Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 

 

On codimension two subvarieties of $\textbf{P\/}^5$ and $\textbf{P\/}^6$


Authors: Ph. Ellia and D. Franco
Journal: J. Algebraic Geom. 11 (2002), 513-533
DOI: https://doi.org/10.1090/S1056-3911-02-00320-X
Published electronically: March 21, 2002
MathSciNet review: 1894936
Full-text PDF

Abstract | References | Additional Information

Abstract: We prove the following:

Theorem. Let $X\subset\mathbf{P}^5$ be a smooth, subcanonical threefold. If $h^0(\mathcal{I}_X(4))\ne0$, then $X$ is a complete intersection.

Let $X\subset\mathbf{P}^6$ be a smooth, codimension two subvariety, if $h^0(\mathcal{I}_X(5))\ne0$ or $\operatorname{deg}(X)\le73$, then $X$ is a complete intersection.

This improves, for $5\le n\le 6$, earlier results on Hartshorne's conjecture for codimension two subvarieties of $\mathbf{P}^n$.


References [Enhancements On Off] (What's this?)

  • 1. Ballico, E.; Chiantini, L.: ``On smooth subcanonical varieties of codimension 2 in $\textbf{P\/}^n,n\geq 4$", Annali di Matematica Pura ed Applicata, vol. CXXXV, 99-118 (1983)
  • 2. Barth, W.: ``Transplanting cohomology classes in complex-projective space", Amer. J. Math., 92, 951-967 (1970)
  • 3. Barth, W.; Van de Ven, A.: ``On the geometry in codimension 2 of Grassmann manifolds", in L.N.M., 412, 1-35 (1974)
  • 4. Barth, W.: ``Submanifolds of low codimension in projective space", Proc. of Int. Congr. of Math., Vancouver, 409-413 (1974)
  • 5. Ellingsrud, G.; Peskine, Ch.: ``Sur les surfaces lisses de $\textbf{P\/}^4$", Invent. Math., 95, 1-11 (1989)
  • 6. Fløystad, G.: ``Curves on normal surfaces" (preprint)
  • 7. Fulton, W.: ``Intersection theory", Erg. der Math. 3. Folge, 2, Springer (1984)
  • 8. Gruson, L.; Peskine, Ch.: ``Genre des courbes de l'espace projectif", in L.N.M. 687, 31-59 (1978)
  • 9. Hartshorne, R.: ``Varieties of small codimension in projective space", Bull. A.M.S., 80, 1017-1032 (1974)
  • 10. Hartshorne, R.: ``Complete intersections and connectedness", Amer. J. Math., 84, 497-508 (1962)
  • 11. Hartshorne, R.: ``Generalized divisors on Gorenstein curves and a theorem of Noether", J. Math. Kyoto Univ., 26, 375-386 (1986)
  • 12. Holme, A.: ``Codimension 2 subvarieties of projective space", Manuscripta Math., 65, 427-446 (1989)
  • 13. Holme, A.; Schneider, M.: ``A computer aided approach to codimension $2$ subvarieties of $\textbf{P\/}^n,n \geq 6$", J. Reine Angew. Math. (Crelle's J.), 357, 205-220 (1985)
  • 14. Koelblen, L.: ``Surfaces de $\textbf{P\/}^4$ tracées sur une hypersurface cubique", J. Reine Angew. Math. (Crelle's J.), 433, 113-141 (1992)
  • 15. Lazarsfeld, R.; Van de Ven, A.: ``Topics in the geometry of projective space (recent work of F.L. Zak)", DMV Seminar, band 4, Birkhäuser Verlag (1984).
  • 16. Manolache, N.: ``Nilpotent lci structures on global complete intersections", Math. Z., 229, 403-411 (1995)
  • 17. Ran, Z.: ``On projective varieties of codimension 2", Invent. Math., 73, 333-336 (1983)
  • 18. Serre, J.P.: ``Groupes algébriques et corps de classes", Hermann Ed., (1975)
  • 19. Zak, F.L.: ``Structure of Gauss maps", Funct. Anal. Appl., 21, 32-41 (1987)
  • 20. Zak, F.L.: ``Projections of algebraic varieties", Math. USSR, Sb., 44, 535-544 (1983)


Additional Information

Ph. Ellia
Affiliation: Dipartimento di Matematica, via Machiavelli, 35, 44100 Ferrara, Italy
Email: phe@dns.unife.it

D. Franco
Affiliation: Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Univ. Napoli “Federico II", Via Cintia, Monte S. Angelo 80126 Napoli, Italy
Email: dfranco@matna2.dma.unina.it

DOI: https://doi.org/10.1090/S1056-3911-02-00320-X
Received by editor(s): September 6, 1999
Published electronically: March 21, 2002
Additional Notes: Both authors are partially supported by MURST and Ferrara University in the framework of the project: “Geometria algebrica, algebra commutativa e aspetti computazionali"

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2017 University Press, Inc.
Comments: jag-query@ams.org
AMS Website