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KATO’S IRREDUCIBILITY CRITERION FOR KAC-MOODY

GROUPS OVER LOCAL FIELDS

AUGUSTE HÉBERT

Abstract. In 2014, Braverman, Kazhdan, Patnaik and Bardy-Panse, Gaussent
and Rousseau associated Iwahori-Hecke algebras to Kac-Moody groups over
non-Archimedean local fields. In a previous paper, we defined and studied
their principal series representations. In 1982, Kato provided an irreducibility
criterion for these representations, in the reductive case. We had obtained
partially this criterion in the Kac-Moody case. In this paper, we prove this
criterion in the Kac-Moody case.

1. Introduction

1.1. The reductive case. LetG be a split reductive group over a non-Archimedean
local field K. To each open compact subgroup K of G is associated the Hecke alge-
bra HK . This is the algebra of functions from G to C which have compact support
and are K-bi-invariant. There exists a strong link between the smooth represen-
tations of G and the representations of the Hecke algebras of G. Let KI be the
Iwahori subgroup of G. Then the Hecke algebra HC associated with KI is called
the Iwahori-Hecke algebra of G and plays an important role in the representation
theory of G.

Let T be a maximal split torus of G and Y be the cocharacter lattice of (G, T ).
Let B be a Borel subgroup of G containing T . Let TC = HomGr(Y,C

∗) and τ ∈ TC.
Then τ can be extended to a character τ : B → C∗. If τ ∈ TC, the principal series
representation I(τ ) of G is the induction of τδ1/2 from B to G, where δ : B → R∗

+

is the modulus character of B. More explicitly, this is the space of locally constant
functions f : G → C such that f(bg) = τδ1/2(b)f(g) for every g ∈ G and b ∈ B.
Then G acts on I(τ ) by right translation.

Let W v be the vectorial Weyl group of (G, T ). By the Bernstein-Lusztig rela-
tions, HC admits a basis (Zλ ∗ Tw)λ∈Y,w∈W v such that

⊕
λ∈Y CZλ is a subalgebra

of HC isomorphic to the group algebra C[Y ] of Y . We identify
⊕

λ∈Y CZλ and
C[Y ]. We regard τ as an algebra morphism τ : C[Y ] → C. Then the algebra HC

acts on Iτ,G := I(τ )KI , I(τ ) is irreducible as a representation of G if and only if
Iτ,G is irreducible as a representation of HC and Iτ,G is isomorphic to the induced

representation Iτ = IndHC

C[Y ](τ ).

Matsumoto and Kato gave criteria for the irreducibility of Iτ . The group W v

acts on Y and thus it acts on TC. If τ ∈ TC, we denote by Wτ the stabilizer of
τ in W v. Denote by q the residue cardinal of K. Let W(τ) be the subgroup of
Wτ generated by the reflections rα∨ , for α∨ ∈ Φ∨ such that τ (α∨) = 1, where Φ∨
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stands for the coroot lattice of G. Then Kato proved the following theorem (see
[Kat81, Theorem 2.4]):

Theorem 1. Let τ ∈ TC. Then Iτ is irreducible if and only if it satisfies the
following conditions:

(1) Wτ = W(τ),
(2) for all α∨ ∈ Φ∨, τ (α∨) �= q.

When τ is regular, that is when Wτ = {1}, condition (1) is satisfied and this is
a result by Matsumoto (see [Mat77, Théorème 4.3.5]).

1.2. The Kac-Moody case. Let G be a split Kac-Moody group over a non-
Archimedean local field K. We do not know which topology on G could replace
the usual topology on reductive groups over K. There is up to now no definition
of smoothness for the representations of G. However one can define certain Hecke
algebras in this framework. In [BK11] and [BKP16], Braverman, Kazhdan and
Patnaik defined the spherical Hecke algebra and the Iwahori-Hecke HC of G when
G is affine. In [GR14] and [BGR16], Bardy-Panse, Gaussent and Rousseau gen-
eralized these constructions to the case where G is a general Kac-Moody group.
They achieved this construction by using masures (also known as hovels), which
are analogous to Bruhat-Tits buildings (see [GR08]).

Let B be a positive Borel subgroup of G and T be a maximal split torus of G
contained in B. Let Y be the cocharacter lattice of G, W v be the Weyl group of
G and Y ++ be the set of dominant cocharacters of Y . The Bruhat decomposition
does not hold on G: if G is not reductive,

G+ :=
⊔

λ∈Y ++

KIλKI � G.

The set G+ is a sub-semi-group of G. Then HC is defined to be the set of functions
from KI\G+/KI to C which have finite support. The Iwahori-Hecke algebra HC

of G admits a Bernstein-Lusztig presentation but it is no longer indexed by Y . Let
Y + =

⋃
w∈W v w.Y ++ ⊂ Y . Then Y + is the integral Tits cone and we have

Y + = Y if and only if G is reductive. The Bernstein-Lusztig-Hecke algebra of
G is the space BLHC =

⊕
w∈W v C[Y ]∗Tw subject to some relations (see Section 2.2).

Then HC is isomorphic to
⊕

w∈W v C[Y +] ∗ Tw.

Let τ ∈ TC = HomGr(Y,C
∗). In [Héb22, 6] we defined the space Î(τ ) of functions

f from G to C such that for all g ∈ G, b ∈ B, we have f(bg) = τδ1/2(b)f(g). As we
do not know which condition could replace “locally constant”, we do not impose

any regularity condition on the functions of Î(τ ). Then G acts by right translation

on Î(τ ). Let Iτ,G be the subspace of functions f ∈ Î(τ ) which are invariant under
the action of KI and whose support satisfies some finiteness conditions. We defined
an action of HC on Iτ,G. This action extends to an action of BLHC on Iτ,G and is

isomorphic to the induced representation Iτ = Ind
BLHC

C[Y ] (τ ). Moreover the BLHC-

submodules of Iτ are exactly the HC-submodules of Iτ (see [Héb21, Proposition
3.1]) and thus we regard Iτ as a BLHC-module. We then obtained a weak version of
Theorem 1: we obtained one implication and we proved the equivalence only under
the assumption that the Kac-Moody matrix defining G has size 2 (see [Héb22,
Theorems 3 and 4]). In this paper, we prove Theorem 1 in a full generality (see
Corollary 4.8).
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Basic ideas of the proof. Let us explain the basic ideas of our proof. We have
Iτ =

⊕
w∈W v CTw.vτ , where vτ ∈ Iτ is such that θ.vτ = τ (θ).vτ for θ ∈ C[Y ]. For

w ∈ W v, one sets

Iτ (w.τ ) = {x ∈ Iτ |θ.x = w.τ (θ).x, ∀θ ∈ C[Y ]}.
By the Frobenius reciprocity, HomBLHC−mod(Iτ , Iw.τ ) is isomorphic to Iτ (w.τ ) as
a vector space. Let UC be the set of τ ∈ TC such that τ (α∨) �= q for all α∨ ∈ Φ∨.
Let τ ∈ UC. In [Héb22, Theorem 4.8] we proved that Iτ is irreducible if and only if
EndBLHC−mod(Iτ ) = C.Id, if and only if Iτ (τ ) = Cvτ .

In order to study Iτ (w.τ ), for w ∈ W v, it is convenient to introduce BLH(TC) =⊕
w∈W v Tw ∗C(Y ). The elements of BLH(TC) can be regarded as rational functions

from an open subset of TC to HW v ,C =
⊕

w∈W v CTw. Following Reeder, we intro-

duced elements Fw ∈ BLH(TC), w ∈ W v, such that for all χ ∈ TC for which Fw(χ) is
well defined, Fw(χ).vχ ∈ Iχ(w.χ). The group Wτ decomposes as Wτ = Rτ �W(τ),
where Rτ is some subgroup of Wτ called the R-group. If wR ∈ Rτ , then FwR

has no pole at τ and thus FwR
(τ ).vτ corresponds to an element ψwr

of End(Iτ ).
For w ∈ W(τ) however, Fw has poles at τ and thus describing Iτ (τ ) requires some
works. Inspired by the works of Reeder and Keys in the reductive case ([Ree97]
and [Key82]), we determined

Iτ (τ, gen) = {x ∈ Iτ |∀θ ∈ C[Y ], ∀n � 0,
(
θ − τ (θ)

)n
.x = 0}.

We proved (see [Héb21, Proposition 5.13]) that

Iτ (τ, gen) =
⊕

wR∈Rτ

ψwR

(
Iτ (τ, gen,W(τ))

)
,

where Iτ (τ, gen,W(τ)) :=
(
BLHC ∩

⊕
w∈W(τ)

Fw ∗ C(Y )
)
.vτ corresponds to the

“W(τ)-part” of Iτ (τ, gen). We deduced that

Iτ (τ ) =
⊕

wR∈Rτ

ψwR

(
Iτ (τ ) ∩ Iτ (τ, gen,W(τ))

)
.

