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GENERIC AND MOD p KAZHDAN-LUSZTIG THEORY FOR GL2

CÉDRIC PEPIN AND TOBIAS SCHMIDT

Abstract. Let F be a non-archimedean local field with residue field Fq and

let G = GL2/F . Let q be an indeterminate and let H(1)(q) be the generic

pro-p Iwahori-Hecke algebra of the p-adic group G(F ). Let V
Ĝ

be the Vinberg

monoid of the dual group ̂G. We establish a generic version for H(1)(q) of the
Kazhdan-Lusztig-Ginzburg spherical representation, the Bernstein map and
the Satake isomorphism. We define the flag variety for the monoid V

Ĝ
and

establish the characteristic map in its equivariant K-theory. These generic
constructions recover the classical ones after the specialization q = q ∈ C. At

q = q = 0 ∈ Fq , the spherical map provides a dual parametrization of all the

irreducible H(1)

Fq
(0)-modules.
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1. Introduction

Let F be a non-archimedean local field with ring of integers oF and residue field
Fq. Let G be a connected split reductive group over F . Let Hk = (k[I \G(F )/I], �)
be the Iwahori-Hecke algebra, i.e. the convolution algebra associated to an Iwahori
subgroup I ⊂ G(F ), with coefficients in an algebraically closed field k. On the

other hand, let Ĝ be the Langlands dual group of G over k, with maximal torus

and Borel subgroup T̂ ⊂ B̂ respectively. Let W0 be the finite Weyl group.
When k = C, the irreducible HC-modules appear as subquotients of the

Grothendieck group KĜ(Ĝ/B̂)C of Ĝ-equivariant coherent sheaves on the dual

flag variety Ĝ/B̂. As such they can be parametrized by the isomorphism classes
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of irreducible tame Ĝ(C)-representations of the Weil group WF of F with unipo-
tent inertial type, thereby realizing a tame part of the local Langlands correspon-
dence (in this setting also called the Deligne-Lusztig conjecture for Hecke modules):
Kazhdan-Lusztig [KL87], Ginzburg [CG97]. Their approach to the Deligne-Lusztig
conjecture can be divided into two parts: the first part develops the theory of the
so-called spherical representation leading to a certain dual parametrization of Hecke
modules. The second part links these dual data to representations of the group WF .

The spherical representation is a distinguished faithful action of the Hecke al-
gebra HC on a maximal commutative subring AC ⊂ HC via AW0

C -linear operators:
elements of the subring AC act by multiplication, whereas the standard Hecke op-
erators Ts ∈ HC, supported on double cosets indexed by simple reflections s ∈ W0,
act via the classical Demazure operators [D73,D74]. The link with the geometry

of the dual group comes then in two steps. First, the classical Bernstein map θ̃

identifies the ring of functions C[T̂] with AC, such that the invariants C[T̂]W0 be-

come the center Z(HC) = AW0

C . Second, the characteristic homomorphism cĜ of

equivariant K-theory identifies the rings C[T̂] and KĜ(Ĝ/B̂)C as algebras over the

representation ring C[T̂]W0 = R(Ĝ)C.

When k = Fq, any irreducible Ĝ(Fq)-representation ofWF is tame, with semisim-
ple inertial type. Dually, one replaces the Iwahori-Hecke algebra by the bigger
pro-p-Iwahori-Hecke algebra

H(1)

Fq
= (Fq[I

(1) \G(F )/I(1)], �),

where I(1) ⊂ I is the pro-p-radical of I. The algebra H(1)

Fq
was introduced by

Vignéras and its structure theory developed in a series of papers [V04, V05,V06,
V14, V15, V16, V17]. More generally, Vignéras introduces and studies a generic
version H(1)(q) of this algebra which is defined over a polynomial ring Z[q] in an

indeterminate q. The mod p ring H(1)

Fq
is obtained by specialization q = q followed

by extension of scalars from Z to Fq, in short q = q = 0.
The present paper is the first in a series of papers in which we will show that

there is a generic version of Kazhdan-Lusztig theory, which applies to the generic
pro-p Iwahori-Hecke algebra H(1)(q). On the one hand, it gives back (and actually
improves) the classical theory after passing to the direct summand H(q) ⊂ H(1)(q)
and then specializing q = q ∈ C. On the other hand, it gives a genuine mod p
theory after specializing q = q = 0 ∈ Fq. Our key observation is that, in the

generic setting, the Langlands dual group Ĝ needs to be enlarged to its Vinberg
monoid VĜ [V95].

We will work in increasing generality, starting in the present paper with the
theory of the spherical representation and the dual parametrization in the simplest
case of the group G = GL2. Later, for a general split reductive G, we expect
that essentially the same constructions will hold, once the appropriate formulation
will have been understood (and checked explicitly) here for GL2. In particular, we
expect that the monoid fibration q : VĜ → A1 geometrizing the indeterminate q,

and the dual parametrization of H(1)

Fq
-modules achieved over the 0-fibre VĜ,0, forms

a general pattern.
So let G = GL2 from now on. Let k = Fq and q be an indeterminate. Let

T ⊂ G be the torus of diagonal matrices. Let A(1)(q) ⊂ H(1)(q) be the maximal
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commutative subring1 and A(1)(q)W0 = Z(H(1)(q)) be its ring of invariants. We

let Z̃ := Z[ 1
q−1 , μq−1] and denote by •̃ the base change from Z to Z̃. The algebra

H̃(1)(q) splits as a direct product of subalgebras H̃γ(q) indexed by the orbits γ
of W0 in the set of characters of the finite torus T := T(Fq). There are regular
resp. non-regular components corresponding to |γ| = 2 resp. |γ| = 1 and the

algebra structure of H̃γ(q) in these two cases is fundamentally different. We define
an analogue of the Demazure operator for the regular components and call it the
Vignéras operator. Passing to the product over all γ, this allows us to single out
a distinguished Z(H̃(1)(q))-linear operator on Ã(1)(q). Our first main result is the
existence of the generic pro-p spherical representation:

Theorem A (Cf. Theorems 3.3.1, 4.3.1). There is a (essentially unique) faithful
representation

Ã (1)(q) : H̃(1)(q) �� EndZ(H̃(1)(q))(Ã(1)(q))

such that

(i) Ã (1)(q)|Ã(1)(q) = the natural inclusion Ã(1)(q) ⊂ EndZ(H̃(1)(q))(Ã(1)(q))

(ii) Ã (1)(q)(Ts) = the Demazure-Vignéras operator on Ã(1)(q).

Restricting the representation Ã (1)(q) to the Iwahori component, its base change

Z[q] → Z[q± 1
2 ] coincides with the classical spherical representation of Kazhdan-

Lusztig and Ginzburg.

We call the left H̃(1)(q)-module defined by Ã (1)(q) the generic spherical module

M̃(1).
Let Mat2×2 be the Z-monoid scheme of 2×2-matrices. The Vinberg monoid VĜ,

as introduced in [V95], in the particular case of GL2 is the Z-monoid scheme

VGL2
:= Mat2×2 ×Gm.

It implies the striking interpretation of the formal indeterminate q as a regular
function. Indeed, denote by z2 the canonical coordinate on Gm. Let q be the
homomorphism from VGL2

to the multiplicative monoid (A1, ·) defined by (f, z2) �→
det(f)z−1

2 :

VGL2

q

��

A1.

The fibration q is trivial over A1 \ {0} with fibre GL2. The special fibre at q = 0
is the Z-semigroup scheme

VGL2,0 := q−1(0) = Sing2×2 ×Gm,

where Sing2×2 represents the singular 2 × 2-matrices. Let Diag2×2 ⊂ Mat2×2 be
the submonoid scheme of diagonal 2× 2-matrices, and set

VT̂
:= Diag2×2 ×Gm ⊂ VGL2

= Mat2×2 ×Gm.

1For the choice of the antidominant spherical orientation.
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This is a diagonalizable Z-monoid scheme. Restricting the above A1-fibration to

VT̂ we obtain a fibration, trivial over A1 \ {0} with fibre T̂. Its special fibre at
q = 0 is the Z-semigroup scheme

VT̂,0
:= q|−1

VT̂
(0) = SingDiag2×2 ×Gm,

where SingDiag2×2 represents the singular diagonal 2× 2-matrices. To ease notion,

we denote the base change to Fq of these Z-schemes by the same symbols. Let T∨

be the finite abelian dual group of T. We let R(V
(1)

T̂
) be the representation ring of

the extended monoid
V

(1)

T̂
:= T∨ × VT̂.

Our second main result is the existence of the generic pro-p Bernstein isomorphism.

Theorem B (Cf. Corollary 6.1.2). There exists a ring isomorphism

B(1)(q) : A(1)(q)
∼ �� R(V

(1)

T̂
)

with the property: Restricting the isomorphism B(1)(q) to the Iwahori component,

its base change Z[q] → Z[q± 1
2 ] recovers2 the classical Bernstein isomorphism θ̃.

The extended monoid V
(1)

T̂
has a naturalW0-action and the isomorphism B(1)(q)

is equivariant. We call the resulting ring isomorphism

S (1)(q) := B(1)(q)W0 : A(1)(q)W0
∼ �� R(V

(1)

T̂
)W0

the generic pro-p-Iwahori Satake isomorphism. Our terminology is justified by the
following. Let K = G(oF ). Recall that the spherical Hecke algebra of G(F ) with
coefficients in any commutative ring R is defined to be the convolution algebra

Hsph
R := (R[K\G(F )/K], �)

generated by the K-double cosets in G(F ). We define a generic spherical Hecke
algebra Hsph(q) over the ring Z[q]. Its base change Z[q] → R, q �→ q coincides with

Hsph
R . Our third main result is the existence of the generic Satake isomorphism.

Theorem C (Cf. Theorem 6.2.3). There exists a ring isomorphism

S (q) : Hsph(q)
∼ �� R(VT̂)

W0

with the property: Base change Z[q] → Z[q± 1
2 ] and specialization q �→ q ∈ C

recovers2 the classical Satake isomorphism between Hsph
C and R(T̂)W0

C .

We emphasize that the possibility of having a generic Satake isomorphism is
conceptually new and of independent interest. Its definition relies on the deep
Kazhdan-Lusztig theory for the intersection cohomology on the affine flag manifold.
Its proof follows from the classical case by specialization (to an infinite number of
points q). The special fibre S (0) recovers Herzig’s mod p Satake isomorphism
[H11], by choosing Steinberg coordinates on VT̂,0.

As a corollary we obtain the generic central elements morphism as the unique
ring homomorphism

Z (q) : Hsph(q) �� A(q) ⊂ H(q)

2By ‘recovers’ we mean ‘coincides up to a renormalization’.



1146 CÉDRIC PEPIN AND TOBIAS SCHMIDT

making the diagram

A(q) ∼
B(1)(q)|A(q)

�� R(VT̂)

Hsph(q)

Z (q)

��

∼
S (q)

�� R(VT̂)
W0

��

��

commutative. The morphism Z (q) is injective and has image Z(H(q)). Base

change Z[q] → Z[q± 1
2 ] and specialization q �→ q ∈ C recovers2 Bernstein’s classical

central elements morphism. Its specialization q �→ q = 0 ∈ Fq coincides with
Ollivier’s construction from [O14].

Our fourth main result is the characteristic homomorphism in the equivariant
K-theory over the Vinberg monoid VĜ. The monoid VĜ carries an action by mul-
tiplication on the right from the Z-submonoid scheme

VB̂
:= UpTriang2×2 ×Gm ⊂ Mat2×2 ×Gm = VĜ,

where UpTriang2×2 represents the upper triangular 2 × 2-matrices. One can con-
struct (virtual) quotients in the context of semigroups and categories of equivariant
vector bundles and their K-theory on such quotients, similar to the classical de-
scription over a groupoid, and the usual induction functor for vector bundles gives
a characteristic homomorphism, which is an isomorphism in the case of monoids
[PS20]. Applying this general formalism, the flag variety VĜ/VB̂ resp. its extended

version V
(1)

Ĝ
/V

(1)

B̂
is defined as a Z-monoidoid (instead of a groupoid).

Theorem D (Cf. Corollary 5.2.2). Induction of equivariant vector bundles defines
a characteristic isomorphism

c
V

(1)

Ĝ

: R(V
(1)

T̂
)

∼ �� K
V

(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

The ring isomorphism is R(V
(1)

T̂
)W0 = R(V

(1)

Ĝ
)-linear and compatible with passage

to q-fibres. Over the open complement q �= 0, its Iwahori-component coincides with

the classical characteristic homomorphism cĜ between R(T̂) and KĜ(Ĝ/B̂).

We define the category of Bernstein resp. Satake parameters BPĜ resp. SPĜ

to be the category of quasi-coherent modules on the Z̃-scheme V
(1)

T̂
resp. V

(1)

T̂
/W0.

By Theorem B, restriction of scalars to the subring Ã(1)(q) or Z(H̃(1)(q)) defines a

functor B resp. P from the category of H̃(1)(q)-modules to the categories BPĜ resp.
SPĜ. For example, the Bernstein resp. Satake parameter of the spherical module

M̃(1) equals the structure sheaf O
V

(1)

T̂

resp. the quasi-coherent sheaf corresponding

to the R(V
(1)

T̂
)W0-module K

V
(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
). We call P the generic parametrization

functor.
In the other direction, we define the generic spherical functor to be the func-

tor Sph := (M̃(1) ⊗Z(H̃(1)(q)) •) ◦ S−1 where S is the Satake equivalence between

Z(H̃(1)(q))-modules and SPĜ. Let π : V
(1)

T̂
→ V

(1)

T̂
/W0 be the projection. The
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relation between all these functors is expressed by the commutative diagram:

Mod(H̃(1)(q))

B

��

P

����
���

���
���

SPĜ

Sph
�������������

π∗
�� BPĜ π∗

�� SPĜ .

This ends our discussion of the theory in the generic setting.
Then we pass to the special fibre, i.e. we perform the base change Z[q] → k = Fq,

q �→ q = 0. Identifying the k-points of the k-scheme V
(1)

T̂,0
/W0 with the skyscraper

sheaves on it, the spherical functor Sph induces a map

Sph :
(
V

(1)

T̂,0
/W0

)
(k) �� {left H(1)

Fq
-modules}.

Considering the decomposition of V
(1)

T̂,0
/W0 into its connected components V γ

T̂,0
/W0

indexed by γ ∈ T∨/W0, the spherical map decomposes as a disjoint union of maps

Sphγ :
(
V γ

T̂,0
/W0

)
(k) �� {left Hγ

Fq
-modules}.

We come to our last main result, the mod p dual parametrization of all irreducible

H(1)

Fq
-modules via the spherical map.

Theorem E (Cf. Theorems 7.4.6 and 7.4.10).

(i) Let γ ∈ T∨/W0 regular. The spherical map induces a bijection

Sphγ :
(
V γ

T̂,0
/W0

)
(k)

∼ �� {simple finite dimensional left Hγ

Fq
-modules}/ ∼ .

The singular locus of the parametrizing k-scheme

V γ

T̂,0
/W0 
 VT̂,0 = SingDiag2×2 ×Gm

is given by (0, 0)×Gm ⊂ VT̂,0 in the standard coordinates, and its k-points

correspond to the supersingular Hecke modules through the correspondence
Sphγ .

(ii) Let γ ∈ T∨/W0 be non-regular. Consider the decomposition

V γ

T̂,0
/W0 = VT̂,0/W0 
 A1 ×Gm = D(2)γ ∪D(1)γ ,

where D(1)γ is the closed subscheme defined by the parabola z2 = z21 in
the Steinberg coordinates z1, z2 and D(2)γ is the open complement. The
spherical map induces bijections

Sphγ(2) : D(2)γ(k)
∼ �� {simple 2-dimensional left Hγ

Fq
-modules}/ ∼ ,

Sphγ(1) : D(1)γ(k)
∼ �� {spherical pairs of characters of Hγ

Fq
}/ ∼ .

The branch locus of the covering

VT̂,0 −→ VT̂,0/W0 
 V γ

T̂,0
/W0

is contained in D(2)γ, with equation z1 = 0 in Steinberg coordinates, and
its k-points correspond to the supersingular Hecke modules through the cor-
respondence Sphγ(2).
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In combination with the computation of the Satake parameter S(M(1)

Fp
) in The-

orem D, we get that this dual parametrization of mod p Hecke modules is realized
in the equivariant K-theory of the dual Vinberg monoid at q = 0, whose Iwahori
block is a natural specialization at q = 0 of Kazhdan-Lusztig’s parametrization
for C-coefficients. This realizes the first part of a mod p semisimple Langlands
correspondence. We refer to [PS21,PS23] for the detailed relation between mod p
Satake parameters and mod p semisimple Galois representations.

Regarding the strategy of proofs, once the Vinberg monoid is introduced, the
generic Satake isomorphism is formulated and the generic spherical module is con-
structed, everything else follows from Vignéras’ structure theory of the generic pro-
p-Iwahori Hecke algebra and her classification of the irreducible representations.

Notation. In general, the letter F denotes a locally compact complete non-
archimedean field with ring of integers oF . Let Fq be its residue field, of char-
acteristic p and cardinality q. We denote by G the algebraic group GL2 over F
and by G := G(F ) its group of F -rational points. Let T ⊂ G be the torus of
diagonal matrices. Finally, I ⊂ G denotes the upper triangular standard Iwahori
subgroup and I(1) ⊂ I denotes the unique pro-p Sylow subgroup of I.

