Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Generic vanishing and minimal cohomology classes on abelian fivefolds


Authors: Sebastian Casalaina-Martin, Mihnea Popa and Stefan Schreieder
Journal: J. Algebraic Geom.
DOI: https://doi.org/10.1090/jag/691
Published electronically: December 7, 2017
Full-text PDF

Abstract | References | Additional Information

Abstract: We classify $ GV$-subschemes of five-dimensional ppavs, proving the main conjecture in a work by Pareschi and the second author in this case. This result is implied by a more general statement about subvarieties of minimal cohomology class whose sum is a theta divisor.


References [Enhancements On Off] (What's this?)

  • [1] Arnaud Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), no. 2, 149-196. MR 0572974
  • [2] Arnaud Beauville, Surfaces algébriques complexes, Société Mathématique de France, Paris, 1978 (French). Avec une sommaire en anglais; Astérisque, No. 54. MR 0485887
  • [3] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), no. 3, 319-346 (French, with English summary). With an appendix by A. Beauville. MR 688038
  • [4] Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673
  • [5] Sebastian Casalaina-Martin, Cubic threefolds and abelian varieties of dimension five. II, Math. Z. 260 (2008), no. 1, 115-125. MR 2413346, https://doi.org/10.1007/s00209-007-0264-7
  • [6] Sebastian Casalaina-Martin, Singularities of the Prym theta divisor, Ann. of Math. (2) 170 (2009), no. 1, 162-204. MR 2521114, https://doi.org/10.4007/annals.2009.170.163
  • [7] C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356. MR 0302652
  • [8] Olivier Debarre, Minimal cohomology classes and Jacobians, J. Algebraic Geom. 4 (1995), no. 2, 321-335. MR 1311353
  • [9] Olivier Debarre, Complex tori and abelian varieties, SMF/AMS Texts and Monographs, vol. 11, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2005. Translated from the 1999 French edition by Philippe Mazaud. MR 2158864
  • [10] Lawrence Ein and Robert Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), no. 1, 243-258. MR 1396893, https://doi.org/10.1090/S0894-0347-97-00223-3
  • [11] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
  • [12] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558
  • [13] Andreas Höring, $ M$-regularity of the Fano surface, C. R. Math. Acad. Sci. Paris 344 (2007), no. 11, 691-696 (English, with English and French summaries). MR 2334677, https://doi.org/10.1016/j.crma.2007.04.008
  • [14] Andreas Höring, Minimal classes on the intermediate Jacobian of a generic cubic threefold, Commun. Contemp. Math. 12 (2010), no. 1, 55-70. MR 2649227, https://doi.org/10.1142/S0219199710003737
  • [15] Luigi Lombardi and Sofia Tirabassi, $ GV$-subschemes and their embeddings in principally polarized abelian varieties, Math. Nachr. 288 (2015), no. 11-12, 1405-1412. MR 3377125, https://doi.org/10.1002/mana.201400238
  • [16] David Mumford, Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325-350. MR 0379510
  • [17] Giuseppe Pareschi and Mihnea Popa, Regularity on abelian varieties. I, J. Amer. Math. Soc. 16 (2003), no. 2, 285-302 (electronic). MR 1949161, https://doi.org/10.1090/S0894-0347-02-00414-9
  • [18] Giuseppe Pareschi and Mihnea Popa, Castelnuovo theory and the geometric Schottky problem, J. Reine Angew. Math. 615 (2008), 25-44. MR 2384330, https://doi.org/10.1515/CRELLE.2008.008
  • [19] Giuseppe Pareschi and Mihnea Popa, Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann. 340 (2008), no. 1, 209-222. MR 2349774, https://doi.org/10.1007/s00208-007-0146-7
  • [20] Giuseppe Pareschi and Mihnea Popa, GV-sheaves, Fourier-Mukai transform, and generic vanishing, Amer. J. Math. 133 (2011), no. 1, 235-271. MR 2752940, https://doi.org/10.1353/ajm.2011.0000
  • [21] Ziv Ran, On subvarieties of abelian varieties, Invent. Math. 62 (1981), no. 3, 459-479. MR 604839, https://doi.org/10.1007/BF01394255
  • [22] Ziv Ran, A characterization of five-dimensional Jacobian varieties, Invent. Math. 67 (1982), no. 3, 395-422. MR 664113, https://doi.org/10.1007/BF01398929
  • [23] Stefan Schreieder, Theta divisors with curve summands and the Schottky problem, Math. Ann. 365 (2016), no. 3-4, 1017-1039. MR 3521080, https://doi.org/10.1007/s00208-015-1287-8
  • [24] Stefan Schreieder, Decomposable theta divisors and generic vanishing, Int. Math. Res. Not. IMRN 16 (2017), 4984-5009. MR 3687123


Additional Information

Sebastian Casalaina-Martin
Affiliation: Department of Mathematics, University of Colorado, Campus Box 395, Boulder, Colorado 80309-0395
Email: casa@math.colorado.edu

Mihnea Popa
Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
Email: mpopa@math.northwestern.edu

Stefan Schreieder
Affiliation: Mathematical Institute, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Address at time of publication: Mathematisches Institut, LMU München, Theresienstr. 39, 80333 München, Germany
Email: schreieder@math.lmu.de

DOI: https://doi.org/10.1090/jag/691
Received by editor(s): March 1, 2016
Received by editor(s) in revised form: July 3, 2016
Published electronically: December 7, 2017
Additional Notes: The first author was partially supported by Simons Foundation Collaboration Grant for Mathematicians (317572). The second author was partially supported by the NSF grant DMS-1405516 and by a Simons Fellowship.
Article copyright: © Copyright 2017 University Press, Inc.

American Mathematical Society