Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

The action of the Frobenius map on rank $2$ vector bundles in characteristic $2$


Authors: Y. Laszlo and C. Pauly
Journal: J. Algebraic Geom. 11 (2002), 219-243
DOI: https://doi.org/10.1090/S1056-3911-01-00310-1
Published electronically: November 27, 2001
MathSciNet review: 1874113
Full-text PDF

Abstract | References | Additional Information

Abstract: We compute the rational morphism of ``inverse image by Frobenius'' acting on the coarse moduli space of semi-stable rank $2$ bundles of trivial determinant over an ordinary genus curve in characteristic $2$.


References [Enhancements On Off] (What's this?)

  • [B] A. Beauville: Fibrés de rang 2 sur une courbe, fibrés déterminant et fonctions thêta II, Bull. Soc. Math. France 119 (1991), 259-291
  • [E] T. Ekedahl: The action of monodromy on torsion points of Jacobians. Arithmetic algebraic geometry (Texel, 1989), 41-49 Birkhäuser Boston, Boston, MA, 1991
  • [F] G. Faltings: Semistable vector bundles on Mumford curves, Inv. Math. 74(2) (1983), 199-212
  • [G] D. Giesecker: Stable vector bundles and the Frobenius morphism, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973), 95-101
  • [H] R.W.H. Hudson: Kummer's Quartic Surface, Cambridge 1905, modern edition, Cambridge University Press, 1990
  • [JX] K. Joshi, E.Z. Xia: Moduli of Vector Bundles on Curves in Positive Characteristic, Compositio Math. 122 (2000), 315-321
  • [K] N. Katz: Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Etudes Sci. Publ. Math. 39 (1970), 175-232
  • [Ke1] G. Kempf: Abelian Integrals, Monograf. Inst. Math. 13, Univ. Nac. Autónoma Mexico, Mexico City (1983)
  • [Ke2] G. Kempf: Multiplication over Abelian Varieties, Amer. J. Math. 110 (1988), 765-773
  • [LB] H. Lange, C. Birkenhake: Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften 302, Springer-Verlag, Berlin, 1992
  • [LS] H. Lange, U. Stuhler: Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z. 156 (1) (1977), 73-83
  • [MR] V.B. Metha, T.R. Ramadas: Moduli of vector bundles, Frobenius splitting and invariant theory, Ann. of Math. (2) 144 (1996), 269-313
  • [Mi] Y. Miyaoka: The Chern Classes and Kodaira Dimension of a Minimal Variety, Adv. Studies in Pure Math. 10 (1987), 449-476
  • [Mu1] D. Mumford: On the equations defining Abelian Varieties. I., Invent. Math. 1 (1966), 287-354
  • [Mu2] D. Mumford: Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Bombay, 1970
  • [NR] M.S. Narasimhan, S. Ramanan: Moduli of vector bundles on a compact Riemann surface, Ann. of Math. 89 (2) (1969), 14-51
  • [O] T. Oda: Vector bundles on an elliptic curve, Nagoya Math. J. 43 (1971)
  • [R] M. Raynaud: Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1) (1982), 103-125
  • [Sek] T. Sekiguchi: On projective normality of Abelian Varieties. II. J. Math. Soc. Japan 29 (4) (1977), 709-727
  • [Ses] C.S. Seshadri: Geometric reductivity over arbitrary base, Advances in Math. 26 (1977), 225-274
  • [S] N.I. Shepherd-Barron: Semi-stability and reduction mod $p$, Topology 37 (3) (1998), 659-6643


Additional Information

Y. Laszlo
Affiliation: Institut de Mathématiques de Jussieu, Université Paris VI, Case 82, Analyse Algébrique, UMR 7586, 4, place Jussieu, 75252 Paris Cedex 05 France
Email: laszlo@math.jussieu.fr

C. Pauly
Affiliation: Laboratoire J.-A. Dieudonné, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02 France
Email: pauly@math.unice.fr

DOI: https://doi.org/10.1090/S1056-3911-01-00310-1
Received by editor(s): May 16, 2000
Published electronically: November 27, 2001

American Mathematical Society