2. The pro-p-Iwahori-Hecke algebra

2.1. The generic pro-p-Iwahori Hecke algebra.

2.1.1. We denote by Φ = {±α} the root system of (G,T). We let W0 = {1, s = sα}
and Λ = X∗(T) = Z×Z be the finite Weyl group ofG and the lattice of cocharacters
of T respectively. If T = k× × k× denote the finite torus T(Fq), then W0 acts

naturally on T× Λ. We choose the element

(
0 1
1 0

)
as a lift of s in G; then the

extended Weyl group, split by this choice,3 is

W (1) = (T× Λ)�W0.

It contains the affine Weyl group and the Iwahori-Weyl group

Waff = Z(1,−1)�W0 ⊆ W = Λ�W0.

The affine Weyl group Waff is a Coxeter group with set of simple reflections Saff =
{s0, s}, where s0 = (1,−1)s. Moreover, setting u = (1, 0)s ∈ W and Ω = uZ, we
have W = Waff � Ω. The length function � on Waff can then be inflated to W and
W (1).

Definition 2.1.1. Let q be an indeterminate. The generic pro-p Iwahori Hecke
algebra is the Z[q]-algebra H(1)(q) defined by generators

H(1)(q) :=
⊕

w∈W (1)

Z[q]Tw

and relations:

• braid relations: TwTw′ = Tww′ for w,w′ ∈ W (1) if �(w) + �(w′) = �(ww′)

3Note that a splitting always exists for GLn, but not for a general split reductive G, cf.
[V05, Erratum 1)].
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• quadratic relations: T 2
s̃ = q+ csTs̃ if s̃ ∈ Saff , where

cs :=
∑

t∈(1,−1)(k×)

T
t·

⎛
⎝ −1 0

0 1

⎞
⎠.

2.1.2. The identity element is 1 = T1. Moreover we set

S := Ts, U := Tu and S0 := Ts0 = USU−1.

Definition 2.1.2. Let R be any commutative ring. The pro-p Iwahori Hecke
algebra of G with coefficients in R is defined to be the convolution algebra

H(1)
R := (R[I(1)\G/I(1)], �)

generated by the I(1)-double cosets in G.

Theorem 2.1.3 (Vignéras). Let Z[q] → R be the ring homomorphism mapping q
to q. Then the R-linear map

H(1)(q)⊗Z[q] R �� H(1)
R

sending Tw, w ∈ W (1), to the characteristic function of the double coset I(1)\w/I(1),
is an isomorphism of R-algebras.

Proof. This is [V16, Thm. 2.2, Prop. 4.4], up to the fact that here our choice
of splitting s is different from there. For this reason, in the generic quadratic
relations, we need to take the element cs as defined above instead of the element∑

t∈(1,−1)(k×) Tt used in loc. cit.; then the relations do specialize to the quadratic

relations in H(1)
R , as can be checked by the direct computation of the corresponding

convolution products. �

2.2. Idempotents and component algebras.

2.2.1. Recall the finite torus T = T(Fq). Let us consider its group algebra Z̃[T]
over the ring

Z̃ := Z[
1

q − 1
, μq−1].

As q−1 is invertible in Z̃, so is |T| = (q−1)2. We denote by T∨ the set of characters

λ : T → μq−1 ⊂ Z̃, with its natural W0-action given by sλ(t1, t2) = λ(t2, t1) for

(t1, t2) ∈ T. The set of W0-orbits T
∨/W0 has cardinality q2−q

2 . Also W (1) acts on

T∨ through the canonical quotient map W (1) → W0. Because of the braid relations
in H(1)(q), the rule t �→ Tt induces an embedding of Z̃-algebras

Z̃[T] ⊂ H(1)

Z̃
(q) := H(1)(q)⊗Z Z̃.

Definition 2.2.1. For all λ ∈ T∨ and for γ ∈ T∨/W0, we define

ελ := |T|−1
∑
t∈T

λ−1(t)Tt and εγ :=
∑
λ∈γ

ελ.

Lemma 2.2.2. The elements ελ, λ ∈ T∨, are idempotent, pairwise orthogonal and
their sum is equal to 1. The elements εγ , γ ∈ T∨/W0, are idempotent, pairwise
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orthogonal, their sum is equal to 1 and they are central in H(1)

Z̃
(q). The Z̃[q]-algebra

H(1)

Z̃
(q) is the direct product of the Z̃[q]-algebras Hγ

Z̃
(q) := H(1)

Z̃
(q)εγ:

H(1)

Z̃
(q) =

∏
γ∈T∨/W0

Hγ

Z̃
(q).

In particular, the category of H(1)

Z̃
(q)-modules decomposes into a finite product

of the module categories for the individual component rings H(1)

Z̃
(q)εγ .

Proof. The elements εγ are central because of the relations TsTt = Ts(t)Ts, Ts0Tt =

Ts0(t)Ts0 and TuTt = Ts(t)Tu for all t ∈ (1,−1)k×. �

2.2.2. Following the terminology of [V04], we call |γ| = 2 a regular case and |γ| = 1
a non-regular (or Iwahori) case.

2.3. The Bernstein presentation. The inverse image in W (1) of any subset of
W along the canonical projection W (1) → W will be denoted with a superscript
(1).

Theorem 2.3.1 (Vigneras [V16, Th. 2.10, Cor 5.47]). The Z[q]-algebra H(1)(q)
admits the following Bernstein presentation:

H(1)(q) =
⊕

w∈W (1)

Z[q]E(w)

satisfying

• braid relations: E(w)E(w′) = E(ww′) for w,w′ ∈ W
(1)
0 if �(w)+ �(w′) =

�(ww′)
• quadratic relations: E(s̃)2 = qE(s̃2) + cs̃E(s̃) if s̃ = ts ∈ s(1), where cs̃ :=
Ts(t)cs with t ∈ T

• product formula: E(λ)E(w) = q
�(λ)+�(w)−�(λw)

2 E(λw) for λ ∈ Λ(1) and
w ∈ W (1)

• Bernstein relations for s̃ ∈ s(1) and λ ∈ Λ(1): set V := RΦ∨ and let

ν : Λ(1) → V

be the homomorphism such that λ ∈ Λ(1) acts on V by translation by ν(λ);
then the Bernstein element

B(λ, s̃) := E(s̃λs̃−1)E(s̃)− E(s̃)E(λ)

= 0 if λ ∈ (Λs)(1)

= sign(α ◦ ν(λ))
∑|α◦ν(λ)|−1

k=0 q(k, λ)c(k, λ)E(μ(k, λ)) if λ ∈ Λ(1) \ (Λs)(1),

where q(k, λ)c(k, λ) ∈ Z[q][T] and μ(k, λ) ∈ Λ(1) are explicit, cf. [V16, Th.
5.46] and references therein.

2.3.1. Let

A(q) :=
⊕
λ∈Λ

Z[q]E(λ) ⊂ A(1)(q) :=
⊕

λ∈Λ(1)

Z[q]E(λ) ⊂ H(1)(q).

It follows from the product formula that these are commutative sub-Z[q]-algebras of
H(1)(q). Moreover, by definition [V16, 5.22-5.25], we have E(t) = Tt for all t ∈ T,
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so that Z[T] ⊂ A(1)(q). Then, again by the product formula, the commutative
algebra A(1)(q) decomposes as the tensor product of the subalgebras

A(1)(q) = Z[T]⊗Z A(q).

Also, after base extension Z → Z̃, we can set Aγ

Z̃
(q) := A(1)

Z̃
(q)εγ , and obtain the

decomposition

A(1)

Z̃
(q) =

∏
γ∈T∨/W0

Aγ

Z̃
(q) ⊂

∏
γ∈T∨/W0

Hγ

Z̃
(q) = H(1)

Z̃
(q).

Lemma 2.3.2. Let X,Y, z2 be indeterminates. There exists a unique ring homo-
morphism

Z[q][z±1
2 ][X,Y ]/(XY − qz2) �� A(q)

such that

X �−→ E(1, 0), Y �−→ E(0, 1) and z2 �−→ E(1, 1).

It is an isomorphism. Moreover, for all γ ∈ T∨/W0,

Aγ

Z̃
(q) =

{
(Z̃ελ × Z̃εμ)⊗Z A(q) if γ = {λ, μ} is regular,

Z̃ελ ⊗Z A(q) if γ = {λ} is non-regular.

Proof. For any (n1, n2) ∈ Z2 = Λ, we have �(n1, n2) = |n1 − n2|. Hence it follows
from product formula that z2 is invertible and XY = qz2, so that we get a Z[q]-
algebra homomorphism

Z[q][z±1
2 ][X,Y ]/(XY − qz2) �� A(q).

Moreover it maps the Z[q][z±1
2 ]-basis

{Xn}n≥1

∐
{1}

∐
{Y n}n≥1

to the Z[q][E(1, 1)±1]-basis

{E(n, 0)}n≥1

∐
{1}

∐
{E(0, n)}n≥1,

and hence is an isomorphism. The rest of the lemma is clear since A(1)

Z̃
(q) =

Z̃[T]⊗Z A(q) and Z̃[T] =
∏

λ∈T∨ Z̃ελ. �

In the following, we will sometimes view the isomorphism of Lemma 2.3.2 as an
identification and write X = E(1, 0), Y = E(0, 1) and z2 = E(1, 1).

2.3.2. The rule E(λ) �→ E(w(λ)) defines an action of the finite Weyl group W0 =
{1, s} on A(1)(q) by Z[q]-algebra homomorphisms. By [V05, Th. 4] (see also
[V14, Th. 1.3]), the subring of W0-invariants is equal to the center of H(1)(q), and

the same is true after the scalar extension Z → Z̃. Now the action on A(1)

Z̃
(q)

stabilizes each component Aγ

Z̃
(q) and then the resulting subring of W0-invariants

is the center of Hγ

Z̃
(q). In terms of the description of Aγ

Z̃
(q) given in Lemma 2.3.2,

this translates into :

Lemma 2.3.3. Let γ ∈ T∨/W0.
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• If γ = {λ, μ} is regular, then the map

AZ̃(q) −→ Aγ

Z̃
(q)W0 = Z(Hγ

Z̃
(q)),

a �−→ aελ + s(a)εμ

is an isomorphism of Z̃[q]-algebras. It depends on the choice of order (λ, μ)
on the set γ.

• If γ = {λ} is non-regular, then

Z(Hγ

Z̃
(q)) = Aγ

Z̃
(q)W0 = Z̃[q][z±1

2 , z1]ελ

with z1 := X + Y .

2.3.3. One can express X,Y, z2 ∈ A(1)(q) ⊂ H(1)(q) in terms of the distinguished
elements 2.1.2. This is an application of [V16, Ex. 5.30]. We find:

(1, 0) = s0u = us ∈ Λ ⇒ X := E(1, 0) = (S0 − cs0)U = U(S − cs),

(0, 1) = su ∈ Λ ⇒ Y := E(0, 1) = SU,

(1, 1) = u2 ∈ Λ ⇒ z2 := E(1, 1) = U2.

Also

z1 := X + Y = U(S − cs) + SU.

3. The generic regular spherical representation

3.1. The generic regular Iwahori-Hecke algebras. Let γ = {λ, μ} ∈ T∨/W0

be a regular orbit. We define a model H2(q) over Z for the component algebra

Hγ

Z̃
(q) ⊂ H(1)

Z̃
(q). The algebra H2(q) itself will not depend on γ.

3.1.1. By construction, the Z̃[q]-algebra Hγ

Z̃
(q) admits the following presentation:

Hγ

Z̃
(q) = (Z̃ελ × Z̃εμ)⊗′

Z

⊕
w∈W

Z[q]Tw,

where ⊗′
Z is the tensor product ⊗Z of Z-modules, whose algebra structure is twisted

by the W -action on {λ, μ} through the quotient map W → W0, together with the
orthogonality relation ελεμ = 0 and the

• braid relations: TwTw′ = Tww′ for w,w′ ∈ W if �(w) + �(w′) = �(ww′)
• quadratic relations: T 2

s̃ = q if s̃ ∈ Saff .

Definition 3.1.1. Let q be an indeterminate. The generic second Iwahori-Hecke
algebra is the Z[q]-algebra H2(q) defined by generators

H2(q) := (Zε1 × Zε2)⊗′
Z

⊕
w∈W

Z[q]Tw,

where ⊗′
Z is the tensor product ⊗Z of Z-modules, whose algebra structure is twisted

by the W -action on {1, 2} through the quotient map W → W0 = S2, together with
ε1ε2 = 0, and the relations:

• braid relations: TwTw′ = Tww′ for w,w′ ∈ W if �(w) + �(w′) = �(ww′)
• quadratic relations: T 2

s̃ = q if s̃ ∈ Saff .
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3.1.2. The identity element of H2(q) is 1 = T1. Moreover we set in H2(q)

S := Ts, U := Tu and S0 := Ts0 = USU−1.

Then one checks that

H2(q) = (Zε1 × Zε2)⊗′
Z Z[q][S,U±1], S2 = q, U2S = SU2

is a presentation of H2(q) (where S and U do not commute). Note that the element
U2 is invertible in H2(q).

3.1.3. Choosing the ordering (λ, μ) on the set γ = {λ, μ} and mapping ε1 �→
ελ, ε2 �→ εμ defines an isomorphism of Z̃[q]-algebras

H2(q)⊗Z Z̃
∼ �� Hγ

Z̃
(q),

such that S ⊗ 1 �→ Sεγ , U ⊗ 1 �→ Uεγ and S0 ⊗ 1 �→ S0εγ .

3.1.4. We identify two important commutative subrings of H2(q). We define A2(q)
⊂ H2(q) to be the Z[q]-subalgebra generated by the elements ε1, ε2, US, SU and
U±2. LetX,Y and z2 be indeterminates. Then there is a unique (Zε1×Zε2)⊗ZZ[q]-
algebra homomorphism

(Zε1 × Zε2)⊗Z Z[q][z±1
2 ][X,Y ]/(XY − qz2) −→ A2(q)

such that X �→ US, Y �→ SU, z2 �→ U2, and it is an isomorphism. In particular,
A2(q) is a commutative subalgebra of H2(q). The isomorphism 3.1.3 identifies

A2(q) ⊗Z Z̃ with Aγ

Z̃
(q). Moreover, permuting ε1 and ε2, and X and Y , extends

to an action of W0 = S2 on A2(q) by homomorphisms of Z[q]-algebras, whose
invariants are the center Z(H2(q)) of H2(q), and the map

Z[q][z±1
2 ][X,Y ]/(XY − qz2) −→ A2(q)

W0 = Z(H2(q)),

a �−→ aε1 + s(a)ε2

is an isomorphism of Z[q]-algebras. This is a consequence of Sections 3.1.3 and 2.3.3,
and Lemmas 2.3.2 and 2.3.3. In the following, we will sometimes view the above
isomorphisms as identifications. In particular, we will write X = US, Y = SU and
z2 = U2.

3.2. The Vignéras operator. In this subsection and the following, we will investi-
gate the structure of the Z(H2(q))-algebra EndZ(H2(q))(A2(q)) of Z(H2(q))-linear
endomorphisms of A2(q). Recall from the preceding subsection that Z(H2(q)) =
A2(q)

s is the subring of invariants of the commutative ring A2(q).

Lemma 3.2.1. We have

A2(q) = A2(q)
sε1 ⊕A2(q)

sε2

as A2(q)
s-modules.

Proof. This is immediate from the two isomorphisms in 3.1.4. �

According to Lemma 3.2.1, we may use the A2(q)
s-basis ε1, ε2 to identify

EndZ(H2(q))(A2(q)) with the algebra of 2× 2-matrices over

A2(q)
s=Z[q][z±1

2 ][X,Y ]/(XY − qz2).
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Definition 3.2.2. The endomorphism of A2(q) corresponding to the matrix

Vs(q) :=

(
0 Y ε1 +Xε2

z−1
2 (Xε1 + Y ε2) 0

)
will be called the Vignéras operator on A2(q).

Lemma 3.2.3. We have Vs(q)
2 = q.

Proof. This is a short calculation. �

3.3. The generic regular spherical representation. In Theorem 3.3.1 we de-
fine the generic regular spherical representation of the algebra H2(q) on the
Z(H2(q))-module A2(q). Note that the commutative ring A2(q) is naturally a
subring

A2(q) ⊂ EndZ(H2(q))(A2(q)),

an element a ∈ A2(q) acting by multiplication b �→ ab on A2(q).

Theorem 3.3.1. There exists a unique Z[q]-algebra homomorphism

A2(q) : H2(q) �� EndZ(H2(q))(A2(q))

such that

(i) A2(q)|A2(q) = the natural inclusion A2(q) ⊂ EndZ(H2(q))(A2(q))
(ii) A2(q)(S) = Vs(q).