It then remained to prove that Iτ (τ, gen,W(τ))∩ Iτ (τ ) = Cvτ , which we achieve
in this paper (see Theorem 4.6). Note that by our description of Iτ (τ, gen,W(τ)),
proving that Iτ (τ )∩ Iτ (τ, gen,W(τ)) = Cvτ can more or less be reduced to proving

that I1(1) = Cv1, where I1 = IndKτ

C(Y )τ
(1), C(Y )τ is the subset of C(Y ) consisting

of the elements which have no pole at τ , 1 : Y → C is the constant function equal
to 1 and Kτ ⊂

⊕
w∈W v Tw ∗C(Y )τ is some kind of Bernstein-Lusztig-Hecke algebra

associated with τ (see subsection 3.1 for the definition of Kτ ).
We then deduce:

Corollary 2 (see Corollary 4.7 and Corollary 4.8). Let τ ∈ UC. Then End(Iτ ) 

C[Rτ ], where Rτ = Wτ/W(τ). In particular, End(Iτ ) = CId if and only if Rτ = {1}.

In [Héb21], we studied the submodules and the quotients of Iτ , for τ ∈ UC.
Many results were proved only when the Kac-Moody matrix defining G has size 2
or under the assumption that some conjecture ([Héb21, Conjecture 5.16]) is true.
As we prove this conjecture, we can drop the assumption on the size of the matrix.
In particular, [Héb21, Theorem 5.34 and Theorem 5.38] yields links between the
submodules and the quotients of Iτ and the right submodules and quotients of
End(Iτ ) respectively.
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Frameworks. Actually, following [BGR16] we study Iwahori-Hecke algebras asso-
ciated with abstract masures. In particular our results also apply when G is an
almost-split Kac-Moody group over a non-Archimedean local field. In this case,
most of the results of this introduction are true but the formulas are more com-
plicated (they are given in the paper). Corollary 2 is not necessarily true for
almost-split groups, even in the reductive case.

Organization of the paper. This paper is organized as follows. In Section 2, we
recall the definitions of the Iwahori–Hecke algebras and of the principal series rep-
resentations, and we introduce tools to study these representations.

In Section 3, we study the algebra Kτ mentioned above and describe

Iτ (τ, gen,W(τ)).

In Section 4, we prove Kato’s irreducibility criterion.

2. Iwahori-Hecke algebras

LetG be a Kac-Moody group over a non-Archimedean local field. Then Gaussent
and Rousseau constructed a space I, called a masure on which G acts, generalizing
the construction of the Bruhat-Tits buildings (see [GR08], [Rou16] and [Rou17]). In
[BGR16] Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke algebra
HR to each masure satisfying certain conditions and to each ring R. They in
particular attach an Iwahori-Hecke algebra to each almost-split Kac-Moody group
over a local field. The algebra HR is an algebra of functions defined on some pairs
of chambers of the masure, equipped with a convolution product. Then they prove
that under some additional hypothesis on the ring R (which are satisfied by C),
HR admits a Bernstein-Lusztig presentation. We restrict our study to the case
where R = C. In this paper, we will only use the Bernstein-Lusztig presentation
of HC. More precisely, we introduce an algebra BLH(TC) =

⊕
w∈W v Tw ∗ C(Y ),

which contains both BLHC and HC. We mainly study BLH(TC) and
BLHC. We do

not introduce masures nor Kac-Moody groups. We however introduce the standard
apartment of a masure.

2.1. Standard apartment of a masure. A (finite) Kac-Moody matrix (or
generalized Cartan matrix) is a square matrix A = (ai,j)i,j∈I indexed by a finite
set I, with integral coefficients, and such that:

(i) ∀ i ∈ I, ai,i = 2;
(ii) ∀ (i, j) ∈ I2, (i �= j) ⇒ (ai,j ≤ 0);
(iii) ∀ (i, j) ∈ I2, (ai,j = 0) ⇔ (aj,i = 0).

In this paper, we will also consider infinite Kac-Moody matrices. The definition
is the same except that I is infinite. However we will only consider root generating
systems associated with finite Kac-Moody matrices.

A root generating system is a 5-tuple S = (A,X, Y, (αi)i∈I , (α
∨
i )i∈I) made

of a finite Kac-Moody matrix A indexed by the finite set I, of two dual free Z-
modules X and Y of finite rank, and of a free family (αi)i∈I (respectively (α∨

i )i∈I)
of elements in X (resp. Y ) called simple roots (resp. simple coroots) that
satisfy ai,j = αj(α

∨
i ) for all i, j in I. Elements of X (respectively of Y ) are called

characters (resp. cocharacters).
Fix such a root generating system S = (A,X, Y, (αi)i∈I , (α

∨
i )i∈I) and set A :=

Y ⊗ R. Each element of X induces a linear form on A, hence X can be seen as



1212 AUGUSTE HÉBERT

a subset of the dual A∗. In particular, the αi’s (with i ∈ I) will be seen as linear
forms on A. This allows us to define, for any i ∈ I, an involution ri of A by setting
ri(v) := v−αi(v)α

∨
i for any v ∈ A. Let S = {ri|i ∈ I} be the (finite) set of simple

reflections. One defines the Weyl group of S as the subgroup W v of GL(A)
generated by S . The pair (W v,S ) is a Coxeter system, hence we can consider the
length 	(w) with respect to S of any element w of W v. If s ∈ S , s = ri for some
unique i ∈ I. We set αs = αi and α∨

s = α∨
i .

The following formula defines an action of the Weyl group W v on A∗:

∀ x ∈ A, w ∈ W v, α ∈ A∗, (w.α)(x) := α(w−1.x).

Let Φ := {w.αi|(w, i) ∈ W v × I} (resp. Φ∨ = {w.α∨
i |(w, i) ∈ W v × I}) be the set

of real roots (resp. real coroots): then Φ (resp. Φ∨) is a subset of the root

lattice QZ :=
⊕
i∈I

Zαi (resp. coroot lattice Q∨
Z
=

⊕
i∈I Zα

∨
i ). By [Kum02, 1.2.2

(2)], we have Rα∨ ∩ Φ∨ = {±α∨} and Rα ∩Φ = {±α} for all α∨ ∈ Φ∨ and α ∈ Φ.

Reflections and roots. We equip (W v,S ) with the Bruhat order ≤ (see [BB05,
Definition 2.1.1]).

Let R = {wsw−1|w ∈ W v, s ∈ S } be the set of reflections of W v. Let
r ∈ R. Write r = wsw−1, where w ∈ W v, s ∈ S and ws > w (which is possible
because if ws < w, then r = (ws)s(ws)−1). Then one sets αr = w.αs ∈ Φ+ (resp.
α∨
r = w.α∨

s ∈ Φ∨
+). Conversely, if α ∈ Φ or α∨ ∈ Φ∨, α = w.αs or α∨ = w.α∨

s ,
where w ∈ W v and s ∈ S , one sets rα = wsw−1 or rα∨ = wsw−1. This is
independant of the choices of w and s by [Kum02, 1.3.11 Theorem (b5)].

2.2. Iwahori-Hecke algebras. In this subsection, we give the definition of the
Iwahori-Hecke algebra via its Bernstein-Lusztig presentation.

2.2.1. The algebra BLH(TC). Let (σs)s∈S , (σ′
s)s∈S ∈ CS be such that the following

conditions are satisfied:

• if αs(Y ) = Z, then σs = σ′
s;

• if s, t ∈ S are conjugate (i.e if there exists a sequence s1, . . . , sn ∈ S such
that s1 = s, sn = t and αsi(α

∨
si+1

) = αsi+1
(α∨

si) = −1, for i ∈ �1, n − 1�),

then σs = σt = σ′
s = σ′

t.

As in [Héb22], we moreover assume that |σs|, |σ′
s| > 1, for all s ∈ S .

Definition 2.1. Let HW v ,C be the Hecke algebra of the Coxeter group W v

over C, that is:

• as a vector space, HW v,C =
⊕

w∈W v CTw, where the Tw, w ∈ W v are
symbols,

• ∀ s ∈ S , ∀ w ∈ W v, Ts∗Tw =

{
Tsw if 	(sw) = 	(w) + 1

(σ2
s − 1)Tw + σ2

sTsw if 	(sw) = 	(w)− 1.

Let C[Y ] be the group algebra of Y over C, that is:

• as a vector space, C[Y ] =
⊕

λ∈Y CZλ, where the Zλ, λ ∈ Y are symbols,

• for all λ, μ ∈ Y , Zλ ∗ Zμ = Zλ+μ.

We denote by C(Y ) its field of fractions. For θ =
∑

λ∈Y aλZ
λ

∑
λ∈Y bλZλ ∈ C(Y ) and

w ∈ W v, set wθ :=
∑

λ∈Y aλZ
w.λ

∑
λ∈Y bλZw.λ .

Let BLH(TC) be the algebra defined as follows:
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• as a vector space, BLH(TC) = C(Y )⊗HW v,C (we write θ∗h instead of θ⊗h
for θ ∈ C(Y ) and h ∈ HW v,C),

• BLH(TC) is equipped with the unique product ∗ which turns it into an
associative algebra and such that, for θ ∈ C(Y ) and s ∈ S , we have:

Ts ∗ θ − sθ ∗ Ts = Ω̃s(θ),

where Ω̃s(θ) = QT
s (θ − sθ) and QT

s =
(σ2

s−1)+σs(σ
′
s−σ′−1

s )Z−α∨
s

1−Z−2α∨
s

.

