Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Variations of the Albanese morphisms


Authors: Gian Pietro Pirola and Francesco Zucconi
Journal: J. Algebraic Geom. 12 (2003), 535-572
DOI: https://doi.org/10.1090/S1056-3911-03-00359-X
Published electronically: January 21, 2003
MathSciNet review: 1966026
Full-text PDF

Abstract | References | Additional Information

Abstract: We estimate the number of moduli of an $n$-dimensional variety $X$ through the variation of its Albanese morphism. Refining upon our methods, we work out the classical Castelnuovo bound concerning the number $m$ of moduli of irregular surfaces with birational Albanese map. We interpret our variation by means of higher Abel-Jacobi mappings theory and under the only hypothesis that $X$ has a generically finite morphism to an Abelian variety $A$, we can bound from below the geometrical genus $p_{g}(X)$ in terms of the dimensions of $A$ and $X$. Using the same framework, we characterize the hyperelliptic locus in ${\mathcal{M}}_g$ as the only close subvariety ${\mathcal{H}}$ inside the moduli space of curves with $\dim{\mathcal{H}} \geq 2g-1$ and torsion Abel-Jacobi image of the Ceresa cycle at its generic point.


References [Enhancements On Off] (What's this?)

  • 1. F. Bardelli, C. Ciliberto, A. Verra, Curves of minimal genus on a general Abelian variety, Comp. Math. 96 (1995), 115-147.
  • 2. F. Carlson, M. Green, P. Griffiths, J. Harris, Infinitesimal variations of Hodge structure (I), Comp. Math. 50 (1983), 109-205.
  • 3. G. Castelnuovo, Sul numero dei moduli di una superficie irregolare I, II, Rend. Accad. Lincei 7 (1949), 3-7, 8-11.
  • 4. F. Catanese, On the moduli spaces of surfaces of general type, J. Diff. Geometry 19 (1984), 483-515.
  • 5. F. Catanese, Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Inv. Math. 104 (1991), 263-289.
  • 6. G. Ceresa, $C$ is not algebraic equivalent to $C^{-}$ in its Jacobian, Ann. of Math. (2) 117 (1983), 285-291.
  • 7. H. Clemens, Some results about Abel-Jacobi zmappings, in Topics in Transcendental Algebraic Geometry, Ann. of Math. Stud. 106, Princeton Univ. Press, Princeton, (1984), 289-304.
  • 8. A. Collino, G. P. Pirola, The Griffiths infinitesimal invariant for a curve in its Jacobian, Duke Math. Jour. 78, No 1 (1995), 59-88.
  • 9. N. Fakhruddin, Algebraic cycles on generic Abelian varieties, Comp. Math. 100 (1996), 101-119.
  • 10. M. L. Green, Infinitesimal methods in Hodge theory. Algebraic cycles and Hodge theory (Torino, 1993), L.N.M., 1594, Springer, Berlin (1994), 1-92.
  • 11. P. Griffiths, Periods of integrals on algebraic manifolds I, II, Amer. J. Math 90 (1968), 568-626, 805-865.
  • 12. P. Griffiths, On the periods of certain rational integrals I, II, Ann. of Math 90 (1969), 460-541.
  • 13. P. Griffiths, Periods of integrals on algebraic manifold III, Publ. Math IHES 38 (1970), 125-180.
  • 14. P. Griffiths, Infinitesimal variations of Hodge structures III: determinantal varieties and the infinitesimal invariant of normal functions, Comp. Math. 50 (1983), 267-324.
  • 15. E. Horikawa, On deformations of holomorphic maps II, J. Math. Soc. Japan Vol. 26, No. 4 (1974), 647-667.
  • 16. G. Kempf, Complex Abelian varieties and theta functions, Universitext, Springer-Verlag, Berlin (1991).
  • 17. J. Kollár, Subadditivity of the Kodaira dimension: Fibers of general type. Adv. Stu. Pure Math 10 (1987), 361-398.
  • 18. S. Itaka, Algebraic Geometry, Springer Verlag, New York, Heidelberg (1982).
  • 19. S. Mac Lane, Homology, Springer Verlag, Berlin-Göttingen-Heidelberg (1963).
  • 20. M.V. Nori, Algebraic Cycles and Hodge Theoretic Connectivity, Inv. Math. 111 (1993), 349-373.
  • 21. G. P. Pirola, Abel-Jacobi invariant and curves on generic Abelian varieties, Abelian varieties (Egloffstein, 1993), de Gruyter, Berlin (1995), 223-232.
  • 22. Z. Ran, Deformation of maps, in Algebraic curves and projective geometry. Proc. Trento 1988, L.N.M. 1389, Springer, Berlin (1989), 221-232.
  • 23. I. Reider, Bounds on the number of moduli for irregular surfaces of general type, Manus. Math. 60, No. 2 (1988), 647-667.
  • 24. K. Ueno, Classification theory of algebraic varieties and compact complex spaces, L.N.M., 439, Springer-Verlag, Berlin-New York (1975).
  • 25. E. Viehweg, Weak positivity and the additivity of Kodaira dimension for certain algebraic fiber spaces, Adv. Stu. Pure Math 1, Algebraic Varieties and Analytic Varieties (1983), 329-353.
  • 26. C. Voisin, Une Remarque Sur l'Invariant Infinitésimal Des Fonctions Normales, C. R. Acad. Sci. Paris, t. 307, Série I (1988), 157-160.


Additional Information

Gian Pietro Pirola
Affiliation: Dipartimento di Matematica, Università degli studi di Pavia, Strada Ferrata 1, 27100 Pavia, Italia
Email: pirola@dimat.unipv.it

Francesco Zucconi
Affiliation: Dipartimento di Matematica e Informatica, Università degli studi di Udine, Via delle Scienze 206, 33100 Udine, Italia
Email: zucconi@dimi.uniud.it

DOI: https://doi.org/10.1090/S1056-3911-03-00359-X
Received by editor(s): December 3, 2000
Published electronically: January 21, 2003
Additional Notes: The first author was partially supported by: (1) Cofin 99: Spazi di moduli e teoria delle rappresentazioni (Murst); (2) GNSAGA; (3) Far 2000 (Pavia): Varietà algebriche, calcolo algebrico, grafi orientati e topologici. The second author was partially supported by: (1) SC.D.I.M.I. cecu 04118 ’99 Ricerca Dipartimentale, Università di Udine; (2) Cofin 99: Spazi di moduli e teoria delle rappresentazioni(Murst); (3) Royal Society-Accademia Nazionale dei Lincei 2000 grant to do research in Great Britain

American Mathematical Society