Proof. Recall that H2(q) = (Zε1 × Zε2)⊗′
Z Z[q][S,U±1] with the relations S2 = q

and U2S = SU2. In particular A2(q)(S) := Vs(q) is well-defined thanks to 3.2.3.
Now let us consider the question of finding the restriction of A2(q) to the subalgebra
Z[q][S,U±1]. As the Z[q]-algebra A2(q) ∩ Z[q][S,U±1] is generated by

z2 = U2, X = US and Y = SU,

such a Z[q]-algebra homomorphism exists if and only if there exists

A2(q)(U) ∈ EndZ(H2(q))(A2(q))

satisfying

(1) A2(q)(U)2 = A2(q)(U
2) = A2(q)(z2) = z2 Id (in particular A2(q)(U) is

invertible)
(2) A2(q)(U)Vs(q) = multiplication by X
(3) Vs(q)A2(q)(U) = multiplication by Y .

As before we use the Z(H2(q))-basis ε1, ε2 of A2(q) to identify EndZ(H2(q))(A2(q))
with the algebra of 2 × 2-matrices over the ring Z(H2(q)) = A2(q)

s. Then, by
definition,

Vs(q) =

(
0 Y ε1 +Xε2

z−1
2 (Xε1 + Y ε2) 0

)
.

Moreover, the multiplications by X and by Y on A2(q) correspond then to the
matrices(

Xε1 + Y ε2 0
0 Y ε1 +Xε2

)
and

(
Y ε1 +Xε2 0

0 Xε1 + Y ε2

)
.

Now, writing

A2(q)(U) =

(
a c
b d

)
,
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we have:

A2(q)(U)2 = z2 Id ⇐⇒
(

a2 + bc c(a+ d)
b(a+ d) d2 + bc

)
=

(
z2 0
0 z2

)
,

A2(q)(U)Vs(q) = multiplication by X

⇐⇒
(

cz−1
2 (Xε1 + Y ε2) a(Y ε1 +Xε2)

dz−1
2 (Xε1 + Y ε2) b(Y ε1 +Xε2)

)
=

(
Xε1 + Y ε2 0

0 Y ε1 +Xε2

)
and

Vs(q)A2(q)(U) = multiplication by Y

⇐⇒
(

b(Y ε1 +Xε2) d(Y ε1 +Xε2)
az−1

2 (Xε1 + Y ε2) cz−1
2 (Xε1 + Y ε2)

)
=

(
Y ε1 +Xε2 0

0 Xε1 + Y ε2

)
.

Each of the two last systems admits a unique solution, namely

A2(q)(U) =

(
a c
b d

)
=

(
0 z2
1 0

)
,

which is also a solution of the first one. Moreover, the determinant

ad− bc = −z2

is invertible.
Finally, A2(q) is generated by A2(q)∩Z[q][S,U±1] together with ε1 and ε2. The

latter are assigned to map to the projectors

multiplication by ε1 =

(
1 0
0 0

)
and multiplication by ε2 =

(
0 0
0 1

)
.

Thus it only remains to check that(
1 0
0 0

)
A2(q)(S) = A2(q)(S)

(
0 0
0 1

)
and (

0 0
0 1

)
A2(q)(S) = A2(q)(S)

(
1 0
0 0

)
,

and similarly with A2(q)(U) in place of A2(q)(S), which is straightforward. �

Remark 3.3.2. The map A2(q), together with the fact that it is an isomorphism
(see below), is a rewriting of a theorem of Vignéras, namely [V04, Cor. 2.3]. In
loc. cit., the algebra H2(q) is identified with the algebra of 2× 2-matrices over the
ring Z[q][z±1

2 ][X,Y ]/(XY − qz2). In our approach, we have replaced the abstract
rank 2 module underlying the standard representation of this matrix algebra, by
the subring A2(q) of H2(q) with {ε1, ε2} for the canonical basis.

Proposition 3.3.3. The homomorphism A2(q) is an isomorphism.

Proof. It follows from 3.1.2 and 3.1.4 that the Z[q]-algebra H2(q) is generated by
the elements

ε1, ε2, S, U, SU

as a module over its center Z(H2(q)). Moreover, as SU2 = U2S =: z2S and
SU =: Y , we have

S = z−1
2 Y U = z−1

2 Y (ε1U + ε2U) = z−1
2 (Y ε1 +Xε2)ε1U + z−1

2 (Xε1 + Y ε2)ε2U,

U = ε1U + ε2U and SU = (Y ε1 +Xε2)ε1 + (Xε1 + Y ε2)ε2.
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Consequently H2(q) is generated as a Z(H2(q))-module by the elements

ε1, ε2, z−1
2 ε1U, ε2U.

Since

A2(q)(U) :=

(
0 z2
1 0

)
,

these four elements are mapped by A2(q) to(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

As A2(q) identifies Z(H2(q)) ⊂ H2(q) with the center of the matrix algebra

EndZ(H2(q))(A2(q)) = EndZ(H2(q))(Z(H2(q))ε1 ⊕ Z(H2(q))ε2),

it follows that the elements ε1, ε2, z−1
2 ε1U , ε2U are linearly independent over

Z(H2(q)) and that A2(q) is an isomorphism. �
We record Corollary 3.3.4 of the proof.

Corollary 3.3.4. The ring H2(q) is a free Z(H2(q))-module on the basis ε1, ε2,
z−1
2 ε1U, ε2U.

3.3.1. We end this section by noting an equivariance property of A2(q). As already
noticed, the finite Weyl group W0 acts on A2(q) by Z[q]-algebra automorphisms,
and the action is clearly faithful. Moreover A2(q)

W0 = Z(H2(q)). Hence W0

can be viewed as a subgroup of EndZ(H2(q))(A2(q)), and we can let it act on
EndZ(H2(q))(A2(q)) by conjugation.

Lemma 3.3.5. The embedding A2(q)|A2(q) is W0-equivariant.

Proof. Indeed, for all a, b ∈ A2(q) and w ∈ W0, we have

A2(q)(w(a))(b) = w(a)b = w(aw−1(b)) = (waw−1)(b) = (wA2(q)(a)w
−1)(b).

�

4. The generic non-regular spherical representation

4.1. The generic non-regular Iwahori-Hecke algebras. Let γ = {λ} ∈ T∨/W0

be a non-regular orbit. As in the regular case, we define a model H1(q) over Z for

the component algebra Hγ

Z̃
(q) ⊂ H(1)

Z̃
(q). The algebra H1(q) will not depend on γ.

4.1.1. By construction, the Z̃[q]-algebra Hγ

Z̃
(q) admits the following presentation:

Hγ

Z̃
(q) =

⊕
w∈W

Z[q]Twελ,

with

• braid relations: TwTw′ = Tww′ for w,w′ ∈ W if �(w) + �(w′) = �(ww′)
• quadratic relations: T 2

s̃ = q+ (q − 1)Ts̃ if s̃ ∈ Saff .

Definition 4.1.1. Let q be an indeterminate. The generic Iwahori-Hecke algebra
is the Z[q]-algebra H1(q) defined by generators

H1(q) :=
⊕
w∈W

Z[q]Tw

and relations:
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• braid relations: TwTw′ = Tww′ for w,w′ ∈ W if �(w) + �(w′) = �(ww′)
• quadratic relations: T 2

s̃ = q+ (q− 1)Ts̃ if s̃ ∈ Saff .

4.1.2. The identity element of H1(q) is 1 = T1. Moreover we set in H1(q)

S := Ts, U := Tu and S0 := Ts0 = USU−1.

Then one checks that

H1(q) = Z[q][S,U±1], S2 = q+ (q− 1)S, U2S = SU2

is a presentation of H1(q). Note that the element U2 is invertible in H1(q).

4.1.3. Sending 1 to εγ defines an isomorphism of Z̃[q]-algebras

H1(q)⊗Z Z̃
∼ �� Hγ

Z̃
(q),

such that S ⊗ 1 �→ Sεγ , U ⊗ 1 �→ Uεγ and S0 ⊗ 1 �→ S0εγ .

4.1.4. We define A1(q) ⊂ H1(q) to be the Z[q]-subalgebra generated by the ele-
ments (S0 − (q − 1))U , SU and U±2. Let X,Y and z2 be indeterminates. Then
there is a unique Z[q]-algebra homomorphism

Z[q][z±1
2 ][X,Y ]/(XY − qz2) −→ A1(q)

such that X �→ (S0 − (q− 1))U , Y �→ SU , z2 �→ U2, and it is an isomorphism. In
particular, A1(q) is a commutative subalgebra of H1(q). The isomorphism 4.1.3

identifies A1(q) ⊗Z Z̃ with Aγ

Z̃
(q). Moreover, permuting X and Y extends to an

action of W0 = S2 on A1(q) by homomorphisms of Z[q]-algebras, whose invariants
are the center Z(H1(q)) of H1(q) and

Z[q][z±1
2 ][z1]

∼−→ A1(q)
W0 = Z(H1(q))

with z1 := X + Y . This is a consequence of 4.1.3, 2.3.3, 2.3.2 and 2.3.3. In the
following, we will sometimes view the above isomorphisms as identifications. In
particular, we will write

X = (S0 − (q− 1))U = U(S − (q− 1)), Y = SU and z2 = U2 in H1(q).

4.1.5. It is well-known that the generic Iwahori-Hecke algebraH1(q) is a q-deforma-
tion of the group ring Z[W ] of the Iwahori-Weyl groupW = Λ�W0. More precisely,
specializing the chain of inclusions A1(q)

W0 ⊂ A1(q) ⊂ H1(q) at q = 1 yields the
chain of inclusions Z[Λ]W0 ⊂ Z[Λ] ⊂ Z[W ].

4.2. The Kazhdan-Lusztig-Ginzburg operator. As in the regular case, we
will study the Z(H1(q))-algebra EndZ(H1(q))(A1(q)) of Z(H1(q))-linear endomor-
phisms of A1(q). Recall that Z(H1(q)) = A1(q)

s is the subring of invariants of the
commutative ring A1(q).

Lemma 4.2.1. We have

A1(q) = A1(q)
sX ⊕A1(q)

s = A1(q)
s ⊕A1(q)

sY

as A1(q)
s-modules.
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Proof. Applying s, the two decompositions are equivalent; so it suffices to check
that Z[z±1

2 ][X,Y ] is free of rank 2 with basis 1, Y over the subring of symmetric
polynomials Z[z±1

2 ][X + Y,XY ]. First if P = QY with P and Q symmetric, then
applying s we get P = QX and hence Q(X − Y ) = 0 which implies P = Q = 0. It
remains to check that any monomial XiY j , i, j ∈ N, belongs to

Z[z±1
2 ][X + Y,XY ] + Z[z±1

2 ][X + Y,XY ]Y.

As X = (X + Y ) − Y and Y 2 = −XY + (X + Y )Y , the latter is stable under
multiplication by X and Y ; as it contains 1, the result follows. �

Remark 4.2.2. The basis {1, Y } specializes at q = 1 to the so-called Pittie-Steinberg
basis [St75] of Z[Λ] over Z[Λ]W0 .

Definition 4.2.3. We let

Ds := projector on A1(q)
sY along A1(q)

s,

D′
s := projector on A1(q)

s along A1(q)
sX,

Ds(q) := Ds − qD′
s.

Remark 4.2.4. The operators Ds and D′
s specialize at q = 1 to the Demazure

operators on Z[Λ], as introduced in [D73,D74].

Lemma 4.2.5. We have

Ds(q)
2 = (1− q)Ds(q) + q.

Proof. Noting that Y = z1 −X, we have

Ds(q)
2(1) = Ds(q)(−q) = q2 = (1− q)(−q) + q = ((1− q)Ds(q) + q)(1)

and

Ds(q)
2(Y ) = Ds(q)(Y − qz1)

= Y − qz1 − qz1(−q)

= (1− q)(Y − qz1) + qY

= ((1− q)Ds(q) + q)(Y ).

�

4.3. The generic non-regular spherical representation. We define the generic
non-regular spherical representation of the algebra H1(q) on the Z(H1(q))-module
A1(q). The commutative ring A1(q) is naturally a subring

A1(q) ⊂ EndZ(H1(q))(A1(q)),

an element a ∈ A1(q) acting by multiplication b �→ ab on A1(q).

Theorem 4.3.1. There exists a unique Z[q]-algebra homomorphism

A1(q) : H1(q) �� EndZ(H1(q))(A1(q))

such that

(i) A1(q)|A1(q) = the natural inclusion A1(q) ⊂ EndZ(H1(q))(A1(q))
(ii) A1(q)(S) = −Ds(q).
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Proof. Recall that H1(q) = Z[q][S,U±1] with the relations S2 = (q− 1)S + q and
U2S = SU2. In particular A1(q)(S) := −Ds(q) is well-defined thanks to 4.2.5. On
the other hand, the Z[q]-algebra A1(q) is generated by

z2 = U2, X = US + (1− q)U and Y = SU.

Consequently, there exists a Z[q]-algebra homomorphism A1(q) as in the statement
of the theorem if and only if there exists

A1(q)(U) ∈ EndZ(H1(q))(A1(q))

satisfying

(1) A1(q)(U)2 = A1(q)(U
2) = A1(q)(z2) = z2 Id (in particular A1(q)(U) is

invertible)
(2) A1(q)(U)(−Ds(q)) + (1− q)A1(q)(U) = multiplication by X
(3) −Ds(q)A1(q)(U) = multiplication by Y .

Let us use the Z(H1(q))-basis 1, Y of A1(q) to identify EndZ(H1(q))(A1(q)) with
the algebra of 2×2-matrices over the ring Z(H1(q)) = A1(q)

s. Then, by definition,

−Ds(q) =

(
0 0
0 −1

)
+ q

(
1 z1
0 0

)
=

(
q qz1
0 −1

)
.

Moreover, as X = z1 − Y , XY = qz2 and Y 2 = −XY + (X + Y )Y = −qz2 + z1Y ,
the multiplications by X and by Y on A1(q) get identified with the matrices(

z1 qz2
−1 0

)
and

(
0 −qz2
1 z1

)
.

Now, writing

A1(q)(U) =

(
a c
b d

)
,

we have:

A1(q)(U)2 = z2 Id ⇐⇒
(

a2 + bc c(a+ d)
b(a+ d) d2 + bc

)
=

(
z2 0
0 z2

)
,

A1(q)(U)(−Ds(q)) + (1− q)A1(q)(U) = multiplication by X

⇐⇒
(

a q(az1 − c)
b q(bz1 − d)

)
=

(
z1 qz2
−1 0

)
and

−Ds(q)A1(q)(U) = multiplication by Y

⇐⇒
(

q(a+ z1b) q(c+ z1d)
−b −d

)
=

(
0 −qz2
1 z1

)
.

Each of the two last systems admits a unique solution, namely

A1(q)(U) =

(
a c
b d

)
=

(
z1 z21 − z2
−1 −z1

)
,

which is also a solution of the first one. Moreover, the determinant

ad− bc = −z21 + (z21 − z2) = −z2

is invertible. �
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4.3.1. The relation between our generic non-regular representation A1(q) and the
theory of Kazhdan-Lusztig [KL87], and Ginzburg [CG97], is the following. Intro-

ducing a square root q
1
2 of q and extending scalars along Z[q] ⊂ Z[q± 1

2 ], we obtain

the Hecke algebra H1(q
± 1

2 ) together with its commutative subalgebra A1(q
± 1

2 ).

The latter contains the elements θ̃λ, λ ∈ Λ, introduced by Bernstein and Lusztig,
which are defined as follows: writing λ = λ1−λ2 with λ1, λ2 antidominant, one has

θ̃λ := T̃eλ1 T̃
−1
eλ2

:= q− �(λ1)
2 q

�(λ2)
2 Teλ1T

−1
eλ2

.

They are related to the Bernstein basis {E(w), w ∈ W} of H1(q) introduced
by Vignéras (which is analogous to the Bernstein basis of H(1)(q) which we have
recalled in 2.3.1) by the formula:

∀λ ∈ Λ, ∀w ∈ W0, E(eλw) = q
�(eλw)−�(w)

2 θ̃λTw ∈ H1(q) ⊂ H1(q
± 1

2 ).

In particular E(eλ) = q
�(eλ)

2 θ̃λ, and by the product formula (analogous to the

product formula for H(1)(q), cf. 2.3.1), the Z[q± 1
2 ]-linear isomorphism

θ̃ : Z[q± 1
2 ][Λ]

∼−→ A1(q
± 1

2 ),

eλ �−→ θ̃λ

is in fact multiplicative, i.e. it is an isomorphism of Z[q± 1
2 ]-algebras.

Consequently, if we base change our action map A1(q) to Z[q± 1
2 ], we get a

representation

A1(q
± 1

2 ) :H1(q
± 1

2 ) �� End
Z(H1(q

± 1
2 ))

(A1(q
± 1

2 ))
End
Z[q± 1

2 ][Λ]W0
(Z[q± 1

2 ][Λ]),

which coincides with the natural inclusion Z[q± 1
2 ][Λ] ⊂ End

Z[q± 1
2 ][Λ]W0

(Z[q± 1
2 ][Λ])

when restricted to A1(q
± 1

2 ) 
 Z[q± 1
2 ][Λ], and which sends S to the opposite

−Ds(q) of the q-deformed Demazure operator. Hence, modulo our choice of an-
tidominant orientation, this is the spherical representation defined by Kazhdan-
Lusztig [KL87, Lem. 3.9] and Ginzburg [CG97, 7.6].4

In particular, A1(1) is the usual action of the Iwahori-Weyl group W = Λ�W0

on Λ, and A1(0) can be thought of as a degeneration of the latter.