By [Héb22, Proposition 2.10], such an algebra exists and is unique.

2.2.2. The Bernstein-Lusztig Hecke algebra and the Iwahori-Hecke algebra. Let
Cv

f = {x ∈ A|αi(x) > 0∀i ∈ I}, T =
⋃

w∈W v w.C
v

f be the Tits cone and

Y + = Y ∩ T .

Definition 2.2. The Bernstein-Lusztig-Hecke algebra of (A,(σs)s∈S ,(σ′
s)s∈S)

over C is the subalgebra BLHC =
⊕

λ∈Y,w∈W v CZλ ∗ Tw =
⊕

λ∈Y,w∈W v CTw ∗ Zλ

of BLH(TC). The Iwahori-Hecke algebra of (A, (σs)s∈S , (σ′
s)s∈S ) over C is

the subalgebra HC =
⊕

λ∈Y +,w∈W v CZλ ∗ Tw =
⊕

λ∈Y +,w∈W v CTw ∗ Zλ of BLHC.
Note that for G reductive, we recover the usual Iwahori-Hecke algebra of G, since
T = A.

Remark 2.3.

(1) The algebra BLHC was first defined in [BGR16, Theorem 6.2] without
defining BLH(TC). Let K be a non-Archimedean local field and q be its
residue cardinal. Let G be the minimal Kac-Moody group associated with
S = (A,X, Y, (αi)i∈I , (α

∨
i )i∈I) and G = G(K) (see [Rém02, Section 8] or

[Tit87] for the definition). Take σs = σ′
s =

√
q for all s ∈ S . Then HC is

the Iwahori-Hecke algebra of G (see [BGR16, Definition 2.5 and 6.6 Propo-
sition]). In the case where G is an untwisted affine Kac-Moody group, these
algebras were introduced in [BKP16]. Note also that our framework is more
general than the one of split Kac-Moody groups over local fields. It enables
for example to study the Iwahori-Hecke algebras associated with almost
split Kac-Moody groups over local fields, as in [BGR16]. In this case we do
not have necessarily σs = σ′

s = σt = σ′
t for all s, t ∈ S .

(2) Let s ∈ S . Then if σs = σ′
s, Q

T
s =

σ2
s−1

1−Z−α∨
s
.

(3) Let s ∈ S . Then Ω̃s(C[Y ]) ⊂ C[Y ] and Ω̃s(C[Y
+]) ⊂ C[Y +]. Indeed,

let λ ∈ Y . Then QT
s (Z

λ − Zs.λ) = QT
s .Z

λ(1 − Z−αs(λ)α
∨
s ). Assume that

σs = σ′
s. Then

1− Z−αs(λ)α
∨
s

1− Z−α∨
s

=

{∑αs(λ)−1
j=0 Z−jα∨

s if αs(λ) ≥ 0

−Zα∨
s
∑−αs(λ)−1

j=0 Zjα∨
s if αs(λ) ≤ 0,

and thus QT
s (Z

λ − Zs.λ) ∈ C[Y ]. If σ′
s �= σs, then αs(Y ) = 2Z and a

similar computation enables to conclude. In particular, BLHC and HC are
subalgebras of BLH(TC).

(4) In [Héb22] and [Héb21], we used the basis (Hw)w∈W v instead of (Tw)w∈W v

in the presentation of HW v,C and BLHC. If w ∈ W v, w = s1 . . . sk, with
k = 	(w) and s1, . . . , sk ∈ S , we have Tw = σs1 . . . σskHw.
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2.3. Principal series representations. In this subsection, we introduce the prin-
cipal series representations of BLHC.

We now fix (A, (σs)s∈S , (σ′
s)s∈S ) as in Subsection 2.2. Let BLHC be the Iwahori-

Hecke and the Bernstein-Lusztig Hecke algebras of (A, (σs)s∈S , (σ′
s)s∈S ) over C.

Let TC = HomGr(Y,C
∗) be the group of group morphisms from Y to C∗. Let

τ ∈ TC. Then τ induces an algebra morphism τ : C[Y ] → C by the formula
τ (
∑

λ∈Y aλZ
λ) =

∑
λ∈Y aλτ (λ), for

∑
aλZ

λ ∈ C[Y ]. This equips C with the
structure of a C[Y ]-module.

Let Iτ = Ind
BLHC

C[Y ] (τ ) = BLHC ⊗C[Y ] C. As a vector space, Iτ =
⊕

w∈W v Cvτ ,

where vτ is some symbol. The action of BLHC on Iτ is as follows. Let

h =
∑

w∈W v

TwPw ∈ BLHC,

where Pw ∈ C[Y ] for all w ∈ W v. Then h.vτ =
∑

w∈W v τ (Pw)Twvτ . In particular,

Iτ is a principal BLHC-module generated by vτ .
If A is a vector space over C and B is a set, we denote by A(B) the set of families

(ab)b∈B such that {b ∈ B|ab �= 0} is finite. We regard the elements of C[Y ] as
polynomial functions on TC by setting:

τ (
∑
λ∈Y

aλZ
λ) =

∑
λ∈Y

aλτ (λ),

for all (aλ) ∈ C(Y ). The ring C[Y ] is a unique factorization domain. Let θ ∈ C(Y )

and (f, g) ∈ C[Y ] × C[Y ]∗ be such that θ = f
g and f and g are coprime. Set

D(θ) = {τ ∈ TC|τ (g) �= 0}. Then we regard θ as a map from D(θ) to C by setting

θ(τ ) = f(τ)
g(τ) for all τ ∈ D(θ).

If τ ∈ TC, let C(Y )τ = { f
g |f, g ∈ C[Y ] and g(τ ) �= 0} ⊂ C(Y ). Let BLH(TC)τ =⊕

w∈W v TwC(Y )τ ⊂ BLH(TC). This is not a subalgebra of BLH(TC) (consider for

example 1
Zλ−1

∗Ts = Ts∗ 1
Zs.λ−1

+. . . for some well chosen λ ∈ Y , s ∈ S and τ ∈ TC).

It is however anHW v ,F−C(Y )τ bimodule. For τ ∈ TC, we define evτ : BLH(TC)τ →
HW v,F by evτ (h) = h(τ ) =

∑
w∈W v Twθw(τ ) if h =

∑
w∈W v Twθw ∈ BLH(TC)τ .

This is a morphism of HW v ,F − C(Y )τ -bimodules.

2.4. Decomposition of Wτ . For r = wsw−1 ∈ R, with w ∈ W v and s ∈ S , we
define QT

r = w
(
QT

s

)
and σr = σs. This does not depend on the choices of w and

s. For r ∈ R, set ζr = −QT
r + σ2

r . Write ζr =
ζnum
r

ζden
r

, with ζnumr , ζdenr are coprime

elements of C[Y ].
For τ ∈ TC, set Wτ = {w ∈ W v| w.τ = τ}, Φ∨

(τ) = {α∨ ∈ Φ∨|ζdenα∨ (τ ) = 0},
Φ∨

(τ),+ = Φ∨
(τ) ∩ Φ∨

+, R(τ) = {r = rα∨ ∈ R|α∨ ∈ Φ∨
(τ)} and

W(τ) = 〈R(τ)〉 = 〈{r = rα∨ ∈ R|ζdenα∨ (τ ) = 0}〉 ⊂ W v.

By [Héb22, Remark 5.1], W(τ) ⊂ Wτ . When αs(Y ) = Z for all s ∈ S , then
W(τ) = 〈Wτ ∩ R〉. Let

Rτ = {w ∈ Wτ |w.Φ∨
(τ),+ = Φ∨

(τ),+}.
By [Héb21, Lemmas 5.2 and 5.3], W(τ) is normal in Wτ and wτ = Rτ �W(τ). We
defined in [Héb22, 5.4] a set Sτ ⊂ R ∩ W(τ) for which (W(τ),Sτ ) is a Coxeter
system. We denote by ≤τ the Bruhat order and by 	τ the length on (W(τ),Sτ ).
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Then by [Héb22, Lemma 5.10], for all w,w′ ∈ W(τ), we have w ≤τ w′ implies
w ≤ w′.

2.5. Weights and intertwining operators. If τ ∈ TC, we denote by End(Iτ )
the algebra of endomorphisms of BLHC-modules of Iτ . Let

Iτ (τ ) = {x ∈ Iτ |θ.x = τ (θ).x∀θ ∈ C[Y ]}

and

Iτ (τ, gen) = {x ∈ Iτ |∀θ ∈ C[Y ], (θ − τ (θ))n.x = 0, ∀n � 0} ⊃ Iτ (τ ).

For s ∈ S , one sets

Fs = Ts +QT
s ∈ BLH(TC).

Let x ∈ Iτ (τ ). Define Υx ∈ End(Iτ ) by Υ(h.vτ ) = h.x, for h ∈ BLHC. Then it
is easy to check that Υ : Iτ (τ ) → End(Iτ ) is well defined and is an isomorphism of
vector spaces.

Let w ∈ W v. Let w = s1 . . . sr be a reduced expression of w, with k = 	(w) and
s1, . . . , sk ∈ S . Set

Fw = Fsr . . . Fs1 = (Tsr +QT
sr) . . . (Ts1 +QT

s1) ∈
BLH(TC).

