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SOME EXAMPLES OF SIMPLE GENERIC FI-MODULES IN

POSITIVE CHARACTERISTIC

SOPHIE KRIZ

Abstract. We give, in any characteristic p > 0, examples of simple generic
FI-modules whose underlying representations are reducible in all sufficiently
high degrees.

1. Introduction

In this paper, an FI-module (more precisely, an FI-module over K) is a func-
tor from the category FI of finite sets and injections into K-modules for a field
K. FI-modules were introduced by Church, Ellenberg, and Farb in [2] with nu-
merous applications in topology, algebra, and number theory in mind, and have
been since studied extensively (see e.g. [1, 3–5, 9–11, 17–23]). Stable phenomena
of the representation theory of symmetric groups are encoded by the category of
generic FI-modules, defined in a way to disregard elements which go to 0 in the
representations of Σn for n � 0. This is analogous to the construction of the
category of quasi-coherent sheaves from the category of graded modules over the
projective coordinate ring of a projective scheme [25]. This analogy was in fact
used by Sam and Snowden [24] to gain a good understanding of the category of
generic FI-modules in characteristic 0. In particular, they identified all the simple
objects of that category.

The case of characteristic p > 0 is more complicated. Nevertheless, simple generic
FI-modules in positive characteristic were characterized by Nagpal [21], Theorem
1.11. R.Nagpal asked if the Σn-representation terms of a simple generic FI-module
in positive characteristic are necessarily irreducible for infinitely many n. The main
result of the present paper is to construct counterexamples for all primes p.

To discuss our result more precisely, we need some notation. Let [n] = {1, . . . , n}.
For an FI-module X, we will sometimes write X(N) or XN instead of X([N ]). For
a given N , we identify a KΣN -module with the FI-module over K equal to it in
degree N and 0 in other degrees. An FI-module X is called torsion if each of the
elements of every X(n) goes to 0 ∈ X(m) for some m � 0. Torsion FI-modules
(over K) form a Serre subcategory of the category of FI-modules (over K), and
taking the Serre quotient by them gives the category of generic FI-modules (over
K) (see [8] for the details of this construction). Nagpal [21], Theorem 1.11 (see
also Theorem 2) proved that in every characteristic, isomorphism classes of simple
generic FI-modules are in bijective correspondence with p-regular Young diagrams.
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We denote the simple generic FI-module in positive characteristic corresponding
to a p-regular Young diagram λ by Dλ. Theorem 1 answers a question by Nagpal:

Theorem 1. Suppose K is a field of characteristic p > 0.

(1) If p = 2, then for every N � 0, the ΣN -representation

D(3,1)(N)

is reducible.
(2) If p > 2, then for every N � 0, the ΣN -representation

D(p,2)(N)

is reducible.

We will review the structure of simple generic FI-modules in Section 2. This is
needed in our main argument. The proof of Theorem 1 requires different approaches
depending on whether p = 2 or p > 2. The case of p = 2 is treated in Section 3,
and the case of p > 2 is treated in Section 4.

2. Preliminaries and Nagpal’s Theorem

We begin with some notation. A Young diagram is a k-tuple λ = (λ1, . . . , λk)
where λ1 ≥ · · · ≥ λk are positive integers (this can be visualized as a diagram
of boxes with k rows and λi boxes in the i-th row). For a Young diagram λ, let
|λ| denote the number of its boxes (i.e. |λ| = λ1 + · · · + λk). Let Sλ denote the
Specht module corresponding to a Young diagram λ. As a general reference for
Specht modules, we recommend [12]. We denote by Mλ the Spechtral FI-module
consisting of the Specht modules of the Young diagrams obtained by adding a
row to the top of λ at each degree ≥ |λ| + λ1 ([2] Definition 2.2.6: they work in
characteristic 0, but the construction works over Z, see [16]).

A Young diagram λ = (λ1, . . . , λk) is called p-regular if at most p − 1 of the
numbers λ1, . . . , λk are equal to any given number i. Recall that the set of Young
diagrams with � boxes has a natural ordering called dominance given by saying, for
two partitions μ = (μ1, . . . , μn), ν = (ν1, . . . , νm) of �, μ� ν when

μ1 + · · ·+ μk ≥ ν1 + · · ·+ νk

for all k ≥ 1. In this note, we will also call a Young diagram μ strictly dominant
over ν (write μ� ν) if we have μ� ν and μ �= ν.