Proposition 4.3.2. The homomorphism A1(q) is injective.

Proof. It follows from 4.1.2 and 4.1.4 that the ring H1(q) is generated by the
elements

1, S, U, SU

as a module over its center Z(H1(q)) = Z[q][z1, z
±1
2 ]. As the latter is mapped

isomorphically to the center of the matrix algebra EndZ(H1(q))(A1(q)) by A1(q),
it suffices to check that the images

1, A1(q)(S), A1(q)(U), A1(q)(SU)

4Moreover, it can be checked, in analogy to loc. cit., that theH1(q)-module A1(q) is isomorphic
to the induction of the trivial character of the finite Hecke (sub)algebra Z[q][S]. But we will not
make use of this in the following.
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of 1, S, U, SU by A1(q) are free over Z(H1(q)). So let α, β, γ, δ ∈ Z(H1(q)) (which
is an integral domain) be such that

α

(
1 0
0 1

)
+ β

(
q qz1
0 −1

)
+ γ

(
z1 z21 − z2
−1 −z1

)
+ δ

(
0 −qz2
1 z1

)
= 0.

Then ⎧⎪⎪⎪⎨⎪⎪⎪⎩
α+ βq+ γz1 = 0,

−γ + δ = 0,

βqz1 + γ(z21 − z2)− δqz2 = 0,

α− β + (δ − γ)z1 = 0.

We obtain δ = γ, α = β and{
α(1 + q) + γz1 = 0,

αqz1 + γ(z21 − z2 − qz2) = 0.

The latter system has determinant

(1 + q)(z21 − z2 − qz2)− qz21 = z21 − z2 − 2qz2 − q2z2

which is non-zero (its specialization at q = 0 is equal to z21 − z2 �= 0), whence
α = γ = 0 = β = δ. �

We record Corollaries 4.3.3 and 4.3.4 of the proof.

Corollary 4.3.3. The ring H1(q) is a free Z(H1(q))-module on the basis 1, S, U, SU .

Corollary 4.3.4. The homomorphism A1(0) is injective.

4.3.2. We end this section by noting an equivariance property of A1(q). As already
noticed, the finite Weyl group W0 acts on A1(q) by Z[q]-algebra automorphisms,
and the action is clearly faithful. Moreover A1(q)

W0 = Z(H1(q)). Hence W0

can be viewed as a subgroup of EndZ(H1(q))(A1(q)), and we can let it act on
EndZ(H1(q))(A1(q)) by conjugation.

Lemma 4.3.5. The embedding A1(q)|A1(q) is W0-equivariant.

Proof. Indeed, for all a, b ∈ A1(q) and w ∈ W0, we have

A1(q)(w(a))(b) = w(a)b = w(aw−1(b)) = (waw−1)(b) = (wA1(q)(a)w
−1)(b).

�

5. K-theory of the dual flag variety

5.1. The Vinberg monoid of the dual group Ĝ = GL2.

5.1.1. The Langlands dual group over k := Fq of the connected reductive algebraic

group GL2 over F is Ĝ = GL2. We recall the k-monoid scheme introduced by
Vinberg in [V95], in the particular case of GL2. It is in fact defined over Z, as the
group GL2. In the following, all the fibre products are taken over the base ring Z.

Definition 5.1.1. Let Mat2×2 be the Z-monoid scheme of 2 × 2-matrices (with
usual matrix multiplication as operation). The Vinberg monoid for GL2 is the
Z-monoid scheme

VGL2
:= Mat2×2 ×Gm.
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5.1.2. The group GL2 × Gm is recovered from the monoid VGL2
as its group of

units. The group GL2 itself is recovered as follows. Denote by z2 the canonical
coordinate onGm. Then let q be the homomorphism from VGL2

to the multiplicative
monoid (A1, ·) defined by (f, z2) �→ det(f)z−1

2 :

VGL2

q

��

A1.

Then GL2 is recovered as the fibre at q = 1, canonically:

q−1(1) = {(f, z2) : det(f) = z2} ∼−→ GL2, (f, z2) �→ f.

The fibre at q = 0 is the Z-semigroup scheme

VGL2,0 := q−1(0) = Sing2×2 ×Gm,

where Sing2×2 represents the singular 2× 2-matrices. Note that it has no identity
element, i.e. it is a semigroup which is not a monoid.

5.1.3. Let Diag2×2 ⊂ Mat2×2 be the submonoid scheme of diagonal 2× 2-matrices,
and set

VT̂
:= Diag2×2 ×Gm ⊂ VGL2

= Mat2×2 ×Gm.

This is a diagonalizable Z-monoid scheme with character monoid

X•(VT̂) = N(1, 0)⊕N(0, 1)⊕Z ⊂ Z(1, 0)⊕Z(0, 1)⊕Z = Λ⊕Z = X•(T̂)⊕X•(Gm).

In particular, setting X := e(1,0) and Y := e(0,1) in the group ring Z[Λ], we have

T̂ = Spec(Z[X±1, Y ±1]) ⊂ Spec(Z[z±1
2 ][X,Y ]) = VT̂.

Again, this closed subgroup is recovered as the fibre at q = 1 of the fibration q|VT̂
:

VT̂ → A1, and the fibre at q = 0 is the Z-semigroup scheme SingDiag2×2 ×Gm

where SingDiag2×2 represents the singular diagonal 2× 2-matrices:

T̂ � � ��

��

VT̂

q

��

SingDiag2×2 ×Gm
� ���

��

Spec(Z) �
� 1 �� A1 Spec(Z).� �0��

In terms of equations, the A1-family

q : VT̂ = Diag2×2 ×Gm = Spec(Z[z±1
2 ][X,Y ]) �� A1

is given by the formula q(diag(x, y), z2) = det(diag(x, y))z−1
2 = xyz−1

2 . Hence,
after fixing z2 ∈ Gm, the fibre over a point q ∈ A1 is the hyperbola xy = qz2,
which is non-degenerate if q �= 0, and is the union of the two coordinate axes if
q = 0.

5.2. The associated flag variety and its equivariant K-theory.
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5.2.1. Let B̂ ⊂ GL2 be the Borel subgroup of upper triangular matrices, let
UpTriang2×2 be the Z-monoid scheme representing the upper triangular 2 × 2-
matrices, and set

VB̂
:= UpTriang2×2 ×Gm ⊂ Mat2×2 ×Gm =: VGL2

.

Then we can apply to this inclusion of Z-monoid schemes the general formalism
developed in [PS20]. In particular, the flag variety VGL2

/VB̂ is defined as a Z-
monoidoid. Moreover, after base changing along Z → k, we have defined a ring
KVGL2 (VGL2

/VB̂) of VGL2
-equivariant K-theory on the flag variety, together with

an induction isomorphism

IndVGL2

VB̂
: R(VB̂)

∼ �� KVGL2 (VGL2
/VB̂)

from the ring R(VB̂) of right representations of the k-monoid scheme VB̂ on finite
dimensional k-vector spaces.

5.2.2. Now, we have the inclusion of monoids

VT̂ = Diag2×2 ×Gm ⊂ VB̂ = UpTriang2×2 ×Gm,

which admits the retraction

VB̂ −→ VT̂((
x c
0 y

)
, z2

)
�−→

((
x 0
0 y

)
, z2

)
.

Let Rep(VT̂) be the category of representations of the commutative k-monoid
scheme VT̂ on finite dimensional k-vector spaces. The above preceding inclusion
and retraction define a restriction functor and an inflation functor

Res
VB̂

VT̂
: Rep(VB̂)

��
Rep(VT̂) : Infl

VB̂

VT̂
.��

These functors are exact and compatible with the tensors products and units.

Lemma 5.2.1. The ring homomorphisms

Res
VB̂

VT̂
: R(VB̂)

��
R(VT̂) : Infl

VB̂

VT̂
��

are isomorphisms, which are inverse one to the other.

Proof. We have ResVT̂
◦ InflVB̂

VT̂
= Id by construction. Conversely, letM be an object

of Rep(VB̂). The solvable subgroup B̂×Gm ⊂ VB̂ stabilizes a line L ⊆ M . As B̂×
Gm is dense in VB̂, the line L is automatically VB̂-stable. Moreover the unipotent

radical Û ⊂ B̂ acts trivially on L, so that B̂×Gm acts on L through the quotient

T̂×Gm. Hence, by density again, VB̂ acts on L through the retraction VB̂ → VT̂.
This shows that any irreducible M is a character inflated from a character of VT̂.
In particular, the map R(VT̂) → R(VB̂) is surjective and hence bijective. �

Corollary 5.2.2. We have a ring isomorphism

cVGL2
:= IndVGL2

VB̂
◦ InflVB̂

VT̂
: Z[X,Y, z±1

2 ] ∼= R(VT̂)
∼ �� KVGL2 (VGL2

/VB̂)

that we call the characteristic isomorphism in the equivariant K-theory of the flag
variety VGL2

/VB̂.
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5.2.3. We have a commutative diagram specialization at q = 1

Z[X,Y, z±1
2 ]

cVGL2

∼
��

����

KVGL2 (VGL2
/VB̂)

����

Z[X±1, Y ±1]
cGL2

∼
�� KGL2(GL2/B̂).

The vertical map on the left-hand side is given by specialization q = 1, i.e. by the
surjection

Z[X,Y, z±1
2 ] = Z[q][X,Y, z±1

2 ]/(XY − qz2)

−→ Z[X,Y, z±1
2 ]/(XY − z2) = Z[X±1, Y ±1].

The vertical map on the right-hand side is given by restricting equivariant vector
bundles to the 1-fibre of q : VGL2

→ A1, thereby recovering the classical theory.

5.2.4. Let Rep(VGL2
) be the category of right representations of the k-monoid

scheme VGL2
on finite dimensional k-vector spaces. The inclusion VB̂ ⊂ VGL2

defines a restriction functor

Res
VGL2

VB̂
: Rep(VGL2

) �� Rep(VB̂),

whose composition with Res
VB̂

VT̂
is the restriction from VGL2

to VT̂:

Res
VGL2

VT̂
= Res

VB̂

VT̂
◦ResVGL2

VB̂
: Rep(VGL2

) �� Rep(VT̂).

These restriction functors are exact and compatible with the tensors products and
units.

5.2.5. The action of the Weyl group W0 on X•(T̂) ⊕ X•(Gm) (trivial on X•(Gm))

stabilizes X•(VT̂). Consequently W0 acts on VT̂ and the inclusion T̂ ⊂ VT̂ is W0-
equivariant. Explicitly,W0 = {1, s} and s acts on VT̂ = Diag2×2 ×Gm by permuting
the two diagonal entries and trivially on the Gm-factor.

Lemma 5.2.3. The ring homomorphism

Res
VGL2

VT̂
: R(VGL2

) �� R(VT̂)

is injective, with image the subring R(VT̂)
W0 ⊂ R(VT̂) of W0-invariants. The

resulting ring isomorphism

χVGL2
: R(VGL2

)
∼ �� R(VT̂)

W0

is the character isomorphism of VGL2
.

Proof. This is a general result on the representation theory of VĜ. Note that in the

case of Ĝ = GL2, we have

R(VT̂)
W0 = Z[X + Y,XY z−1

2 =: q, z±1
2 ] ⊂ Z[X,Y, z±1

2 ] = R(VT̂).

�
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6. Dual parametrization of generic Hecke modules

We keep all the notations introduced in the preceding section. In particular,
k = Fq.

6.1. The generic Bernstein isomorphism. Recall from 2.3.1 the subring A(q)
⊂ H(1)(q) and the remarkable Bernstein basis elements E(1, 0), E(0, 1) and E(1, 1).
Also recall from 5.1.3 the representation ring R(VT̂) = Z[X,Y, z±1

2 ] of the diago-
nalizable k-submonoid scheme VT̂ ⊂ VĜ of the Vinberg k-monoid scheme of the

Langlands dual k-group Ĝ = GL2 of GL2,F .

Theorem 6.1.1. There exists a unique ring homomorphism

B(q) : A(q) �� R(VT̂)

such that

B(q)(E(1, 0)) = X, B(q)(E(0, 1)) = Y,

B(q)(E(1, 1)) = z2 and B(q)(q) = XY z−1
2 .

It is an isomorphism.

Proof. This is a reformulation of the first part of 2.3.2. �

6.1.1. Then recall from 2.3.1 the subring A(1)(q) = Z[T]⊗Z A(q) ⊂ H(1)(q) where
T is the finite abelian group T(Fq). Let T∨ be the finite abelian dual group of
T. As T∨ has order prime to p, it defines a constant finite diagonalizable k-group
scheme, whose group of characters is T, and hence whose representation ring R(T∨)
identifies with Z[T]: t ∈ T ⊂ Z[T] corresponds to the character evt of T

∨ given by
evaluation at t. Set

V
(1)

T̂
:= T∨ × VT̂.

Corollary 6.1.2. There exists a unique ring homomorphism

B(1)(q) : A(1)(q) �� R(V
(1)

T̂
)

such that

B(1)(q)(E(1, 0)) = X, B(1)(q)(E(0, 1)) = Y,B(1)(q)(E(1, 1)) = z2,

B(1)(q)(q) = XY z−1
2

and ∀t ∈ T, B(1)(q)(Tt) = evt .

It is an isomorphism that we call the generic (pro-p) Bernstein isomorphism.

6.1.2. Also, setting V
(1)

B̂
:= T∨ × VB̂, we have from 5.2.1 the ring isomorphism

Infl
V

(1)

B̂

V
(1)

T̂

= IdZ[T] ⊗Z Res
VB̂

VT̂
: R(V

(1)

T̂
) = Z[T]⊗Z R(VT̂)

∼−−−−→ R(V
(1)

B̂
) = Z[T]⊗Z R(VB̂),

and setting V
(1)

Ĝ
:= T∨ × VĜ, we have from [PS20, 2.5.2], the ring isomorphism

Ind
V

(1)

Ĝ

V
(1)

B̂

: R(V
(1)

B̂
)

∼ �� K
V

(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
);
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hence by composition we get the characteristic isomorphism

c
V

(1)

Ĝ

: R(V
(1)

T̂
)

∼ �� K
V

(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

Whence a ring isomorphism

c
V

(1)

Ĝ

◦ B(1)(q) : A(1)(q)
∼ �� KV

(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

6.1.3. The representation ring R(VT̂) is canonically isomorphic to the ring Z[VT̂] of
regular functions of VT̂ considered now as a diagonalizable monoid scheme over Z.

Also recall from 2.2.1 the ring extension Z ⊂ Z̃, and denote by •̃ the base change
functor from Z to Z̃. For example, we will from now on write Ã(1)(q) instead of

A(1)

Z̃
(q). We have the constant finite diagonalizable Z̃-group scheme T∨, whose

group of characters is T, and whose ring of regular functions is

Z̃[T] =
∏

λ∈T∨

Z̃ελ.

Hence applying the functor Spec to B̃(1)(q), we obtain the commutative diagram

of Z̃-schemes

Spec(Ã(1)(q))

π0×q
����

���
���

���
���

V
(1)

T̂
= T∨ × VT̂

Id×q
		���

���
���

���
�

Spec(B̃(1)(q))

∼
��

(A1)(1) := T∨ × A1

where π0 : Spec(Ã(1)(q)) → T∨ is the decomposition of Spec(Ã(1)(q)) into its

connected components. In particular, for each λ ∈ T∨, we have the subring Ãλ(q) =

Ã(1)(q)ελ of Ã(1)(q) and the isomorphism

Spec(Ãλ(q)) {λ} × VT̂

Spec(B̃λ(q))

∼
��

of Z̃-schemes over {λ} × A1. In turn, each of these isomorphisms admits a model
over Z, obtained by applying Spec to the ring isomorphism in 4.1.4

B1(q) : A1(q)
∼ �� R(VT̂).

6.2. The generic Satake isomorphism. Recall part of our notation: G is the
algebraic group GL2 (which is defined over Z), F is a local field and G := G(F ).
We have denoted by oF the ring of integers of F . Now we set K := G(oF ).

Definition 6.2.1. Let R be any commutative ring. The spherical Hecke algebra of
G with coefficients in R is defined to be the convolution algebra

Hsph
R := (R[K\G/K], �)

generated by the K-double cosets in G.
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6.2.1. By the work of Kazhdan and Lusztig, the R-algebra Hsph
R depends on F only

through the cardinality q of its residue field. Indeed, choose a uniformizer � ∈ oF .
For a dominant cocharacter λ ∈ Λ+ of T, let 1λ be the characteristic function of

the double coset Kλ(�)K. Then (1λ)λ∈Λ+ is an R-basis of Hsph
R . Moreover, for all

λ, μ, ν ∈ Λ+, there exist polynomials

Nλ,μ;ν(q) ∈ Z[q]

depending only on the triple (λ, μ, ν), such that

1λ � 1μ =
∑
ν∈Λ+

Nλ,μ;ν(q)1ν ,

where Nλ,μ;ν(q) is the image under Z → R of the value of Nλ,μ;ν(q) at q = q.
These polynomials are uniquely determined by this property since when the non-
archimedean local field F varies (already over its unramified extensions), the corre-
sponding integers q form an infinite set. Their existence can be deduced from the

theory of the spherical algebra with coefficients in C, as Hsph
R = R ⊗Z Hsph

Z and

Hsph
Z ⊂ Hsph

C (e.g. using arguments similar to those in the proof of 6.2.3 below).