Lemma 2.4 (see [Héb22, Lemma 4.14]). Let w ∈ W v.

(1) The element Fw ∈ BLH(TC) is well defined, i.e it does not depend on the
choice of a reduced expression for w.

(2) Fw − Tw ∈ BLH(TC)
<w =

⊕
v<w TvC(Y ).

(3) If θ ∈ C(Y ), then θ ∗ Fw = Fw ∗ w−1

θ.
(4) If τ ∈TC is such that Fw∈BLH(TC)τ , then θ.Fw(τ ).vτ =(w.τ (θ))Fw(τ ).vτ ,

for every θ ∈ C[Y ].

We set

UC = {τ ∈ TC|τ (ζnumr ) �= 0∀r ∈ R}.
When σs = σ′

s =
√
q, for q ∈ R>0, UC = {τ ∈ TC|τ (α∨) �= q, ∀α∨ ∈ Φ∨}.

By [Héb21, Lemma 5.7], if wR ∈ Rτ , then FwR
∈ BLH(TC)τ and FwR

(τ ).vτ ∈
Iτ (τ ). Let ψwR

= ΥFwR
(τ).vτ

∈ End(Iτ ).
Set

(2.1) Iτ (τ, gen,W(τ)) =

⎛⎝BLHC ∩
⊕

w∈W(τ)

Fw ∗ C(Y )

⎞⎠ .vτ .

which is well defined by [Héb22, Lemma 5.23],∑
k∈N,s1,...,sk∈Sτ

Cevτ (Ks1 ∗ . . . ∗ Ksk).vτ .

By [Héb21, Proposition 5.13 (1)], if τ ∈ UC, we have

(2.2) Iτ (τ, gen) =
⊕

wR∈Rτ

ψwR

(
Iτ (τ, gen,W(τ))

)
.



1216 AUGUSTE HÉBERT

3. Description of Iτ (τ, gen,W(τ))

In this paper, we prove that if τ ∈ UC, then Iτ (τ,W(τ)) := Iτ (τ, gen,W(τ)) ∩
Iτ (τ ) = Cvτ (see Theorem 4.6) and we deduce information on the submodules of
Iτ . To that end, we begin by describing Iτ (τ, gen,W(τ)). For s ∈ Sτ , let

(3.1) Ks = Fs − ζs = Fs +QT
s − σ2

s ∈ BLH(TC).

In [Héb21] and [Héb21], Iτ (τ, gen,W(τ)) is described in terms of the evτ (Ks1 ∗ . . . ∗
Ksk).vτ , where s1, . . . , sk ∈ Sτ . However, if w ∈ W(τ) and w = s1 . . . sk = s′1 . . . s

′
k

is a reduced expression of w, with k = 	τ (w) and s1, . . . , sk, s
′
1, . . . , s

′
k ∈ Sτ , we

might have Ks1 . . .Ksk �= Ks′1
. . .Ks′k

. We thus slightly modify the Ks and define

K̃s, for s ∈ S , so that we have K̃s1 . . . K̃sk = K̃s′1
. . . K̃s′k

. This enables us to define

K̃w, for w ∈ W(τ). Let Kτ =
⊕

w∈W(τ)
K̃w ∗ C(Y )τ . We prove that Kτ has a

presentation very close to the Bernstein-Lusztig presentation of BLHC.
In order to study Iτ (τ, gen,W(τ)), it is then convenient to describe it as a Kτ -

module. However, Kτ is not contained in BLHC. We thus extend the action of
Kτ ∩ BLHC on Iτ (τ, gen,W(τ)) to an action of Kτ on Iτ (τ, gen,W(τ)).

In subsection 3.1, we study Kτ and in subsection 3.2, we define an action of Kτ

on Iτ (τ, gen,W(τ)). In subsection 3.3, we prove that there can exist τ ∈ UC for
which Sτ is infinite.

3.1. Bernstein-Lusztig-Hecke structure on Kτ . For s ∈ Sτ , we set

(3.2) K̃s = Ks + σ2
s = Fs +QT

s ∈ BLH(TC).

Note that if τ (λ) = 1 for all λ ∈ Y , we have Sτ = S and

(3.3) K̃s = Ts

for s ∈ S .
Let s ∈ Sτ . For θ ∈ C(Y ), set Ω̃s(θ) = QT

s (θ − sθ). Then similarly as in
Remark 2.3 (3) and [Héb22, Lemma 5.22] we have

(3.4) Ω̃s(C[Y ]) ⊂ C[Y ] and Ω̃s

(
C(Y )τ

)
⊂ C(Y )τ .

The aim of this subsection is to prove Proposition 3.1.

Proposition 3.1. Let τ ∈ TC.

(1) Let w ∈ W(τ) and w = s1 . . . sk be a reduced decomposition of w, with
k = 	τ (w) and s1 . . . , sk ∈ Sτ . Then

K̃w = K̃s1 ∗ . . . ∗ K̃sk ∈ BLH(TC)τ

is well defined, independently of the choice of the reduced decomposition.
(2) Let s ∈ Sτ and w ∈ W(τ). Then

K̃s ∗ K̃w =

{
K̃sw if 	τ (sw) = 	(w) + 1

(σ2
s − 1)K̃w + σ2

sK̃sw if 	τ (sw) = 	τ (w)− 1.
.

(3) For θ ∈ C(Y ) and s ∈ Sτ , we have

(3.5) θ ∗ K̃s = K̃s ∗ sθ + Ω̃s(θ).

(4) The matrix
(
αs(α

∨
r )
)
r,s∈Sτ

is a (possibly infinite) Kac-Moody matrix.
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(5) If τ ∈ UC, the space

Kτ =
∑

k∈N,s1...,sk∈Sτ

Ks1 ∗ . . . ∗ Ksk ∗ C(Y )τ =
⊕

w∈W(τ)

K̃w ∗ C(Y )τ

is a subalgebra of BLH(TC) contained in BLH(TC)τ .

In particular,
⊕

w∈W(τ)
K̃w ∗C(Y )τ is almost a Bernstein-Lusztig-Hecke algebra

as defined in subsection 2.2. Note however that Sτ can be infinite (and thus the
(αs)s∈Sτ

and (α∨
s )s∈Sτ

are not free), see Lemma 3.11. The proof of this proposition
is a consequence of the lemmas of this subsection.

Lemma 3.2. Let s ∈ Sτ . Then:

(1) K2
s = −(1 + σ2

s)Ks,

(2) K̃2
s = (σ2

s − 1)K̃s + σ2
s .

Proof. By Lemma 2.4, (3.1) and [Héb22, Lemma 4.3], we have

K2
s = (Fs − ζs)(Fs − ζs)

= F 2
s − Fs(ζs +

sζs) + ζs.
sζs

= ζs.(
sζs)− Fs(ζs +

sζs) + ζs.
sζs

= (−Fs + ζs)(ζs +
sζs) = −(1 + σ2

s)Ks.

�

Lemma 3.3. Let θ ∈ C(Y ) and s ∈ Sτ . Then

θ ∗ K̃s = K̃s ∗ sθ + Ω̃s(θ).

Proof. By Lemma 2.4, we have

θ ∗ K̃s = θ ∗
(
Fs +QT

s

)
= Fs ∗ sθ + θ ∗QT

s

=
(
Fs +QT

s

)
sθ +QT

s (θ − sθ)

= K̃s ∗ sθ + Ω̃s(θ).

�

Following [Deo89], we define ≤τ on Φ∨
(τ),+ as follows. If α∨, β∨ ∈ Φ∨

(τ),+, we write

α∨ ≤τ β∨ if there exist k ∈ N, a ∈ R∗
+, β

∨
1 , . . . , β

∨
k ∈ Φ∨

(τ),+ and a1, . . . , ak ∈ R+

such that α∨ = aβ∨ +
∑k

i=1 aiβ
∨
i .

Let s ∈ W(τ) ∩ R. Then by [Héb22, Lemma 5.13 (2)], we have

(3.6) s ∈ Sτ if and only if s.
(
Φ∨

(τ),+ \ {α∨
s }

)
= Φ∨

(τ),+ \ {α∨
s }.

Lemma 3.4. Let

Στ = {α∨ ∈ Φ∨
(τ),+|∀β∨ ∈ Φ∨

(τ),+, β
∨ ≤τ α∨ ⇒ β∨ = α∨}.

Then the map s �→ α∨
s from Sτ to Στ is well defined and is a bijection. Moreover,

we have

(3.7) Φ∨
(τ),+ ⊂

∑
α∨∈Στ

Nα∨.
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Proof. This follows [Deo89, 3. Step 2].
Let α∨ ∈ Στ (if such an element exists). Let s = rα∨ ∈ R(τ) and β∨ ∈ Φ∨

(τ),+.

We assume that γ∨ := −s.β∨ ∈ Φ∨
(τ),+. Then γ∨ = −β∨+αs(β

∨)α∨
s . As β∨ ∈ Φ∨

+,

we necessarily have αs(β
∨) ∈ N∗. Therefore α∨

s = 1
αs(β∨) (β

∨ + γ∨) and β∨ ≤τ α∨
s .

By definition of Στ , we deduce β = α∨
s . By (3.6) we deduce that s ∈ Sτ .

