Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Mirror symmetry of abelian varieties and multi-theta functions


Author: Kenji Fukaya
Journal: J. Algebraic Geom. 11 (2002), 393-512
DOI: https://doi.org/10.1090/S1056-3911-02-00329-6
Published electronically: February 27, 2002
MathSciNet review: 1894935
Full-text PDF

Abstract | References | Additional Information

Abstract: We study homological mirror symmetry conjecture of symplectic and complex torus. We will associate a mirror torus $(T^{2n},\omega+\sqrt{-1}B)^{\wedge}$ to each symplectic torus $(T^{2n},\omega)$ together with a closed 2 form $B$ which we call a $B$-field. We will associate a coherent sheaf ${\mathcal E}(L,{\mathcal L})$ on $(T^{2n},\omega+\sqrt{-1}B)^{\wedge}$ to each pair $(L,{\mathcal L})$ of affine Lagrangian submanifolds $L$ and a flat complex line bundle ${\mathcal L}$on $L$. In the case of affine Lagrangian submanifolds, we show that the Floer homology of Langrangian submanifolds is isomorphic to the extension of the mirror sheaf ${\mathcal E}(L,{\mathcal L})$. We construct a canonical isomorphism in the case when a certain transversality condition is satisfied. Our isomorphism then is functorial.


References [Enhancements On Off] (What's this?)