Definition 6.2.2. Let q be an indeterminate. The generic spherical Hecke algebra
is the Z[q]-algebra Hsph(q) defined by generators

Hsph(q) := ⊕λ∈Λ+Z[q]Tλ

and relations:

TλTμ =
∑
ν∈Λ+

Nλ,μ;ν(q)Tν for all λ, μ ∈ Λ+.

Theorem 6.2.3. There exists a unique ring homomorphism

S (q) : Hsph(q) �� R(VT̂)

such that

S (q)(T(1,0)) = X + Y, S (q)(T(1,1)) = z2 and S (q)(q) = XY z−1
2 .

It is an isomorphism onto the subring R(VT̂)
W0 of W0-invariants

S (q) : Hsph(q)
∼ �� R(VT̂)

W0 ⊂ R(VT̂).

In particular, the algebra Hsph(q) is commutative.

Proof. Let

Scl : Hsph
C

∼ �� C[X•(T̂)]W0

be the ‘classical’ isomorphism constructed by Satake [Sat63]. We use [Gr98] as a
reference.

For λ ∈ Λ+, let χλ ∈ Z[X•(T̂)]W0 be the character of the irreducible represen-

tation of Ĝ of highest weight λ. Then (χλ)λ∈Λ+ is a Z-basis of Z[X•(T̂)]W0 . Set
fλ := S −1

cl (q〈ρ,λ〉χλ), where 2ρ = α := (1,−1). Then for each λ, μ ∈ Λ+, there
exist polynomials dλ,μ(q) ∈ Z[q] such that

fλ = 1λ +
∑
μ<λ

dλ,μ(q)1μ ∈ Hsph
C ,
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where dλ,μ(q) ∈ Z is the value of dλ,μ(q) at q = q; the polynomial dλ,μ(q) depends
only on the couple (λ, μ), in particular it is uniquely determined by this property.

As (1λ)λ∈Λ+ is a Z-basis of Hsph
Z , so is (fλ)λ∈Λ+ . Then let us set

fλ(q) := Tλ +
∑
μ<λ

dλ,μ(q)Tμ ∈ Hsph(q).

As (Tλ)λ∈Λ+ is a Z[q]-basis of Hsph(q), so is (fλ(q))λ∈Λ+ .

Next consider the following Z[q
1
2 ]-linear map:

Scl(q) : Z[q
1
2 ]⊗Z[q] Hsph(q) −→ Z[q

1
2 ]⊗Z Z[X•(T̂)] = Z[q

1
2 ][X•(T̂)],

1⊗ fλ(q) �−→ q〈ρ,λ〉χλ.

We claim that it is a ring homomorphism. Indeed, for h1(q), h2(q) ∈ Z[q
1
2 ] ⊗Z[q]

Hsph(q), we need to check the identity

Scl(q)(h1(q)h2(q)) = Scl(q)(h1(q))Scl(q)(h2(q)) ∈ Z[q
1
2 ][X•(T̂)].

Projecting in the Z[q
1
2 ]-basis X•(T̂), the latter corresponds to (a finite number of)

identities in the ring Z[q
1
2 ] of polynomials in the variable q

1
2 . Now, by construction

and because Scl is a ring homomorphism, the desired identities hold after special-
izing q to any power of a prime number; hence they hold in Z[q

1
2 ]. Also note that

Scl(q) maps 1 = T(0,0) to 1 = χ(0,0) by definition.
It can also be seen that Scl(q) is injective using a specialization argument: if

h(q) ∈ Z[q
1
2 ]⊗Z[q] Hsph(q) satisfies Scl(q)(h(q)) = 0, then the coordinates of h(q)

(in the basis (1 ⊗ fλ(q))λ∈Λ+ say, one can also use the basis (1 ⊗ Tλ)λ∈Λ+) are

polynomials in the variable q
1
2 which must vanish for an infinite number of values

of q, and hence they are identically zero.
Let us describe the image of Hsph(q) ⊂ Z[q

1
2 ] ⊗Z[q] Hsph(q) under the ring

embedding Scl(q). By construction, we have

Scl(q)(Hsph(q)) =
⊕
λ∈Λ+

Z[q]q〈ρ,λ〉χλ.

Explicitly,

Λ+ = N(1, 0)⊕ Z(1, 1) ⊂ Z(1, 0)⊕ Z(0, 1) = Λ,

so that

Scl(q)(Hsph(q)) =

(⊕
n∈N

Z[q]q
n
2 χ(n,0)

)
⊗Z Z[χ±1

(1,1)].

On the other hand, recall that the ring of symmetric polynomials in the two
variables e(1,0) and e(0,1) is a graded ring generated the two characters χ(1,0) =

e(1,0) + e(0,1) and χ(1,1) = e(1,0)e(0,1):

Z[e(1,0), e(0,1)]s =
⊕
n∈N

Z[e(1,0), e(0,1)]sn = Z[χ(1,0), χ(1,1)].

As χ(1,0) is homogeneous of degree 1 and χ(1,1) is homogeneous of degree 2, this
implies that

Z[e(1,0), e(0,1)]sn =
⊕

(a,b)∈N2

a+2b=n

Zχa
(1,0)χ

b
(1,1).
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Now if a + 2b = n, then q
n
2 χa

(1,0)χ
b
(1,1) = (q

1
2χ(1,0))

a(qχ(1,1))
b. As the symmetric

polynomial χ(n,0) is homogeneous of degree n, we get the inclusion

Scl(q)(Hsph(q)) ⊂ Z[q][q
1
2χ(1,0),qχ(1,1)]⊗Z Z[χ±1

(1,1)] = Z[q][q
1
2χ(1,0), χ

±1
(1,1)].

Since by definition of Scl(q) we have Scl(q)(f(1,0)(q)) = q
1
2χ(1,0), Scl(q)(f(1,1)(q))

= χ(1,1) and Scl(q)(f(−1,−1)(q)) = χ(−1,−1) = χ−1
(1,1), this inclusion is an equality.

We have thus obtained the Z[q]-algebra isomorphism:

Scl(q)|Hsph(q) : Hsph(q)
∼ �� Z[q][q

1
2χ(1,0), χ

±1
(1,1)].

Also note that T(1,0) �→ q
1
2χ(1,0) and T(1,1) �→ χ(1,1) since T(1,0) = f(1,0)(q) and

T(1,1) = f(1,1)(q).
Finally, recall that VT̂ being the diagonalizable k-monoid scheme

Spec(k[X,Y, z±1
2 ]),

we have

R(VT̂)
W0 = Z[X,Y, z±1

2 ]W0 = Z[X + Y,XY, z±1
2 ] = Z[X + Y,XY z−1

2 , z±1
2 ].

Hence we can define a ring isomorphism

ι : Z[q][q
1
2χ(1,0), χ

±1
(1,1)]

∼ �� R(VT̂)
W0

by ι(q) := XY z−1
2 , ι(q

1
2χ(1,0)) = X +Y and ι(χ(1,1)) = z2. Composing, we get the

desired isomorphism

S (q) := ι ◦ Scl(q)|Hsph(q) : Hsph(q)
∼ �� R(VT̂)

W0 .

Note that S (q)(T(1,0)) = X + Y , S (q)(T(1,1)) = z2, S (q)(q) = XY z−1
2 , and that

S (q) is uniquely determined by these assignments since the ring Hsph(q) is the
polynomial ring in the variables q, T(1,0) and T±1

(1,1), thanks to the isomorphism

Scl(q)|Hsph(q). �

Remark 6.2.4. The choice of the isomorphism ι in the preceding proof may seem
ad hoc. However, it is natural from the point of view of the Vinberg fibration
q : VT̂ → A1.

First, as pointed out by Herzig in [H11, §1.2], one can make the classical complex

Satake transform Scl integral, by removing the factor δ
1
2 from its definition, where δ

is the modulus character of the Borel subgroup. Doing so produces a ring embedding

S ′ : Hsph
Z

� � �� Z[X•(T̂)].

The image of S ′ is not contained in the subring Z[X•(T̂)]W0 of W0-invariants. In
fact,

S ′(T(1,0)) = qe(1,0) + e(0,1) and S ′(T(1,1)) = e(1,1),

so that

S ′ : Hsph
Z

∼ �� Z[(qe(1,0) + e(0,1)), e±(1,1)] ⊂ Z[X•(T̂)].

Now,

Z[X•(T̂)] = Z[T̂] = Z[VT̂,1],
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where T̂ ∼= VT̂,1 is the fibre at 1 of the fibration q : VT̂ → A1 considered over Z. But

the algebra Hsph
Z is the specialization at q of the generic algebra Hsph(q). From this

perspective, the morphism S ′ is unnatural, since it mixes a 1-fibre with a q-fibre.
To restore the q-compatibility, one must consider the composition of Q⊗Z S ′ with
the isomorphism

Q[VT̂,1] = Q[X,Y, z±1
2 ]/(XY − z2)

∼−→ Q[VT̂,q] = Q[X,Y, z±1
2 ]/(XY − qz2),

X �→ q−1X,

Y �→ Y,

z2 �→ z2.

But then one obtains the formulas

Hsph
Q

∼−→ Q[VT̂,q] = Q[X,Y, z±1
2 ]/(XY − qz2),

T(1,0) �→ X + Y,

T(1,1) �→ z2.

This composed map is defined over Z, it sends Hsph
Z onto the subring Z[VT̂,q]

W0 of

W0-invariants, and its integral model is precisely the specialization q = q of the
isomorphism S (q) from 6.2.3.

Definition 6.2.5. We call

S (q) : Hsph(q)
∼ �� R(VT̂)

W0

the generic Satake isomorphism.

6.2.2. Composing with the inverse of the character isomorphism χ−1
V
Ĝ
: R(VT̂)

W0
∼−→

R(VĜ) from 5.2.3, we arrive at an isomorphism

χ−1
V
Ĝ
◦ S (q) : Hsph(q)

∼ �� R(VĜ).

6.2.3. Next, recall the generic Iwahori-Hecke algebra H1(q) 4.1.1, and the com-
mutative subring A1(q) ⊂ H1(q) 4.1.4 together with the isomorphism B1(q) in
6.1.3.

Definition 6.2.6. The generic central elements morphism is the unique ring ho-
momorphism

Z1(q) : Hsph(q) �� A1(q) ⊂ H1(q)

making the diagram

A1(q) ∼
B1(q)

�� R(VT̂)

Hsph(q)

Z1(q)

��

∼
S (q)

�� R(VT̂)
W0

��

��

commutative.
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6.2.4. By construction, the morphism Z1(q) is injective, and is uniquely determined
by the following equalities in A1(q):

Z1(q)(T(1,0)) = z1, Z1(q)(T(1,1)) = z2 and Z1(q)(q) = q.

Moreover the group W0 acts on the ring A1(q) and the invariant subring A1(q)
W0

is equal to the center Z(H1(q)) ⊂ H1(q). As the isomorphism B1(q) is W0-
equivariant by construction, we obtain that the image of Z1(q) indeed is equal to
the center of the generic Iwahori-Hecke algebra H1(q):

Z1(q) : Hsph(q)
∼ �� Z(H1(q)) ⊂ A1(q) ⊂ H1(q).

6.2.5. Under the identification R(VT̂) = Z[VT̂] of 6.1.3, the elements S (q)(T(1,0)) =
X + Y , S (q)(q) = q, S (q)(T(1,1)) = z2, correspond to the Steinberg choice of

coordinates z1, q, z2 on the affine Z-scheme VT̂/W0 = Spec(Z[VT̂]
W0). On the

other hand, the Trace of representations morphism Tr : R(VĜ) → Z[VĜ]Ĝ fits into
the commutative diagram

R(VT̂)
W0 R(VĜ)∼

χV
Ĝ��

Tr
��

Z[VT̂]
W0 Z[VĜ]Ĝ∼

Ch��

where χV
Ĝ

is the character isomorphism of 5.2.3, and Ch is the Chevalley isomor-

phism which is constructed for the Vinberg monoid VĜ by Bouthier in [Bo15, Prop.
1.7]. So we have the following commutative diagram of Z-schemes

Spec(A1(q))

Spec(Z1(q))
����

VT̂

����

Spec(B1(q))

∼
�� � � �� VĜ

����

Spec(Hsph(q))

∼
(T(1,0),q,T(1,1)) 

��

���
���

���
�

VT̂/W0

(z1,q,z2)

∼

�����
���

���
�

∼
Spec(S (q))

��
∼

Spec(Ch)
�� VĜ//Ĝ

A2 ×Gm.

Note that for Ĝ = GL2, the composed Chevalley-Steinberg map VĜ → A2 ×Gm is
given explicitly by attaching to a 2× 2 matrix its characteristic polynomial (when
z2 = 1).

6.2.6. We have recalled that for the generic pro-p-Iwahori-Hecke algebra H(1)(q)
too, the center can be described in terms of W0-invariants, namely Z(H(1)(q)) =
A(1)(q)W0 , cf. 2.3.2. As the generic Bernstein isomorphism B(1)(q) is W0-equi-
variant by construction, cf. 6.1.2, we can make Definition 6.2.7.

Definition 6.2.7. We call

S (1)(q) := B(1)(q)W0 : A(1)(q)W0
∼ �� R(V

(1)

T̂
)W0

the generic pro-p-Iwahori Satake isomorphism.
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6.2.7. Note that with V γ

T̂
:=

∐
λ∈γ VT̂ we have V

(1)

T̂
= T∨ × VT̂ =

∐
γ∈T∨/W0

V γ

T̂
and the W0-action on this scheme respects these γ-components. We obtain the
decomposition into connected components

V
(1)

T̂
/W0 =

∐
γ∈T∨/W0

(
∐
λ∈γ

VT̂)/W0 =
∐

γ∈T∨/W0

V γ

T̂
/W0.

If γ is regular, then V γ

T̂
/W0 
 VT̂, the isomorphism depending on a choice of order

on the set γ, cf. 2.3.3. Hence, passing to Z̃ as in 6.1.3, with H̃(1)(q) := H(1)

Z̃
(q), we

obtain the following commutative diagram of Z̃-schemes.

Spec(Ã(1)(q))

����

V
(1)

T̂

����

Spec(B̃(1)(q))

∼
��

Spec(Z(H̃(1)(q)))

∼

��

V
(1)

T̂
/W0∼

Spec(S̃ (1)(q))
��

∼ 2.3.3
��

(A2 ×Gm)T
∨/W0

∐
(T∨/W0)reg

VT̂

∐
(T∨/W0)non-reg

VT̂/W0,∼
��

where the bottom isomorphism of the diagram is given by the standard coordinates
(x, y, z2) on the regular components and by the Steinberg coordinates (z1,q, z2) on
the non-regular components.

6.3. The generic parametrization. We keep the notation Z ⊂ Z̃ for the ring

extension of 2.2.1. Then we have defined the Z̃-scheme V
(1)

T̂
in 6.1.3, and we have

considered in 6.2.7 its quotient by the natural W0-action. Also recall that Ĝ = GL2

is the Langlands dual k-group of GL2,F .

Definition 6.3.1. The category of quasi-coherent modules on the Z̃-scheme V
(1)

T̂
/W0

will be called the category of Satake parameters, and denoted by SPĜ:

SPĜ
:= QCoh

(
V

(1)

T̂
/W0

)
.

For γ ∈ T∨/W0, we also define SPγ

Ĝ
:= QCoh

(
V γ

T̂
/W0

)
, where as above V γ

T̂
=∐

λ∈γ VT̂.

6.3.1. Now, over Z̃, we have the isomorphism

iS̃ (1)(q) := Spec(S̃ (1)(q)) : V
(1)

T̂
/W0

∼ �� Spec(Z(H̃(1)(q)))

from the scheme V
(1)

T̂
/W0 to the spectrum of the center Z(H̃(1)(q)) of the generic

pro-p-Iwahori Hecke algebra H̃(1)(q), cf. 6.2.7.

Corollary 6.3.2. The category of modules over Z(H̃(1)(q)) is equivalent to the
category of Satake parameters:

S := (iS̃ (1)(q))
∗ : Mod(Z(H̃(1)(q))) ∼

��
SPĜ : (iS̃ (1)(q))∗.��
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The equivalence S will be referred to as the functor of Satake parameters.5 The
quasi-inverse (iS̃ (1)(q))∗ will be denoted by S−1.

6.3.2. Still from 6.2.7, these categories decompose as products over T∨/W0 (con-
sidered as a finite set), compatibly with the equivalences: for all γ ∈ T∨/W0,

Sγ := (iS̃ γ(q))
∗ : Mod(Z(H̃γ(q))) ∼

��
SPγ

Ĝ
: (iS̃ γ(q))∗,��

where

SPγ

Ĝ



{
QCoh(VT̂) if γ is regular,

QCoh(VT̂/W0) if γ is non-regular.

In the regular case, the latter isomorphism depends on a choice of order on the set
γ.

6.3.3. In particular, we have the trivial orbit γ := {1}. The corresponding com-

ponent H̃{1}(q) of H̃(1)(q) is canonically isomorphic to the Z̃-base change of the
generic non-regular Iwahori-Hecke algebra H1(q). Hence from 6.2.4 we have an
isomorphism

Z̃1(q) : H̃sph(q)
∼ �� Z(H̃{1}(q)) ⊂ Ã{1}(q) ⊂ H̃{1}(q) ⊂ H̃(1)(q).