Conversely, let s ∈ Sτ . Let β∨ ∈ Φ∨
(τ),+ be such that β∨ ≤τ α∨

s . By definition,

we can write α∨
s = aβ∨ +

∑k
i=1 aiβ

∨
i , where k ∈ N, a ∈ R∗

+, (ai) ∈ (R+)
k and

(β∨
i ) ∈

(
Φ(τ),+

)k
. Then

s.β∨ = −1

a
(α∨

s +

k∑
i=1

ais.β
∨
i ) ∈ Φ∨

− ∩ Φ∨
(τ).

By (3.6), we deduce that β∨ = α∨
s and thus α∨

s ∈ Στ . We proved the first part of
the lemma. Then (3.7) can be proved as [Deo89, 3. Step 3], using the fact that
α(β∨) ∈ Z, for all α∨, β∨ ∈ Φ∨

(τ). �

Lemma 3.5. The matrix
(
αs(α

∨
r )
)
r,s∈Sτ

is a Kac-Moody matrix.

Proof. Let r, s ∈ Sτ . Suppose αr(α
∨
s ) �= 0. We have r.α∨

s = α∨
s − αr(α

∨
s )α

∨
r . By

Lemma 3.4, r.α∨
s �≤τ α∨

r , which implies that αr(α
∨
s ) ≤ 0.

Suppose αr(α
∨
s ) = 0. Then by the case above, αs(α

∨
r ) ≤ 0. Suppose that

αs(α
∨
r ) < 0. Then

α∨
r = −rs.α∨

r − αs(α
∨
r )α

∨
s and α∨

s =
−1

αs(α∨
r )

(rs.α∨
r + α∨

r ).

If rs.α∨
r ∈ Φ∨

+, we deduce that α∨
s ≤τ α∨

r and if rs.α∨
r , we deduce that α∨

r ≤τ

α∨
s . Since α∨

r , α
∨
s ∈ Στ , this implies in both cases that α∨

r = α∨
s : we reach a

contradiction. Therefore αs(α
∨
r ) = 0 and the lemma follows. �

If a, b are two elements of a ring and m ∈ N, we denote by (a.b)∗m the product
a.b.a. . . . with m factors.

Lemma 3.6. Let w ∈ W(τ) and w = r1 . . . rk = s1 . . . sk be two reduced writings of
w, with k = 	τ (w) and r1, . . . , rk, s1, . . . , sk ∈ Sτ . Then

K̃r1 . . . K̃rk = K̃s1 . . . K̃sk .

Proof. Let r, s ∈ Sτ . Suppose that the order m of rs is finite. Let h = (K̃r ∗
K̃s)

∗m − (K̃s ∗ K̃r)
∗m ∈ BLH(TC). We want to prove that h = 0. Set w0(r, s) =

(rs)∗m = (sr)∗m. Using Lemma 2.4, (3.2) and [Héb22, Lemma 4.3], there exists a
family

(Pu)u∈〈r,s〉 ∈ (Z[σr, σs][xs,u, xr,u′ |u, u′ ∈ 〈r, s〉])〈r,s〉

such that

(3.8) h =
∑

u∈〈r,s〉
Fu ∗ Pu

((
vQT

s ,
w QT

r

)
v,w∈〈r,s〉

)
,

where the xs,u, xr,u are indeterminates.

Let Ar,s =

(
2 αs(α

∨
r )

αr(α
∨
s ) 2

)
. Then Ar,s is a Kac-Moody matrix by Lemma 3.5

(it is actually a Cartan matrix since 〈r, s〉 is finite). Let X ′, Y ′, α′
r, α

′
s, α

∨
r , α

∨
s be

copies of X,Y, αr, αs, α
∨
r , α

∨
s . Then S ′ = (Ar,s, X

′, Y ′, (α′
r, α

′
s), (α

′∨
r , α′∨

s )
)
is a root
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generating system. Let W ′ be the associated Weyl group. We add a prime to
all the objects previously defined when they refer to the root generating system
S ′. Let τ ′ ∈ T ′

C
be defined by τ ′(λ) = 1 for all λ ∈ Y ′. Then we have S ′

τ ′ =

{r, s} ⊂ W ′. By (3.3), K̃′
r = T ′

r ∈ BLH(TC)
′ and K̃′

s = T ′
s ∈ BLH(TC)

′. Moreover
(T ′

r ∗ T ′
s)

∗m − (T ′
s ∗ T ′

r)
∗m = T ′

w′
0
− T ′

w′
0
= 0, where w′

0 = (rs)∗m = (sr)∗m ∈ W ′ is

the element of maximal length of W ′. Therefore if u ∈ W ′, we have

Pu

(
(vQ′T

r ,wQ′T
s )v,w∈W ′

)
= 0.

Let Q′∨ = Zα′∨
r ⊕ Zα′∨

s and ι : Q′∨ → Q∨ be the Z-modules morphism defined by
ι(α′∨

r ) = α∨
r and ι(α′∨

s ) = α∨
s . Extend ι to a C-algebra morphism ι : C[Q′∨] →

C[Q∨]. Then ι is compatible with the actions of W ′ and 〈r, s〉. More precisely,
if ι : W ′ → 〈r, s〉 is the group morphism defined by ι(r) = r, ι(s) = s, we have
ι
(
wQ′T

t

)
= ι(w)QT

t , for w ∈ W ′ and t ∈ {r, s}. Therefore

Pu

((
ι
(
vQ′T

r

)
, ι
(
wQ′T

s

))
v,w∈W ′

)
= Pu

((
vQT

r ,
wQT

s

)
v,w∈〈r,s〉

)
= 0,

for u ∈ 〈r, s〉 which proves that h = 0 and hence (K̃r ∗ K̃s)
∗m = (K̃s ∗ K̃r)

∗m. By
the word property ([BB05, Theorem 3.3.1]), we deduce the lemma. �

To conclude the proof of Proposition 3.1, it remains to prove (5). By (2) and

(3), Kτ =
∑

k∈N,s1,...,sk∈Sτ
K̃s1 ∗ . . . ∗ K̃sk ∗ C(Y )τ is a subalgebra of BLH(TC).

Let w ∈ W(τ). Let w = s1 . . . sk be a reduced writing of w, with k ∈ N and
s1, . . . , sk ∈ Sτ . Then by Lemma 2.4,

(3.9) K̃s1 ∗ . . . ∗ K̃sk = (Fs1 +QT
s1) . . . (Fsk +QT

sk
) = Fw +

∑
v<τw

Fv ∗ θv,

for some θv ∈ C(Y ). For h ∈ BLH(TC), h =
∑

v∈W v Tv ∗ θ̃v, write

max supp(h) = {w ∈ W v|θ̃w �= 0 and ∀w′ ∈ W v, w′ > w, θ̃w′ = 0}.

Then by [Héb22, Lemma 5.24] and (3.9), max supp(K̃w) = {w}, for w ∈ W(τ) and

thus (K̃w)w∈W(τ)
is a free family of BLH(TC).

By (3.2) and (3),
∑

k∈N,s1,...,sk∈Sτ
Ks1 ∗. . .∗Ksk ∗C(Y )τ ⊂

⊕
w∈W(τ)

K̃w∗C(Y )τ .

The converse inclusion is obtained similarly and thus Kτ =
∑

k∈N,s1,...,sk∈Sτ
Ks1 ∗

. . . ∗ Ksk ∗ C(Y )τ .
By [Héb22, Lemma 5.23], BLH(TC)τ ∗ Kτ ⊂ BLH(TC)τ for s ∈ Sτ . Therefore

K̃w ∈ BLH(TC)τ for w ∈ W(τ) and Kτ ⊂ BLH(TC)τ . This completes the proof of
Proposition 3.1. �

Remark 3.7. In [Héb22, 5.5], we assumed that τ ∈ UC and that Wτ = W(τ). The
assumption Wτ = W(τ) is actually useless (without any change in the proofs). The

assumption τ ∈ UC is however used, to ensure that max supp(K̃w) = {w} (see

[Héb22, Lemma 5.24]), for w ∈ W(τ) and thus to prove the freeness of (K̃w)w∈W(τ)
.

3.2. Action of Kτ on Iτ (τ, gen,W(τ)). We now fix τ∈ UC. Let Kτ =
⊕

w∈W(τ)
K̃w∗

C(Y )τ ⊂ BLH(TC)τ . In this subsection, we extend the action of Kτ ∩ BLHC on
Iτ (τ, gen,W(τ)) to an action of Kτ on Iτ (τ, gen,W(τ)) (see Lemma 3.10).

Let Jτ = {θ ∈ C(Y )τ |τ (θ) �= 0}.

