Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



The moduli space of Enriques surfaces and Borcherds products

Author: Shigeyuki Kondo
Journal: J. Algebraic Geom. 11 (2002), 601-627
Published electronically: March 18, 2002
MathSciNet review: 1910262
Full-text PDF

Abstract | References | Additional Information

Abstract: We shall give an $O^{+}(10, \mathbf{F}_{2})$-equivariant birational holomorphic map from the moduli space of Enriques surfaces with level 2 structure to $\mathbf{P}^{185}$ by using Borcherds' theory of automorphic forms on a bounded symmetric domain of type IV. Its image satisfies $2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 17 \cdot 31$ quartic relations.

References [Enhancements On Off] (What's this?)

  • [A] D. Allcock, The period lattice for Enriques surfaces, Math. Ann., 317(2000), 483-488.
  • [AF] D. Allcock, E. Freitag, Cubic surfaces and Borcherds product, math.AG/0002066.
  • [BB] W.L. Baily, Jr., A. Borel, A compactification of arithmetic quotients of bounded symmetric domains, Ann. Math., 84(1966), 422-528.
  • [Ba] H.F. Baker, Principles of geometry II, Cambridge University Press 1922.
  • [BP] W. Barth, C. Peters, Automorphisms of Enriques surfaces, Invent. Math., 73 (1983), 383-411.
  • [B1] R. Borcherds, The moduli space of Enriques surfaces and the fake monster Lie superalgebra, Topology 35 (1996), 699-710.
  • [B2] R. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math., 132 (1998), 491-562.
  • [B3] R. Borcherds, An automorphic form related to cubic surfaces, unpublished manuscript, math.AG/0002079.
  • [C] J.H. Conway et al., Atlas of Finite Groups, Oxford Univ., Oxford 1985.
  • [Di] J. Dieudonné, La géométrie des groupes classiques (2nd ed.), Springer 1963.
  • [Do] I. Dolgachev, Enriques surfaces : what is left ?, Problems in the theory of surfaces and their classification (Cortona, 1988), 81-97, Sympos. Math., XXXII, Academic Press, London 1991.
  • [F] E. Freitag, Some modular forms related to cubic surfaces, preprint, August 1999.
  • [FH] E. Freitag, C.F. Hermann, Some modular varieties of low dimension, Adv. Math., 152 (2000), 203-287.
  • [Hi] D. Hilbert, Über die vollen Invariantensysteme, Math. Ann., 42 (1893), 313-373.
  • [Ho] E. Horikawa, On the periods of Enriques surfaces I, II, Math. Ann., 234 (1978), 78-108, ibid 235 (1978), 217-246.
  • [I] J. Igusa, On the graded ring of theta-constants, Amer. J. Math., 86 (1964), 219-246.
  • [K1] S. Kondo, Enriques surfaces with finite automorphism groups, Japan. J. Math., 12 (1986), 191-282.
  • [K2] S. Kondo, The rationality of the moduli space of Enriques surfaces, Compositio Math., 91 (1994), 159-173.
  • [MN] S. Mukai, Y. Namikawa, Automorphisms of Enriques surfaces which act trivially on cohomology groups, Invent. Math., 77 (1984), 383-397.
  • [Na] Y. Namikawa, Periods of Enriques surfaces, Math. Ann., 270 (1985), 201-222.
  • [N1] V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., 14 (1980), 103-167.
  • [N2] V.V. Nikulin, On a description of the automorphism groups of Enriques surfaces, Soviet Math. Dokl., 30 (1984), 282-285.
  • [S] H. Sterk, Compactifications of the period space of Enriques surfaces I, II, Math. Z., 207 (1991), 1-36, ibid 220 (1995), 427-444.

Additional Information

Shigeyuki Kondo
Affiliation: Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602 Japan

Received by editor(s): May 18, 2000
Received by editor(s) in revised form: October 18, 2000
Published electronically: March 18, 2002
Additional Notes: Partially supported by Grants-in-Aid for Scientific Research (B)(2):10440005 and Houga: 11874004, Ministry of Education, Science and Culture

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2017 University Press, Inc.
AMS Website