Using these identifications, the equivalence Sγ for γ := {1} can be rewritten as

S{1} : Mod(H̃sph(q))
∼ �� SP

{1}
Ĝ

.

Definition 6.3.3. The category of quasi-coherent modules on the Z̃-scheme V
(1)

T̂
will be called the category of Bernstein parameters, and denoted by BPĜ:

BPĜ
:= QCoh

(
V

(1)

T̂

)
.

6.3.4. Over Z̃, we have the isomorphism

iB̃(1)(q) := Spec(B̃(1)(q)) : V
(1)

T̂

∼ �� Spec(Ã(1)(q))

from the scheme V
(1)

T̂
to the spectrum of the commutative subring Ã(1)(q) of the

generic pro-p-Iwahori Hecke algebra H̃(1)(q), cf. 6.1.3. Also we have the restriction
functor

Res
H̃(1)(q)

Ã(1)(q)
: Mod(H̃(1)(q)) �� Mod(Ã(1)(q)) ∼= QCoh(Spec(Ã(1)(q)))

from the category of left H̃(1)(q)-modules to the one of Ã(1)(q)-modules, equiva-

lently of quasi-coherent modules on Spec(Ã(1)(q)).

Definition 6.3.4. The functor of Bernstein parameters is the composed functor

B := (iB̃(1)(q))
∗ ◦ ResH̃

(1)(q)

Ã(1)(q)
: Mod(H̃(1)(q)) �� BPĜ .

5We hope that there is only little risk of confusing the notation S with the Hecke operator
introduced in 2.1.2.
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6.3.5. Still from 6.1.3, the category BPĜ decomposes as a product over the finite
group T∨:

BPĜ
∼=

∏
λ∈T∨

BPλ
Ĝ
, where ∀λ ∈ T∨, BPλ

Ĝ

 QCoh(VT̂).

6.3.6. Denoting by π : V
(1)

T̂
→ V

(1)

T̂
/W0 the canonical projection, the compatibility

between the functors S and B of Satake and Bernstein parameters is expressed by
the commutativity of the diagram

Mod(H̃(1)(q))
B ��

Res
H̃(1)(q)

Z(H̃(1)(q))
��

BPĜ

π∗

��

Mod(Z(H̃(1)(q)))
S
∼

�� SPĜ .

Definition 6.3.5. The generic parametrization functor is the functor

P := S ◦ ResH̃
(1)(q)

Z(H̃(1)(q))
= π∗ ◦B :

Mod(H̃(1)(q))

��

SPĜ .

6.3.7. It follows from the definitions that for all γ ∈ T∨/W0, the fibre of P over the

direct factor SPγ

Ĝ
⊂ SPĜ is the direct factor Mod(H̃γ(q)) ⊂ Mod(H̃(1)(q)):

P−1(SPγ

Ĝ
) = Mod(H̃γ(q)) ⊂ Mod(H̃(1)(q)).

Accordingly the parametrization functor P decomposes as the product over the
finite set T∨/W0 of functors

P γ : Mod(H̃γ(q)) �� SPγ

Ĝ
.

6.3.8. In the case of the trivial orbit γ := {1}, it follows from 6.3.3 that P {1} factors
as

Mod(H̃{1}(q))

Res
H̃{1}(q)

H̃sph(q)
��

P {1}

����
���

���
���

Mod(H̃sph(q)) ∼
S{1}

�� SP
{1}
Ĝ

.

6.4. The generic spherical module. Recall the generic regular and non-regular
spherical representations A2(q) 3.3.1 and A1(q) 4.3.1 of H2(q) and H1(q). Thanks

to 3.1.3 and 4.1.3, they are models over Z of representations Ã γ(q) of the regular

and non-regular components Ã γ(q), γ ∈ T∨/W0, of the generic pro-p-Iwahori Hecke

algebra H̃(1)(q) over Z̃, cf. 2.2.2 and 2.3.1. Taking the product over T∨/W0 of these
representations, we obtain a representation

Ã (1)(q) : H̃(1)(q) �� EndZ(H̃(1)(q))(Ã(1)(q)).



GENERIC AND MOD p KAZHDAN-LUSZTIG THEORY FOR GL2 1175

By construction, the representation Ã (1)(q) depends on a choice of order on each
regular orbit γ.

Definition 6.4.1. We call Ã (1)(q) the generic spherical representation, and the

corresponding left H̃(1)(q)-module M̃(1) the generic spherical module.

Proposition 6.4.2.

(1) The generic spherical representation is faithful.
(2) The Bernstein parameter of the spherical module is the structural sheaf:

B(M(1)) = O
V

(1)

T̂

.

(3) The Satake parameter of the spherical module is the R̃(V
(1)

Ĝ
)-module of

V
(1)

Ĝ
-equivariant K-theory of the flag variety of V

(1)

Ĝ
:

c̃
V

(1)

Ĝ

: S(M(1))
∼−→ K̃V

(1)

Ĝ (V
(1)

Ĝ
/V

(1)

B̂
).

Proof. Part (1) follows from 3.3.3 and 4.3.2, part (2) from the property (i) in 3.3.1
and 4.3.1, and part (3) from the characteristic isomorphism in 6.1.2. �

6.4.1. Now, being a left H̃(1)(q)-module, the spherical module M̃(1) defines a func-
tor

M̃(1) ⊗Z(H̃(1)(q)) • : Mod(Z(H̃(1)(q))) �� Mod(H̃(1)(q)).

On the other hand, recall the canonical projection π : V
(1)

T̂
→ V

(1)

T̂
/W0 from 6.3.6.

Then point (2) of 6.4.2 has the following consequence.

Corollary 6.4.3. The diagram

Mod(H̃(1)(q))
B �� BPĜ

Mod(Z(H̃(1)(q)))
S
∼

��

M̃(1)⊗
Z(H̃(1)(q))

•

��

SPĜ

π∗

��

is commutative.

Definition 6.4.4. The generic spherical functor is the functor

Sph := (M̃(1) ⊗Z(H̃(1)(q)) •) ◦ S−1 :

SPĜ
�� Mod(H̃(1)(q)).

Corollary 6.4.5. The diagram

Mod(H̃(1)(q))

P

��

SPĜ

Sph
���������������������

π∗
�� BPĜ π∗

�� SPĜ

is commutative.

Proof. One has P ◦ Sph = π∗ ◦ (B ◦ Sph) = π∗ ◦ π∗ by the preceding corollary. �
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6.4.2. By construction, the spherical functor Sph decomposes as a product of func-
tors Sphγ for γ ∈ T∨/W0, and accordingly the previous diagram decomposes over
T∨/W0.

6.4.3. In particular for γ = {1} we have the commutative diagram

Mod(H̃{1}(q))

P {1}

��

Res
H̃{1}(q)

H̃sph(q)

��		
			

			
			

		

SP
{1}
Ĝ

Sph{1}
����������������������

π∗
�� BP

{1}
Ĝ π∗

�� SP
{1}
Ĝ

Mod(H̃sph(q)).
S{1}

∼��

7. The theory at q = q = 0

We keep all the notations introduced in the preceding section. In particular,
k = Fq.

7.1. K-theory of the dual flag variety at q = 0.

7.1.1. Recall from 5.1 the k-semigroup scheme

VGL2,0 = Sing2×2 ×Gm,

which can even be defined over Z, and which is obtained as the 0-fibre of

VGL2

q

��

A1.

7.1.2. It admits

VT̂,0 = SingDiag2×2 ×Gm

as a commutative subsemigroup scheme. The latter has the following structure: it
is the pinching of the monoids

A1
X ×Gm := Spec(k[X, z±1

2 ]) and A1
Y ×Gm := Spec(k[Y, z±1

2 ])

along the sections X = 0 and Y = 0. The categories of representations of these
monoids on finite dimensional k-vector spaces are semisimple, with corresponding
representation rings

R(A1
X ×Gm) = Z[X, z±1

2 ] and R(A1
Y ×Gm) = Z[Y, z±1

2 ].

There are three remarkable elements in VT̂,0, namely

εX := (diag(1, 0), 1), εY := (diag(0, 1), 1) and ε0 := (diag(0, 0), 1).

They are idempotents. Now let M be a finite dimensional k-representation of VT̂,0.

The idempotents act onM as projectors, and as the semigroup VT̂,0 is commutative,

the k-vector space M decomposes as a direct sum

M =
⊕

(λX ,λY ,λ0)∈{0,1}3

M(λX , λY , λ0),

where

M(λX , λY , λ0) = {m ∈ M | mεX = λXm, mεY = λY m, mε0 = λ0m}.
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Moreover, since VT̂,0 is commutative, each of these subspaces is in fact a subrepre-

sentation of M .
As εXεY = ε0 ∈ VT̂,0, we have M(λX , λY , λ0) �= 0 =⇒ λXλY = λ0. Conse-

quently

M = M(1, 0, 0)
⊕

M(0, 1, 0)
⊕

M(1, 1, 1)
⊕

M(0, 0, 0).

The restriction Res
VT̂,0

A1
X

M(1, 0, 0) is a representation of the monoid A1
X where 0

acts by 0, and Res
VT̂,0

A1
Y

M(1, 0, 0) is the null representation. Hence, if for n > 0

we still denote by Xn the character of VT̂,0 which restricts to the character Xn of

A1
X × Gm and the null map of A1

Y × Gm, then M(1, 0, 0) decomposes as a sum of
weight spaces

M(1, 0, 0) = ⊕n>0M(Xn) := ⊕n>0,m∈ZM(Xnzm2 ).

Similarly

M(0, 1, 0) = ⊕n>0M(Y n) := ⊕n>0,m∈ZM(Y nzm2 ).

Finally, VT̂,0 acts through the projection VT̂,0 → Gm on

M(1, 1, 1) =: M(1) = ⊕m∈ZM(zm2 ),

and by 0 on

M(0, 0, 0) =: M(0).

Thus we have obtained the following

Lemma 7.1.1. The category Rep(VT̂,0) is semisimple, and there is a ring isomor-

phism

R(VT̂,0)
∼=

(
Z[X,Y, z±1

2 ]/(XY )
)
× Z.

7.1.3. Next let

VB̂,0 = SingUpTriang2×2 ×Gm ⊂ VGL2,0 = Sing2×2 ×Gm

be the subsemigroup scheme of singular upper triangular 2×2-matrices. It contains
VT̂,0, and the inclusion VT̂,0 ⊂ VB̂,0 admits a retraction VB̂,0 → VT̂,0, namely the

specialization at q = 0 of the retraction 5.2.2.
Let M be an object of Rep(VB̂,0). Write

Res
VB̂,0

VT̂,0
M = M(1, 0, 0)⊕M(0, 1, 0)⊕M(1)⊕M(0).

For a subspace N ⊂ M , consider the following property:

(PN ) the subspace N ⊂ M is a subrepresentation, and VB̂,0 acts on N through

the retraction of k-semigroup schemes VB̂,0 → VT̂,0.

Let us show that (PM(0,1,0)) is true. Indeed for m ∈ M(0, 1, 0) = ⊕n>0M(Y n),
we have

m

(
x c
0 0

)
= (mεY )

(
x c
0 0

)
= mε0 = 0 = m

(
x 0
0 0

)
and

m

(
0 c
0 y

)
= (mεY )

(
0 c
0 y

)
= m

(
0 0
0 y

)
.
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Next assume M(0, 1, 0) = 0, and let us show that in this case (PM(0)) is true.
Indeed for m ∈ M(0), we have

m

(
x c
0 0

)
= m

(
εX

(
x c
0 0

))
= (mεX)

(
x c
0 0

)
= 0,

and if we decompose

m′ := m

(
0 c
0 y

)
= m′

(1,0,0) +m′
1 +m′

0 ∈ M(1, 0, 0)⊕M(1)⊕M(0),

then by applying εX on the right we see that 0 = m′
(1,0,0) +m′

1 so that m′ ∈ M(0)

and hence

m

(
0 c
0 y

)
= m

((
0 c
0 y

)
εY

)
= m′εY = 0.

Next assume M(0, 1, 0) = M(0) = 0, and let us show that in this case (PM(1,0,0))
is true. Indeed, let m ∈ M(1, 0, 0) = ⊕n>0M(Xn). Then for any c ∈ k,

m′ := m

(
0 c
0 0

)
satisfies m′εX = 0, m′εY = m′, m′ε0 = 0, i.e. m′ ∈ M(0, 1, 0), and hence is equal
to 0 by our assumption. It follows that

m

(
0 c
0 y

)
= (mεX)

(
0 c
0 y

)
= m

(
εX

(
0 c
0 y

))
= m

(
0 c
0 0

)
= 0 = m

(
0 0
0 y

)
.

On the other hand, if we decompose

m′ := m

(
x c
0 0

)
= m′

(1,0,0) +m′
1 ∈ M(1, 0, 0)⊕M(1),

then by applying ε0 on the right we find 0 = m′
1, i.e. m

′ ∈ M(1, 0, 0) and hence

m

(
x c
0 0

)
= m′ = m′εX = m

((
x c
0 0

)
εX

)
= m

(
x 0
0 0

)
.

Finally assume M(0, 1, 0) = M(0) = M(1, 0, 0) = 0, and let us show that in this
case (PM(1)) is true, i.e. that VB̂,0 acts through the projection VB̂,0 → Gm on

M = M(1). Indeed for any m we have

m

(
x c
0 0

)
=

(
m

(
x c
0 0

))
ε0 = m

((
x c
0 0

)
ε0

)
= mε0 = m

and

m

(
0 c
0 y

)
=

(
m

(
0 c
0 y

))
ε0 = m

((
0 c
0 y

)
ε0

)
= mε0 = m.

It follows from the preceding discussion that the irreducible representations of
VB̂,0 are the characters, which are inflated from those of VT̂,0 through the retraction

VB̂,0 → VT̂,0. As a consequence, considering the restriction and inflation functors

Res
VB̂,0

VT̂,0
: Rep(VB̂,0)

��
Rep(VT̂,0) : Infl

VB̂,0

VT̂,0
,��

which are exact and compatible with tensor products and units, we get:
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Lemma 7.1.2. The ring homomorphisms

Res
VB̂,0

VT̂,0
: R(VB̂,0)

��
R(VT̂,0) : Infl

VB̂,0

VT̂,0
��

are isomorphisms, which are inverse one to the other.

7.1.4. Finally, note that ε0 ∈ VGL2
(k) belongs to all the left VGL2

(k)-cosets in
VGL2

(k). Hence, by [PS20, 2.4.3], the category Rep(VB̂,0) is equivalent to the one

of induced vector bundles on the semigroupoid flag variety VGL2,0/VB̂,0:

IndVGL2,0

VB̂,0
: Rep(VB̂,0)

∼ �� CVGL2,0

Ind (VGL2,0/VB̂,0) ⊂ CVGL2,0(VGL2,0/VB̂,0).

Corollary 7.1.3. We have a ring isomorphism

IndVGL2,0

VB̂,0
◦ InflVB̂,0

VT̂,0
: R(VT̂,0)

∼ �� K
VGL2,0

Ind (VGL2,0/VB̂,0).

Definition 7.1.4. We call relevant the full subcategory

Rep(VT̂,0)
rel ⊂ Rep(VT̂,0)

whose objects M satisfy M(0) = 0. Correspondingly, we have relevant full subcat-
egories

Rep(VB̂,0)
rel ⊂ Rep(VB̂,0) and CVGL2,0

Ind (VGL2,0/VB̂,0)
rel ⊂ CVGL2,0

Ind (VGL2,0/VB̂,0).

Corollary 7.1.5. We have a ring isomorphism

cVGL2,0
:= Z[X,Y, z±1

2 ]/(XY ) ∼= R(VT̂,0)
rel ∼ �� K

VGL2,0

Ind (VGL2,0/VB̂,0)
rel

that we call the characteristic isomorphism in the equivariant K-theory of the flag
variety VGL2,0/VB̂,0.

7.1.5. We have a commutative diagram specialization at q = 0

Z[X,Y, z±1
2 ]

cVGL2

∼
��

����

KVGL2 (VGL2
/VB̂)

����

Z[X,Y, z±1
2 ]/(XY )

cVGL2,0

∼
�� K

VGL2,0

Ind (VGL2,0/VB̂,0)
rel,

where the vertical right-hand side map is given by restricting equivariant vector
bundles to the 0-fibre of q : VGL2

→ A1.

7.2. The mod p Satake and Bernstein isomorphisms.

Notation 7.2.1. In the sequel, we will denote by (•)Fq
the specialization at q = q = 0,

i.e. the base change functor along the ring morphism

Z[q] −→ Fq =: k,

q �−→ 0.

Also we fix an embedding μq−1 ⊂ F
×
q , so that the above morphism factors through

the inclusion Z[q] ⊂ Z̃[q], where Z ⊂ Z̃ is the ring extension considered in 2.2.1.
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7.2.1. The mod p Satake and pro-p-Iwahori Satake isomorphisms. Special-
izing 6.2.5, we get an isomorphism of Fq-algebras

SFq
: Hsph

Fq

∼ �� Fq[VT̂,0]
W0 =

(
Fq[X,Y, z±1

2 ]/(XY )
)W0 .