For every p-regular Young diagram λ, Sλ has a unique quotient Dλ which is a
simple KΣ|λ|-module. These form a complete set of representatives of isomorphism
classes of simple KΣ|λ|-modules. Moreover, for a p-regular Young diagram λ, all
the other composition factors of Sλ are Dμ with μ� λ ([12], Section 12).

One defines two functors

Ψ′ : FI-Mod → FI-Mod

Φ′ : FI-Mod → FI-Mod

by

Ψ′(M•) : [N ] �→ HomFI-Mod(KMapFI([•], [N ])∨,M•)(1)

Φ′(M•) : [N ] �→ KMapFI([N ], [•])∨ ⊗FI-Mod M•(2)

for an FI-module M•. By definition, Φ′ is left adjoint to Ψ′. It is also easy to see
that applying Φ′ to a torsion FI-module gives 0 (by surjectivity of morphisms in
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the first factor of the right hand side of (2)) and that applying Φ′ to any FI-module
gives a torsion FI-module. This shows that for every FI-modules M•, denoting by
M≥N the sub-FI-module in degree ≥ N (and 0 below), the projection induces a
surjection

(3) Φ′(M≥N ) → Φ′(M).

However, considering the additional relations in Φ′(M) involving x ∈ Mn for n < N ,
one sees that they are also present in the source of (3). Thus, (3) is in fact an
isomorphism.

Let FI-Modgen denote the category of generic finitely generated FI-modules
over K and let FI-Modtor denote the full subcategory of FI-modules over K on
finitely generated torsion FI-modules over K. Then Φ′, Ψ′ induce a pair of functors

Φ : FI-Modgen → FI-Modtor

Ψ : FI-Modtor → FI-Modgen

where Φ is left adjoint to Ψ. (See [21], Section 1.)
In characteristic 0, by Schur-Weyl correspondence, the functors Ψ, Φ coincide

with the functors of the same names in [24], where they are proved to be inverse
equivalences of categories. This is false in characteristic p > 0.

Nagpal’s Theorem can be restated as follows:

Theorem 2 ([21], Theorem 1.11). Let K be a field of characteristic p. For every p-
regular Young diagram λ, there exists a canonical non-zero morphism of FI-modules
over K

ιλ : Mλ → Ψ(Dλ)

such that Dλ = Im(ιλ) is a simple object in the category FI-Modgen of generic
finitely generated FI-modules over K. Additionally, every simple generic finitely
generated FI-module over K is isomorphic to Dλ = Im(ιλ) for a unique p-regular
Young diagram λ.

In this paper, we denote the induction from a subgroup H to a group G by IndHG
with the philosophy that the superscript indicates a contravariant variable. The
opposite convention also occurs in the literature. Note that one can identify

KMapFI([m], [m]) ∼= KΣn/Σn−m.

Note that a morphism of FI-modules is determined by a sequence of Σn-equivariant
maps commuting with the structure maps corresponding to the standard inclusions
[n] ⊂ [n+ 1].

For our purposes, we will need to review the construction of the map ιλ. First,
one notes that for an FI-module X, Φ(X)(m) can be described as the colimit of a
diagram of the form

(4) (X(n))Σn−m
(X(n− k))Σn−k−m

(Ind
Σn−k×Σk

Σn
X(n− k))Σn−m

.

φ−

������������������φ+

����������������

Precisely speaking, the objects of the category I indexing the diagram (4) consist
of a “top row” and a “bottom row.” The objects in the top row are indexed by
n = m,m + 1,m + 2, . . . . The objects in the bottom row are indexed by pairs
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of integers (n, n − k) where m ≤ n − k ≤ n. The morphisms are those drawn
in (4). The morphisms φ+, φ− are described as follows: φ+ is given by taking
Σn−m-cofixed points (also nown as coninvariants) of the natural

Ind
Σn−k×Σk

Σn
X(n− k) → X(n).