Lemma 3.8. Let k ∈ Kτ . Then there exists θ ∈ C[Y ] \Jτ such that θ ∗ k ∈ BLHC.
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Proof. Let w ∈ W(τ). We assume that for all v ∈ W(τ) such that v <τ w, for

all θ̃ ∈ C(Y )τ , there exists θ ∈ C[Y ] \ Jτ such that θ ∗ K̃v ∗ θ̃ ∈ BLHC. Let

θ̃ ∈ C(Y )τ . Let s ∈ Sτ be such that v := sw <τ w. Let θ1 ∈ C[Y ] \ Jτ be such

that θ1∗K̃v ∗ θ̃ ∈ BLHC. Let θ2 ∈ C[Y ]\Jτ be such that K̃s∗θ ∈ BLHC, which exists
by Proposition 3.1(5). Set θ3 = (θ1 ∗ θ2) ∗ s(θ1 ∗ θ2) ∈ C[Y ] \ Jτ . Then sθ3 = θ3,

thus Ω̃s(θ3) = 0 and hence θ3 ∗ K̃s = K̃s ∗ θ3. Therefore

θ3 ∗ K̃w ∗ θ = K̃s ∗ θ3 ∗ K̃v ∗ θ = K̃s ∗ θ2 ∗ s(θ1 ∗ θ2) ∗ θ1 ∗ K̃v ∈ BLHC.

We deduce that for all w ∈ W(τ) and θ̃ ∈ C(Y )τ , there exists θ ∈ C[Y ] \ Jτ such

that θ ∗ K̃w ∗ θ̃ ∈ BLHC.
Let now k ∈ Kτ . Write k =

∑
w∈W(τ)

K̃w ∗ θ̃w, with (θ̃w) ∈ (C(Y )τ )
(W(τ)).

For w ∈ W(τ), choose θw ∈ C[Y ] \ Jτ such that θw ∗ K̃w ∗ θ̃w ∈ BLHC. Set

θ =
∏

w∈W(τ)|θ̃w �=0 θw ∈ C[Y ]\Jτ . Then θ∗k ∈ BLHC, which proves the lemma. �

Lemma 3.9. Let θ∈C[Y ]\Jτ . Then the map mθ :Iτ (τ, gen,W(τ))→Iτ (τ, gen,W(τ))
defined by mθ(x) = θ.x, for x ∈ Iτ (τ, gen,W(τ)), is injective.

Proof. Let x ∈ Iτ . Write x =
∑

w∈W v awTw.vτ , where (aw) ∈ C(W v). Let w ∈ W v

be such that aw �= 0 and such that for all v ∈ W v such that av �= 0, we have v �≥ w.

Then by [Héb22, Lemma 2.8], we have θ.x−awTw ∗w−1

θ.vτ ∈
⊕

v∈W v ,v �≥w CTv.vτ .

By [Héb22, Lemma 5.24], w ∈ W(τ) ⊂ Wτ . Therefore w−1

θ.vτ = τ (θ).vτ �= 0,
which proves that θ.x �= 0. Therefore mθ is injective. �

Lemma 3.10. We have the following properties:

(1) Iτ (τ, gen,W(τ)) = (Kτ ∩ BLHC).vτ ,

(2) Kτ ∩ BLHC stabilizes Iτ (τ, gen,W(τ)) and the action of Kτ ∩ BLHC on
Iτ (τ, gen,W(τ)) extends uniquely to an action of Kτ on Iτ (τ, gen,W(τ)).
This action is as follows. Let x ∈ Iτ (τ, gen,W(τ)) and k ∈ Kτ . Write

x = h.x, with h ∈ BLHC ∩ Kτ . Write k ∗ h =
∑

w∈W(τ)
K̃wθ̃w, with (θw) ∈

(C(Y )τ )
(W(τ)). Then:

(3.10) k.x = k ∗ h.vτ =
∑

w∈W(τ)

τ (θ̃)K̃w(τ ).vτ .

Proof. By [Héb22, Theorem 5.27], we have Iτ (τ, gen,W(τ)) = evτ (Kτ ).vτ .

For w ∈ W(τ), write K̃w =
∑

v∈W v Tw ∗ θv,w, with θv,w ∈ C(Y ) for v ∈ W v and

{v ∈ W v|θv,w �= 0} finite. By [Héb22, Lemma 5.23], we can write θv,w =
fv,w

gv,w
,

where fv,w, gv,w ∈ C[Y ] and τ (gv,w) �= 0 for v ∈ W v such that fv,w �= 0. For
w ∈ W(τ), set gw =

∏
v∈W v |fv,w �=0 gv,w ∈ C[Y ]. Then

(3.11) evτ (K̃w) = evτ (
1

τ (gw)
K̃wgw) and

1

τ (gw)
K̃wgw ∈ Kτ ∩ BLHC.

Therefore

(3.12) Iτ (τ, gen,W(τ)) = (Kτ ∩ BLHC).vτ ,

which proves (1).
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(2) By Proposition 3.1(5), Kτ∩BLHC is a subalgebra of BLHC, which proves that
Kτ∩BLHC stabilizes Iτ (τ, gen,W(τ)). For w ∈ W(τ), set Lw = Kw∗gw ∈ BLHC∩Kτ

and set

Lτ =
⊕

w∈W(τ)

Lw ∗ C[Y ] ⊂ BLHC ∩ Kτ .

Let τ̃ : C(Y )τ → C be the algebra morphism extending τ : C[Y ] → C. Let

M̃ = IndKτ

C(Y )τ
(τ̃) be the representation of Kτ obtained by inducing τ̃ to Kτ . Then

M̃ =
⊕

w∈W(τ)

K̃w.vτ̃ ,

where vτ̃ ∈ M̃ is such that θ.vτ̃ = τ̃(θ).vτ̃ , for θ ∈ C(Y )τ . Let ψ : M̃ →
Iτ (τ, gen,W(τ)) be defined by ψ(k.vτ̃ ) = k.vτ , for k ∈ Lτ . Let us prove that ψ is
well defined. Let k ∈ Lτ be such that k.vτ̃ = 0. We can write k =

∑
w∈W v Lw ∗θw,

for some (θw) ∈ C[Y ](W(τ)). Then τ (θw) = 0 for all w ∈ W(τ) and thus k.vτ = 0,

which proves that ψ : Lτ .vτ̃ → Iτ (τ, gen,W(τ)) is well defined. Moreover, M̃ =⊕
w∈W(τ)

CK̃w.vτ̃ =
⊕

w∈W(τ)
CLw.vτ̃ = Lτ .vτ̃ . Thus ψ : M̃ → Iτ (τ, gen,W(τ)) is

well defined. Then ψ is an isomorphism of Lτ -modules. We equip Iτ (τ, gen,W(τ))

with the structure of a Kτ -module by setting k�x = ψ
(
k.ψ−1(x)

)
for k ∈ Kτ and

x ∈ Iτ (τ, gen,W(τ)).
Let w ∈ W(τ) and θ ∈ C(Y )τ . Then

(3.13) (K̃w ∗ θ)� vτ = ψ(K̃w ∗ θ.vτ̃ ) = τ (θ)ψ(K̃w.vτ̃ ) = τ (θ)K̃w � vτ .

By applying this to θ = gw, we deduce that
(3.14)

K̃w�vτ =
1

τ (gw)
K̃w∗gw�vτ =

1

τ (gw)
K̃w∗gw.vτ =

1

τ (gw)
evτ (K̃w∗gw).vτ =K̃w(τ ).vτ .

Combining (3.13) and (3.14) yields (3.10).

Let k ∈ BLHC ∩ Kτ . Write k =
∑

w∈W(τ)
K̃w ∗ θw, with (θw) ∈ (C(Y )τ )

(W(τ)).

For w ∈ W(τ), write K̃w =
∑

v∈W v Tv ∗θv,w, with (θv,w)v∈W v ∈ (C(Y )τ )
(W v). Then

k =
∑

v∈W v

∑
w∈W(τ)

Tv ∗θv,w ∗θw and
∑

w∈W(τ)
θv,w ∗θw ∈ C[Y ] for every v ∈ W v.

Then

k.vτ =
∑

v∈W v

τ (
∑

w∈W(τ)

θv,w ∗ θw)Tv.vτ

=
∑

v∈W v

∑
w∈W(τ)

τ (θv,w ∗ θw)Tv.vτ

=
∑

w∈W(τ)

τ (θw)evτ (
∑

v∈W v

Tv ∗ θv,w).vτ

=
∑

w∈W(τ)

τ (θw)evτ (K̃w).vτ = k � vτ ,

by (3.10). Therefore � extends the action . of BLHC ∩Kτ on Iτ (τ, gen,W(τ)) to an
action of Kτ on Iτ (τ, gen,W(τ)).

We now prove the uniqueness of such an action. Let � be an action of Kτ on
Iτ (τ, gen,W(τ)) such that k�x = k.x for all k ∈ BLHC∩Kτ and x ∈ Iτ (τ, gen,W(τ)).
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Let k ∈ Kτ . Let θ ∈ C[Y ]\Jτ be such that θ∗k ∈ BLHC, which exists by Lemma 3.8.
Then

(θ ∗ k).x = (θ ∗ k) � x = θ � (k � vτ ) = θ.(k � vτ ).

By Lemma 3.9 we deduce that k � x = m−1
θ (θ ∗ k.x). This proves that � = � and

concludes the proof of this lemma. �

3.3. Examples of τ for which Sτ is infinite. The set Φ∨ is a root system in
the sense of [MP89, 4 Remark]. Then Φ∨

(τ) is a subroot system of Φ∨ in the sense

of [MP89, 6]. It is proved in [MP89, Example 1] that the bases of a subroot system
of a root system admitting a finite basis need not be finite. However, we do not
know if the root system given in this example is of the form Φ∨

(τ), for some τ ∈ TC.