In [H11], Herzig constructed an isomorphism

SHer : Hsph

Fq

∼ �� Fq[X
•(T̂)−] = Fq[e

(0,1), e±(1,1)]

(this is Fq⊗ZS ′, with the notation S ′ from 6.2.4). They are related by the Steinberg
choice of coordinates z1 := X + Y and z2 on the quotient VT̂,0/W0, cf. 6.2.5, i.e.

by the following commutative diagram

Hsph

Fq
∼

S
Fq

��

SHer

∼

��



















(
Fq[X,Y, z±1

2 ]/(XY )
)W0

Fq[e
(0,1), e±(1,1)].

e(0,1) �→z1, e(1,1) �→z2

∼
����������������

Specializing 6.2.7 and using R(T∨) = Z[T], cf. 6.1.1, we get an isomorphism of
Fq-algebras

S
(1)

Fq
: (A(1)

Fq
)W0

∼ �� Fq[V
(1)

T̂,0
]W0 =

(
Fq[T][X,Y, z±1

2 ]/(XY )
)W0 .

7.2.2. The mod p Bernstein isomorphism. Specializing 6.1.2, we get an iso-
morphism of Fq-algebras

B
(1)

Fq
: A(1)

Fq

∼ �� Fq[V
(1)

T̂,0
] = Fq[T][X,Y, z±1

2 ]/(XY ).

Moreover, similarly as in 6.1.2 but here using 7.1.2 and [PS20, 2.5.1], we get the
characteristic isomorphism

c
V

(1)

Ĝ,0

: R(V
(1)

T̂,0
)

∼ �� K
V

(1)

Ĝ,0

Ind (V
(1)

Ĝ,0
/V

(1)

B̂,0
).

Whence by 7.1.1 (and recalling 7.1.4) an isomorphism

crel
V

(1)

Ĝ,0
,Fq

◦ B
(1)

Fq
: A(1)

Fq

∼ �� K
V

(1)

Ĝ,0

Ind,Fq
(V

(1)

Ĝ,0
/V

(1)

B̂,0
)rel.

Also, specializing 6.1.3, B
(1)

Fq
splits as a product over T∨ of Fq-algebras isomor-

phisms Bλ
Fq
, each of them being of the form

B1,Fq
: A1,Fq

∼ �� Fq[VT̂,0] = Fq[X,Y, z±1
2 ]/(XY ).
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7.2.3. The mod p central elements embedding. Specializing 6.2.6, we get an
embedding of Fq-algebras

Z1,Fq
: Hsph

Fq

∼ �� Z(H1,Fq
) ⊂ A1,Fq

⊂ H1,Fq

making the diagram

A1,Fq ∼

B1,Fq
�� Fq[VT̂,0] = Fq[X,Y, z±1

2 ]/(XY )

Hsph

Fq

��

Z1,Fq

��

∼

S
Fq

�� Fq[VT̂,0]
W0 =

(
Fq[X,Y, z±1

2 ]/(XY )
)W0

��

��

commutative. Then Z1,Fq
coincides with the central elements construction of Ol-

livier [O14, Th. 4.3] for the case of GL2. This follows from the explicit formulas
for the values of Z1(q) on T(1,0) and T(1,1), cf. 6.2.4.

7.3. The mod p parametrization.

Definition 7.3.1. The category of quasi-coherent modules on the k-scheme

V
(1)

T̂,0
/W0 will be called the category of mod p Satake parameters, and denoted by

SPĜ,0:

SPĜ,0
:= QCoh

(
V

(1)

T̂,0
/W0

)
.

For γ ∈ T∨/W0, we also define SPγ

Ĝ,0
:= QCoh

(
V γ

T̂,0
/W0

)
, where V γ

T̂,0
=∐

λ∈γ VT̂,0.

7.3.1. Similarly to the generic case 6.3, the mod p pro-p-Iwahori Satake isomor-
phism induces an equivalence of categories

S : Mod(Z(H(1)

Fq
))

∼ �� SPĜ,0

that will be referred to as the functor of mod p Satake parameters, and which
decomposes as a product over the finite set T∨/W0:

S =
∏
γ

Sγ :
∏
γ

Mod(Z(Hγ

Fq
))

−→∼
∏
γ

SPγ

Ĝ,0



∏

γ reg

QCoh(VT̂,0)
∏

γ non-reg

QCoh(VT̂,0/W0).

For γ = {1} and using 7.2.3 we get an equivalence

S{1} : Mod(Hsph

Fq
)
−→∼ SP

{1}
Ĝ,0

= QCoh(VT̂,0/W0).

Note that under this equivalence, the characters Hsph

Fq
→ Fq correspond to the

skyscraper sheaves on VT̂,0/W0, and hence to its k-points. Choosing the Steinberg

coordinates (z1, z2) on the k-scheme VT̂,0/W0, they may also be regarded as the

k-points of Spec(k[X•(T̂)−]), which are precisely the mod p Satake parameters
defined by Herzig in [H11].
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Definition 7.3.2. The category of quasi-coherent modules on the k-scheme V
(1)

T̂,0

will be called the category of mod p Bernstein parameters, and denoted by BPĜ,0:

BPĜ,0
:= QCoh

(
V

(1)

T̂,0

)
.

7.3.2. Similarly to the generic case 6.3, the inclusion H(1)

Fq
⊃ A(1)

Fq
together with the

mod p Bernstein isomorphism defines a functor of mod p Bernstein parameters

B : Mod(H(1)

Fq
) �� BPĜ,0 .

Moreover the category BPĜ,0 decomposes as a product over the finite group T∨:

BPĜ,0 =
∏
λ

BPλ
Ĝ,0

=
∏
λ

QCoh(VT̂,0).

Notation 7.3.3. Let π : V
(1)

T̂,0
→ V

(1)

T̂,0
/W0 be the canonical projection.

Definition 7.3.4. The mod p parametrization functor is the functor

P := S ◦ Res
H(1)

Fq

Z(H(1)

Fq
)
= π∗ ◦B :

Mod(H(1)

Fq
)

��

SPĜ,0 .

7.3.3. The functor P decomposes as a product over the finite set T∨/W0:

P =
∏

γ P
γ :

∏
γ Mod(Hγ

Fq
)

∼ ��
∏

γ SP
γ

Ĝ,0
.

In the case of the trivial orbit γ := {1}, P {1} factors as

Mod(H{1}
Fq

)

Res
H{1}

Fq

Hsph

Fq ��

P {1}

���
��

��
��

��

Mod(Hsph

Fq
) ∼

S{1}
�� SP

{1}
Ĝ,0

.

7.4. The mod p spherical module.

Definition 7.4.1. We call

A
(1)

Fq
: H(1)

Fq

�� End
Z(H(1)

Fq
)
(A(1)

Fq
)

the mod p spherical representation, and the corresponding left H(1)

Fq
-module M(1)

Fq

the mod p spherical module.

Proposition 7.4.2.

(1) The mod p spherical representation is faithful.
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(2) The mod p Bernstein parameter of the spherical module is the structure
sheaf:

B(M(1)

Fq
) = O

V
(1)

T̂,0

.

(3) The mod p Satake parameter of the spherical module is the RFq
(V

(1)

T̂,0
)rel,W0-

module of the relevant induced V
(1)

Ĝ,0
-equivariant KFq

-theory of the flag va-

riety of V
(1)

Ĝ,0
:

crel
V

(1)

Ĝ,0
,Fq

: S(M(1)

Fq
)

∼−→ K
V

(1)

Ĝ,0

Ind,Fq
(V

(1)

Ĝ,0
/V

(1)

B̂,0
)rel.

Proof. Part (1) follows from 3.3.3 and 4.3.4, part (2) from the property (i) in 3.3.1
and 4.3.1, and part (3) from the characteristic isomorphism in 7.2.2. �

Corollary 7.4.3. The diagram

Mod(H(1)

Fq
)

B �� BPĜ,0

Mod(Z(H(1)

Fq
))

S
∼

��

M(1)

Fq
⊗

Z(H(1)

Fq
)
•
��

SPĜ,0

π∗

��

is commutative.

Definition 7.4.4. The mod p spherical functor is the functor

Sph := (M(1)

Fq
⊗

Z(H(1)

Fq
)
•) ◦ S−1 :

SPĜ,0
�� Mod(H(1)

Fq
).

Corollary 7.4.5. The diagram

Mod(H(1)

Fq
)

P

��

SPĜ,0

Sph
������������������

π∗
�� BPĜ,0 π∗

�� SPĜ,0

is commutative.

7.4.1. The spherical functor Sph decomposes as a product of functors Sphγ for
γ ∈ T∨/W0, and accordingly the previous diagram decomposes over T∨/W0. In
particular for γ = {1} we have the commutative diagram

Mod(H{1}
Fq

)

P {1}

��

Res
H{1}

Fq

Hsph

Fq

��















SP
{1}
Ĝ,0

Sph{1}
������������������

π∗
�� BP

{1}
Ĝ,0 π∗

�� SP
{1}
Ĝ,0

Mod(Hsph

Fq
).

S{1}

∼��
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7.4.2. Now, identifying the k-points of the k-scheme V
(1)

T̂,0
/W0 with the skyscraper

sheaves on it, the spherical functor Sph induces a map

Sph :
(
V

(1)

T̂,0
/W0

)
(k) �� {left H(1)

Fq
-modules}.

Considering the decomposition of V
(1)

T̂,0
/W0 into its connected components, cf. 6.2.7,

V
(1)

T̂,0
/W0 =

∐
γ∈(T∨/W0)

V γ

T̂,0
/W0 


∐
γ∈(T∨/W0)reg

VT̂,0

∐
γ∈(T∨/W0)non-reg

VT̂,0/W0,

the spherical map decomposes as a disjoint union of maps

Sphγ :
(
V γ

T̂,0
/W0

)
(k)
VT̂,0(k)−→{left Hγ

Fq
-modules} for γ regular,

Sphγ :
(
V γ

T̂,0
/W0

)
(k)
(VT̂,0/W0)(k)−→{left Hγ

Fq
-modules} for γ non-regular.

7.4.3. In the regular case, we make the standard choice of coordinates

VT̂,0(k) =

(
{(x, 0) | x ∈ k}

∐
(0,0)

{(0, y) | y ∈ k}
)
× {z2 ∈ k×}

and we identify Hγ

Fq
with H2,Fq

using 3.1.3. A point v ∈ VT̂,0(k) corresponds by

3.1.4 to a character

θv : Z(H2,Fq
) 
 Fq[X,Y, z±1

2 ]/(XY ) −→ Fq,

and then Sphγ(v) identifies with the central reduction

A2,θv := A2,Fq
⊗Z(H2,Fq

),θv Fq

of the mod p regular spherical representation A2,Fq
specializing 3.3.1. The latter

being an isomorphism by 3.3.3, so is

A2,θv : H2,θv
∼ �� EndFq

(A2,θv ).

Consequently H2,θv is a matrix algebra and A2,θv is the unique simple finite di-
mensional left H2,Fq

-module with central character θv, up to isomorphism. It is the

standard module with character θv, with standard basis {ε1, ε2} (in particular its
Fq-dimension is 2). Conversely, any simple finite dimensional H2,Fq

-module has a

central character, by Schur’s lemma.
Following [V04], a central character θ is called supersingular if θ(X + Y ) = 0,

and the standard module with character θ is called supersingular if θ is. Since
XY = 0, one has θ(X + Y ) = 0 if and only if θ(X) = θ(Y ) = 0.

Theorem 7.4.6. Let γ ∈ T∨/W0 regular. Then the spherical map induces a bijec-
tion

Sphγ :
(
V γ

T̂,0
/W0

)
(k)

∼ �� {simple finite dimensional left Hγ

Fq
-modules}/ ∼ .

The singular locus of the parametrizing k-scheme V γ

T̂,0
/W0 is given by (0, 0) ×

Gm ⊂ VT̂,0 in the standard coordinates, and its k-points correspond to the super-

singular Hecke modules through the correspondence Sphγ .
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7.4.4. In the non-regular case, we make the Steinberg choice of coordinates

(VT̂,0/W0)(k) = {z1 ∈ k} × {z2 ∈ k×}

and we identify Hγ

Fq
with H1,Fq

using 4.1.3. A point v ∈ (VT̂,0/W0)(k) corresponds

to a character

θv : Z(H1,Fq
) 
 Fq[z1, z

±1
2 ] −→ Fq,

and then Sphγ(v) identifies with the central reduction

A1,θv := A1,Fq
⊗Z(H1,Fq

),θv Fq

of the mod p non-regular spherical representation A1,Fq
specializing 4.3.1.

Now recall from [V04, 1.4] the classification of the simple finite dimensional
H1,Fq

-modules: they are the characters and the simple standard modules. The

characters

H1,Fq
= Fq[S,U

±1] −→ F
×
q

are parametrized by the set {0,−1} × F
×
q via evaluation on the elements S and U .

On the other hand, given v = (z1, z2) ∈ k × k× = Fq × F
×
q , a standard module with

character θv over H1,Fq
is defined to be a module of type

M2(z1, z2) := Fqm⊕ FqUm, Sm = −m, SUm = z1m, U2m = z2m

(in particular its Fq-dimension is 2). The center Z(H1,Fq
) acts on M2(z1, z2) by

the character θv. In particular such a module is uniquely determined by its central
character. It is simple if and only if z2 �= z21 . It is called supersingular if z1 = 0.

Lemma 7.4.7. Set

A1,θv := A1,Fq
⊗Z(H1,Fq

),θv Fq : H1,θv
�� EndFq

(A1,θv).

• Assume z2 �= z21 . Then A1,θv is an isomorphism, and the H1,Fq
-module

A1,θv is isomorphic to the simple standard module M2(z1, z2).
• Assume z2 = z21 . Then A1,θv has a 1-dimensional kernel, and the H1,Fq

-

module A1,θv is a non-split extension of the character (0, z1) by the char-
acter (−1,−z1).

Proof. The proof of Proposition 4.3.2 shows that H1,θv has an Fq-basis given by
the elements 1, S, U, SU , and that their images

1, A1,θv (S), A1,θv (U), A1,θv (S)A1,θv(U)

by A1,θv are linearly independent over Fq if and only if z21 − z2 �= 0.
If z2 �= z21 , then A1,θv is injective, and hence bijective since dimFq

A1,θv = 2

from 4.2.1. Moreover S · Y = −Y and U · Y = (z21 − z2) − z1Y and so SUY =
S((z21 − z2)− z1Y ) = S(−z1Y ) = z1Y , so that

A1,θv = FqY ⊕ FqU · Y = M2(z1, z2).

If z2 = z21 , then the proof of Proposition 4.3.2 shows that A1,θv has a 1-dimensional

kernel which is the Fq-line generated by −z1(1 + S) + U + SU . Moreover FqY ⊂
A1,θv realizes the character (−1,−z1) of H1,Fq

, and A1,θv/FqY 
 Fq1 realizes the

character (0, z1). Finally the 0-eigenspace of S inA1,θv is Fq1, which is not U -stable,
so that the character (0, z1) does not lift in A1,θv . �
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Remark 7.4.8. Geometrically, the function z2 − z21 on VT̂,0/W0 defines a family of

parabolas

VT̂,0/W0,

z2−z2
1

��

A1

whose parameter is 4Δ, where Δ is the discriminant of the parabola. Then the
locus of VT̂,0/W0 where z2 = z21 corresponds to the parabola at 0, having vanishing

discriminant (at least if p �= 2).

Definition 7.4.9. We will say that a pair of characters ofH1,Fq
= Fq[S,U

±1] → F
×
q

is spherical if there exists z1 ∈ F
×
q such that, after evaluating on (S,U), it is equal

to

{(0, z1), (−1,−z1)}.

7.4.5. Note that the set of characters H1,Fq
→ F

×
q is the disjoint union of the

spherical pairs, by the very definition.

Theorem 7.4.10. Let γ ∈ T∨/W0 non-regular. Consider the decomposition

V γ

T̂,0
/W0 = D(2)γ ∪D(1)γ ,

where D(1)γ is the closed subscheme defined by the parabola z2 = z21 in the Steinberg
coordinates z1, z2 and D(2)γ is the open complement. Then the spherical map
induces bijections

Sphγ(2) : D(2)γ(k)
∼ �� {simple 2-dimensional left Hγ

Fq
-modules}/ ∼,

Sphγ(1) : D(1)γ(k)
∼ �� {spherical pairs of characters of Hγ

Fq
}/ ∼ .

The branch locus of the covering

VT̂,0 −→ VT̂,0/W0 
 V γ

T̂,0
/W0

is contained in D(2)γ, with equation z1 = 0 in Steinberg coordinates, and its k-
points correspond to the supersingular Hecke modules through the correspondence
Sphγ(2).

Remark 7.4.11. The matrices of S, U and S0 = USU−1 in the Fq-basis {1, Y } of
the supersingular module A1,θv

∼= M2(0, z2) are

S =

(
0 0
0 −1

)
, U =

(
0 −z2
−1 0

)
, S0 =

(
−1 0
0 0

)
.