The map φ− is defined to be the composition

(Ind
Σn−k×Σk

Σn
(X(n− k)))Σn−m

��
(Ind

Σn−k×Σk

Σn
(X(n− k)))Σk×Σn−k−m

��
(X(n− k))Σn−k−m

where the top map is taking corestriction (i.e. summing over coset representatives
of Σn−m/Σk × Σn−m−k), and the lower map is the counit of adjunction of the
induction as a right adjoint to cofixed points, followed by Σn−k−m-cofixed points.

Dually, Ψ(X)(N) is the limit of the diagram

(5) Ind
Σ�−k×ΣN−�+k

ΣN
(X(�− k))

ψ+

�����
����

����
����

��
Ind

Σ�×ΣN−�

ΣN
(X(�))

ψ−

������
����

����
���

Ind
Σ�−k×ΣN−�+k

ΣN
((X(�))Σk)

where the indexing category is IOp where I is the indexing category of the diagram

(4). The map ψ+ is given by applying Ind
Σ�−k×ΣN−�+k

ΣN
to the natural map

X(�− k) → (X(�))Σk .

The map ψ− is defined as the composition

Ind
Σ�×ΣN−�

ΣN
(X(�))

��
Ind

Σ�×ΣN−�

ΣN
(Ind

Σ�−k×Σk

Σ�
(X(�)Σk))

��
Ind

Σ�−k×ΣN−�+k

ΣN
(X(�)Σk)

where the top map is given by induction applied to the unit of adjunction of fixed
points and induction, and the lower map, noting that

Ind
Σ�×ΣN−�

ΣN
◦ IndΣ�−k×Σk

Σ�
= Ind

Σ�−k×Σk×ΣN−�

ΣN
,

is given by corestriction (i.e. summing over coset representatives of

(Σ� × ΣN−�)/(Σ�−k × Σk × ΣN−�)).

Let λ = (λ1, . . . , λk) be a p-regular Young diagram and let N ≥ |λ|+ λ1. Define

λ+
N = (N − |λ|, λ1, . . . , λk).
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We will sometimes omit N when it is implicit.

Lemma 3. Suppose λ is a p-regular Young diagram, N > |λ|+ λ1.

(A) Ψ(Dλ)(N) has a unique composition factor isomorphic to Dλ+
N
.

(B) Let X be a finitely generated FI-module. Suppose there exists a generic
surjection Mλ � X. Then there exists a canonical (up to scaling) surjection

(6) Φ(X) � Dλ.

Additionally, the map

(7) X → Ψ(Dλ)

adjoint to (6) sends the composition factor Dλ+
N
to itself by an isomorphism.

More precisely, there exist filtrations on X(N) and Φ(Dλ)(N) compatible
with the map, giving the stated isomorphism on the associated graded pieces.

Proof. By [14], Theorem 3, the induction to N � 0 of Dλ contains Dλ+
N
as a unique

composition factor, and all other composition factors are of the form Dμ for μ�λ+
N .

Additionally, Dλ+
N

is not a composition factor in the induction of any Σn-module

with n < |λ|. By the above description of the functor Ψ, this implies (A).
Also by [14], Theorem 3, for every N , the cofixed point KΣ|λ|-module

(8) (Dλ+
N
)ΣN−|λ|

is Dλ and the cofixed point module of Dλ+
N

under ΣN−i with i < |λ| is 0 (since

Dλ occurs at the “top branching level” of L(λ+
N )). Thus, by the description of

the functor Φ as the colimit (4), Dλ is by definition a quotient of the module of
generators of Φ(X). Additionally, the assumption guarantees that these generators
are not killed by the relations (again by [14], Theorem 3, since, if μ+

N � λ+
N , then

μ� λ or |μ| < |λ|). This implies the first statement of (B).
For the last statement, we also observe that by [14], Theorem 3, we cannot

have λ+
N = μ+

N for |μ| < |λ| and thus, by the description of Ψ as the limit (5),
Dλ+

N
is a composition factor of Ψ(Dλ)(N) (since there is no condition excluding

this factor). Additionally, all other composition factors of Ψ(Dλ)(N) are Dμ for
μ � λ+

N . Moreover, our construction of (6) from (8) implies that the adjoint (7)
defines an isomorphism on the constituent factors Dλ+

N
. �

Now, by Lemma 3, for a p-regular Young diagram λ, we have a natural (non-zero)
surjection

βλ : Φ(Mλ) → Dλ.