Suppose that σs = σ′
s for all s ∈ S , then Φ∨

(τ) = {α∨ ∈ Φ∨|τ (α∨) = 1}. Thus if

τ ∈ TC, Φ
∨
(τ) is closed in the sense that for all α∨, β∨ ∈ Φ∨

(τ), if α
∨ + β∨ ∈ Φ∨,

then α∨ + β∨ ∈ Φ∨
(τ). We may ask whether this property ensures the finiteness of

Sτ . We prove below that this is not the case.
For w ∈ W v, set NΦ∨(w) = {α∨ ∈ Φ∨

+|w.α∨ ∈ Φ∨
−}.

Lemma 3.11. Let A = (ai,j)i,j∈�1,4� be an invertible Kac-Moody matrix such that
for all i, j ∈ �1, 4�, ai,j ≤ −2, for all (i, j) ∈ �1, 4� \ {(4, 3)}, ai,j is even and a4,3
is odd. We assume that A =

⊕4
i=1 Rα

∨
i , which is possible since A is invertible

by [Kac94, 1.1]. Let ht : A → R be defined by ht(
∑4

i=1 niα
∨
i ) =

∑4
i=1 ni, for

(ni) ∈ R4. Let q be a prime power and set σi = σ′
i =

√
q for i ∈ �1, 4�. Let

τ : Y → {−1, 1} be defined by τ (λ) = (−1)ht(λ) for λ ∈ Y . Let W ′ = 〈r1, r2〉 ⊂ W v.
Then {wr3r4r3w−1|w ∈ W ′} ⊂ Sτ . In particular, Sτ is infinite.

Proof. Let w ∈ W ′ and v = wr3r4r3w
−1. Then by [Kum02, 1.3.14 Lemma],

wr3.α
∨
4 ∈ NΦ∨(v) and NΦ∨(v) \ {wr3.α∨

4 } ⊂ {u.α∨
i |u ∈ W v, i ∈ �1, 3�}. We

have r3.α
∨
4 = α∨

4 − a4,3α
∨
3 . Moreover if i ∈ �1, 2�, ri(α

∨
4 − a4,3α

∨
3 + 2Q∨) ⊂

α∨
4 −a4,3α

∨
3 +2Q∨. In particular, wr3.α

∨
4 ∈ α∨

4 −a4,3α
∨
3 +2Q∨ and τ (wr3.α

∨
4 ) = 1.

Now if i ∈ �1, 3� and j ∈ �1, 4�, rj .(α
∨
i +2Q∨) ⊂ α∨

i +2Q∨. Therefore τ (u.α∨
i ) = −1

if u ∈ W v. In particular, NΦ∨(v)∩Φ(τ) = {wr3.α∨
4 } = {α∨

v } and by [Héb22, Lemma
5.13 (2)], v ∈ Sτ . Using [Kum02, 1.3.21 Proposition] we deduce that Sτ is infi-
nite. �

4. Kato’s irreducibility criterion

Let τ ∈ UC. Let x ∈ Iτ (τ, gen,W(τ)). Write x =
∑

w∈W(τ)
awK̃w.vτ , with (aw) ∈

C(W v). Let supp(x) = {w ∈ W(τ) | aw �= 0} and 	τ (x) = max{	τ (w) | w ∈ S}. We
set 	τ (0) = −∞.

Let x ∈ Iτ (τ, gen,W(τ)). We define ordτ (x) as the minimum of the k ∈ N such
that for all θ1, . . . , θk ∈ Jτ , we have θ1 . . . θk.x = 0. We will see in Lemma 4.3
that ordτ (x) ∈ N for x ∈ Iτ (τ, gen,W(τ)). The aim of this subsection is to prove
that Iτ (τ,W(τ)) := Iτ (τ, gen,W(τ)) ∩ Iτ (τ ) = Cvτ (see Theorem 4.6). We actually
prove that for all x ∈ Iτ (τ, gen,W(τ)), ordτ (x) = 	τ (x)+ 1. We then deduce Kato’s
irreducibility criterion (see Corollary 4.8).

For s ∈ Sτ , we set

σ′′
s,τ =

1

2

(
(σ2

s − 1) + σs(σ
′
s − σ′−1

s )τ (α∨
s )
)
.

When σs = σ′
s, then τ (α∨

s ) = 1 and σ′′
s,τ = σ2

s − 1.
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As we assumed that |σs|, |σ′
s| > 1, for all s ∈ S , we have σ′′

s,τ �= 0 for every
s ∈ Sτ . Indeed, we have σ′′

s,τ = 0 if and only if σs = σ′
s = ±1 or σ′

s �= σs and

σ′
s = −σ−1

s . We have Sτ ⊂ R(τ) and thus τ (α∨
s ) ∈ {−1, 1}. If τ (α∨

s ) = −1, then

σs �= σ′
s and σ2

s − 1+σs(σ
′
s−σ′−1

s )τ (−α∨
s ) = σ2

s − 1−σs(σ
′
s−σ′−1

s ) = 0 if and only
if σ′

s ∈ {σs,−σ−1
s } if and only if σ′

s = −σ−1
s .

Lemma 4.1. Let s ∈ Sτ and λ ∈ Y . Then

(4.1) τ
(
Ω̃s(Z

λ)
)
= τ (λ)σ′′

s,ταs(λ).

Proof. We have

Ω̃s(Z
λ) =

(
(σ2

s − 1) + σs(σ
′
s − σ′−1

s )Z−α∨
s
)1− Z−αs(λ)α

∨
s

1− Z−2α∨
s

Zλ.

We have τ (α∨
s ) ∈ {−1, 1}. If αs(λ) is odd, then σs = σ′

s and τ (α∨
s ) = 1 (since the

denominator of QT
s is then 1 − Z−α∨

s ). We then conclude with Remark 2.3 (3).
If αs(λ) is even, a computation similar to the one of Remark 2.3 (3) enables to
prove (4.1). �

For h ∈ Kτ , h =
∑

w∈W(τ)
K̃w ∗ θw, with (θw) ∈ C(W(τ)) we set 	τ (h) =

max{	τ (w) | θw �= 0}.

Lemma 4.2. Let w ∈ W(τ). Fix a reduced writing w = s1 . . . sk of w, with k =
	τ (w) and s1, . . . , sk ∈ Sτ . For i ∈ �1, k�, set vi = s1 . . . si−1, ṽi = si+1 . . . sk. Let
E = {i ∈ �1, k� | 	τ (viṽi) = k − 1}. Let θ ∈ C(Y ). Then there exists h ∈ Kτ such
that 	τ (h) ≤ k − 2 and

(4.2) θ ∗ K̃w = K̃w ∗ w−1

θ +
∑
i∈E

K̃viṽi ∗ ṽ−1
i Ω̃si(

v−1
i θ) + h.

In particular if θ ∈ C(Y )τ we have

(4.3) θ.K̃w.vτ = τ (θ)K̃w.vτ + τ (λ)
∑
i∈E

σ′′
si,ταsi(v

−1
i .θ)K̃viṽi .vτ + h.vτ .

Proof. We prove it by induction on k. If k = 0, this is clear. We assume k ≥ 1. Set
w′ = wsk and ṽ′i = visk for i ∈ �1, k − 1�. Assume that we can write

θ ∗ K̃w′ = K̃w′ ∗ w′−1

θ +

k−1∑
i=1

K̃viṽ′
i
∗ ṽ′−1

i Ω̃si(
v−1
i θ) + h′,

where h′ ∈ BLH(TC) and 	τ (h
′) ≤ k − 3. By Proposition 3.1 (3), we have

(4.4)

θ ∗ K̃w =
(
K̃w′ ∗ w′−1

θ +
k−1∑
i=1

K̃viṽ′
i
∗ ṽ′−1

i Ω̃si(
v−1
i θ)

)
∗ K̃sk

= K̃w ∗ w−1

θ+K̃w′ ∗ Ω̃sk(
w′−1

θ)+
k−1∑
i=1

(
K̃viṽi ∗ ṽ−1

i Ω̃si(
v−1
i θ)

)
+h′ ∗ K̃sk + h′′

= K̃w ∗ w−1

θ +

k∑
i=1

K̃viṽi ∗ ṽ−1
i Ω̃si(

v−1
i θ) + +h′ ∗ K̃sk + h′′,
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where

h′′ =
k−1∑
i=1

K̃viṽ′
i
∗ Ω̃sk

(
ṽ−1
i Ω̃si(

v−1
i θ)

)
∈

⊕
v∈W(τ)|�τ (v)≤k−2

K̃v ∗ C(Y )τ .

Moreover by Proposition 3.1, 	τ (h
′ ∗ K̃sk) ≤ k − 1. By eliminating the i such that

	τ (viṽi) < k − 1 in (4.4), we deduce (4.2).
Using Lemma 4.1, we deduce (4.3). �

Lemma 4.3. Let x ∈ Iτ (τ, gen,W(τ)), θ ∈ Jτ and w ∈ W v. Then 	τ (θ.x) ≤
	τ (x)− 1. In particular we have ordτ (x) ≤ 	τ (x) + 1 for all x ∈ Iτ (τ, gen,W(τ)).