  • 1. M. Alexandrov, A. Schwarz, M. Kontsevich, and O. Zaboronsky.
    The geometry of the master equation and topological quantum field theory.
    Intern. J. Modern Phys. A, 12:1405-1429, 1997.
  • 2. S. Baranikov and M. Kontsevich.
    Frobenius manifolds and formality of Lie algebras of polyvector fields.
    Internat. Math. Res. Notices, 4:201 - 215, 1998.
  • 3. K. Becker, M. Becker, and A. Strominger.
    Fivebranes Membranes and Non- perturbative String theory.
    hep-th/9507158, 1995.
  • 4. K. Behrend and B. Fantechi.
    The instrinsic normal cone.
    Invent. Math, 128:45 - 88, 1997.
  • 5. G. Bini, C. De Concini, M. Polito, and C. Procesi.
    On the work of Givental relative to mirror symmetry.
    math.AG/9805097.
  • 6. A. Bondal and M. Kapranov.
    Framed triangulated categories.
    Math. USSR Sbornik, 181:93 - 107, 1991.
  • 7. R. Borcherds.
    Automorphic forms with singularities on Grassmannians.
    Invent. Math, 132:491-562, 1998.
  • 8. P. Candelas, X. de.la Ossa, P. Green, and L. Parks.
    A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory.
    Nuclear Physics, B.359:21+, 1991.
  • 9. Y. Chekanov.
    Lagrangian tori in a symplectic vector space and global symplectomorphisms.
    Math. Z., 223:547-559, 1996.
  • 10. S. Donaldson.
    Irrationality and h-cobordism conjecture.
    J. Diff. Geom., 26:275 - 297, 1986.
  • 11. S. Donaldson.
    A lecture
    at University of Warwick, 1992.
  • 12. A. Floer.
    Morse theory for Lagrangian intersectoins.
    J. Diff. Geom., 28:513 - 547, 1988.
  • 13. K. Fukaya.
    Morse homotopy, ${A}^{\infty}$-categories, and Floer homologies.
    In H. J. Kim, editor, Proc. of the 1993 Garc Workshop on Geometry and Topology, volume 18 of Lecture Notes series, pages 1 - 102. Seoul Nat. Univ., 1993.
    http://www.kusm.kyoto-u.ac.jp/$\sim$fukaya/ fukaya.html.
  • 14. K. Fukaya.
    Floer homology of connected sum of homology 3-spheres.
    Topology, 35:89 - 136, 1996.
  • 15. K. Fukaya.
    Floer homology for 3-manifolds with boundary I.
    preprint, never to appear, http://www.kusm.kyoto-u.ac.jp/$\sim$fukaya fukaya.html, 1997.
  • 16. K. Fukaya.
    Morse homotopy and its quantization.
    In W. Kazez, editor, Geometry and Topology, AMS/IP Studies in Advanced Mathematics, pages 409 - 440. International Press, 1997.
  • 17. K. Fukaya.
    Floer homology of Lagrangian foliations and noncommutative mirror symmetry.
    preprint, http://www.kusm.kyoto-u.ac.jp/$\sim$fukaya fukaya.html, 1998.
  • 18. K. Fukaya.
    Floer homology and mirror symmetry I, to appear in Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, AMS/IP Studies in Advanced Math. 23 C. Vafa, S.T. Yau ed.
  • 19. K. Fukaya.
    Floer homology and mirror symmetry II.
    to appear in Advanced Studies in Pure Math. Minimal Surfaces, Geometric Analysis and Symplectic Geometry, 2001.
  • 20. K. Fukaya.
    Floer homology for families - report of a project in progress -.
    to appear in Contemporary Math., 2001.
  • 21. K. Fukaya and Y. G. Oh.
    Zero-loop open strings in the cotangent bundle and Morse homotopy.
    Asian J. Math., 1:99 - 180, 1997.
  • 22. K. Fukaya, Y. G. Oh, H. Ohta, and K. Ono.
    Langrangian intersection Floer theory -anomaly and obstruction-.
    preprint, http://www.kusm.kyoto-u.ac.jp/$\sim$fukaya/fukaya.html, 2000.
  • 23. K. Fukaya and K. Ono.
    Arnold conjecture and Gromov-Witten invariants.
    Topology, 38, 1999.
  • 24. K. Fukaya and K. Ono.
    Arnold conjecture and Gromov-Witten invariants for general symplectic manifolds.
    Fields Institute Communications, 24:173 - 190, 1999.
  • 25. E. Getzler and J. Jones.
    ${A}_{\infty}$ algebra and cyclic bar complex.
    Illinois J. Math., 34, 1990.
  • 26. A. Givental.
    Equivariant Gromov-Witten invariants.
    International Mathematics Research Notices, 131:616 - 663, 1996.
  • 27. L. Göttsche and D. Zagier.
    Jacobi forms and the structure of Donaldson invariants for 4-manifolds with $b^+=1$.
    Selecta Mathematica, 4:69 - 115, 1998.
  • 28. M. Gromov.
    Pseudoholomorphic curves in symplectic geometry.
    Invent. Math., 82:307 - 347, 1985.
  • 29. R. Hartshone.
    Residues and Duality, volume 20 of Lecture notes in Mathematics.
    Springer-Verlag, 1966.
  • 30. H. Hofer and P. Zehnder.
    Symplectic Invariants and Hamiltonian Dynamics.
    Birkhäuser, 1994.
  • 31. L. Hörmander.
    Fourier integral operator 1.
    Acta Math., 127:79 - 183, 1971.
  • 32. M. Kashiwara and P. Shapira.
    Sheaves on manifolds, volume 292 of Grund. der Math.
    Springer-Verlag, 1990.
  • 33. M. Kontsevich.