Then since Φ and Ψ are adjoint, we obtain a non-zero map

ιλ : Mλ → Ψ(Dλ).

For the remainder of the proof of Theorem 2, we refer the reader to [21].

3. Proof of Theorem 1 at p = 2

First, note that we have a short exact sequence

(9) 0 → S(4) → S(3,1) → D(3,1) → 0.

Thus,
dim(D(3,1)) = dim(S(3,1))− dim(S(4)) = 3− 1 = 2,
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which is also the dimension of S(2,2). Since, at p = 2, we have

(3, 1) = (2, 2)r

where λr denotes the Young diagram obtained from shifting the boxes of λ as high
as possible along each ladder (see [13, 15]), D(3,1) is a composition factor of S(2,2)

(by [13], Theorem A). Thus,
D(3,1) = S(2,2).

By Lemma 3, we have a natural surjection

Φ(M(3,1)) � D(3,1) = S(2,2).

Now we claim the following

Proposition 4. There is a short exact sequence

0 → M(2,2) → Ψ(D(3,1)) → M(2) → 0.

First, note that by the Pieri rule, the restriction of the KΣ4-module D(3,1) =
S(2,2) to Σ3 is the Specht module S(2,1) (since the only removable box in (2, 2) is the
bottom right corner). We thus obtain that the induction of S(2,1) has composition
factors

(10) D(3,1), D(4), D(3,1), D(4), D(3,1),

listed from top to bottom (i.e., with the piece that can be considered as a quotient
listed first, and the piece that can be considered a submodule listed last).

Lemma 5. The unit of adjunction

S(2,2) → IndΣ3

Σ4
(S(2,2)|Σ3

)

maps S(2,2) isomorphically to the bottom D(3,1) piece (10) (coming from S(2,1,1)).

Proof. We can identify the non-zero elements of S(2,2) with 4-cycle subgraphs of
the complete graph on vertices [4] = {1, 2, 3, 4}. On the other hand, S(2,1) can be

identified with the submodule of K [3] consisting of vectors whose coordinates have
sum 0. Thus, IndΣ3

Σ4
(S(2,1)) is a submodule of IndΣ3

Σ4
(K [3]), which is identified with

MapFI([3], [4]) (where by our convention, the image of 1 is the new coordinate and
the image of 2 comes from the coordinate in [3]). We encode an injective map
[2] → [4] by a 4-tuple where we write i for the image of i = 1, 2, and 0’s in the
remaining places. Under these conventions, our unit of adjunction maps

(11)

S(2,1)  {1, 2}+ {2, 3}+ {3, 4}+ {4, 1} �−→

(2, 0, 0, 1) + (0, 0, 1, 2) + (1, 0, 0, 2)

+(0, 1, 2, 0) + (0, 0, 2, 1) + (0, 2, 1, 0)

+(1, 2, 0, 0) + (2, 1, 0, 0).

On the other hand, in this notation, the generators of the Specht module S(2,1,1) ⊆
MapFI([2], [4]) can be identified with, choosing i ∈ [4], the sum qi of the six 4-tuples
which are non-zero on i. We then see that (11) lies in this submodule, and namely,
is equal to q1 + q3.

The images under the unit of adjunction of other elements of S(2,2) then also lie
in the submodule

S(2,1,1) ⊆ IndΣ3

Σ4
(S(2,1)).
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�

Proof of Proposition 4. Now for induction from S(2,2) to a degree N � 0, the Pieri
rule gives pieces (from top to bottom)

S(N−2,2), S(N−3,2,1), S(N−4,2,2).

The middle summand is eliminated by the above observation using the description
of the functor Ψ in the beginning of Section 2 as the limit of the Diagram (5). Thus,
we get generically

0 → M(2,2) → Ψ(D(3,1)) → M(2) → 0.