Proof. This follows from (4.3). �

Lemma 4.4. We assume that there exists ρ ∈ C∗ such that

(4.5) σ′′
s,τ ∈ ρR∗

+,

for all s ∈ S . Let w ∈ W(τ). Then ordτ (K̃w.vτ ) = 	τ (w) + 1.

Proof. Pick λ ∈ Cv
f and set θ = Zλ − τ (λ) ∈ Jτ . For v ∈ W(τ), we define Cv ∈ C

by

θ�τ (v).K̃v.vτ = Cv.vτ ,

which is well defined by Lemma 4.3. Fix a reduced writing w = s1 . . . sk of w, with
k = 	τ (w) and s1, . . . , sk ∈ Sτ . We want to prove that Cw �= 0. We assume that for
all v ∈ W(τ) such that 	τ (v) < 	τ (w), we have Cv ∈ (τ (λ)ρ)�τ(v)R∗

+. For i ∈ �1, k�,
set vi = s1 . . . si−1, ṽi = si+1 . . . sk. Let E = {i ∈ �1, k�|	τ (viṽi) = k− 1}. Then by
Lemma 4.2 and (4.1), we have

Cw =
∑
i∈E

τ
(
Ω̃si(

v−1
i θ)

)
Cviṽi

= τ (λ)
∑
i∈E

αsi(λ)σ
′′
si,τvi.αsi(λ)Cviṽi .

If i ∈ E, we have 	(visi) > 	(vi) and thus by [Kum02, 1.3.13 Lemma], vi.αsi ∈ Φ+.
Therefore vi.αsi(λ) ∈ Z>0. We deduce that Cw ∈ (τ (λ)ρ)kR∗

+. In particular, Cw �=
0 and ordτ (K̃w.vτ ) ≥ 	τ (w) + 1. By Lemma 4.3 we deduce that ordτ (K̃w.vτ ) =
	τ (w) + 1. �

Lemma 4.5. Let x ∈ Iτ (τ, gen,W(τ)) and s ∈ Sτ . Then ordτ (K̃s.x) ≤ ordτ (x)+1.

Proof. We prove it by induction on ordτ (x). If ordτ (x) = 0, then x = 0 and it
is clear. We assume that ordτ (x) > 0 and that for all y ∈ Iτ (τ, gen,W(τ)) such

that ordτ (y) < ordτ (x), we have ordτ (K̃s.y) ≤ ordτ (y) + 1. Let θ ∈ Jτ . By
Proposition 3.1 (3), we have

θ.K̃s.x = K̃s.
sθ.x+ Ω̃s(θ).x,

for θ ∈ Jτ . Moreover ordτ (
sθ.x) < ordτ (x) and thus ordτ (K̃s.

sθ.x) ≤ ordτ (
sθ.x) +

1 ≤τ ordτ (x) by assumption. Moreover, ordτ

(
Ω̃s(θ).x

)
≤ ordτ (x), therefore

ordτ (θ.K̃s.x) ≤ ordτ (x) for every θ ∈ Jτ and thus ordτ (K̃s.x) ≤ ordτ (x) + 1.
Lemma follows. �
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Let x ∈ Iτ (τ, gen,W(τ)) \ {0}. Write x =
∑

w∈W(τ)
awK̃w.vτ . Let M = {w ∈

supp(x)|	τ (w) = 	τ (x)}, Nτ = |M | and LT(x) =
∑

w∈M awK̃w.vτ .

Theorem 4.6. Let τ ∈ UC. We assume that (4.5) is satisfied and that |σs|, |σ′
s| > 1,

for all s ∈ Sτ . Let x ∈ Iτ (τ, gen,W(τ)) \ {0}. Then ordτ (x) = 	τ (x) + 1. In
particular, Iτ (τ, gen,W(τ)) ∩ Iτ (τ ) = Cvτ and [Héb21, Conjecture 5.16] is true.

Proof. If Nτ (x) = 1, this is Lemma 4.4 and if 	τ (x) = 0, this is clear. We now
assume that Nτ (x) ≥ 2 and that for all y ∈ Iτ (τ, gen,W(τ)) \ {0} such that 	τ (y) <

	τ (x) or Nτ (y) < Nτ (x), we have ordτ (y) = 	τ (y) + 1. Let M = supp
(
LT(x)

)
.

There are two cases:

(1) there exists s ∈ S such that for all w ∈ M , sw <τ w,
(2) for all s ∈ S , there exists w ∈ M such that sw >τ w.

We first assume (1). Then we can write

x = K̃s.x
′ + x′′,

with 	τ (x
′) = 	τ (x) − 1, 	τ (x

′′) ≤ 	τ (x
′) and sv >τ v for all v ∈ supp(x′). Let

θ ∈ Jτ . Then

(4.6) θ.K̃s.x = K̃s ∗ sθ.x′ + Ω̃s(θ).x
′ + θ.x′′.

By Lemma 4.3, we have 	τ (
sθ.x′) ≤ 	τ (x

′) − 1. For all v ∈ supp(sθ.x′), if

sv <τ v, then 	τ (K̃s∗K̃v.vτ ) ≤ 	τ (v) ≤ 	τ (
sθ.x′) ≤ 	τ (x

′)−1 by Proposition 3.1 (2).

Therefore for all v ∈ supp(K̃s ∗s θ.x) such that 	τ (v) = 	τ (x
′), we have sv <τ v.

Therefore

(4.7) supp
(
LT(K̃s ∗ sθ ∗ x′)

)
∩ supp

(
LT(x′)

)
= ∅.

Take λ ∈ Y such that αs(λ) = 1 and set θ = Zλ − τ (λ) ∈ Jτ . Then by Lemma 4.1,

τ
(
Ω̃s(θ)

)
= τ (λ)σ′′

s,ταs(λ) = τ (λ)σ′′
s,τ and thus by combining (4.6) and (4.7), we

obtain that 	τ (θ.K̃s.x) = 	τ (x
′). By assumption we deduce that ordτ (θ.K̃s.x) =

	τ (x
′)+1. Consequently ordτ (K̃s.x) ≥ 	τ (x)+1 and by Lemma 4.3 we deduce that

ordτ (K̃s.x) = 	τ (x) + 1.
We now assume that we are in case (2). Let w ∈ supp

(
(LT(x)

)
and s ∈ S be

such that sw <τ w. Set x′ = K̃s.x. Then by assumption we have 	τ (x
′) = 	τ (x)+1

and thus
supp

(
LT(x′)

)
⊂ s.supp (LT(x)) \ {sw}.

In particular Nτ (x
′) < Nτ (x). By our induction assumption we deduce that

ordτ (x
′) = 	τ (x

′) + 1 = 	τ (x) + 2. By Lemma 4.5 we have that ordτ (x) ≥
ordτ (x

′) − 1 ≥ 	τ (x) + 1. By Lemma 4.3 we deduce that 	τ (x) + 1 = ordτ (x).
This completes the proof of the theorem. �

Note that the above proof can be simplified in the case where W(τ) is finite.
In this case, denote by w0, the maximal element of W(τ) (for the Bruhat order

≤τ ). Let x ∈ Iτ (τ, gen,W(τ)) \ {0}. Let w ∈ supp
(
LT(x)

)
. Set y = K̃w0w−1 .x.

Then supp(K̃w0w−1 .x) � w0. By Lemma 4.4, ordτ (K̃w0w−1 .x) = 	τ (w0) + 1. By
Lemma 4.5, we deduce that

ordτ (x) ≥ ordτ (y)− 	(w0w
−1) = 	τ (w0) + 1−

(
	(w0)− 	(w−1)

)
= 	(w) + 1.

By Lemma 4.3, we deduce that ordτ (x) = 	τ (x) + 1.
We obtain a version of the Knapp-Stein dimension theorem in our frameworks:
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Corollary 4.7 (See [Sil78]). Let τ ∈ UC. Then

Iτ (τ ) =
⊕

wR∈Rτ

CFwR
.vτ .

If moreover σs = σ′
s for all s ∈ S , then EndH−mod(Iτ ) 
 C[Rτ ].

Proof. This follows from [Héb21, Proposition 5.13 (2) and Proposition 5.27]. �
Note that under the notation of [Héb21], Theorem 4.6 implies that Iτ (τ,W(τ)) =

Cvτ . We can thus apply the results from 5.3 to 5.6 of [Héb21], when τ ∈ UC. In
particular, we have a description of the submodules and the irreducible quotients
of Iτ when τ ∈ UC, see [Héb21, Theorem 5.38].

We also obtain Kato’s irreducibility criterion:

Corollary 4.8 (See [Kat81, Theorem 2.4]). Let τ ∈ TC. Then Iτ is irreducible if
and only if:

(1) τ ∈ UC,
(2) W(τ) = {1}.

Proof. By [Héb22, Proposition 4.17 and Theorem 4.8], if Iτ is irreducible, then
Wτ = W(τ) and τ ∈ UC. Conversely, let τ ∈ UC be such that W(τ) = Wτ . Then
Rτ = Wτ/W(τ) = {1} and by Corollary 4.7, Iτ (τ ) = Cvτ . By [Héb22, Theorem
4.8] we deduce that Iτ is irreducible. �
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