The two characters of the finite subalgebra Fq[S] corresponding to S �→ 0 and
S �→ −1 are realized by 1 and Y . From the matrix of S0, we see in fact that the
whole affine subalgebra Fq[S0, S] acts on 1 and Y via the two supersingular affine
characters, which by definition are the characters different from the trivial character
(S0, S) �→ (0, 0) and the sign character (S0, S) �→ (−1,−1).
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7.4.6. Finally, let v be any k-point of the parametrizing space V
(1)

T̂,0
/W0. As a

particular case of 7.4.5, the Bernstein parameter of the spherical module Sph(v) is
the structure sheaf of the fibre of the quotient map π at v, and its Satake parameter
is the underlying k-vector space:

B(Sph(v)) = Oπ−1(v) and S(Sph(v)) = π∗Oπ−1(v).

7.5. Central characters. In this final subsection, we show that the dual paramet-
rization 7.4.10 behaves naturally with respect to central characters.

7.5.1. Let ω : F×
q → k× be induced by the inclusion Fq ⊂ k. Then (F×

q )
∨ = 〈ω〉 is

a cyclic group of order q − 1. An element ωr defines a non-regular character of T:

ωr(t1, t2) := ωr(t1)ω
r(t2)

for all (t1, t2) ∈ T = F×
q × F×

q . Composing with multiplication in T∨, we get an

action of (F×
q )

∨ on T∨, which factors on the quotient set T∨/W0:

T∨/W0 × (F×
q )

∨ −→ T∨/W0, (γ, ω
r) �→ γωr.

If γ ∈ T∨/W0 is regular (non-regular), then γωr is regular (non-regular).

7.5.2. Restricting characters of T to the subgroup F×
q 
 {diag(a, a) : a ∈ F×

q }
induces a homomorphism T∨ → (F×

q )
∨ which factors into a restriction map

T∨/W0 → (F×
q )

∨, γ �→ γ|
F
×
q
.

The relation to the (F×
q )

∨-action on the source T∨/W0 is given by the formula

(γωr)|
F
×
q
= γ|

F
×
q
ω2r.

We describe the fibres of the restriction map γ �→ γ|
F
×
q
.

Let (·)|−1

F
×
q
(ω2r) be the fibre at a square element ω2r. By the above formula, the

action of ω−r on T∨/W0 induces a bijection with the fibre (·)|−1

F
×
q
(1). The fibre

(·)|−1

F
×
q
(1) = {1⊗ 1}

∐
{ω ⊗ ω−1, ω2 ⊗ ω−2, . . . , ω

q−3
2 ⊗ ω− q−3

2 }
∐

{ω
q−1
2 ⊗ ω− q−1

2 }

has cardinality q+1
2 and, in the above list, we have chosen a representative in T∨

for each element in the fibre. The q−3
2 elements in the middle of this list, i.e. the

W0-orbits represented by the characters ωr ⊗ω−r for r = 1, . . . , q−3
2 , are all regular

W0-orbits. The two orbits at the two ends of the list are non-regular orbits (note
that q−1

2 ≡ − q−1
2 mod (q − 1)). Since the action of ω−r preserves regular (non-

regular) orbits, any fibre at a square element (there are q−1
2 such fibres) has the

same structure.
On the other hand, let (·)|−1

F
×
q
(ω2r−1) be the fibre at a non-square element ω2r−1.

The action of ω−r induces a bijection with the fibre (·)|−1

F
×
q
(ω−1). The fibre

(·)|−1

F
×
q
(ω−1) = {1⊗ ω−1, ω ⊗ ω−2, . . . , ω

q−1
2 −1 ⊗ ω− q−1

2 }

has cardinality q−1
2 and we have chosen a representative in T∨ for each element in

the fibre. All elements of the fibre are regular W0-orbits. Since the action of ω−r

preserves regular (non-regular) orbits, any fibre at a non-square element (there are
q−1
2 such fibres) has the same structure.

Note that q−1
2 ( q+1

2 + q−1
2 ) = q2−q

2 is the cardinality of the set T∨/W0.
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7.5.3. Recall the commutative k-semigroup scheme

V
(1)

T̂,0
= T∨ × VT̂,0 = T∨ × SingDiag2×2 ×Gm

together with its W0-action, cf. 6.2.7: the natural action of W0 on the factors T∨

and SingDiag2×2 and the trivial one on Gm. There is a commuting action of the
k-group scheme

Z∨ := (F×
q )

∨ ×Gm

on V
(1)

T̂,0
: the (constant finite diagonalizable) group (F×

q )
∨ acts only on the factor

T∨ and in the way described in 7.5.1; an element z0 ∈ Gm acts trivially on T∨,
by multiplication with the diagonal matrix diag(z0, z0) on SingDiag2×2 and by

multiplication with the square z20 on Gm. Therefore the quotient V
(1)

T̂,0
/W0 inherits

a Z∨-action. Now, according to 7.4.2, one has the decomposition

V
(1)

T̂,0
/W0 =

∐
γ∈(T∨/W0)reg

VT̂,0

∐
γ∈(T∨/W0)non-reg

VT̂,0/W0.

Then the (F×
q )

∨-action is by permutations on the index set T∨/W0, i.e. on the set

of connected components of V
(1)

T̂,0
/W0; as observed above, it preserves the subsets

of regular and non-regular components. The Gm-action on V
(1)

T̂,0
/W0 preserves each

connected component.

7.5.4. The two canonical projections from V
(1)

T̂,0
to T∨ and Gm respectively induce

two projection morphisms

V
(1)

T̂,0
/W0

prT∨/W0

��



 pr

Gm

���
��

��
��

��

T∨/W0 Gm.

Then we may compose the map prT∨/W0
with the restriction map (·)|

F
×
q
: T∨/W0 →

(F×
q )

∨, set

θ :=
(
(·)|

F
×
q
◦ prT∨/W0

)
× prGm

and view V
(1)

T̂,0
/W0 as fibred over the space Z∨:

V
(1)

T̂,0
/W0

θ

��

Z∨.

The relation to the Z∨-action on the source V
(1)

T̂,0
/W0 is given by the formula

θ(x.(ωr, z0)) = θ(x)(ω2r, z20) = θ(x)(ωr, z0)
2

for x ∈ V
(1)

T̂,0
/W0 and (ωr, z0) ∈ Z∨. This formula follows from the formula in 7.5.2

and the definition of the Gm-action in 7.5.3.
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Definition 7.5.1. Let ζ ∈ Z∨. The space of mod p Satake parameters with central
character ζ is the k-scheme

(V
(1)

T̂,0
/W0)ζ := θ−1(ζ).

7.5.5. Let ζ = (ζ|
F
×
q
, z2) ∈ Z∨(k) = (F×

q )
∨ × k×. Denote by (V

(1)

T̂,0
/W0)z2 the fibre

of prGm
at z2 ∈ k×. Then by 7.4.2 we have

(V
(1)

T̂,0
/W0)ζ =

∐
γ∈(T∨/W0)reg,γ|

F
×
q
=ζ|

F
×
q

VT̂,0,z2

∐
γ∈(T∨/W0)non-reg,γ|

F
×
q
=ζ|

F
×
q

VT̂,0,z2
/W0.

Recall that the choice of standard coordinates x, y identifies

VT̂,0,z2

 A1 ∪0 A

1

with two affine lines over k, intersecting at the origin, cf. 7.4.3. On the other hand,
the choice of the Steinberg coordinate z1 identifies

VT̂,0,z2
/W0 
 A1

with a single affine line over k, cf. 7.4.4.

Lemma 7.5.2. Let ζ, η ∈ Z∨. The action of η on V
(1)

T̂,0
/W0 induces an isomorphism

of k-schemes (V
(1)

T̂,0
/W0)ζ 
 (V

(1)

T̂,0
/W0)ζη2 .

Proof. Follows from the last formula in 7.5.4. �

7.5.6. Recall from 7.4.2 the spherical map

Sph : (V
(1)

T̂,0
/W0)(k) �� {left H(1)

Fq
-modules}/ ∼ .

The H(1)

Fq
-modules in the image of this map are of length 1 or 2, cf. 7.4.6 and

7.4.10. We write Sph(v)ss for the semisimplification of the module Sph(v), for

v ∈ (V
(1)

T̂,0
/W0)(k).

Let (ωr, z0) ∈ Z∨(k). Recall that the standard or irreducible H(1)

Fq
-modules may

be ‘twisted by the character (ωr, z0)’: in the regular case, the actions of X,Y, U2

get multiplied by z0, z0, z
2
0 respectively and the component γ gets multiplied by

ωr, cf. [V04, 2.4]; in the non-regular case, the action of U gets multiplied by z0,
the action of S remains unchanged and the component γ gets multiplied by ωr, cf.
[V04, 1.6]. This gives an action of the group of k-points of Z∨ on the standard or

irreducible H(1)

Fq
-modules. It extends to an action on semisimple H(1)

Fq
-modules.

Proposition 7.5.3. The map Sph(−)ss is Z∨(k)-equivariant.

Proof. Let (ωr, z0) ∈ Z∨(k). Let v ∈ (V
(1)

T̂,0
/W0)(k) and let its connected com-

ponent be indexed by γ ∈ T∨/W0. Suppose that γ is regular, choose an ordering
γ = (χ, χs) on the set γ and standard coordinates. Then Sph(v) = Sphγ(v) is a sim-
ple two-dimensional standard Hγ

Fp
-module, cf. 7.4.6, i.e. of the form M(x, y, z2, χ)

[V04, 3.2]. Then

Sph(v.(ωr, z0)) 
 M(z0x, z0y, z
2
0z2, χ.ω

r) 
 Sph(v).(ωr, z0).
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Suppose that γ = {χ} is non-regular and choose Steinberg coordinates. (a) If
v ∈ D(2)γ(k), then Sph(v) = Sphγ(2)(v) is a simple two-dimensional Hγ

Fp
-module,

cf. 7.4.10, i.e. of the form M(z1, z2, χ) [V04, 3.2]. Then

Sph(v.(ωr, z0)) 
 M(z0z1, z
2
0z2, χ.ω

r) 
 Sph(v).(ωr, z0).

(b) If v ∈ D(1)γ(k), then the semisimplified module Sph(v)ss is the direct sum of the
two characters in the spherical pair Sphγ(1)(v) = {(0, z1), (−1,−z1)} where z2 = z21 .
Similarly Sph(v.(ωr, z0))

ss is the direct sum of the characters {(0, z0z1), (−1,−z0z1)}
in the component γ.ωr, and hence is isomorphic to Sph(v)ss.(ωr, z0). �
7.5.7. We now explain the compatibility with central characters for G-represent-
ations. In order to do this, let us consider W0 to be a subgroup of G, by sending

s to the matrix

(
0 1
1 0

)
and by identifying the group Λ with a subgroup of T

via (1, 0) �→ diag(�−1, 1) and (0, 1) �→ diag(1, �−1). We obtain for example (recall
that u = (1, 0)s ∈ W0)

u =

(
0 �−1

1 0

)
, u−1 =

(
0 1
� 0

)
, us =

(
�−1 0
0 1

)
, su =

(
1 0
0 �−1

)
.

Moreover, u2 = diag(�−1, �−1).6 Since(
0 �−1

1 0

)(
a b
c d

)(
0 1
� 0

)
=

(
d �−1c
�b a

)
,

the element u ∈ G normalizes the group I(1).

7.5.8. Let Modsm(k[G]) be the category of smooth G-representations over k. Tak-

ing I(1)-invariants yields a functor π �→ πI(1)

from Modsm(k[G]) to the cate-

gory Mod(H(1)

Fq
). If F = Qp, it induces a bijection between the irreducible G-

representations and the irreducible H(1)

Fp
-modules, under which supersingular rep-

resentations correspond to supersingular Hecke modules [V04].
For future reference, let us recall the I(1)-invariants for some classes of represen-

tations. If π = IndGB(χ) is a principal series representation with χ = χ1 ⊗ χ2, then

πI(1)

is a standard module in the component γ := {χ|T, χs|T}.
In the regular case, one chooses the ordering (χ|T, χs|T) on the set γ and standard

coordinates x, y. Then

IndGB(χ)
I(1)

= M(0, χ(su), χ(u2), χ|T) = M(0, χ2(�
−1), χ1(�

−1)χ2(�
−1), χ|T).

In the non-regular case, one has

IndGB(χ)
I(1)

= M(χ(su), χ(u2), χ|T) = M(χ2(�
−1), χ1(�

−1)χ2(�
−1), χ|T).

These standard modules are irreducible if and only if χ �= χs [V04, 4.2/4.3].7

Let F = Qp. If π = π(r, 0, η) is a standard supersingular representation with

parameter r = 0, . . . , p − 1 and a character η : Q×
p → k×, then πI(1)

is a su-
persingular module in the component γ = {χ, χs} represented by the character

6Note that our element u equals the element u−1 in [Be11], [Br07] and [V04].
7Our formulas differ from [V04, 4.2/4.3] by χ(·) ↔ χ(·)−1, since we are working with left

modules; also compare with the explicit calculation with right convolution given in [V04, Appendix
A.5].
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χ := (ωr ⊗ 1) · (η|
F
×
p
), cf. [Br07, 5.1/5.3]. If π is the trivial representation 1 or the

Steinberg representation St, then γ = 1 and πI(1)

is the character (0, 1) or (−1,−1)
respectively.

7.5.9. Let π ∈ Modsm(k[G]). Since u ∈ G normalizes the group I(1), one has
I(1)uI(1) = uI(1). It follows that the convolution action of the Hecke operator U

(resp. U2) on πI(1)

is therefore induced by the action of u (resp. u2 on π). Similarly,
the group I(1) is normalized by the Iwahori subgroup I and I/I(1) 
 T. It follows

that the convolution action of the operators Tt, t ∈ T on πI(1)

is the factorization
of the T(oF )-action on π.

7.5.10. We identify F× with the center Z(G) via a �→ diag(a, a). A (smooth)
character

ζ : Z(G) = F× −→ k×

is determined by its value ζ(�−1) ∈ k× and its restriction ζ|o×F . Since the latter is

trivial on the subgroup 1+�oF , we may view it as a character of F×
q ; we will write

ζ|
F
×
q
for this restriction in the following. Thus the group of characters of Z(G) gets

identified with the group of k-points of the group scheme Z∨ = (F×
q )

∨ ×Gm:

Z(G)∨
∼−→ Z∨(k), ζ �→ (ζ|

F
×
q
, ζ(�−1)).

Proposition 7.5.4. Suppose that π ∈ Modsm(k[G]) has a central character ζ :

Z(G) → k×. Then the Satake parameter S(πI(1)

) of πI(1) ∈ Mod(H(1)

Fq
) has central

character ζ, i.e. it is supported on the closed subscheme

(V
(1)

T̂,0
/W0)(ζ|

F
×
q
,ζ(�−1)) ⊂ V

(1)

T̂,0
/W0.

Proof. If M is any H(1)

Fq
-module, then

M =
⊕

γ∈T∨/W0

εγM =
⊕

γ∈T∨/W0

⊕λ∈γελM,

and T ⊂ Fq[T] ⊂ H(1)

Fq
acts on ελM through the character λ : T → F×

q . Now if

M = πI(1)

, then the T-action on M is the factorization of the T(oF )-action on π,
cf. 7.5.9. In particular, the restriction of the T-action along the diagonal inclusion
F×
q ⊂ T is the factorization of the action of the central subgroup o×F ⊂ Z(G) on π,

which is given by ζ|o×F by assumption. Hence

εγM �= 0 =⇒ ∀λ ∈ γ, λ|
F
×
q
= ζ|

F
×
q
i.e. γ|

F
×
q
= ζ|

F
×
q
.

Moreover, the element u2 = diag(�−1, �−1) ∈ Z(G) acts on π by multiplication

by ζ(�−1) by assumption. Therefore, by 7.5.9, the Hecke operator z2 := U2 ∈ H(1)

Fq

acts on πI(1)

by multiplication by ζ(�−1). Thus we have obtained that S(πI(1)

) is
supported on∐

γ∈(T∨/W0)reg,γ|
F
×
q
=ζ|

F
×
q

VT̂,0,ζ(�−1)

∐
γ∈(T∨/W0)non-reg,γ|

F
×
q
=ζ|

F
×
q

VT̂,0,ζ(�−1)/W0

= (V
(1)

T̂,0
/W0)(ζ|

F
×
q
,ζ(�−1)).
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[V15] Marie-France Vignéras, The pro-p Iwahori Hecke algebra of a reductive p-adic
group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499–529, DOI
10.2140/pjm.2015.279.499. MR3437789

[V16] Marie-France Vigneras, The pro-p-Iwahori Hecke algebra of a reductive p-adic group
I, Compos. Math. 152 (2016), no. 4, 693–753, DOI 10.1112/S0010437X15007666.

MR3484112
[V17] Marie-France Vigneras, The pro-p-Iwahori Hecke algebra of a reductive p-adic group

III (spherical Hecke algebras and supersingular modules), J. Inst. Math. Jussieu 16
(2017), no. 3, 571–608, DOI 10.1017/S1474748015000146. MR3646282

[V95] E. B. Vinberg, On reductive algebraic semigroups, Lie groups and Lie algebras: E.
B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 169, Amer. Math. Soc.,
Providence, RI, 1995, pp. 145–182, DOI 10.1090/trans2/169/10. MR1364458
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