�

Now any map of FI-modules

M(3,1) → M(2)

is 0, since the map is necessarily 0 in degree 7 (since the composition factors of
S(3,3,1) are D(7) and D(4,2,1), while S(5,2) is irreducible). Hence, the map ι(3,1)
factors through

M(3,1)

��

κ ι(3,1)

��
0 �� M(2,2)

�� Ψ(S(2,2))

for some map
κ : M(3,1) → M(2,2).

At an FI-degree N , denote the cokernel

C = Coker(κ).

We claim the following

Lemma 6. In degrees � 0, generically,

C = M∅.

To prove this lemma, we will need calculations of Ψ(S(4)) and Ψ(S(3,1)), which
we make in the following propositions:

Proposition 7. Generically, there is a short exact sequence

0 → M(4) → Ψ(S(4)) → M∅ → 0.

Proof. First, the restriction of the Specht module S(4) to Σ3 is exactly the Specht
module S(3), whose induction to Σ4 has pieces (listed from top to bottom) S(4), S(3,1).
The unit of adjunction (between restriction and induction) sends S(4) monomor-
phically to the lowest piece.

Now the induction of S(4) to N ≥ 8 has pieces (listed from top to bottom)

S(N), S(N−1,1), S(N−2,2), S(N−3,3), S(N−4,4).

The above observation, along with our description of the functor Ψ, eliminates all
but the first and last piece. Thus, using the FI-module structure of the induction,
we get generically

0 → M(4) → Ψ(S(4)) → M∅ → 0.

�
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Proposition 8. We have

Ψ(S(3,1)) = M(3,1).

Proof. First, note that the restriction of the Specht module S(3,1) to Σ3 has pieces
S(3), S(2,1). The induction back to Σ4 of the first piece is S(3,1), to which the bottom
piece D(4) of S(3,1) injects by the unit of adjunction. The piece S(2,1) inducts to
S(3,1) and S(2,1,1), to which the top piece S(2,2) of S(3,1) injects.

Now the induction of S(3,1) to N ≥ 8 has pieces

S(N−1,1), S(N−2,2), S(N−2,1,1), S(N−3,3), S(N−3,2,1), S(N−4,3,1).

The first, second, and fourth pieces are eliminated by the first part of the unit of
adjunction (to the induction of S(3)) and the third and fifth pieces are eliminated
by the second part of the unit of adjunction (to the induction of S(2,1,1)), similarly
as in the proofs of Proposition 4 and Proposition 7. Thus,

Ψ(S(3,1)) = M(3,1).

�

Proof of Lemma 6. Recall again the exact sequence

0 → S(4) → S(3,1) → S(2,2) → 0.

Since Ψ is right adjoint to Φ, it is left exact, so we obtain

0 �� Ψ(S(4)) �� Ψ(S(3,1))
ρ �� Ψ(S(2,2)).

Then ρ factors through κ (since by above, Ψ(S(3,1)) = M(3,1)).
Thus, at every FI-degree N � 0, the dimension of C(N) equals

dim(M(2,2)(N))− dim(M(3,1)(N)) + dim(Ψ(S(4))(N)) =

= dim(M(2,2)(N))− dim(M(3,1)(N)) + dim(M∅(N)) + dim(M(4)(N)) =

= dim(M∅(N)) = dim(S(N)) = 1

(since, by the hook length formula,

dim(S(k,3,1)) =
(k + 4)(k + 3)(k + 1)(k − 2)

8

dim(S(k,4)) =
(k + 4)(k + 3)(k + 2)(k − 3)

24

and

dim(S(k,3,1))− dim(S(k,4)) =
(k + 4)(k + 3)k(k − 1)

12
) = dim(S(k,2,2)).

Hence, C(N) is a KΣN -module with dimension 1. Thus, for every N , C(N) =
S(N), proving that, as FI-modules,

C = M∅.

�

Finally, to prove Theorem 1, we let Rλ = KΣλ
row where Σλ

row is the subgroup of
Σ|λ| of permutations preserving the rows of a Young diagram λ.