    Deformation of quantization of poisson manifolds I.
    preprint, q-alg/9709040.
  • 34. M. Kontsevich.
    ${A}_{\infty}$ algebras in mirror symmetry.
    MPI Arbeitstagung talk, 1993.
  • 35. M. Kontsevich.
    Homological algebra of mirror symmetry.
    In Proceedings of the International Congress of Mathematicians, Zürich, volume I, pages 120 - 139. Birkhäuser, 1995.
  • 36. S. Lang and Ch. Birkenhake.
    Complex Abelian Varieties, volume 302 of Grundlehren der mathematischen Wissenschaften.
    Springer-Verlag, 1980.
  • 37. J. Li and G. Tian.
    Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds.
    In Topics in symplectic $4$-manifolds (Irvine, CA, 1996), volume 1 of First Int. Press Lect. Ser., pages 47 - 83. International Press, 1997.
  • 38. B. Lian, K. Liu, and S. Yau.
    Mirror principle I.
    Asian. J. Math., 1:729 - 763, 1997.
  • 39. G. Liu and G. Tian.
    Floer homology and Arnold conjecture.
    J. Diff. Geom., 49:1 - 74, 1998.
  • 40. Y. Manin.
    Three constructions of Frobenius manifolds.
    Asian. J. Math., 3:179 - 220, 1999.
  • 41. D. McDuff and D. Salamon.
    J-holomorphic curves and quantum cohomology, volume 6 of University Lecture Seires.
    Amer. Math. Soc., 1994.
  • 42. D. McDuff and D. Salamon.
    Introduction to Symplectic topology.
    Oxford Science Publ., 1995.
  • 43. F. Lalonde, D. McDuff and L. Polterovich.
    On the flux conjectures.
    dg-ga/9706015.
  • 44. S. Mukai.
    Semi-homogeneous vector bundles on an abelian variety.
    J. Math. Kyoto Univ., 18:239 - 272, 1978.
  • 45. S. Mukai.
    Duality between ${D}({X})$ and ${D}({X}\,\hat {}\,)$ with its application to Picard sheaves.
    Nagoya Math. J., 81:153 - 175, 1981.
  • 46. S. Mukai.
    Abelian variety and spin representation.
    preprint, 1998.
  • 47. D. Mumford.
    Abelian variety.
    Oxford Univ. Press, 1970.
  • 48. S. Novikov.
    Multivalued functions and functional - an analogue of the Morse theory.
    Sov. Math. Dokl., 24:222 - 225, 1981.
  • 49. Y. G. Oh.
    Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks I,II.
    Comm. Pure and Appl. Math., 46:949 - 994, 995 - 1012, 1993.
  • 50. S. Piunikhin, D. Salamon, and M. Schwarz.
    Symplectic Floer-Donaldson theory and quantum cohomology.
    In C. Thomas, editor, Contact and Symplectic Geometry, pages 151 - 170. Cambridge Univ. Press, 1996.
  • 51. A. Polchinski.
    Tasi lectures on D-branes.
    In C.Efthimiou and B.Green, editors, Fields, String and Duality. World Scientific, 1997.
  • 52. A. Polishchuk.
    Massey and Fukaya products on elliptic curves.
    alg-geo/9803017.
  • 53. A. Polishchuk and E. Zaslow.
    Categorical mirror symmetry: the elliptic curve.
    Adv. Theor. Math. Phys., 2:443 - 470, 1998.
  • 54. M. Pozniak.
    Floer homology, Novikov rings and clean intersections.
    PhD thesis, Univ. of Warwick, 1994.
  • 55. Y. Ruan.
    Virtual neighborhood and pseudoholomorphic curves.
    Turkish J. Math., 23:161 - 231, 1999.
  • 56. Y. Ruan and G. Tian.
    Bott-type symplectic Floer cohomology and its multiplicative structure.
    Math. Res. Lett., 2:203 - 219, 1995.
  • 57. V. Schechtman.
    Remarks on formal deformation and Batalin-Vilkovsky algebras.
    mathAG/9802006.
  • 58. P. Seidel.
    Graded Lagrangian submanifolds.
    Bull. Soc. Math. France, 128:103 - 149, 2000.
  • 59. B. Siebert.
    Gromov-Witten invariants for general symplectic manifolds.
    dg-ga /9608005.
  • 60. V. D. Silva.
    Products on symplectic Floer homology.
    PhD thesis, Oxford Univ., 1997.
  • 61. J. Stasheff.
    Homotopy associativity of H-spaces I, II.
    Trans. Amer. Math. Soc., pages 275 - 312, 1966.
  • 62. J. Stasheff.
    Deformation theory and the Batalin-Vilkovsky master equation.
    In Deformation theory and Symplectic Geometry, volume 20 of Mathematical Physics Studies, pages 271 - 284. Kluwer Academic Publications, 1996.
  • 63. A. Strominger, S. Yau, and E. Zaslow.
    Mirror symmetry is T-duality.
    Nucl. Phys. B, 479:243 - 259, 1996.
  • 64. C. Vafa.
    Extending mirror conjecture to Calabi-Yau with bundles.
    Commun. Contemp. Math., 1:65 - 70, 1999.


Additional Information

Kenji Fukaya
Affiliation: Department of Mathematics, Faculty of Sciences, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 602-8502 Japan
Email: fukaya@kusm.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/S1056-3911-02-00329-6
Received by editor(s): July 29, 1998
Published electronically: February 27, 2002
Additional Notes: Partially supported by Grant-in-Aid for Scientific Research 13852001

American Mathematical Society