\operatorname{Irr}_*(W) \to cl_*(W)$ is given by

(a)
$$1 \mapsto (s_1 s_2), \ \rho \mapsto (s_1 s_2 s_1 s_2), \ \epsilon_1 \mapsto (s_1), \ \epsilon_2 \mapsto (s_2), \ \epsilon \mapsto (1).$$

There are five strata; they are indexed by the elements of $\operatorname{Irr}_*(W)$; we denote them by $\sigma(1), \sigma(\rho), \sigma(\epsilon_1), \sigma(\epsilon_2), \sigma(\epsilon)$. Here

(b) $\sigma(1)$ is the union of all conjugacy classes of dimension 8; $\sigma(\rho)$ is the union of all conjugacy classes of dimension 6; $\sigma(\epsilon_1)$ is a conjugacy class of dimension 4 (a semisimple one if $r \neq 2$ and a unipotent one if r = 2; $\sigma(\epsilon_2)$ is a union of one (if r = 2) or two (if $r \neq 2$) conjugacy classes of dimension 4; $\sigma(\epsilon)$ is the centre of H_r .

 $CS(H_r)$ consists of six objects: $\bar{\mathbf{Q}}_l[1]$, $\bar{\mathbf{Q}}_l[\rho]$, $\bar{\mathbf{Q}}_l[\epsilon_1]$, $\bar{\mathbf{Q}}_l[\epsilon_2]$, $\bar{\mathbf{Q}}_l[\epsilon]$ and A (an object of $CS^{\emptyset}(H_r)$). The map τ is $\bar{\mathbf{Q}}_l[1] \mapsto 1$, $\bar{\mathbf{Q}}_l[\rho] \mapsto \rho$, $\bar{\mathbf{Q}}_l[\epsilon_1] \mapsto \epsilon_1$, $\bar{\mathbf{Q}}_l[\epsilon_2] \mapsto \epsilon_2$, $\bar{\mathbf{Q}}_l[\epsilon] \mapsto \epsilon$, $A \mapsto 1$.

References

- [C20] Giovanna Carnovale, Lusztig's strata are locally closed, Arch. Math. (Basel) 115 (2020), no. 1, 23–26, DOI 10.1007/s00013-020-01448-1. MR4105009
- [DL76] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161, DOI 10.2307/1971021. MR393266
- [H22] J. Hetz, On the generalised Springer correspondence for groups of type E_8 , arXiv:2207.06382.
- [L76] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159, DOI 10.1007/BF01408569. MR453885
- [L84] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272, DOI 10.1007/BF01388564. MR732546
- [L85] George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237, DOI 10.1016/0001-8708(85)90034-9. MR792706
- [L86] G. Lusztig, Character sheaves, IV, Adv. Math. 59 (1986), 1–63 MR825086; V, Adv. Math. 61 (1986), 103–155 MR849848.
- [L02] G. Lusztig, Rationality properties of unipotent representations, J. Algebra 258 (2002), no. 1, 1–22, DOI 10.1016/S0021-8693(02)00514-8. MR1958895
- [L15] George Lusztig, On conjugacy classes in a reductive group, Representations of reductive groups, Progr. Math., vol. 312, Birkhäuser/Springer, Cham, 2015, pp. 333–363, DOI 10.1007/978-3-319-23443-4_12. MR3495802
- [LS85] G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316, DOI 10.2969/aspm/00610289. MR803339
- [Sh95] T. Shoji, Character sheaves and almost characters of reductive groups, II, Adv. in Math. 111, 314–354.
- [S85] N. Spaltenstein, On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 317–338, DOI 10.2969/aspm/00610317. MR803340

Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139