1202 SOPHIE KRIZ

Proof of Theorem 1. Suppose N ≥ 8 is odd. We consider the morphism

(12) θT1
: R(N−3,2,1) → R(N−4,2,2)

of [12] given by the tableau T1 with rows

3 3 2 1 . . . 1

2 1

1

We calculate that, using the notation of [12],

N1,1(T1) = N − 6, N2,1(T1) = 1, N3,1(T1) = 2,

N1,2(T1) = 1, N2,2(T1) = 1, N3,2(T1) = 0,

N1,3(T1) = 1, N2,3(T1) = 0, N3,3(T1) = 0,

and thus T1 satisfies the condition of Theorem 24.6, (ii), [12] (since N is assumed
to be odd). Hence, by Theorem 24.6, (ii), [12], the restriction of θT1

is a non-zero
homomorphism

θT1
|S(N−3,2,1)

: S(N−3,2,1) → S(N−4,2,2).

Since T1 is reverse semistandard, by the proof of Theorem 24.6,

Im(θT1
|S(N−3,2,1)

) ⊆ S(N−4,2,2)

contains the composition factorD(N−3,2,1). Therefore, this composition factor must
be present in Im(ι(3,1))(N) ∼= Im(κ)(N), which is therefore not simple, since it also
contains the composition factor D(N−4,3,1).

Suppose N ≥ 8 is even. We consider the morphism

(13) θT2
: R(N−2,1,1) → R(N−4,2,2)

given by the tableau T2 with rows

3 3 2 1 . . . 1

2

1

We calculate, using the notation of [12],

N1,1(T1) = N − 5, N2,1(T1) = 1, N3,1(T1) = 2,

N1,2(T1) = 0, N2,2(T1) = 2, N3,2(T1) = 0,

N1,3(T1) = 1, N2,3(T1) = 0, N3,3(T1) = 0,

and thus, again, T2 satisfies the condition of Theorem 24.6, (ii), [12] (since N is
assumed to be even). Hence, the restriction of θT2

is a non-zero homomorphism

θT2
|S(N−2,1,1)

: S(N−2,1,1) → S(N−4,2,2).

Now all composition factors of S(N−2,1,1) are of the form Dλ where λ� (N −2, 1, 1)
(by Theorem 12.1 of [12]). Then θT2

|S(N−2,1,1)
must be non-zero on at least one

such Dλ, and therefore Dλ must be a composition factor of Im(θT2
|S(N−2,1,1)

) ⊆
S(N−4,2,2). Hence, this Dλ is also a composition factor of Im(ι(3,1)) ∼= Im(κ). By
Theorem 24.4 of [12], λ �= (N). In addition, since λ � (N − 2, 1, 1), we also have
λ �= (N − 4, 3, 1). Therefore, since Im(ι(3,1))(N) ∼= Im(κ)(N) also contains the
composition factor D(N−4,3,1), it cannot be simple. �
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4. Proof of Theorem 1 at p > 2

Suppose p > 2. First, we have the following

Proposition 9. There is a short exact sequence

0 → S(p+1,1) → S(p,2) → D(p,2) → 0.

Proof. If hλ(a, b) is the hook length of a box (a, b) in a Young diagram λ, we say
that the box (a, b) is bad if vp(hλ(a, b)) > 0 and there are boxes (x, b), (a, y) in λ
such that vp(hλ(a, b)) �= vp(hλ(x, b)) and vp(hλ(a, b)) �= vp(hλ(a, y)).

First note that since (p, 2) contains a bad box, S(p,2) must be reducible (see
[6,7]). It therefore contains a submodule of the form Dλ where λ� (p, 2). The only
options for λ are (p+ 1, 1) and (p+ 2). By [12], Theorem 24.4, D(p+2) = S(p+2) is
not a submodule of S(p,2) since p is not −1 mod p. Thus, D(p+1,1) = S(p+1,1) (the
equality holds since (p+ 1, 1) has no bad boxes) is a submodule of S(p,2).

To prove the Proposition, by [12], Section 11, it suffices to show

(14) S⊥
(p,2) ∩ S(p,2) = S(p+1,1),

where S⊥
(p,2) is the orthogonal complement of S(p,2) in R(p,2) (the standard permu-

tation module basis of R(p,2) is orthonormal). By the above discussion, we already

know S⊥
(p,2) ∩ S(p,2) ⊇ S(p+1,1) in (14).

To prove the other inclusion in (14), first, by the hook formula, we have

dim(S(p,2)) =
(p+ 2)!

(p+ 1)p(p− 2)!2
=

(p+ 2)(p− 1)

2
,

and we also have

dim(R(p,2)) =
(p+ 2)!

p!2
=

(p+ 2)(p+ 1)

2
.

So

(15) dim(R(p,2))− dim(S(p,2)) =
2(p+ 2)

2
= p+ 2.

Let
Vn = KΣn/Σn−1 = R(n−1,1).

Then we have a homomorphism

ψ1,1 : R(p,2) → Vp+2

and S(p,2) ⊆ ker(ψ1,1) (by [12], Corollary 17.18), where ψ1,1 is defined as a sum of
standard basis elements obtained by moving one box from the second row to the
first row. In fact, in this case ψ1,1 is surjective since its image contains sums of
every pair of standard basis elements in Vp+2 and p > 2.

Thus, since dim(Vp+2) = p+ 2, by (15), we have a short exact sequence

0 �� S(p,2)
�� R(p,2)

ψ1,1 �� Vp+2
�� 0.

Hence, S⊥
(p,2)

∼= Vp+2, and in particular,

dim(S⊥
(p,2) ∩ S(p,2)) ≤ p+ 2.

To prove (14), since we already know the ⊇-inclusion, it suffices to show

dim(S⊥
(p,2) ∩ S(p,2)) ≤ p+ 1 = dim(S(p+1,1)).
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To this end, it suffices to find an element in S⊥
(p,2) � S(p,2). Consider the map

R(p,2) → K,

given by sending a basis element to 1 ∈ K if it has a 2 in a given position and to
0 ∈ K else. This is equivalent to taking the dot product with the sum v of such
basis elements, of which there are p + 1. Thus, the dot product of the element v
with itself is p+1 which is non-zero, and thus, v is not in S(p,2) = ker(ψ1,1). Thus,
(14) is proven, concluding the proof of the Proposition. �

Again, since Ψ is a right adjoint, it is left exact, giving

(16) 0 → Ψ(S(p+1,1)) → Ψ(S(p,2)) → Ψ(D(p,2)).

We then claim the following

Proposition 10. We have

Ψ(S(p+1,1)) = M(p+1,1).

Proof. Letting
Vn = K(Σn/Σn−1) ∼= Kn,

we have

S(p+1,1) = K{(v1, . . . , vp+2) ∈ Vp+2|
p+2∑
i=1

vi = 0}.

Consider the unit of adjunction between induction and restriction

(17) S(p+1,1) → Ind
Σp+1

Σp+2
Res

Σp+2

Σp+1
S(p+1,1).

Using the isomorphism

Ind
Σp+1

Σp+2
Res

Σp+2

Σp+1
S(p+1,1)

∼= K(Σp+2/Σp+1)⊗K S(p+1,1)

the map (17) can be described as sending (v1, . . . , vp+2) ∈ S(p+1,1) to (1, 1, . . . , 1)⊗
(v1, . . . , vp+2).

Now the restriction of S(p+1,1) to Σp+1 has pieces S(p+1), S(p,1), with S(p+1)

above S(p,1). The image of (17) must be contained in the induction of S(p,1) since
any (1, . . . , 1)⊗ (v1, . . . , vp+2) in the image of (17) can be expressed as the sum

p+2∑
i=1

(0, . . . , 0, 1, 0, . . . , 0)⊗ (v1, . . . , vi−1, 0, vi+1, . . . , vp+2)

(where in the ith summand, the 1 is in the ith place).
The only piece of the induction of S(p+1,1) to N � 0 that is not a piece in the

induction of S(p,1) is S(N−p−2,p+1,1). Thus, by the description (5) of Ψ,

Ψ(S(p+1,1)) = M(p+1,1).

(The FI-module structure again follows from the FI-module structure on the in-
duction.) �
Proof of Theorem 1: Fix some N � 0. Denote by ϕ the first map of (16). By
Proposition 10, the injection is of the form

ϕ : S(N−p−2,p+1,1) → Ψ(S(p,2))(N).

We therefore obtain the short exact sequence

(18) 0 → ϕ−1(S(N−p−2,p,2)) → S(N−p−2,p,2) → (Im(ι(p,2)))(N) → 0.
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(For the sake of brevity, let us write k = N − p− 2.)
Now consider the map

(19) θT : R(� k
p�p+p,k−� k

p �p+1,1) → R(k,p,2)

(again using the notation and definitions given in [12]) where T is the reverse
semistandard tableau

3 3 2 . . . 2 2 . . . 2 1 . . . 1

2 1 1 . . . 1

1

which has

N1,1(T ) =

⌊
k

p

⌋
p− 1, N2,1(T ) = p− 1, N3,1(T ) = 2

N1,2(T ) = k −
⌊
k

p

⌋
p, N2,2(T ) = 1, N3,2(T ) = 0

N1,3(T ) = 1, N2,3(T ) = 0, N3,3(T ) = 0.

This satisfies the conditions of Theorem 24.6, (ii), [12] and therefore (19) restricts
to a non-zero map

θ̂T : S(� k
p�p+p,k−� k

p �p+1,1) → S(k,p,2).

It therefore suffices to show θ̂T does not lift to a map

(20) S(� k
p�p+p,k−� k

p�p+1,1) → ϕ−1(S(k,p,2)) ⊆ S(k,p+1,1),

for (18) (since then (Im(ι(p,2)))(N) will have composition factors D(k,p,2) and Dλ

for some λ dominant or equal to (
⌊
k
p

⌋
p + p, k −

⌊
k
p

⌋
p + 1, 1) and therefore be

reducible, having two different composition factors).
Suppose a lifting (20) exists. If p divides k, then (k, p + 1, 1) contains no bad

boxes, so S(k,p+1,1) is irreducible, thus already forming a contradiction since then
(20) is 0. So, suppose p does not divide k. By [12], Theorem 13.13, it suffices to

show all linear combinations of θ̂T for semistandard (
⌊
k
p

⌋
p + p, k −

⌊
k
p

⌋
p + 1, 1)-

tableaux T of type (k, p+ 1, 1) which have image contained in the Specht module

S(k,p+1,1) are 0. The only semistandard (
⌊
k
p

⌋
p + p, k −

⌊
k
p

⌋
p + 1, 1)-tableau T of

type (k, p+ 1, 1) is

(21)

1 1 . . . 1 1 . . . 1 2 . . . 2

2 2 . . . 2

3

.

We will prove that Im(θ̂T ) � S(k,p+1,1) using [12], Corollary 17.18 by finding i, v

with ψi−1,v(Im(θ̂T )) �= 0, where

ψi−1,v : Rλ → R(λ1,...,λi−2,λi−1+λi−v,v,λi+1,... )

is obtained by moving λi − v boxes from the ith row to the (i− 1)th row.
Let us choose i = 2, v = p. Applying ψi−1,v then involves summing over the

different tableaux T ′ arising from taking un-signed row permutations and then
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taking the sum of signed column permutations of tableaux T ′′ arising from T ′ by
replacing one 2 in (21) by a 1.

It then suffices to show that there exists a T ′′ with no two numbers the same in
any column and this T ′′ arises a number of times that is not divisible by p. Consider

the T ′′ given as the (
⌊
k
p

⌋
p+ p, k −

⌊
k
p

⌋
p+ 1, 1)-tableau

(22)

2 1 . . . 1 1 . . . 1 2 . . . 2

1 2 . . . 2

3

.

This can arise in two fashions:

(1) T ′ arises by moving the first 2 in the first row to the first column and T ′′

then arises by replacing the first 2 in the second row with a 1. This yields
one positive summand.

(2) T ′ arises by moving the first 2 in the first row to any of the first k+1 spots
of the first row (including the possibility of letting it stay in the same spot),
and T ′′ then arises by replacing this same 2 by a 1, and switching the 1
and 2 in the first column. This gives k + 1 negative summands.

Thus, the coefficient of the summand T ′′ in the linear combination is −k. By
our assumption, p does not divide k (and thus also does not divide −k), hence
concluding the proof. �
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